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Phase transitions not allowed in equilibrium steady states may happen, however, at the fluctuating level.

We observe for the first time this striking and general phenomenon measuring current fluctuations in an

isolated diffusive system. While small fluctuations result from the sum of weakly correlated local events,

for currents above a critical threshold the system self-organizes into a coherent traveling wave which

facilitates the current deviation by gathering energy in a localized packet, thus breaking translation

invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the

critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation

theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns

which enhance their probability.
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Fluctuations arise in most physical phenomena, and
their study has proven once and again to be a fruitful
endeavor. The first example is probably Einstein’s deter-
mination of molecular scales on the basis of the fluctuating
behavior of a mesoscopic particle immersed in a fluid [1],
which opened the door to an experimental verification of
the molecular hypothesis. Other examples range from the
role of fluctuations to understand critical phenomena be-
yond mean field theories, to the study of fluctuations of
spacetime correlations in glasses and other disordered
materials, which has revealed the universal existence of
dynamic heterogeneities in these systems [2]. In all cases
the statistics of fluctuations encodes essential information
to understand the physics of the system of interest. Even
further, fluctuations reflect the symmetries of the micro-
scopic world at the macroscale. This is the case, for in-
stance, of the Gallavotti-Cohen fluctuation theorem [3–5]
or the recently introduced isometric fluctuation relation
[6], which express the subtle but enduring consequences
of microscopic time reversibility at the macroscopic level.
Special attention is due to large fluctuations which, though
rare, play a dominant role as they drastically affect the
system behavior.

The study of fluctuating behavior provides an alternative
way to derive thermodynamic potentials from which to
calculate the properties of a system, a path complementary
to the usual ensemble approach. This can be extended to
systems far from equilibrium [2–11], where no bottom-up
approach exists yet connecting microscopic dynamics with
macroscopic properties. The large-deviation function
(LDF) controlling the fluctuations of the relevant macro-
scopic observables plays in nonequilibrium systems a role
akin to the equilibrium free energy, and reflects the phe-
nomenology typical of nonequilibrium physics (e.g., non-
local behavior resulting in long-range correlations [7,8]).
Hydrodynamic fluctuation theory (HFT), which studies

dynamic fluctuations in diffusive media [8–11], offers
predictions for both the LDF and the optimal path in phase
space responsible for a given fluctuation, which can in
general be time dependent [9,10]. However, it has been
shown that this optimal path is in fact time independent in a
broad regime [12,13]. This scenario eventually breaks
down for large fluctuations via a dynamic phase transition
at the fluctuating level involving a symmetry breaking
[10,14].
In this Letter we report compelling evidences of this

phenomenon in a paradigmatic model of transport in one
dimension, where we study fluctuations of the time-
averaged current. We find that small current fluctuations
result indeed from the sum of weakly correlated local
random events in the density field, thus giving rise to
Gaussian statistics as dictated by the central limit theorem;
see Fig. 1(a). However, for large enough currents, the
system self-organizes into a coherent traveling wave which
facilitates this rare event by accumulating energy in a

FIG. 1 (color online). Typical evolution of the energy field for
different current fluctuations in the 1D KMP model on a ring.
(a) Small current fluctuations result from weakly correlated local
events. (b) However, for jqj> qc the system facilitates this
unlikely deviation by forming a traveling wave.
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localized packet, see Fig. 1(b), with a critical current qc
separating both regimes. This phenomenon, predicted by
HFT [10,14], is most striking for this model as it happens
in an isolated equilibrium system in the absence of any
external field, spontaneously breaking a symmetry in 1D.
This is an example of the general observation that
symmetry-breaking instabilities forbidden in equilibrium
steady states can, however, happen at the fluctuating level
or in nonequilibrium settings [15]. Such instabilities may
help explain puzzling asymmetries in nature [15], from the
dominance of left-handed chiral molecules in biology to
the matter-antimatter asymmetry in cosmology.

Our model system is the paradigmatic 1D Kipnis-
Marchioro-Presutti (KMP) model of transport on a ring
[16]. This is a general model of transport which represents
at a coarse-grained scale the physics of many quasi-1D
systems of theoretical and technological interest charac-
terized by a single locally conserved field which diffuses
across space. In this sense our results are of great generality
and may have important implications in actual experi-
ments. Moreover, this model acts as a benchmark to
test theoretical advances in nonequilibrium physics
[6,10,13,16,17]. The model is defined on a 1D lattice of
N sites with periodic boundary conditions. Each site
i 2 ½1; N� is characterized by an energy �i � 0, and mod-
els an oscillator which is mechanically uncoupled from its
nearest neighbors but interacts stochastically with them via
a random energy redistribution process which conserves
total energy �0 �

P
N
i¼1 �i.

We are interested in the statistics of the total current q
flowing through the system, averaged over a long diffusive
time �. For � ! 1 this time average converges toward the
ensemble average hqi, which is of course zero because the
system is isolated and in equilibrium. However, for long
but finite � we may still observe fluctuations q � hqi, and
their probability P�ðqÞ obeys a large-deviation principle in
this limit [18], P�ðqÞ � exp½þ�NGðqÞ�. This means that
the probability of observing a current fluctuation decays
exponentially as both � and N increase, at a rate given by
the current LDF GðqÞ � 0, with GðhqiÞ ¼ 0. For the KMP
model a singularity has been shown to exist in GðqÞ [10]
whose details we uncover here.

In order to study current statistics in depth, we per-
formed extensive simulations of the 1D KMP model with
�0 ¼ 1 using an advanced Monte Carlo method which
allows us to explore the tails of the current LDF [19,20].
This method implies a modification of the stochastic
dynamics so that the rare events responsible for a large
current fluctuation are no longer rare, and requires the
simulation of multiple clones of the system [19]. In this
work we used M ¼ 104 clones. The method yields the
Legendre transform of the current LDF, �ð�Þ ¼
maxq½GðqÞ þ �q�, with � a parameter conjugated to the

current, and Fig. 2 shows simulation results for �ð�Þ and
increasing values of N. As shown below, HFT predicts

Gaussian current statistics for jqj< qc ¼ �—see Eq. (3),
corresponding to quadratic behavior in �ð�Þ ¼ �flatð�Þ ¼
�2=2 up to a critical j�cj ¼ �. This is fully confirmed in
Fig. 2 as N increases, meaning that small and intermediate
current fluctuations have their origin in the superposition of
weakly correlated local events, giving rise to Gaussian
statistics as dictated by the central limit theorem.
However, for fluctuations above the critical threshold,
j�j> �c, deviations from this simple quadratic form are
apparent, signaling the onset of a phase transition. In fact,
as N increases, a clear convergence toward the HFT pre-
diction is observed, with very good results already for
N ¼ 32. Strong finite size effects associated with the finite
population of clones M prevent us from reaching larger
system sizes [21], but N ¼ 32 is already close enough to
the asymptotic hydrodynamic behavior. Still, small correc-
tions to the HFT predictions are observed which quickly
decrease with N; see inset of Fig. 2.
The phase transition is most evident at the configura-

tional level, so we measured the average energy profile
associated with a given current fluctuation [20]; see Fig. 3.
Because of the system periodicity, and in order not to blur
away the possible structure, we performed profile averages
around the instantaneous center of mass. For that, we
consider the system as a 1D ring embedded in two-
dimensional space and compute the angular position of
the center of mass, shifting it to the origin before averag-
ing. Notice that this procedure yields a spurious weak
structure in the subcritical region, equivalent to averaging
random profiles around their (random) center of mass.
Such a spurious profile is of course independent of q and
can be easily subtracted. On the other hand, supercritical
profiles exhibit a much pronounced structure resulting
from the appearance of a traveling wave; see Fig. 1(b).
The top panel in Fig. 3 shows the measured profile !�ðxÞ
for different � > �c and varying N. Again, fast conver-
gence toward the HFT result is observed, with excellent

FIG. 2 (color online). Main: Measured �ð�Þ for the 1D KMP
model on the ring and increasing values of N, together with
the HFT prediction and the Gaussian approximation.
Inset: �ð�Þ ��flatð�Þ for the same N. Data converge to the
HFT prediction as N increases.
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agreement for N ¼ 32 in all cases. The bottom panel in
Fig. 3 shows the measured profiles for N ¼ 32 and differ-
ent �, which closely resembles the HFT scenario; see inset.
We also measured the average velocity associated to a
given current fluctuation by fitting the motion of the center
of mass during small time intervals �t to a ballistic law,
xc:m:ðtþ�tÞ � xc:m:ðtÞ ¼ v�t, see, e.g., Fig. 1(b), and
making statistics for the measured velocity. Figure 4 shows
the mean velocity for �t ¼ 100 Monte Carlo steps as a
function of � for increasing values ofN, and the agreement
with HFT is again very good already for N ¼ 32 (other

values of �t yield equally good results). Notice that for
subcritical current fluctuations the velocity is simply pro-
portional to the current, while above the critical line the
relation becomes nonlinear.
To understand this behavior, note that the KMP model

belongs to a large class of diffusive systems which evolve
in time according to a rescaled continuity equation:

@t� ¼ @xðD½��@x�þ �Þ: (1)

Here �ðx; tÞ is the density field, with x 2 ½0; 1�, jðx; tÞ �
�ðD½��@x�þ �Þ is the fluctuating current, and D½�� is
the diffusivity (a functional of the density profile in
general). The (conserved) noise term �ðx; tÞ, which ac-
counts for microscopic random fluctuations at the meso-
scopic level, is Gaussian and white with h�ðx; tÞi ¼ 0
and h�ðx; tÞ�ðx0; t0Þi ¼ N�1�½���ðx� x0Þ�ðt� t0Þ, with
�½�� the mobility functional and N the system size.
In particular, for the KMP model D½�� ¼ 1=2 and
�½�� ¼ �2 [16], and we focus here on periodic boundary
conditions, �ð0; tÞ ¼ �ð1; tÞ and jð0; tÞ ¼ jð1; tÞ, so the
total mass in the system is conserved, �0 ¼

R
1
0 �ðx; tÞdx.

The probability of observing a particular history
f�ðx; tÞ; jðx; tÞg�0 of duration � for the density and current

fields can be written as a path integral over all possible
noise realizations, f�ðx; tÞg�0, weighted by its Gaussian mea-

sure, and restricted to those realizations compatible with
Eq. (1) at every point in space and time. This results in
Pðf�; jg�0Þ � expfþNI�½�; j�g, with a rate functional de-

fined by the familiar formula [8–11]

I �½�; j� ¼ �
Z �

0
dt

Z 1

0
dx

ðjþD½��@x�Þ2
2�½�� ; (2)

with �ðx; tÞ and jðx; tÞ coupled via the continuity equation,
@t�þ @xj ¼ 0. Equation (2) expresses the locallyGaussian
nature of current fluctuations around its average behavior,
given by Fourier’s law. We are interested in the fluctuations
of the time-averaged current q ¼ ��1

R
�
0 dt

R
1
0 dxjðx; tÞ.

The probability of observing a given q can in turn be
obtained from the path integral of Pðf�; jg�0Þ restricted

to histories f�; jg�0 consistent with that value of q. This
probability scales as P�ðqÞ � exp½þ�NGðqÞ�, and the
current LDF GðqÞ is related to I�½�; j� via a simple
saddle-point calculation in the long time limit, GðqÞ ¼
��1max�;jI�½�; j�, such that the optimal profiles �qðx; tÞ
and jqðx; tÞ solution of this variational problem are compat-

ible with the constraints on �0 and q and are related via
the continuity equation. These optimal profiles can be in-
terpreted as the ones the system adopts to facilitate a given
current fluctuation.
Small deviations of the empirical current away from its

ensemble average hqi ¼ 0 typically result from weakly
correlated local fluctuations. The average density profile
associated with these small fluctuations hence still corre-
sponds to the flat, stationary one, �qðx; tÞ ¼ �0. In this

case, the optimal current profile is just jqðx; tÞ ¼ q and

FIG. 3 (color online). Top: Supercritical profiles for different �
and varying N, and HFT predictions. Bottom: Measured profiles
as a function of � for N ¼ 32. Inset: HFT prediction for the
optimal profile !qðxÞ. Profiles are flat up to the critical current,

beyond which a nonlinear wave pattern develops.

FIG. 4 (color online). Velocity measured as a function of � for
increasing N, and HFT result.
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the current LDF is simply quadratic, GflatðqÞ¼
�q2=2�ð�0Þ [14], resulting in Gaussian current statistics
as confirmed in simulations; see Fig. 2. A natural question
thus concerns the stability of this flat profile against small
perturbations. Bodineau and Derrida have shown [14] that
the flat profile indeed becomes unstable, in the sense that
GðqÞ increases by adding a small time-dependent periodic
perturbation to the otherwise constant profiles, whenever
8�2Dð�0Þ2�ð�0Þ � q2�00ð�0Þ< 0, where �00 denotes sec-
ond derivative. This defines a critical current

jqcj ¼ 2�Dð�0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�0Þ=�00ð�0Þ

q
(3)

for the instability to kick in. When this happens, the
form of the associated relevant perturbation suggests that
current fluctuations in this regime are sustained by a
traveling wave pattern moving at constant velocity v
[14], as observed in simulations. We hence write �qðx; tÞ ¼
!qðx� vtÞ, which results in jqðx; tÞ ¼ q� v�0 þ
v!qðx� vtÞ via the continuity equation. The variational

problem for GðqÞ can now be written as

GðqÞ¼� min
!qðxÞ;v

Z 1

0

½q�v�0þv!qðxÞ�2þ!0
qðxÞ2D½!q�2

2�½!q� dx;

(4)

resulting in the following differential equation for the
shape of the optimal traveling wave:

½q� v�0 þ v!qðxÞ�2 �!0
qðxÞ2D½!q�2

¼ 2�½!q�fC1 þ C2!qðxÞg: (5)

This equation yields a !qðxÞ which is generically a sym-

metric function with a single minimum !1 ¼ !ðx1Þ and
maximum !2 ¼ !ðx2Þ such that jx2 � x1j ¼ 1=2. The
constants C1 and C2 can then be related to these extrema,
which in turn are fixed by the constraints on the total mass
of the system and the distance between extrema,

�0

2
¼

Z !2

!1

!Dð!Þ
Zvð!Þ d!;

1

2
¼

Z !2

!1

Dð!Þ
Zvð!Þd!; (6)

where Zvð!Þ¼ ½ðq�v�0þv!Þ2�2�ð!ÞðC1þC2!Þ�1=2.
The optimal wave velocity is given implicitly by v ¼
�q	ðvÞ

1 =	ðvÞ
2 [14], with

	ðvÞ
n �

Z !2

!1

Dð!Þð!� �0Þn
�ð!ÞZvð!Þ d!: (7)

In this way, for constant �0 and q, we use Eqs. (6) and (7)
to compute the profile extrema and its velocity, and use this
information to solve Eq. (5) for !qðxÞ. The resulting

predictions are fully confirmed in simulations; see above.
Our results unambiguously show that an isolated diffu-

sive system exhibits a phase transition at the fluctuation
level. This phenomenon, captured by hydrodynamic fluc-
tuation theory, is most surprising as it happens in an

equilibrium system in the absence of external fields, spon-
taneously breaking a symmetry in 1D. This illustrates the
idea that critical phenomena not allowed in equilibrium
steady states may however arise in their fluctuating behav-
ior or under nonequilibrium conditions [15]. Remarkably,
similar instabilities have been described in quantum sys-
tems [22]. Our results strongly support that the phase
transition is continuous as conjectured in [14], excluding
the possibility of a first-order scenario, and suggest that a
traveling wave is in fact the most favorable time-dependent
profile in the supercritical regime. This observation may
greatly simplify general time-dependent calculations, but
the question remains of whether this is the whole story or if
other, more complex solutions may play a dominant role
for even larger fluctuations. In any case, it seems clear that
rare events call in general for coherent, self-organized
patterns in order to be sustained [23].
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