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ABSTRACT

An overview of rare event algorithms based on large deviation theory (LDT) is presented. It covers a range of numerical schemes to compute
the large deviation minimizer in various setups and discusses best practices, common pitfalls, and implementation tradeo�s. Generalizations,
extensions, and improvements of theminimumactionmethods are proposed. These algorithms are tested on example problemswhich illustrate
several common di�culties which arise, e.g., when the forcing is degenerate or multiplicative, or the systems are in�nite-dimensional. Gen-
eralizations to processes driven by non-Gaussian noises or random initial data and parameters are also discussed, along with the connection
between the LDT-based approach reviewed here and other methods, such as stochastic �eld theory and optimal control. Finally, the integration
of this approach in importance sampling methods using, e.g., genealogical algorithms, is explored.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084025

Rare events oftenhave a drastic impact despite their low frequency
of occurrence. Examples include hurricanes, �nancial crises, heat
waves, or tsunamis that are few and far between but have devas-
tating consequences. Other important phenomena such as phase
transitions, chemical reactions, or conformational changes of
biomolecules also involve rare events. The accurate description
of these events is complicated, since their low rate of occurrence
makes them hard to observe both in experiments and in simu-
lations. In many cases, when a rare event occurs, it does so in
its least unlikely form, the instanton, rendering all other real-
izations of the same event negligible in comparison. Whenever
such a situation holds, a large deviation principle (LDP) quanti�es
this concentration phenomenon. The LDP speci�es a determinis-
tic optimization problem to identify the instanton and allows the
estimation of its probability. In this review, we discuss numeri-
cal algorithms to solve the large deviation optimization problem,
compare their associated tradeo�s, and present best practices,
pitfalls, improvements, and generalizations.

I. INTRODUCTION

Rare but important events are by de�nition di�cult to observe,
both in experiments and in simulations. In order to design e�cient

schemes for the numerical computation of these events, one, there-
fore, typically resorts to one of the following two strategies: either
manipulation of the system in a controlled way that makes rare
events more likely and can be corrected a posteriori or computation
of a single dominant event characterizing the possible ways the rare
event happens. The �rst approach can be categorized as importance
sampling; the second can be justi�ed within sample path large devi-
ation theory (LDT) and leads to an action minimization problem
to be solved. In this review, we focus mainly on algorithmic devel-
opments in the second class and discuss the interplay between this
LDT-based approach and importance sampling toward the end of
our paper. The techniques covered focus solely on the small noise
(or low temperature) limit of stochastic processes covered by the

Freidlin-Wentzell theory1 and generalizations thereof. Speci�cally, in
Sec. II, we discuss rare event algorithms based on the global min-
imization of LDT action functionals, suitable for computing paths
by which infrequent transitions between two prescribed states occur.
Subsequently, in Sec. III, we explain how to calculate large deviation
minimizers in the context of the estimation of rare expectations dom-
inated by tail statistics. In Sec. IV, we generalize these two approaches
to the non-Gaussian case. In Sec. V, we demonstrate a generalization
to arbitrary dynamical systems with random initial conditions and
parameters. Section VI suggests possibilities to use the minimizing
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trajectories obtained by the earlier algorithms as input for importance
sampling algorithms. Finally, some concluding remarks are presented
in Sec. VII. Many of the covered techniques and algorithms are not
new, and more in-depth discussions exist in the literature; further
reading is indicated on a per-case basis. Some of the example appli-
cations, notably the application to extreme concentrations of prey
in the Lotka-Volterra model (Sec. III B), extreme amplitudes in the
Korteweg-de Vries equation (Sec. III C), optimal excitations of the
Fitzhugh-Nagumo model (Sec. V B), and extreme numbers of infec-
tions in an epidemiologymodel with vaccination (Sec. VI C), are new
to this review.

In the remainder of the present section, we review the aspects
of LDT relevant to our purpose, with focus on the Freidlin-Wentzell
theory for dynamical systems subject to random noise of low ampli-
tude.

A. Freidlin-Wentzell theory of large deviations

Consider a dynamical systemwith variablesXεt inR
d, subject to

small random perturbations that are additive Gaussian and white in
time. Assuming that the noise amplitude scales with the smallness-
parameter ε, the evolution of the stochastic variables Xεt is described
by the stochastic di�erential equation (SDE)

dXεt = b(Xεt ) dt +
√
εσ dWt , Xε0 = x, t ≥ 0, (1)

with deterministic drift b : Rd → R
d, noise covariance a = σσ>

with σ ∈ R
d×d, and where Wt is a d-dimensional Wiener pro-

cess—for simplicity, we assume here that a is independent of the
system’s position (i.e., the noise is additive) and invertible: the gen-
eralization to multiplicative noise and degenerate noise will be dis-
cussed through examples. We are interested in situations where the
stochastic process (1) realizes a certain event, for example, when the
trajectory ends at time T in a given setA ⊂ R

d, so that XεT ∈ A. Even
if these events are impossible in the deterministic system (ε = 0),
they will, in general, occur in the presence of noise (ε > 0) but they
become rarer and rarer in the low-noise limit, ε → 0.

Large deviation theory (LDT) gives a precise characterization
of this decay of probability: the probability of observing any sample
path close to a given function φ(t) can be estimated as (see Chap. 3
of Ref. 1)

P

{

sup
t∈[0,T]

‖Xεt − φ(t)‖ < δ

}

� exp
(

−ε−1ST(φ)
)

, (2)

for small enough δ > 0, where � denotes the log-asymptotic equiv-
alence (i.e., for ε → 0, the ratio of the logarithms of both sides
converges to 1). The functional ST(φ) is called the “rate function” or
“action functional,” and it is generally given by

ST(φ) =
{

∫ T

0 L(φ, φ̇) dt if the integral converges,

∞ otherwise.
(3)

Here, we de�ned the “Lagrangian” L(φ, φ̇), which for the concrete
example of Eq. (1) is given by

L(φ, φ̇) = 1
2
‖φ̇ − b(φ)‖2a (4)

via the a-metric induced by the inner product ‖v‖2a = 〈v, a−1v〉.
The corresponding action functional is then termed the “Freidlin-
Wentzell action functional.”

The probability of observing the event XεT ∈ A consists of con-
tributions of the sample paths close to all the possible absolutely
continuous φ(t) ∈ C = {φ(t) ∈ AC([0,T],Rd) | φ(0) = x,φ(T) ∈
A}, and each of these contributions scales according to Eq. (2). Con-
sequently, in the limit ε → 0, the only contribution that matters is
that coming from the trajectoryφ∗(t)with the smallest action ST(φ∗).
We call

φ∗(t) = argmin
φ∈C

ST(φ) (5)

the “maximum likelihood pathway” (MLP) or “instanton.” It con-
stitutes the “least unlikely” trajectory to realize the rare event, in
the sense that almost surely all sample paths conditioned on the
rare event will be arbitrarily close to φ∗(t). More precisely (compare
Sec. 3.1 of Ref. 1), for all δ > 0 su�ciently small, we have

lim
ε→0

P

{

sup
t∈[0,T]

‖Xεt − φ∗(t)‖ < δ
∣

∣ XεT ∈ A

}

= 1. (6)

The e�cient numerical solution of the minimization problem (5) for
di�erent rare events (and, therefore, di�erent sets of trajectories C to
minimize over) lies at the core of this work.

If the action at the instanton, ST(φ∗) is zero, the corresponding
trajectory ful�lls φ̇ = b(φ) and can be considered “deterministic,”
i.e., the corresponding evolution is the one selected by the deter-
ministic dynamics (ε = 0). If, on the other hand, the action at the
instanton is �nite, the probability of observing the corresponding
event in a given time frame T decays to zero as indicated by Eq. (2).

LDT additionally permits the analysis of the e�ect of in�nitesi-
mal perturbations over an in�nite time interval, T → ∞, on which
these rare events almost surely happen. The central object in this
context is the “quasipotential,” de�ned as

V(x, y) = inf
T>0

min
φ∈Cx,y

ST(φ), (7)

where Cx,y = {φ ∈ AC([0,T],Rd) ‖ φ(0) = x,φ(T) = y}. The
quasipotential characterizes the long-time behavior of the system.
For example, if the deterministic system Ẋ = b(X) possesses only
one single stable �xed point x̄, with basin of attraction R

d, then the
density ρ(x) associated with the invariant measure of Eq. (1) can be
written in the limit ε → 0 as

ρ(x) � exp
(

−ε−1V(x̄, x)
)

(8)

(compare Chap. 4, Theorem 4.3 of Ref. 1). Similarly, in situations
where the deterministic system hasmultiple �xed points x̄i, themean
�rst passage time τi,j between the basins of attraction of neighboring
x̄i and x̄j,

τi,j = E inf{t > 0 | X(0) = x̄i, ‖X(t)− x̄j‖ < δ}, (9)

with δ > 0 small enough, can be estimated in the small noise limit as

τi,j � exp
(

ε−1V(x̄i, x̄j)
)

(10)

(see Sec. 4.4 of Ref. 1). This result also allows the investigation of the
long-time dynamics of the system bymapping it onto aMarkov jump
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process (MJP) whose states are the �xed points x̄i, x̄j, etc. and whose
transition rates are ki,j � τ−1

i,j .
All these examples show that it is useful to have access to the

minimizing trajectory φ∗ to describe rare events: First, it gives the
typical way a rare event is observed, enabling us to identify their
mechanism. Second, it allows the estimation of their probability of
occurrence and their expected recurrence time. Third, it gives the
relative probability of multiple typical (i.e., deterministically stable)
states and the most likely way by which transitions between them
occur.

B. Hamiltonian principle and connections to classical

mechanics and field theory

The minimization problem in Eq. (5) to �nd the instanton
precisely corresponds toHamilton’s principle from classical mechan-
ics, δST(φ)/δφ = 0. As a consequence, the methods and ideas from
classical mechanics are transferable to our situation. In particular,
the variational problem can be solved by seeking solutions of the
corresponding Euler-Lagrange equation,

∂L

∂φ
− d

dt

∂L

∂φ̇
= 0, (11)

which, for a system of the type (1), gives

a−1φ̈ +
(

a−1∇b(φ)− ∇b(φ)>a−1
)

φ̇ + ∇〈b(φ), a−1b(φ)〉 = 0.

(12)

Several algorithms presented below aim at the numerical solution of
the second order equation (12).

Similarly, inspired by classical mechanics, we can de�ne a “con-
jugate momentum”

θ = ∂L(φ, φ̇)

∂φ̇
, (13)

and a “Hamiltonian” as Fenchel-Legendre transformof the Lagrangian,

H(φ, θ) = sup
y

(

〈θ , y〉 − L(φ, y)
)

, (14)

such that, assuming convexity of L(φ, φ̇) in φ̇,

L(φ, φ̇) = sup
θ

(

〈φ̇, θ〉 − H(φ, θ)
)

. (15)

The minimization (5) is then equivalent to solving Hamilton’s equa-
tions of motion, or “instanton equations,”

{

φ̇ = ∇θH(φ, θ),

θ̇ = −∇φH(φ, θ).
(16)

For system (1), the Hamiltonian is given by

H(φ, θ) = 〈b(φ), θ〉 + 1
2
〈θ , aθ〉 (17)

so that the instanton equations read
{

φ̇ = b(φ)+ aθ ,

θ̇ = −(∇b(φ))>θ .
(18)

Solving the instanton equation (16) constitutes another possible
approach to solving the minimization problem (5), but care has to be

taken to obtain the correct boundary conditions for (16), depending
on the rare event under consideration—this point will be discussed
at length below and we will see that these boundary conditions make
working with (12) more appropriate in some cases and with (18) in
others. Notably, neither (17) nor (18) necessitate inverting a, which
we can exploit in the case of degenerate forcing with noninvertible a.

The Hamiltonian H(φ, θ) is a conserved quantity along the
minimizing trajectory, since

dH/dt = 〈∇φH, φ̇〉 + 〈∇θH, θ̇〉 = 0. (19)

Additional simpli�cations apply in the special case that the mini-
mizing trajectory starts at rest at a �xed point x̄ of the deterministic
dynamics, inwhich case individually b(x̄) = 0 and θ = 0. This neces-
sitates at the same time that the transition time T diverges to ∞,
and furthermore that the Hamiltonian vanishes, H(φ, θ) = 0. This
property can in turn be used to rewrite the action functional (3) as

S(φ) =
∫ ∞

0

L(φ, φ̇) dt =
∫ ∞

0

(〈φ̇, θ〉 − H(φ, θ)) dt =
∫

〈θ , dφ〉.

(20)

Writing the action in this form is an instance of theMaupertuis prin-
ciple in mechanics, which minimizes over paths of a given energy.
Since it omits any explicit time parametrization, it o�ers an approach
at solving the doubleminimization problem to calculate the quasipo-
tential in (7).

Interestingly, there is a parallel between the LDT discussed
above and concepts from �eld theory applied to stochastic sys-
tems, �rst established by Ref. 2. Later, the Janssen-de Dominicis
formalism,3,4 based on theMartin-Siggia-Rose path integral,5 consid-
ers computing expectations as path-integrals over all possible noise
realizations and performs a change of variables to the �eld variable
itself. The constraint of the dynamics is embedded as Lagrangemulti-
plier, which gives rise to an additional “auxiliary �eld,” corresponding
to the conjugatemomentum. Similarly, theminimization problem (5)
then amounts to �nding a semiclassical trajectory as saddle-point
approximation of the action functional. It is this correspondence
which is the root of the terms “action functional” and “instanton”
for the rate function and its minimizer. Noteworthy in this context
is also the Doi-Peliti formalism,6,7 which follows a similar route for
dominant reaction pathways.

The same results discussed in this section can be obtained
by instead applying a Wentzel-Kramers-Brillouin (WKB) approxi-
mation to the Fokker-Planck equation associated to the stochastic
process.8,9

C. Detailed balance and gradient flows

A special case of interest is when the dynamics is a di�usion in a
potential, with the drift given by the negative gradient of a potential
U : Rd → R and σ =

√
2Id, where Id is the identity onR

d×d, such
that Eq. (1) becomes

dXεt = −∇U(Xεt ) dt +
√
2ε dWt . (21)

Suppose that we look at the calculation of the quasipotential (7)
between two localminima ofU located at xa and xb andwith adjacent
basins of attraction. In this case, the minimum of (7) is approached
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by taking either φ̇ = −∇U(φ) (in which case the action is zero), or
we realize that (see Chap. 3 of Ref. 1)

ST(φ) = 1

4

∫ T

0

|φ̇ + ∇U(φ)|2 dt

=
∫ T

0

|φ̇ − ∇U(φ)|2 dt +
∫ T

0

〈φ̇,∇U(φ)〉 dt

=
∫ T

0

|φ̇ − ∇U(φ)|2 dt + U(φ(T))− U(φ(0)).

Now, since the last terms depend only on the trajectory end-points,
we are free to choose φ̇ = ∇U(φ) to make the �rst integral disap-
pear. As a consequence, for a di�usion in a potential landscape of the
form (21), to calculate the minimum involved in the quasipotential,
we can patch together the solutions of φ̇ = ±∇U(φ) that connects
xa and xb via the saddle point xs of minimum potential. We can inter-
pret that to say that the minimum is achieved by following either
the deterministic dynamics φ̇ = −∇U(φ), or its “time-reversed” ver-
sion. This is nothing but a manifestation of time-reversal symmetry
that is the consequence of the random process de�ned by Eq. (21)
being in detailed balance with respect to the stationary distribution.

This simple relationship between the tangential vector φ̇ and the
deterministic drift ∇U simpli�es the computation of the minimiz-
ers signi�cantly. In particular, we realize that minimizers for gradient
�ows are “heteroclinic orbits” of the dynamical system de�ned by the
deterministic drift. As such, they are numerically accessible by the
“string method.”10,11

Similar simpli�cations as the above can be realized for any sys-
tem in detailed balance with respect to its stationary distribution,
and as a result, its large deviation minimizers are always hetero-
clinic orbits of the associated “generalized” gradient �ow (but not
necessarily of a traditional gradient �ow).12

II. RARE EVENT ALGORITHMS FOR NOISE-INDUCED

TRANSITIONS

In this section, we want to consider a particular subclass of
problems of the form discussed in Sec. I A: the computation of the
optimal noise-induced transition trajectory from a basin of attrac-
tion around one �xed point of the deterministic dynamics to a
neighboring one. Speci�cally, we are not considering more compli-
cated attracting structures such as limit cycles and only consider
transitions between neighboring basins. For these assumptions, the
minimization problem (5) becomes

φ∗(t) = argmin
φ∈Cx,y

ST(φ), (22)

where Cx,y = {φ ∈ AC([0,T],Rd) | φ(0) = x,φ(T) = y}, and the
instanton constitutes the maximum likelihood transition trajectory
between the two deterministically stable �xed points x and y. By
additionally minimizing over the transition time T, the resulting
instanton can be used to compute the quasipotential (7), at least
along the instanton trajectory. Alternatives, such as fast marching
techniques,13 are viable only in low dimensions. Here, instead, we
perform the computation of the quasipotential by applying the min-
imum action method14 that discretizes the action functional (3) and

considers the discrete (�nite-dimensional) gradient as descent direc-
tion for numericalminimization algorithms, such as gradient descent
or quasi-Newton methods. In Sec. II A, we present a simpli�ed ver-
sion of the minimum action method and discuss its implementation
details. In Sec. II B, this method is then illustrated by applying it
to a simpli�ed metastable atmosphere dynamics model. Finally, in
Sec. II C, we discuss generalizations to stochastic partial di�eren-
tial equations (SPDEs) and consider the example of the stochastic
Burgers-Huxley model in Sec. II D.

A. A simplified geometric minimum action method

One obvious disadvantage of a straightforward discretization
of the Freidlin-Wentzell action functional (3) is its inability to treat
in�nite transition times. In the context of the quasipotential, we
are looking for transition trajectories of arbitrary transition time T,
which generally diverges, T → ∞, since the trajectory contains �xed
points. The minimum of the outer minimization in the computation
of the quasipotential,

V(x, y) = inf
T>0

min
φ∈Cx,y

ST(φ), (23)

is simply not attained for any �nite T in these cases. This compli-
cation was successfully addressed with the “geometric” minimum
action method (gMAM),15 which instead considers a minimization
over the space of arc-length parametrized curves that may remain
�nite even for diverging transition time. In this section, we want to
introduce a simpli�ed version of this geometric picture, allowing us
to formulate an algorithm to compute the geometric minimizer with
a lower number of derivatives of the Hamiltonian.

Based on the Maupertuis principle (20), the minimizing trajec-
tory φ between two �xed points x and y, when additionally min-
imizing over the transition time T, ful�lls H(φ, θ) = 0, and the
corresponding action (20) is given by

S(φ) =
∫ y

x

〈θ , dφ〉. (24)

This form of the action makes it obvious that the action is invari-
ant under reparametrization: the total action is a line-integral along
the minimizer, and we are free to choose any parametrization to
describe it. This enables us to treat in�nite time intervals with �nitely
many discretization points, for example, by parametrizing (24) by
normalized arc-length.

The minimization problem (5) can be rewritten as a nested
optimization problem,

φ∗ = argmin
φ∈Cx,y

sup
θ :H(φ,θ)=0

E(φ, θ), (25)

with

E(φ, θ) =
∫ 1

0

〈θ ,φ′〉 ds. (26)

Here, the prime denotes di�erentiationwith respect to the parametri-
zation s we choose for φ and θ , and we impose ‖φ′‖∼ = L = const,
with L being the length of the curve. Note that the algorithm works
independently of the choice of the norm, and we will discuss appro-
priate norms at the end of this section. Therefore, in the following, the
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norm ‖ · ‖∼ and corresponding inner product 〈·, ·〉∼ are to be seen as
a placeholder for our preferred choice.

Let

E∗(φ) = sup
θ :H(φ,θ)=0

E(φ, θ) (27)

and θ∗(φ) be the solution of the inner optimization problem (27),
such that E(φ, θ∗(φ)) = E∗(φ). Then, equivalently, θ∗(φ) ful�lls the
Euler-Lagrange equation for the constrained maximization problem
(27). Using δE(φ, θ)/δθ = φ′, this Euler-Lagrange equation reads

φ′ = µ∇θH(φ, θ), (28)

where µ(s), s ∈ [0, 1], is a Lagrange multiplier to enforce the con-
straint of a vanishing Hamiltonian. This Lagrange multiplier is
explicitly computable by multiplying Eq. (28) by φ′ and solving for
µ, i.e.,

µ = ‖φ′‖2∼
〈φ′,∇θH〉∼

. (29)

Similarly, using δE(φ,φ)/δφ = −θ ′, the functional derivative of
E∗(φ) with respect to φ can be expressed as

δE∗(φ)

δφ
= −θ∗′

(φ)+ µ∇θH(φ, θ
∗(φ))∇φθ

∗(φ)

= −θ∗′
(φ)− µ∇φH(φ, θ

∗(φ)), (30)

where the last step makes use of

∇φH(φ, θ
∗(φ)) = −∇θH(φ, θ

∗(φ))∇φθ
∗(φ),

which holds by de�nition due to H(φ, θ∗(φ)) = 0.
Note how in this formulation the reparametrization into arc-

length emerges naturally as Lagrange multiplier µ to enforce the
Hamiltonian constraint. In particular, comparing Eq. (28) with
Hamilton’s equation with respect to physical time,
dφ/dt = ∇θH(φ, θ) shows that the Lagrange multiplier µ is noth-
ing but the change of parametrization,µ = dt/ds from physical time
to arc-length parametrization.

Taking these equivalences, the nested optimization problem
(25) can now be solved in an iterative manner. Starting from the kth
guess φk for the transition trajectory,

(i) solve the inner constrained optimization problem,

θ k = θ∗(φk) = argmax
θ :H(φk ,θ)=0

E(φk, θ),

(ii) compute a descent direction for the outer optimization problem,

dk = δE∗(φk)/δφk = θ̇ k + ∇φH(φ
k, θ k), (31)

(iii) descent along the descent direction, for example by gradient
descent, preconditioned with µ−1, and step-length α,

φk+1 = φk + αµ−1dk, (32)

to obtain the next guess φk+1, and, �nally,
(iv) iterate until convergence.

In step (iii), with preconditioning, we refer to the fact that the
direction dk speci�ed by the gradient is only one of many possible
directions in which the cost function decreases. In fact, any direction

d̃k such that the inner product between d̃k and dk remains positive is
a valid search direction.

For the speci�c case of the small-noise Gaussian SDE, Eq. (1),
this algorithm can be even more simpli�ed. In particular, the inner
constrained optimization problem to �nd θ∗(φ) can be solved ana-
lytically, instead of relying on numerical optimization. Taking the
Euler-Lagrange equation (28) for the inner optimization problem,
together with the speci�c form of the Hamiltonian (17), yields

φ′ = µ∇θH(φ, θ
∗(φ)) = µ(b(φ)+ aθ∗(φ))

so that

θ∗(φ) = a−1(µ−1φ′ − b(φ)). (33)

On the other hand, the Lagrange multiplier µ is directly available
without knowledge of θ∗: since

‖∇θH‖2a = ‖b + aθ‖2a = ‖b‖2a + 2〈b, θ〉 + ‖aθ‖2a
= ‖b‖2a + 2H = ‖b‖2a, (34)

we conclude that

µ = ‖∇θE(φ, θ∗(φ))‖a
‖∇φH(φ, θ∗(φ))‖a

= ‖φ′‖a
‖b + θ‖a

= ‖φ′‖a
‖b‖a

. (35)

(35) naturally leads to the choice ‖ · ‖∼ = ‖ · ‖a. The descent direc-
tion is then immediately available as

dk = θ k
′ + (∇b(φk))

>
θ k,

with θ k and µ given by (33) and (35), respectively.
We want to make a few points about possible pitfalls and best

practices.

• Even though any parametrization s(t) is permissible, as discussed
above it is natural to choose arc-length, such that ‖φ′‖∼ = const.
This parametrization can be enforced, as in the improved string
method11 and the original geometric minimum action method,15

by interpolation along the trajectory. This avoids sti� terms enforc-
ing the parametrization constraint.

• Preconditioning is necessary to obtain good convergence. Precon-
ditioning with µ−1 is necessary to ensure convergence around
�xed points. Additionally, preconditioning with ∇θ∇θH is often
bene�cial. This corresponds to the noise covariance a in the SDE
case. For generalHamiltonians, this comes at the cost of needing to
compute higher derivatives of the Hamiltonian, which one might
want to avoid. Details about these considerations are discussed in
Ref. 16.

• The choice of norm has to be taken with care as well. For the
additive Gaussian case, as pointed out above, it is natural to
use ‖ · ‖∼ = ‖ · ‖a. This generalizes to 〈·, (∇θ∇θH)

−1·〉, which is
the choice of the traditional geometric minimum action method
(gMAM15). For simplicity, the Euclidean normmight be preferred
in the general case to avoid the computation of higher order
derivatives of H.

B. Example: Metastability in a simple atmosphere

dynamics model

We want to demonstrate the e�ectiveness of the algorithm
introduced in Sec. II A by applying it to a problem motivated by
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metastability in a simpli�ed atmosphere dynamics model intro-
duced by Charney and DeVore.17 Starting from the two-dimensional
barotropic vorticity equation for the atmospheric �ow, a projection of
the stream functionψ(x, y) on the 6 dominant spatial Fourier modes
is performed, resulting in an SDE system

dx1 =
(

γ̃1x3 − C(x1 − x∗
1)
)

dt +
√
2εdW1,

dx2 = (−(α1x1 − β1)x3 − Cx2 − δ1x4x6) dt +
√
2εdW2,

dx3 = ((α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5) dt +
√
2εdW3,

dx4 =
(

γ̃2x6 − C(x4 − x∗
4)+ η(x2x6 − x3x5)

)

dt +
√
2εdW4,

dx5 = (−(α2x1 − β2)x6 − Cx5 − δ2x3x4) dt +
√
2εdW5,

dx6 = ((α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x2x4) dt +
√
2εdW6,

(36)
where, form ∈ {1, 2},

αm = 8
√
2

π

m2

4m2 − 1

b2 + m2 − 1

b2 + m2
,

βm = βb2

b2 + m2
,

γm = γ

√
2b

π

4m3

(4m2 − 1)(b2 + m2)
,

γ̃m = γ

√
2b

π

4m

4m2 − 1
,

δm = 64
√
2

15π

b2 − m2 + 1

b2 + m2
,

η = 16
√
2

5π
.

(37)

The original model is detailed in Ref. 17 and was modi�ed in (36)
to add additive Gaussian noise to each degree of freedom. Model
(36) allows for two metastable states, the so-called “zonal” state and
the “blocked” state, alluding to the atmospheric blocking phenomena
observed in meteorology.

Application of the actionminimization algorithm introduced in
Sec. II A allows us to compute the most likely transition trajectories
in the small noise limit, ε → 0, and deduce the relative stability of the
states. The results are shown in Fig. 1: starting from the zonal state
in the upper left corner, snapshots of the stream function ψ(x, y) are
shown along the transition trajectory in reading order, arriving at the
blocked state at the bottom right. For comparison, the right collec-
tion of plots in Fig. 1 shows the corresponding backward transition
from blocked to zonal state. Note that the backward transition is not
merely the time-reversed forward transition, implying (as expected)
a breaking of time-reversal symmetry and thus demonstrating the
nonequilibrium nature of the transition. The relative stability of the
two con�gurations can be quanti�ed via Fig. 2: the action to transi-
tion toward the blocked state is far larger than the action to transition
toward the zonal state, meaning that the zonal state is exponentially
preferred in the low-noise limit.

C. Instantons for stochastic partial differential

equations

Many systems of interest in physical applications have con-
tinuous spatial variables, i.e., do not �t the framework of Eq. (1).
Instead, they are stochastic “partial” di�erential equations (SPDEs).
Applying the algorithm of Sec. II A to stochastic processes in in�nite-
dimensional spaces is nevertheless largely done in practice. The
mathematical foundation is less clear in this case though, and a few
comments are in order.

A stochastic partial di�erential equation, even in the simplest
case of additive Gaussian noise, is possibly ill-posed. Consider, for
example,

∂tU = B(U)+
√
εη(x, t), (38)

where U : [0,T] × R
d → R

m and η denotes temporal white noise.
If the noise is also not smooth in space, for example, if it is white-
in-space as well, Eη(x, t)η(x′, t′) = δ(t − t′)δ(x − x; ), it is a non-
trivial undertaking to make sense of possible nonlinear terms in
the drift, B(U), especially if the spatial dimension is higher than
one. Recent mathematical breakthroughs18 specify a rigorous renor-
malization procedure in speci�c cases. In regard to LDT, the main
concern is whether this renormalization procedure subsists in the
limit ε → 0. For example, in Ref. 19, it was discussed for the stochas-
tic Allen-Cahn equation [e.g., B(U) = U − U3 + κ∂2xU] in 2 or 3
spatial dimensions, that indeed the rate function corresponds to the
naively assumed one,

ST(φ) =
{

∫ T

0 ‖∂tφ − B(φ)‖2
L2
dt if the integral converges,

∞ otherwise,
(39)

where ‖ · ‖L2 denotes the L2-norm in the spatial components. In the
following, we will consider SPDE examples, but no longer dwell upon
the mathematical intricacies, instead assuming that (39) is valid.

If the rate function takes the form (39), all arguments put for-
ward in the �nite dimensional case can be transferred to the SPDE
situation, and a corresponding algorithm can be constructed. In par-
ticular, a gradient descent of the form introduced in Sec. II is still
feasible, with gradients of vectors replaced by functional derivatives
of the corresponding operators. Therefore, Eq. (31) to compute the
descent direction for the SPDE (38) becomes

dk = θ k
′ +

(

DφB(φ)
)>
θ k, (40)

whereA> is the L2-adjoint of the (di�erential) operatorA andDφ the
functional derivative. Consider, for example, the Burgers equation
with periodic boundary conditions, where

B(φ) = ν∂2xφ − φ∂xφ. (41)

Then, DφB(φ) is the operator

DφB(φ) = ν∂2x − (∂xφ)− φ∂x (42)

such that
(

DφB(φ)
)> = ν∂2x + φ∂x. (43)

Recall that we can still compute θ∗, i.e., the minimizer of the inner
constrained optimization problem (27) via

θ∗(φ) = µ−1φ′ − B(φ) = µ−1φ′ − ν∂2xφ + φ∂xφ, (44)
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FIG. 1. Left: Stream function ψ(x, y) along the transition from zonal to blocked configuration, where the arclength parameter is increased left-to-right, top-to-bottom. The
central configuration is the unstable saddle configuration on the separatrix between the basins of attraction of zonal and blocked configuration. Right: Stream functionψ(x, y)
along the transition from blocked to zonal configuration. Notably, this backward transition is not identical to the time-reversal of the forward transition depicted on the left, but
again the same saddle is visited, as visible in the center field.

where the last equality holds for the Burgers example with spatiotem-
poral white noise.

In practice, Eq. (40) has to be rewritten in order to be practical
for the SPDE case, because the involved high spatial derivatives come
with Courant-Friedrichs-Levy (CFL20) stability conditions that limit

FIG. 2. Action density along the transition trajectories between the zonal and the
blocked configuration, where s is the arclength parameter along the transition.
As clearly visible, the transition toward the blocked state occurs at higher action,
making the blocked state relatively more stable.

the time-step of the descent and, therefore, the convergence rate of
the scheme. A detailed discussion of tricks and optimizations for the
SPDE case is given in Ref. 16.

D. Example: The stochastic Burgers-Huxley equation

As an example for a nonlinear SPDE, we consider the stochastic
Burgers-Huxley model,

∂tu + αu∂xu − κ∂2xu = f (u)+
√
εη(x, t), x ∈ [0, 1], (45)

where α > 0 determines the strength of the nonlinear advection
term, κ > 0 is the di�usion constant, and the boundary condi-
tions are periodic. The �eld η(x, t) is spatiotemporal white noise.
For f (u) = 0, this equation is the stochastic Burgers equation, aris-
ing in compressible gas dynamics, tra�c �ows, and as test-bed
for turbulence. With the inclusion of a double-well reaction term
f (u) = u − u3, the equation becomes metastable, with two spatially
homogeneous stable �xed points at u = −1 and u = 1. The spatially
homogeneous solution u = 0 is a �xed point as well, but depending
on the size of κ might not be a saddle point with a single unstable
direction. Instead, for small enough κ , we expect Allen-Cahn-like
nucleation dynamics, but the nucleation must happen as a Burgers-
like steepening shock wave. Indeed, as Fig. 3 shows, this intuition is
con�rmed by the numerics: The creation of the nucleus happens in
a spatially asymmetric way, and the nucleating seed travels in space.
The spatial resolution for the numerical computation is Nx = 256,
while the temporal resolution is Ns = 100.

Chaos 29, 063118 (2019); doi: 10.1063/1.5084025 29, 063118-7

Published under license by AIP Publishing.

 03 July 2024 20:33:11

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. Maximum likelihood transition pathway of the bistable Burgers-Hux-
ley model, transitioning from u = −1 to u = 1. The transition happens as
Allen-Cahn-like nucleation, but the critical nucleus forms as steepening, asymmet-
ric shock-wave. The saddle point, denoting the critical nucleus of the transition, is
marked by a dashed line.

III. RARE EVENT ALGORITHMS FOR EXPECTATIONS

AND EXTREME EVENTS

In Sec. II, we discussed how to compute noise-induced transi-
tion trajectories in bistable systems and thereby estimate the rate of
transitions between the twometastable states and their relative likeli-
hood.We chose to implement a globalminimization procedure based
on the Maupertuis principle form of the action functional to use
the independence of the choice of parametrization to our numerical
advantage. Nevertheless, because both the initial and the �nal condi-
tions of the transition trajectory are �xed, we were unable to harness
Hamilton’s equations of motion directly (these would have to be
solved by shooting methods, which are ine�cient or even ill-posed).

In this section, instead, we will concentrate on situations where
it is indeed feasible to solve the minimization problem by integrating
the coupled pair of equations of motion, or instanton equations, to
obtain the large deviation minimizer. As we will see, if applicable,
this approach comes with a couple of advantages of both theoret-
ical and numerical nature. In this section, we will, therefore, �rst
review the class of algorithms based on solving Hamilton’s equations
in Sec. III A that can be used to compute instantons for expectations
dominated by extreme events. Examples are shown in Sec. III B apply-
ing this algorithm to a systemwithmultiplicative Gaussian noise, and
furthermore in Sec. III C demonstrating the use in an in�nite dimen-
sional system, with the additional complication of degenerate forcing
(i.e., noninvertible noise covariance matrix). We discuss connections
to other �elds in Sec. III D and numerical details in Sec. III E. A geo-
metric variant of the numerical scheme is introduced in Sec. III F and
implemented for an example case in Sec. III G.

A. Instantons for expectations and extreme events

For the stochastic process Xεt of Eq. (1),

dXεt = b(Xεt ) dt +
√
εσ dWt ,

consider the random variable F(XεT), where F : Rd → R. This ran-
dom variable, also termed the “observable,” acts only on the �nal
con�guration of the process. We are interested in estimating the tail
scaling of its probability density, i.e., in quantifying the likelihood of
extreme values of the observable. For example, assume that Xεt is a
stochastic model describing the interaction of predator and prey in a
habitat (cf. Sec. III B). We set out to �nd the probability of observing
an abundance of prey.Wemight additionally be interested in themost
likely amount of predators at this unusual con�guration, and the his-
toric development into this event. Orwe have a stochastic description
of waves (cf. Sec. III C) and are interested in the probability of observ-
ing high amplitude waves. Additionally, we might ask for the most
likely shape of the wave at the moment of extreme elevation, or pos-
sibly identify the evolution into the extreme wave event to analyze it
for possible mechanisms leading to the ampli�cation.

From the discussion in Sec. I we understand that in the limit
ε → 0, the probability of observing the event F(XεT) = z, subject to
Xε0 = x, ful�lls

P(z) � exp(−ε−1 inf
φ∈Cz

ST(φ)), (46)

where Cz = {φ ∈ AC([0,T],Rd) | φ(0) = x, F(φ(T)) = z}, i.e., the
set of continuous trajectories starting at x that observe the event. Let

I(z) = inf
φ∈Cz

ST(φ), (47)

and de�ne

I∗(λ) = inf
φ∈C

(ST(φ)− λF(φ(T))), (48)

withC = {φ ∈ AC([0,T],Rd) |φ(0) = x}. Here,minimization is not
constrained at the �nal point, i.e., C describes the set of continuous
trajectories starting at x regardless of their �nal point. We can then
rewrite

I∗(λ) = inf
φ∈C

(ST(φ)− λF(φ(T)))

= inf
z∈R

inf
φ∈Cz

(ST(φ)− λF(φ(T)))

= inf
z∈R
( inf
φ∈Cz

ST(φ)− λz)

= inf
z∈R
(I(z)− λz)

so that I∗(λ) is the Fenchel-Legendre transform of I(z). This connec-
tion allows us to solve the minimization problem (48) instead of the
original problem (47). The same form can be obtained by consider-
ing λ as a Lagrange multiplier to enforce the constraint on the �nal
point.

In terms of Hamilton’s principle, the variations of the argument
of the in�mum in Eq. (48) with respect to φ gets one additional
term that only applies at the �nal point so that Hamilton’s equations
become

{

φ̇ = ∇θH(φ, θ), φ(0) = x,

θ̇ = −∇φH(φ, θ), θ(T) = −λ∇F(φ(T)).
(49)
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The di�erence with Hamilton’s equations of the problem discussed
in Sec. II,

{

φ̇ = ∇θH(φ, θ), φ(0) = x, F(φ(T)) = z,

θ̇ = −∇φH(φ, θ) (no boundary conditions),
(50)

appears minuscule, but is profound: the φ-equation in (50) has to
be solved with initial and �nal condition and, therefore, necessitates
shootingmethods which are ine�cient in high dimension (hence the
alternative approach we took in Sec. II). For (49), on the other hand,
the equations for both φ and θ have exactly one boundary condition
each. It is natural to integrate theφ-equation forward in time, starting
at x, while integrating the θ-equation backward in time, starting at
−λ∇F(φ(T)). This direction of integration is the only sensible one in
the �rst place: due to the conjugate momentum equation containing
the term−(∇b(φ))>, a numerical integration forward in time would
be numerically unstable or even ill-posed. An algorithm to �nd the
instanton in this case then consists of the following steps: starting
from the kth guess φk(t) for the instanton trajectory,

(i) solve the equation

θ̇ = −∇φH(φ
k, θ), θ(T) = −λF(φk(T)) (51)

backward in time,
(ii) solve the equation

φ̇ = ∇θ (φ, θ), φ(0) = x (52)

forward in time to obtain the next guess φk+1, and
(iii) iterate until convergence.

The convergence properties, stability, and possible improvements of
this algorithm are discussed in Sec. III D. Considering the dual prob-
lem (48) instead of the original one (47) comes at a price: instead of
choosing directly the value z of the observable, instead we prescribe
its dual λ and obtain the corresponding value of z a posteriori. In
other words, we loose the capability of computing the instanton for a
speci�c observable z. In practice, this is usually not a problem, even
though the map z(λ) is not available in general: typically one is inter-
ested in the complete distribution of P(z), and, therefore, producing
instantons for a whole range of λ similarly covers a whole range of
z. Alternatively, a self-correcting version of the algorithm is easily
implemented, where λ is adjusted on-the-�y to achieve the desired
outcome z.

Note that I∗(λ) is nothing but the limit of the scaled cumulant
generating function of the random variable F(XεT), i.e.,

I∗(λ) = lim
ε→0

ε logE exp(ε−1λF(XεT)). (53)

In this interpretation, we could call the instanton solving (49) also
the instanton corresponding to the expectation

E exp(ε−1λF(XεT)) (54)

in the limit ε → 0. It is similarly possible to de�ne observables not
only on the �nal point of the trajectory, but, for example, of the form

F({Xεt }) =
∫ T

0

f (Xεt ) dt or F({Xεt }) =
∫ T

0

〈g(Xεt ), dW〉 (55)

and perform similar arguments, leading to additional drift terms in
the conjugate momentum equation.

Finally, while the above arguments rigorously hold under suit-
able conditions in the limit ε → 0, it is common to loosen condi-
tions on the stochastic process and consider the case ε �xed, but
λ → ∞. The intuition is that for large λ only extreme events of
the process are considered, and a large deviation principle might
hold for the observable even for �nite noise. One can then write
down an a priori large deviation principle for the random variable
F(XεT) and compute the instanton for large values of λ to probe the
tail of the probability to observe the event. It is in this sense that
this approach can be considered as instantons for “extreme events.”
They are commonly used in practice, for example, in �uid dynam-
ics, where an equivalent algorithm has been introduced by Chernykh
and Stepanov,21 which was applied to compute instantons for the
Burgers,22,23Navier-Stokes,24 and Kardar-Parisi-Zhang equations25 as
well as the integrated current of the periodic di�usion equation.26,27

B. Example: Extreme concentration of prey in the

Lotka-Volterra model

The Lotka-Volterra system, or predator-prey system, is fre-
quently used in biology as the simplest description of the interaction
of two species, one of which preys on the other. In its typical form,
it is considered without any �uctuations, but as it can be understood
as continuous limit of a network of reactions, it is clear how a noise
term can be derived as a chemical Langevin equation.

To this end, consider a habitat with two species, the prey A and
the predator B, where A,B ∈ Z

+ denotes the number of individuals
of the respective species. We want to consider interactions between
individuals, modeled by the stoichiometric reaction network

A
α−→ A + A (reproduction of prey), (56a)

A + B
β−→ B + B (predation), (56b)

B
γ−→ ∅ (death of predator), (56c)

∅ δ−→ A (migration of prey), (56d)

∅ δ−→ B (migration of predator). (56e)

Each of these is to be understood as a Poisson process with rates α
to δ. The �rst three are standard in Lotka-Volterra, and the last two
are added tomodelmigration of both species fromneighboring habi-
tats toward the considered location. This prevents degeneracy of the
forcing at extinct population levels and the di�culty of absorbing
boundary conditions.

Under the assumption that the typical populations N are suf-
�ciently large, ε = N−1 → 0, one can obtain a limiting behavior
of the mean concentrations and supplement it with Gaussian noise
consistent with the central limit theorem around this mean. The
resulting model, often termed the “chemical Langevin equation,”28

that corresponds to the reaction network (56), then is
{

da = (−βab + αa + δ) dt + √
ε
√

βab + αa + δ dWa,

db = (βab − γ b + δ) dt + √
ε
√

βab + γ b + δ dWb,
(57)

where a and b are functions from [0,T] into R
+, denoting the

concentration of predator and prey in the habitat. The stochastic
�uctuations are white-in-time Gaussian and zero mean, but notably
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multiplicative. Note that while this noise term is chosen to be consis-
tent with a central limit theorem for N → ∞, it is actually not true
that this approximation is valid for large deviations aswell. In general,
the LDP is sensitive to the non-Gaussian nature of the stochastic pro-
cess de�ned in (56), which has Poisson statistics. We explain how to
treat such non-Gaussian systems correctly in Sec. IV, while here, for
simplicity, we are considering the multiplicative Gaussian SDE (57)
as given.

We choose the interaction rates α,β , γ , and δ in a way that there
exists a unique �xed point (ā, b̄) at which concentrations of preda-
tors and prey are in equilibrium. Concretely, we take α = 1, β = 5,
γ = 1, δ = 0.1. Changing these parameters can produce more com-
plicated attractors, such as limit cycles, which we will not investigate
here. Instead, we are interested in the question of how unlikely high
concentrations of prey develop on di�erent time frames T when the
system starts at the �xed point (ā, b̄). For that reason, we choose
F(a, b) = a(T), i.e., condition on high values of a(T), regardless of
b(T).

Since this is the �rst time we encounter multiplicative noise, a
few comments are in order. For a system of the form

dXεt = b(Xεt ) dt +
√
εσ (Xεt ) dWt , (58)

with a(x) = (σσ>)(x), the Hamiltonian is

H(φ, θ) = 〈b(φ), θ〉 + 1
2
〈θ , a(φ)θ〉 (59)

so that an additional term enters the equation for the conjugate
momentum,

θ̇ = −∇φH(φ, θ) = −(∇b(φ))>θ + 〈θ ,∇φa(φ)θ〉, (60)

where the last term is to be understood as (〈θ ,∇φa(φ)θ〉)i
=
∑

j,k θj∇φiajkθk. Consequently, the instanton equations for the
(stochastic) Lotka-Volterra model are


















ȧ = −βab + αa + δ + (βab + αa + δ)θa,

ḃ = βab − γ b + δ + (βab + γ b + δ)θb,

θ̇a = −(α − βb)θa − βbθb + 1
2
((α + βb)θ 2a + βbθ 2b ),

θ̇b = βaθa − (−γ + βa)θb + 1
2
(βaθ 2a + (γ + βa)θ 2b ),

(61)

which have to be solved with the boundary conditions (a(0), b(0))
= (ā, b̄) and (θa(T), θb(T)) = −λ∇F(a, b) = (−λ, 0).

Figure 4 shows the result of applying the algorithm of Sec. III A
to this system, and comparing to Monte Carlo sampling. Here, two
di�erent transition times are chosen, T = 1 and T = 10. For T = 10,
the system has enough time to explore around the �xed point, but
it is obvious that the last portion of the excursion, before it hits
a(T) = 0.35, clusters around the instanton trajectory. In particular,
the b-coordinate at which a = 0.35 is attained seems to be predicted
reasonably well. For T = 1, instead, the transition trajectory needs
to follow a di�erent route, and the endpoint a = 0.35 will most likely
be attained at higher concentration of predators. Some points, such
as (a, b) = (0.25, 0.3), are almost never visited for T = 10, but are
very likely underT = 1, which is correctly predicted by the instanton
computation. Note that the heat-map depicting the empiric probabil-
ity density in Fig. 4 has a logarithmic color-map for the tails to remain
visible. Deviations from the optimal path are, therefore, very unlikely
indeed.

FIG. 4. Occurrence of extreme concentration of prey in the Lotka-Volterra model.
The streamlines are showing the deterministic flow field. The heat-map shows the
logarithm of a histogram of all trajectories starting at the fixed point that reach
a(T) = 0.35 [regardless of b(T)]. The white line depicts the instanton for the
expectationE exp(−λa(T)). Even for finite ε, the sample trajectories clearly clus-
ter around the instanton. Shown are two different event times, T = 10 (top) and
T = 1 (bottom).

Parameters for T = 1 are 1t = 10−2, ε = 0.005 and
λ = 0.4209, and for T = 10 are 1t = 10−2, ε = 0.004, and
λ = 0.2106. Roughly 5 · 106 trajectories were sampled for the Monte
Carlo estimate.

C. Example: Extreme amplitudes in the Korteweg-de

Vries equation

Consider for the �eldu(x, t) : [0, 2π] × [0,T] → R the stochas-
tic partial di�erential equation,

∂tu + u∂xu + κ∂3xu − ν∂2xu = η(x, t), u(x, t = 0) = 0, (62)

with periodic boundary conditions in space, and x ∈ [0, 2π]. This
is a modi�cation of the standard Korteweg-de Vries equation that
describes the evolution of shallow water surface waves. To this, we
added energy input through the forcing η and energy dissipation
through a di�usion termwith viscosity ν. For the forcing, we demand
that, in Fourier space,

Eη̂k(t)η̂q(t
′) = εδ(t − t′)χ̂q−k, (63)
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where χ̂ : Z → R is the forcing spectrum and η̂k is the kth mode of
the Fourier transform of η.

Intuitively, for a χ̂k with compact support only for small k, the
forcing η(x, t) inserts energy on large scales, and the nonlinearity
transfers those to smaller scales, on which dispersion and dissipation
act on them. We are interested how this nonlinear cascading e�ect
produces waves of extreme amplitude. To this e�ect, we choose an
observable

F(u(x,T)) = (φ1 ? u)(x,T), (64)

with φ1(x) = A exp
(

−x2/12
)

and ? denoting spatial convolution.
For small1, this observable selects high amplitudes in close proxim-
ity to x = 0, i.e., at the center of the domain, and therefore generates
high wave elevations at this position. As forcing spectrum, we want

χk =
{

1 if |k| = 1,

0 otherwise,
(65)

which inserts energy only into the largest mode of the system. This
is the �rst time we consider “degenerate” forcing, in that only a sub-
set of the available degrees of freedom are forced, or, equivalently,
the noise covariance matrix a of (1) is not invertible. This poses
practical problems for algorithms based on global minimization dis-
cussed in Sec. II, where heavy use is made of either the a-norm,
or θ is expressed as θ = a−1(φ̇ − b(φ)). For these algorithms, the
inverse has to be replaced by the pseudoinverse (see Sec. 3.4 of Ref. 1),
and the degenerate forcing introduces additional sti� constraints for
the unforced modes, as those e�ectively behave deterministically
(and thus are attained with in�nite action if they deviate from the
deterministic behavior). ForHamilton’s equations, and the algorithm
discussed in this section, the noise correlation is never inverted, and
degenerate forcing can be treated without extra e�ort.

The instanton equations corresponding to the posed problem
are

{

∂tu + u∂xu + κ∂3xu − ν∂2xu = χ ? θ , u(x, t = 0) = 0,

∂tθ + u∂xθ + κ∂3x θ + ν∂2x θ = 0, θ(x, t = T) = −λφ1(x),

(66)

where χ(x) is the inverse Fourier transform of the forcing spectrum.
The instanton computed by solving equations (66) is depicted in
Fig. 5. It is clearly visible that a high �nal amplitude around x = 0
is achieved by a combination of nonlinear advection and disper-
sion. Additionally, the �nal con�guration clearly contains Fourier
modes di�erent from |k| = 1, implying that indeed the nonlinear-
ity cascaded energy into higher modes in a way to optimize the �nal
amplitude. Note also that because of1 � 1, we are merely demand-
ing a large amplitude at x = 0, but leave the rest of the wave form
unconstrained. The elevation pro�le in the rest of the domain is cho-
sen in a most likely manner, and the curves shown in Fig. 5 can
be interpreted as the prototypical way of forming the considered
amplitude. Themodel parameters are T = 1,1 = 10−1, α = κ = 4 ·
10−2, λ = 1, and A = 0.25. The numerical parameters areNx = 256,
Nt = 1000, and1t = 10−3.

FIG. 5. Evolution of the Korteweg-de Vries instanton into a large amplitude at the
final time T = 1, starting from rest and forcing only the largest Fourier mode of
the system.

D. Connections to optimal control

It is instructive to formulate the optimization problem (46) in
the language of optimal control:29 we are interested in �nding the
“optimal control” p : [0,T] → R

d such that for X ∈ R
d, the system,

Ẋ(t) = b(X(t))+ p(t), X(0) = x, (67)

has the desired outcome, F(X(T)) = z. We penalize large values of p
by choosing

J(p) = 1

2

∫ T

0

|p(t)|2 dt (68)

as the cost function. In other words, we are searching for the
optimal noise realization p to drive the system into a �nal state
where F(X(T)) = z. To obtain a minimization procedure that hon-
ors the constraints given by the observable and Eq. (67), we intro-
duce Lagrange multipliers ξ ∈ [0,T] × R

d and λ ∈ R, such that we
attempt to minimize

E(p) = 1

2

∫ T

0

|p(t)|2 dt + λ(F(X(T))− z)

+
∫ T

0

〈ξ , Ẋ − b(X)− p〉 dt + ξ(0)(X(0)− x).

Its total variation is given by

δE(p) = 〈p − ξ , δp〉 + 〈Ẋ − b(X)− p, δξ〉 + 〈X(0)− X, δξ(0)〉

+ λ〈∇F(X(T)), δX(T)〉 + 〈−ξ̇ − (∇b(X))>ξ , δX〉
+ 〈ξ(T), δX(T)〉 − 〈ξ(0), δX(0)〉.

We can read the desired conditions to ful�ll the constraints as
{

Ẋ = b(X)+ p, X(0) = x,

ξ̇ = −(b(X))>ξ , ξ(T) = −λ∇F(X(T)),
(69)
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and the gradient of the cost functionalE(p)with respect to the control
p is then given as

δE(p)

δp
= p − ξ . (70)

We immediately identify that the conjugate momentum θ is the
variable ξ in optimal control, often termed the “adjoint” variable.
Second, we realize that the forward and adjoint equations are iden-
tical to the instanton equations. Therefore, the iterative algorithm
given in Sec. III A is nothing but a gradient descent for the cost
functional E(p), with step length 1. This not only answers questions
about (local) convergence of the algorithm of Sec. II A, but further-
more allows to improve stability and order of convergence of the
algorithm. First, it is almost always necessary to adjust the step size
for each iteration according to a line search strategy to achieve con-
vergence. Second, one might consider preconditioning, to allow for
faster convergence. Lastly, the computation of the descent direction
−δE/δp from Eq. (70) allows to construct higher order optimization
algorithms, such as nonlinear conjugate gradient or quasi-Newton
methods.

Note that, similar to the argument above, for practical reasons,
we choose to not consider variations with respect to λ, and instead
consider λ ∈ R given a priori to establish a mapping λ(z) from
z(λ) = F(X∗(T)), where X∗(T) depends on λ through the boundary
condition of the adjoint equation (69).

E. Improvements and implementation considerations

A few remarks are in order to point out possible improvements
and implementation concerns when solving Hamilton’s equations.

• While solving a global minimization problem as introduced in
Sec. II necessitates a complicated procedure to compute descent
directions, the solution of Hamilton’s equations put forward in
this section usually comes at a much lower “implementation” cost:
given a stochastic problem at hand, one likely has already available
an e�cient solver of the forward equation, just replacing stochastic
noise with a function of the conjugate momentum. The backward
equation (auxiliary equation, adjoint equation), on the other hand,
is often available as well for professional software packages, usually
from automatic di�erentiation, in order to quantify the uncer-
tainty from the adjoint �eld ξ . In this case, a computation of the
instantonmight be achieved in a truly “black-box” form,where the
iterative solution of Hamilton’s equations can be achieved without
modifying the original software.

• The mutual dependency of the forward and backward equations
necessitates in principle that the whole trajectory is stored in its
entirety. While this is usually feasible for �nite-dimensional prob-
lems, it quickly becomes prohibitive in terms of memory require-
ment when talking about SPDEs in many dimensions, where
usually the storage requirements are chosen to be of the order of
magnitude of a single state of the �eld variables, and not a con-
tinuous trajectory. In optimal control, this restriction is usually
overcome via “checkpointing” mechanisms, where one does not
save to memory a complete trajectory, but instead only retains
checkpoints, from which subsequent states can be deduced. In its
most e�cient form, this checkpointing can be implemented in a
recursive manner, leading generally to memory requirements of

O(logNt) instead of the naive O(Nt), where Nt is the number of
discretization points in time. Some details of the application of this
method to instanton computations are laid out in Ref. 30.

• The nature of the conjugate momentum as adjoint variable, as dis-
cussed in Sec. III D, highlights its “adjointness” to the main �eld
variable. Would one discretize the action, and consider forward
and backward equation as their discrete variation, this state of
a�airs would necessitate the usage of a special temporal integra-
tion scheme for the numerical solution of the adjoint equation,
namely, a temporal integration scheme that is adjoint to the for-
ward scheme. Some time integration schemes (such as the forward
Euler scheme) have the property of being self-adjoint, and thus can
be used for both equations. The failure to use a correct pair of inte-
gration schemes generally results in the failure to converge to the
minimum of the cost function.

A more detailed discussion of implementation concerns of this tech-
nique in the in�nite-dimensional case, speci�cally with the applica-
tion to �uid mechanics, is given in Refs. 24 and 30.

F. Geometric version of Hamilton’s equations

As discussed in Sec. I, many questions, including the com-
putation of the quasipotential, necessitate a minimization not only
over all possible paths φ(t), but also over all possible time intervals
T > 0—for example, this is needed to calculate expectations with
respect to the invariant measure of the process, assuming it exists.
For algorithms based on the “minimum action method” (MAM),14

the additional complication of the minimization over T > 0 intro-
duces is resolved by invoking Maupertuis principle and focusing on
the computation of the “geometric” minimizer, i.e., realizing that the
minimizing trajectory can be computed without explicit reference to
its parametrization.

For algorithms based on Hamilton’s equation, similar ideas and
extensions exist:31 instead of solving original Hamilton’s equations
(16), we can choose a reparametrization s(t) and considerHamilton’s
equations in this parameter,

{

φ′ = µ∇θH(φ, θ),

θ ′ = µ∇φH(φ, θ),
(71)

where the prime denotes derivatives with respect to s andµ = dt/ds.
Now, as pointed out in Sec. II A, µ can be interpreted as Lagrange
multiplier enforcing the Hamiltonian constraint and is available as

µ = ‖φ′‖2∼
〈φ′,∇θH〉∼

= ‖φ′‖a
‖b(φ)‖a

, (72)

where the much simpler second form only holds for Gaussian addi-
tive noise of the form (1) (compare Sec. II A).

G. Example: Extreme gradients of the stochastic

Burgers equation

As an example, following Ref. 31, consider for the �eld u(x, t) :
[−L/2, L/2] × [−T, 0] → R stochastic Burger’s equation,

∂tu + u∂xu − ν∂2xu = η(x, t), u(x, t = −T) = 0, (73)

with periodic boundary conditions in space. Here, we consider a
noise term η that is white in time, but has a �nite correlation length
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FIG. 6. Comparison of the final condition of the instanton, u(x, t = 0), condi-
tioning on extreme gradients in the origin, for the geometric parametrization and
physical time parametrizations for varying T . As visible in the inset, only for
T = 1000, secondary extrema disappear.

in space,

Eη(x, t)η(x′, t′) = εδ(t − t′)χ(x − x′), (74)

and we prescribe the speci�c correlation in Fourier space of

χ̂(k) = k2 exp(−k2/2)H(kc − |k|),

where H denotes the Heaviside step function. In e�ect, the forcing
correlation has the shape of a “Mexican hat” function, with cut-o�
wave number kc. E�ectively, Eq. (73) can be considered as a test-bed
for turbulence, where energy is inserted on large scales due to the
forcing and then cascades to smaller scales via the nonlinearity, where
it dissipates.We focus on events that lead to a strong negative gradient
at the �nal time, t = 0, and therefore choose an observable

F(u(x, 0)) = (φ1 ? ∂xu)(x, 0), (75)

where, identically to the KdV-case in (64), φ1 molli�es on scales 1,
so that here we concentrate on high gradients at the origin.

In order to probe for events on the invariant measure of (73),
we want to consider the limit T → ∞ and, therefore, need to either
consider extremely large time intervals T, or alternatively employ
the geometric variant of the Hamiltonian formalism as proposed
in (71), where the norm is induced by the covariance χ(x), i.e.,
‖v‖ = 〈v,χ−1(x)v〉1/2 on its support. For technical details, see Ref.
31. Given this setup, Fig. 6 compares the �nal condition of the instan-
ton between �nite times T and the limit T → ∞ obtained in the
geometric formalism. It demonstrates how, for choices T = 10 or
T = 100, unphysical secondary maxima are present (compare the
inset of Fig. 6), that disappear in the in�nite time case, and with T =
1000. Similarly, one can look at the value of the HamiltonianH(u, p),
which necessarily disappears for large T, limT→∞ H = 0, and con-
sider the quantitymax(|H|) along the instanton trajectory asmeasure
of the numerical error of the discretization. In this metric, the geo-
metric variant for the same number of discretization points in time is
roughly 104 timesmore accurate than the naive parametrization with
physical time.31

IV. GENERALIZATIONS TO THE NON-GAUSSIAN CASE

In all above considerations and examples, we always consid-
ered the presence of an LDP for an SDE, either with additive or with
multiplicative Gaussian noise that is temporally white. Generaliza-
tions to colored noise are considered, for example, in Refs. 32 and 33.
Here, instead, we consider the case of temporally white noise that is
not necessarily Gaussian. It is treatable with algorithms of the above
form, as can be guessed from the fact that both MAM-style global
minimization of Sec. II, and the algorithms based on the solution
of Hamilton’s equations of Sec. III are written in terms of a generic
large deviation Hamiltonian. In this section, we, therefore, intend to
broaden the scope by demonstrating how more generic large devi-
ation Hamiltonians are obtained, and corresponding instantons can
be computed with the above algorithms. In particular, the Gaussian-
ity of the underlying stochastic process is re�ected in the fact that
the Hamiltonian is quadratic in its conjugate momentum. Other pro-
cesses, most notably those that result from limits of continuous time
Markov jump processes (MJPs), generally lead to a nonquadratic
Hamiltonian.

A. Large deviation principles as WKB approximation

Consider a homogeneous continuous time Markov jump pro-
cess Xt , t ∈ [0,T], with state space E . The process is completely
characterized by its generator L, which allows us to write down its
backward Kolmogorov equation (BKE) as

∂tf + Lf = 0, f (T) = φ (76)

for

f (T − t, n) = E
nφ(Xt), (77)

where n ∈ E , f : [0,T] × E → R, and φ : E → R. For concreteness,
consider as a state space a counting space E = Z

N
+ forN ∈ N di�erent

species, where individuals of each species can interact viaR ∈ N inde-
pendent Poisson processes, manipulating the number of individuals
of each species. For each of the R di�erent interactions, the number
of individuals changes from n to n + νr , where νr ∈ Z

N , with a rate
ãr(n), r ∈ {1, . . . ,R}. Then, the corresponding generator reads

(Lf )(n) =
R
∑

r=1

ãr(n)
(

f (n + νr)− f (n)
)

. (78)

Rescaling this into new variables x = n/M, where M is a typical
number of individuals, we can expand in ε = M−1 to obtain a large
deviation principle in the limit of many individuals. To this end,
consider the generator in the rescaled variables,

(Lεf )(x) =
R
∑

r=1

ar(x)
(

f (x + ενr)− f (x)
)

, (79)

where ar is de�ned on the rescaled variables. We now evaluate this
rescaled generator onto a function of the form exp(ε−1g(x)) and
rescale timewith ε appropriately. This corresponds to aWKBapprox-
imation of the BKE, or equivalently to themethod of Feng andKurtz34
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(compare also Ref. 35), and yields

∂tg(x)+
R
∑

r=1

ar(x)
(

eε
−1(g(x+ενr)−g(x))

)

= 0, (80)

which can be expanded, to leading order in ε, into

∂tg(x)+
R
∑

r=1

ar(x)
(

e〈νr ,∇g(x)〉 − 1
)

= 0. (81)

Equation (81) can be interpreted as the Hamilton-Jacobi equation

∂tg(x)+ H(x,∇g(x)) = 0, (82)

with

H(x, θ) =
R
∑

r=1

ar(x)
(

e〈νr ,θ〉 − 1
)

. (83)

Hamiltonian (83) is precisely the large deviation Hamiltonian in that
the large deviation rate function is the time integral of its Fenchel-
Legendre transform. Hamiltonian (83) is furthermore a prime exam-
ple of a nonquadratic Hamiltonian.

Note that applying the same method to the generator of the
SDE (1),

(Lεf )(x) = 〈b(x),∇〉f (x)+ ε

2

d
∑

i,j=1

aij∇i∇jf (x), (84)

recovers exactly the expected Hamiltonian (17) for the leading order
in ε.

B. Example: Genetic switch

As an example for instantons of a non-Gaussian LDP for a con-
tinuous time MJP of the form of Sec. IV A, we want to consider a
simpli�ed model of a genetic switch based on a model discussed in
Ref. 36: inside a bacterium, plasmids contain genes that encode two
di�erent proteins, A and B. Each protein is able to form polymers
that inhibit the production of the other protein, respectively. In the
emerging situation, the cell may exist in a state close to one of two
�xed points: either protein A dominates and inhibits the production
of protein B, while the production of A remains high, or protein B
dominates and inhibits the production of A. Rarely, �uctuations may
arise that push the system from one �xed point to the other.

We choose to model this system by describing the concentra-
tions of proteins A and B by a ∈ R+ and b ∈ R+, respectively. There
are four reactions in total, namely production and degradation of A
and B, leading to the reaction network

∅ pA(b)−−→ A (production of A), (85a)

∅ pB(a)−−→ B (production of B), (85b)

A
dA(a)−−→ ∅ (degradation of A), (85c)

B
dB(b)−−→ ∅ (degradation of B), (85d)

FIG. 7. Instanton for the non-Gaussian genetic switch. The arrows denote the
direction of the deterministic flow, the red solid line depicts the minimizer, and the
red dashed line the relaxation path from the saddle. Red dots are located at the
fixed points (stable and unstable). The whole figure is a zoom into the uphill region,
and the other stable fixed point is far up the upper left corner.

with rates

pA(b) = C/(1 + b3), pB(a) = D/(1 + a),

dA(a) = a, dB(b) = b.
(86)

The corresponding large deviation Hamiltonian, using Eq. (81), is
thus

H(a, b, θa, θb) = C

1 + b3
(eθa − 1)+ a(e−θa − 1)

+ D

1 + a
(eθb − 1)+ b(e−θb − 1). (87)

Theminimizer for this setup, as well as the relaxation paths from
the saddle, is depicted in Fig. 7. They are computed by implement-
ing the algorithm presented in Sec. II A for Hamiltonian (87) for the
transition between the two �xed points. The model parameters here
are chosen to be C = 156 and D = 30.

V. SYSTEMS WITH RANDOM PARAMETERS AND

EXTREME EVENTS

Up to now, all discussions in the previous sections concerned
sample path large deviations, where a stochastic process realizes a
rare event almost surely by following a trajectory that minimizes the
corresponding action functional. In this section, we are focusing on
a related, but di�erent setup of a dynamical system with random
parameters. Given a distribution of the random parameters, we want
to reason about probabilities to observe certain events and again
characterize the rare ones by dominating con�gurations of param-
eters. To this e�ect, consider for u : [0,T] → R

d the dynamical
system

∂tu = b(u, θ), u(t = 0) = u0(θ), (88)

where θ ∈ � ⊆ R
M is the set of M random real parameters, dis-

tributed according to a measure µ. Since the initial conditions and
the drift of Eq. (88) depend on the random parameters, the solution
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is a random variable, denoted by u(·, θ). We can then try to quan-
tify the probability of an observable exceeding a threshold z ∈ R,
for example, at the �nal time, or integrated over time, or as temporal
maximum, i.e.,

PT(z) = P(F(θ) ≥ z), F(θ) =











f (u(T, θ)) or
∫ T

0 f (u(t, θ)) dt or

max
0≤t≤T

f (u(t, θ)).
(89)

A. Large deviations for systems with random

parameters

Indeed, if in the limit of large z this probability becomes small,
limz→∞ PT(z) = 0, then under some additional assumptions on F :
� → R, we have a large deviation principle as a contraction principle
of the form

PT(z) � exp

(

− min
θ∈�(z)

I(θ)

)

, (90)

in the limit z → ∞, where the set�(z) ⊆ � is the set of permissible
random parameters,

�(z) = {θ ∈ �|F(θ) ≥ z}, (91)

and the rate function I(θ) is obtained as the Legendre transform of
the cumulant generating function of θ ,

I(θ) = max
η
(〈η, θ〉 − S(η)), (92)

for

S(η) = logE exp〈η, θ〉 = log

∫

�

exp〈η, θ〉dµ(θ). (93)

The minimizer of I(θ) in�(z), i.e.,

θ∗(z) = argminθ∈�(z)I(θ), (94)

dominates the occurrence of the event, and is termed the “dominat-
ing point.”37 Since we are considering only �nite dimensional�, the
corresponding optimization problem (94) has to be solved in a gener-
ally smaller search space, compared to the pathwise LDPs considered
in Secs. I–IV. Equivalently, here, the instanton is not a preferred tra-
jectory of the system, but instead the maximum likelihood set of
parameters that lead to the event. Of course, given any θ ∈ �, there
is a unique trajectory u(θ) solving (88) associated to it, so that u(θ∗)
represents the most likely trajectory of the system to realize the rare
event. The proof of the large deviation principle (90) is carried out in
Ref. 38, where su�cient assumptions on the behavior of the function
F and the geometry of the sets �(z) are speci�ed, which is based on
the notion of dominating points considered in Ref. 37.

From a numerical perspective, we can again solve the con-
strained optimization problem (94) by instead considering a
Lagrange multiplier λ ∈ R. For example, for the �rst of the three
cases in (89), we attempt to minimize the objective function

E(u(T, θ), θ) = I(θ)− λf (u(T, θ)). (95)

Via the Jacobian Jij(t) = ∂ui(t)/∂θj, i.e., the variation of the cur-
rent con�guration with respect to the random parameters, one can

express the gradient as

∇θE = ∇θ I − λJ>(T, θ)∂uf (u(T, θ)), (96)

where the Jacobian is available through

∂tJ = (∂ub)J + ∂θb, J(0) = ∂θu0. (97)

While integrating the forward equation (88) and the Jacobian (97)
allows us to evaluate the gradient for a given θ , note that J : [0,T] →
R

d×d is quite costly to compute. Instead, we can again fall back to
an adjoint formulation to overcome this limitation. To this e�ect,
consider the adjoint �eld µ : [0,T] → R

d, subject to the adjoint
equation

∂tµ = −(∂ub)>µ, µ(T) = λ∂uf (u(T, θ)). (98)

Since, using Eqs. (97) and (98), we have

∂t(J
>µ) = (∂θb)

>
µ,

it follows that
∫ T

0

(∂θb)
>
µ dt = (J>µ)

∣

∣

T

0
= λJ>(T)∂uf (u(T))− (∂θu0)

>µ(0),

and thus, gradient (96) is computable without referring to the Jaco-
bian as

∇θE = ∇θ I − (∂θu0)
>µ(0)−

∫ T

0

(∂θb)
>
µ dt. (99)

In total, the gradient of the objective function (95) can be computed
at a given θ in three steps:

(i) integrate the forward equation,

∂u = b(u, θ), u(0) = u0(θ),

(ii) compute the adjoint �eld µ by integrating,

∂tµ = −(∂ub)>µ, µ(T) = λ∂uf (u(T)),

(iii) and, �nally, compute the gradient,

∇θE(θ) = ∇θ I − (∂θu0)
>µ(0)−

∫ T

0

(∂θb)
>
µ dt.

A few comments are of note:

• In contrast to Secs. I–IV, in the current setup we are not consider-
ing the case of small noise. Instead, the �uctuations are held at �xed
amplitude, but we consider events in the limit of in�nite threshold,
z → ∞. It is in this limit that the LDP in (90) is obtained, which
might lead to a nonstandard large deviation speed as a conse-
quence. Therefore, the LDT computation discussed in this section
can truly be considered for an “extreme event instanton.”

• Again, the formulation in the form of an adjoint equation (98) is
often bene�cial from an implementation perspective as well:Many
software packages for complex systems contain the computation
of the adjoint �eld. Therefore, the computation of the gradient can
possibly be achieved in a black-box manner.
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B. Example: Optimal excitation of the

Fitzhugh-Nagumo model

As an example, consider the following version of the determin-
istic Fitzhugh-Nagumo model,

{

ẋ = ν−1(x − 1
3
x3 − y),

ẏ = x + a.
(100)

If we consider the case a > 1, thismodel is an excitable system, in that
there is a unique �xed point (x̄, ȳ) =

(

−a, 1
3
a3 − a

)

, but small per-
turbations out of this �xed point potentially lead to large excursions
until the system returns to its steady state. Here, we are interested in
the optimal perturbation of the initial condition away from the �xed
point to achieve a large excursion. For θ ∈ � = R

2, we de�ne the dis-
tribution of initial conditions as Gaussian centered around the �xed
point,

(x0(θ), y0(θ)) = θ ∼ exp
(

1
21

(

(x0 − x̄)2 + (y0 − ȳ)2
))

,

and take as observable

F(θ) = max
t∈[0,T]

x(t, θ), (101)

i.e., the maximal excursion in the x-component of the trajectory.
We want to know P(z) = P(F(θ) ≥ z), and the corresponding most
likely initial conditions (and trajectory) that realize this extreme
event. Note that (101) is an observable of the third form of (89), and
the algorithm lined out above has to be modi�ed slightly. In particu-
lar, for u(t) = (x(t), y(t)), we obtain the gradient ∇θE from forward
and backward equations, which are, respectively,

{

∂tu = b(u), u(0) = (x0, y0),

∂tµ = −(∂ub)>µ, µ(t∗) = ∂uf (u(t
∗)) = (1, 0),

(102)

where t ∈ [0, t∗] and t∗ is the time at which the maximum is reached.
We are considering only the �rst local maximum in time, but the
dynamics of (100) are such that the �rst local maximum necessarily
is the global maximum. In this situation, there is no additional term
coming from the dependence of t∗ on the random parameters, since

∇θ f (u(t
∗(θ), θ)) = ∂uf (u(t

∗, θ))∂θu(t
∗, θ)

+ ∂uf (u(t
∗, θ))∂tu(t

∗)∂θ t
∗,

and the second term disappears because at t∗ we have ∂tu(t∗) = 0.
The gradient can then be computed as

∇θE = 1

1
(θ − ū)− λµ(0)

for u0(θ) = θ ∈ R
2 and ū = (x̄, ȳ).

Figure 8 shows the result of the minimization procedure: for
1 = 2, λ = 1, a = 1.1, ν = 10−1, the shading indicates the objective
function (95) for every initial condition.One can clearlymake out the
jump in the objective function across the separatrix, where trajecto-
ries start exhibiting large excursions. The trajectory starting at the
minimum is the one that maximizes the excursion in the x-direction,
before it decays to the �xed point. The streamlines show the dynamics
of the Fitzhugh-Nagumo model (100).

FIG. 8. Optimal perturbation of the initial condition to achieve an extreme excur-
sion in the Fitzhugh-Nagumo model (100). The flow field denotes the drift term,
and the color denotes the value of the objective function. The trajectory realizing
the maximal excursion is indicated as white line.

VI. INSTANTONS AS PART OF OTHER RARE EVENT

ALGORITHMS

While instantons as prototypical realizations of rare events can
be used for their own sake to estimate probabilities, relative stabil-
ity, and transition mechanisms, they can also be helpful as ingredient
to increase e�ciency of other types of rare event algorithms. Most
notably, whenever rare events are sampled numerically by “tilting”
a given stochastic process to facilitate a rare event in an importance
sampling setup, the instanton can be considered as the “optimal tilt”
in the small-noise limit. Equivalently, this tilting can be interpreted
as a (generalized) Doob transform,39 yielding a process conditioned
on a rare outcome. In this section, we want to discuss how this can
be achieved in practice and common pitfalls of this strategy: First, in
Sec. VI A, we will show how to use instantons to perform importance
sampling for Monte Carlo methods. In Sec. VI B, we use instantons
to construct weighting functions for genealogical particle algorithms.
This will be accompanied by an example computing the probability
of infection rates in a stochastic model for epidemiology.

A. Instantons for importance sampling

Consider an expectation of the form

Aε = E exp(ε−1F(XεT)) (103)

for a random process Xεt ∈ R
d, for example, the one obeying an SDE

like (1).We saw in Sec. III how to compute the corresponding instan-
ton and get the dominating contribution in the limit ε → 0. In order
to get hold of a proper quantitative estimate of (103), though, one
would naively consider a Monte Carlo method with estimator

δε = 1

M

M
∑

i=1

exp(ε−1F(Xε,iT )), (104)

where {Xε,it }Ni=1 are M independent realizations of the process. This
estimator is unbiased, meaning that

Eδε = Aε .
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The relative error of this estimator,

e(δε) = std(δε)

mean(δε)
= 1√

M

√

E exp(−2ε−1F(XεT))
(

E exp(−ε−1F(XεT))
)2 − 1, (105)

describes the relative variance of the estimator. For example, for
e(δε) = 1, the typical �uctuations of the estimate are of the size of
the estimated value itself. The goal is to achieve a small relative error.
In practice, for rare events, one often struggles to even keep e(δε)
bounded for ε → 0: even though increasing the number of sam-
ples improves the quality of the estimate, e(δε) → 0 for M → ∞,
the relative error increases exponentially for �xed M as ε → 0. As
a consequence, estimating rare events with the naive estimator (104)
is impractical as the relative variance blows up. The standard answer
to this problem is to employ “importance sampling,” i.e., introduc-
ing a new process Yεt under which the rare event becomes typical,
but accounting for this change of probability measure by correcting
with the proper Girsanov-factor. Indeed, considering

dYεt = (b(Yεt )+ σv(t,Yεt )) dt +
√
εσ dWt , (106)

for some function v : [0,T] × R
d → R

d, we can express the expec-
tation (103) as

Aε = E
x exp(−ε−1F(YεT))M

ε
T , (107)

where

Mε
T = exp

(

− 1√
ε

∫ T

0

〈v(s,Yεs ), dWs〉 − 1

2ε

∫ T

0

|v(s,Yεs )|2 ds
)

.

(108)

This identity can be used to construct an unbiased estimator ofAε by
replacing the expectation in (107) by an empirical expectation over
M independent copies of Yεt , similar to what was done to obtain the
estimator (104). The question is how to best choose the importance
sampling bias v(t, x) to lower the variance of this new estimator. An
intuitive idea would be to use the instanton to do so.40,41 For example,
it has been suggested to take

v(t, x) = σ−1(φ̇(t)− b(x)) (109)

or alternatively

v(t, x) = σ Tθ(t), (110)

where (φ(t), θ(t)) is the instanton position and momentum corre-
sponding to the expectation (103), i.e., taking Yεt to be, respectively,
the stochastic process

dYεt = φ̇(t) dt +
√
εσ dWt or

dYεt = b(Yεt ) dt + aθ(t) dt +
√
εσ dWt .

(111)

The intuition is that using either one of the processes in (111) biases
the dynamics toward the dominating path φ(t). The technique to
consider biased dynamics, by the instanton or otherwise, to increase
the frequency of rare events, was considered already in Ref. 42
and is frequently used in the literature to create e�cient rare event
algorithms.43,44 Similar ideas, inspired from lattice quantum chromo-
dynamics, have entered through stochastic �eld theory to biasMonte
Carlo methods with the knowledge of the instanton. For example, in

Ref. 45, the instanton for the stochastic Burgers equation is used pre-
cisely in the way of (111) to sample a modi�ed process describing the
�uctuations around it, getting improved statistics in the rare event
regime.

Although it has been pointed out that this strategy does not suc-
ceed to decrease variance in general, or might even perform worse
than the naive one in the limit as ε → 0,46 it can be modi�ed47 to
achieve optimal variance decay by recomputing the instanton trajec-
tory on-the-�y. Notably, though, counterexamples that lead to worse
relative error are speci�cally crafted, while in general performing
importance sampling guided by the instanton trajectory works well
in practical applications.

B. Instantons for cloning algorithms

There is another way to incorporate knowledge of the instan-
ton within importance sampling, namely, through algorithms of
genealogical type.48–51 In these methods, an ensemble of trajecto-
ries (aka particles, copies, or clones) is integrated, and particles are
removed or duplicated according to some rating that selects behav-
iors favorable to the event at hand. To explain how this can be done in
the context of rare event algorithms, let us focus on the choice (110)
for v(t, x), since out of the two, it is the one that requires the least
modi�cation of the drift.52 The second equation in (111) reads

dYεt = b(Yεt ) dt + aθ(t) dt +
√
εσ dWt (112)

along with the estimator for (103)

Aε = E
x exp

(

−ε−1F(YεT)− 1√
ε

∫ T

0

〈θ(t), σdWt〉

− 1

2ε

∫ T

0

〈θ(t), aθ(t)〉 dt
)

. (113)

We begin by rewriting this last formula in a form that is more
convenient for resampling. To this end, let us integrate the following
identity:

d〈θ(t),Yεt − φ(t)〉 = 〈θ̇ (t),Yεt − φ(t)〉dt + 〈θ(t), b(Yεt )

− b(φ(t))〉dt +
√
ε〈θ(t), σdWt〉 (114)

to get

− 1√
ε

∫ T

0

〈σ Tθ(t), dWt〉 = −1

ε
〈θ(T),YεT − φ(T)〉

+ 1

ε

∫ T

0

α(t,Yεt ) dt, (115)

where we de�ned

α(t, x) = 〈θ̇ (t), x − φ(t)〉 + 〈θ(t), b(x)− b(φ(t))〉. (116)

These manipulations allow us to write the expectation (113) as

Aε = E
x exp

(

−ε−1F(YεT)− ε−1〈θ(T),YεT − φ(T)〉

−1

2
ε−1

∫ T

0

〈θ(t), aθ(t)〉dt
)

Wε
T , (117)
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FIG. 9. Comparison of estimating the probability to reach an infection rate of 20% with the naive and the cloning estimator. The heatmap depicts the logarithm of an
(S(t), I(t)) histogram, the streamlines represent the deterministic dynamics (122). The white line represents the instanton trajectory, and the dashed line the infection
threshold. All measurements are obtained with 10 000 copies.

where

Wε
t = exp

(

1

ε

∫ t

0

α(s,Yεs )ds

)

. (118)

Expression (117) can be used to design a genealogical algorithm
in which Wε

t is viewed as a weight that each of the particles carries
and according to which they are periodically resampled. More con-
cretely, consider M copies of the system, all evolving according to
the SDE (112). Denote by Y i

t the position of the ith copy at time t
and byW i

t its weight. The particle positions and weights are evolved
independently on intervals (tk−1, tk), where tk, k ∈ N0, with tk−1 < tk
are “selection steps” when the resampling occurs. It proceeds as fol-
lows: denoting by1W i

k, the weight accumulated by particle i on the
interval (tk−1, tk), i.e.,

1W i
k = exp

(

1

ε

∫ tk

tk−1

α(s,Y i
s)ds

)

, (119)

we compute

pik = 1W i
k

∑N
j=11W

j

k

, 1W̄k = 1

M

M
∑

i=1

1W i
k (120)

and choose independently (with replacement) M copies in the set

{Y i
tk
}M
i=1

, using probability pik to pick copy Y i
tk
. We then use the

resulting copies as new set {Y i
tk
}M
i=1

, assign to each the same weight

W i
tk

=
∏k

l=11W̄l, and repeat on the next interval (tk, tk+1).
As a result of this procedure, we have at any time a set of M

copies with nearly uniform weights [since they only diverge from
one another during the intervals (tk, tk+1)] that provides us with the
following expression for Aε [compare with (117)]:

Aε = exp

(

− 1
2
ε−1

∫ T

0

〈θ(t), aθ(t)〉dt
)

E
xζM , with

ζM = 1

M

M
∑

i=1

exp
(

−ε−1F(Y i
T)− ε−1〈θ(T),Y i

T − φ(T)〉
)

W i
T ,

(121)

where E
x denotes expectation over both the noise term in (112) and

the resampling steps. If M is large enough, we can simply build an
unbiased estimator for Aε by using ζM directly (i.e, removing the
expectation); or we can repeat the estimation R times withM copies
and replace the expectation in (121) with an empirical average over
the values of ζM calculated in these R runs.

The variance of the estimator based on (121) has been analyzed,
e.g., in Refs. 48 and 49, where other variants of the algorithm (e.g.,
in terms of the resampling step) are also discussed. Let us simply
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TABLE I. Relative error of the naive estimator and the cloning estimator for different values of ε. Each value is generated from 1000 experiments with 1000 copies each. The

relative error of the naive estimator diverges for ε → 0.

ε 1.0 0.5 0.2 0.1 0.09 0.08 0.07 0.06 0.05 0.01
enaive 0.0859 0.1399 0.4222 2.4839 3.3331 6.0061 9.4868 18.2391 31.6228 . . .

ecloning 0.1487 0.1590 0.1685 0.1729 0.1849 0.1816 0.1836 0.1928 0.1969 0.2749

mention here that this estimator may not be better behaved than the
one directly based on (117) (i.e., the one using no resampling based
on the values of the weights), but it o�ers multiple possibilities of
modi�cations that can systematically improve its variance—we refer
the reader to Ref. 53 for more details.

Similar approaches are possible with adaptive multilevel
splitting,49,54 where again a rating function (“reaction coordinate”)
has to be found to evaluate the performance of multiple copies and
for which the instanton dynamics can be taken as input.

C. Example: Epidemiology and vaccination at birth

To illustrate the scheme above, we consider the following com-
partmental model inspired from epidemiology, where the spread of
a disease is modeled in the presence of vaccination. The total pop-
ulation of individuals, denoted by N, is comprised of individuals
susceptible to the disease (S), individuals that are infected (I), indi-
viduals that are recovered and thus immune (R) and individuals that
are vaccinated and thus immune (V). Individuals are born and die
with the same rateµ so that the total population remains constant. In
this simple rendition of disease spreadwith vaccination, the vaccine is
administered at birth, andwith a vaccination rate of q. In otherwords,
a child is born vaccinated with probability q or susceptible otherwise.
The disease is transmitted by contact between infected and suscepti-
ble individuals, with contact rate β , while recovery is associated with
the recovery rate γ . In total, the model, therefore, reads



















Ṡ = µN(1 − q)− µS − βN−1IS,

İ = βN−1IS − (µ+ γ )I,

V̇ = µNq − µV ,

Ṙ = γ I − µR.

(122)

Interestingly, depending on the vaccination rate, model (122) results
in either total eradication of the disease after transient dynamics (dis-
ease free equilibrium) or a �xed pointwhere the disease is still present
(endemic equilibrium). More precisely, the reproduction number,

R0 = β

µ+ γ
,

describes the average number of contacts per infected individual
(i.e., the ratio between contact frequency and the frequencies asso-
ciated with recovery or death). If the vaccination rate q exceeds a
threshold q∗,

q ≥ q∗ = 1 − 1

R0
,

then the disease will be eradicated eventually. Note that, since the
dynamics of S and I are independent of V and R, it is enough to con-
sider the �rst two equations of (122) to establish whether the disease

is eradicated in the long-time limit. Furthermore, we will normalize
the quantities to ratios in [0, 1].

In order to produce estimates of probabilities in this system, we
furthermore need to make assumptions about stochasticity present
in the quantities S and I. It is natural to interpret the rate equations
(122) as the law of mass action of a reaction network, transform-
ing the species into each other, which would lead to Poisson noise
terms as encountered in Sec. IV. For large population sizes, one
could also consider a multiplicative Gaussian noise, consistent with
the central limit theorem, similar to the discussion of the stochas-
tic Lotka-Volterra model in Sec. III B. Using this approximation, the
stochastic system reads























dS =
(

µN(1 − q)− µS − βN−1IS
)

dt

+
√

µN(1 − q)+ µS + βN−1IS dWS,

dI =
(

βN−1IS − (µ+ γ )I
)

dt

+
√

βN−1IS + (µ+ γ )I dWI ,

(123)

whereWS andWI are independent Wiener processes.
As observable, we want to estimate the probability that after

time T we have reached an unusually high ratio z ∈ [0, 1] of infected
individuals, P(I(T) ≥ z), which we can write as expectation via

P(I(T) ≥ z) = E2(I(T)− z),

for the Heaviside step function 2. Using this observable, we can
compare the naive estimator with the cloning estimator.

We are choosing parameters µ = 0.1, β = 0.8, γ = 0.2, and
N = 1500, which result in a critical vaccination rate of q∗ = 0.625.
Here, we set q = 0.1 instead, resulting in an endemic equilibrium
(S̄, Ī) = (0.375, 0.175). The threshold is set to z = 0.2, i.e., we want to
estimate the probability to have a ratio of infected individuals above
20% after T = 100. The results for three di�erent values of ε are
shown in Fig. 9, depicting the logarithm of a histogram of trajec-
tories (S(t), I(t)). The streamlines describe the deterministic drifts
given in Eq. (122), while the white line is the instanton to reach the
threshold. Indeed, we observe that for ε = 1, reaching the thresh-
old infected rate is not a rare event, the instanton has no predictive
power and the cloning algorithm performs equally or worse to naive
sampling. For ε = 10−1, the event is rarely observed for naive sam-
pling, resulting in larger variance estimates of the probability. The
con�gurations resulting from the cloning algorithm instead show a
higher prevalence of increased infection rates. This e�ect is espe-
cially pronounced for ε = 10−2, where we do not observe any sample
reaching the threshold in the naive case, and where the cloning sam-
ples clearly track the instanton trajectory toward the threshold. The
relative errors of the two estimators are summarized in Table I. With
decreasing ε (and therefore exponentially decreasing probability of
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the rare event), the variance of the naive estimator blows up, while
the variance of the cloning estimator remains largely unchanged.

VII. CONCLUSION

Summarizing, in this review, we presented a collection of algo-
rithms to estimate rare event probabilities and properties by com-
puting the large deviation minimizer (instanton) for the small-noise
limit. They are largely divided into two categories.

In the �rst category, one minimizes the rate function globally,
by discretizing it and then employing numerical minimization tech-
niques. Traditionalmembers of this category are theminimumaction
method (MAM)14 and the geometricMAM(gMAM).15Here, we pro-
vide a simpli�ed and optimized version of the second, the simpli�ed
gMAM, that allows for carrying out the optimization in the space of
arc-length parametrized curves with a minimal number of necessary
derivatives of the large deviation Hamiltonian. E�ectively, this trans-
lates into gains in either run-time or implementation complexity over
traditional variants. Methods in this category are particularly suited
for computing transition trajectories between two sets or points.

In the second category, one instead solves Hamilton’s equations
(or instanton equations) associated with the large deviation Hamil-
tonian. In this category are the Chernykh-Stepanov algorithm21 and
its geometric variant.31 Here, we provide an interpretation of these
algorithms in the form of the adjoint formulation of the optimization
problem.Methods in this category are e�ectively employed when the
intention is to compute expectations along sample paths or, loosely
speaking, most likely realizations of extreme events.

Even though these formalisms constitute dual approaches to the
same problem, we conclude that they are drastically di�erent in terms
of applicability: for example, degenerate forcing is easily incorporated
into Hamilton’s equations, but constitutes a numerical di�culty in
the form of sti� constraints for MAM-type algorithms. Conversely,
traversing a saddle point or crossing a separatrix is readily achieved in
MAM-type schemes, but leads to loss of convergence in the equations
of motion formulation.

Nevertheless, both approaches can be generalized to treat SDEs
driven bymultiplicative noise aswell as stochastic processes driven by
non-Gaussian noise. They can also handle, at least formally, in�nite
dimensional processes, like the solutions of SPDEs. These approaches
can also be extended inmultipleways.Here, we discussed how related
considerations apply to the case of dynamical systems with generic
random parameters and we also showed how instantons can be used
as input in importance sampling algorithms.
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