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1. Introduction

The goal of these lectures, delivered at the Newton Institute in Cambridge for the
workshop ‘Non-Equilibrium Dynamics of Interacting Particle Systems’ in March–April
2006, is to try to introduce some methods used to study non-equilibrium steady states
for systems with stochastic dynamics and to review some results obtained recently on the
fluctuations and the large deviations of the density and the current for such systems.
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Figure 1. A system in contact with two heat baths at temperatures Ta and Tb.

Let us start with a few examples of non-equilibrium steady states:

(1) A system in contact with two heat baths at temperatures Ta and Tb.
At equilibrium, i.e. when the two heat baths are at the same temperature (Ta = Tb =
T ), the probability P (C) of finding the system in a certain microscopic configuration
C is given by the usual Boltzmann–Gibbs weight

Pequilibrium(C) = Z−1 exp

[
−E(C)

kT

]
(1)

where E(C) is the internal energy of the system in configuration C. Then the task
of equilibrium statistical mechanics is to derive macroscopic properties (equations
of states, phase diagrams, fluctuations, etc) from (1) as a starting point. A very
simplifying aspect of (1) is that it depends neither on the precise nature of the
couplings with the heat baths (at least when these couplings are weak) nor on the
details of the dynamics.
When the two temperatures Ta and Tb are different (see figure 1), the system reaches
in the long-time limit a non-equilibrium steady state [1]–[4], but there does not
exist [5, 6] an expression which generalizes (1) for the steady state weights P (C)
of the microscopic configurations

Pnon-equilibrium(C) = ?.

In fact, for a non-equilibrium system, the steady state measure P (C) depends in
general on the dynamics of the system and on its couplings with the heat baths.
Beyond trying to know the steady state measure P (C), which can be done only for
a very few examples [7]–[13], one might wish to determine a number of properties
of non-equilibrium steady states like the temperature or energy profiles [14, 15], the
average flow of energy through the system [16]–[20], the probability distribution of
this energy flow, the fluctuations of the internal energy or of the density.

(2) A system in contact with two reservoirs of particles at densities ρa and ρb.
Another non-equilibrium steady state situation one can consider is that of a system
exchanging particles with two reservoirs [21] at densities ρa and ρb (see figure 2).
When ρa �= ρb (and in the absence of an external field) there is a flow of particles
through the system. One can then ask the same questions as for the previous case:
for example, what is the average current of particles between the two reservoirs,
what is the density profile through the system, what are the fluctuations or the large
deviations of this current or of the density.
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Figure 2. A system in contact with two reservoirs at densities ρa and ρb.

Figure 3. The symmetric simple exclusion process.

(3) The symmetric simple exclusion process (SSEP)
The SSEP [22]–[25] is one of the simplest models of a system maintained out of
equilibrium by contact with two reservoirs at densities ρa and ρb. The model is
defined as a one-dimensional lattice of L sites with open boundaries, each site being
either occupied by a single particle or empty (see figure 3). During every infinitesimal
time interval dt, each particle has a probability dt of jumping to its left neighbouring
site if this site is empty, and a probability dt of jumping to its right neighbouring
site if this right neighbouring site is empty. At the two boundaries the dynamics
is modified to mimic the coupling with reservoirs of particles: at the left boundary,
during each time interval dt, a particle is injected on site 1 with probability α dt (if
this site is empty) and a particle is removed from site 1 with probability γ dt (if this
site is occupied). Similarly on site L, particles are injected at rate δ and removed at
rate β.
We will see ((43) below and [26]–[28]) that these choices of the rates α, γ, β, δ
correspond to the left boundary being connected to a reservoir at density ρa and
the right boundary to a reservoir at density ρb with ρa and ρb given by

ρa =
α

α + γ
; ρb =

δ

β + δ
. (2)

One can also think of the SSEP as a simple model of heat transport, if one interprets
the particles as quanta of energy. Then if each particle carries an energy ε, the SSEP
becomes the model of a system in contact with two heat baths at temperatures Ta

and Tb given by (see section 2)

exp

[
ε

kTa

]
=

α

γ
; exp

[
ε

kTb

]
=

δ

β
. (3)
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Figure 4. The asymmetric simple exclusion process.

(4) Driven diffusive systems
One can add to the systems described above an electric or a gravity field which tends
to push the particles in a preferred direction.
For example (see figure 4), adding a field to the SSEP means that the hopping rates
to the left become q (the hopping rates to the right still being 1). The model becomes
then the ASEP (the asymmetric simple exclusion process) [9], [29]–[32] which appears
in many contexts [33, 34], such as hopping conductivity [35], models of traffic [36],
growth [37] or polymer dynamics [38]. In the presence of this external field, the system
reaches a non-equilibrium steady state even for a ring geometry, without need of a
reservoir.
The large scale of the ASEP differs noticeably from the SSEP. For example, in the
ASEP on the infinite line, one can observe shock waves whereas the SSEP is purely
diffusive. In fact, on large scales the ASEP is described [37] by the Kardar–Parisi–
Zhang equation [39] while the SSEP is in the universality class of the Edwards–
Wilkinson equation [40, 41].

The outline of these lectures is as follows:
In section 2 it is recalled how detailed balance should be modified to describe systems

in contact with several heat baths at unequal temperatures or several reservoirs at different
densities.

In section 3 the large deviation functional of the density is introduced and there is a
comparison between its properties in equilibrium and in non-equilibrium steady states.

In section 4, the connection between the non-locality of the large deviation functional
of the density and the presence of long range correlations is discussed.

In section 5 it is shown how to write the evolution equations of the profile and of the
correlation functions for the symmetric simple exclusion process.

Section 6 describes the matrix ansatz [10] which gives an exact expression of the
weights in the non-equilibrium steady state of the symmetric exclusion process.

Using an additivity relation established in section 7 as a consequence of the matrix
ansatz, the large deviation functional [26, 27] of the density for the SSEP is calculated in
section 8.

The macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and
Landim [42]–[45] is recalled in section 9, which shows how the calculation of a large
deviation functional of the density can be formulated as an optimization problem.

The definition of the large deviation function of the current and the fluctuation
theorem [46]–[50] are recalled in section 10 from which the fluctuation–dissipation theorem
for energy or particle currents can be recovered (section 11).
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A perturbative approach [51] to calculate the large deviation function of the current
for the SSEP is sketched in section 12.

The additivity principle, which predicts the cumulants and the large deviation
function of the current, is presented in section 13.

The last four sections are devoted to the ASEP: the matrix ansatz for the ASEP
is recalled in section 14. It is shown in section 15 how to obtain the phase diagram of
the TASEP from the matrix ansatz. An additivity relation from which one can compute
the large deviation functional of the density [53, 54] is established in section 16. Lastly
in section 17 it is shown that the fluctuations of density are non-Gaussian [55] in the
maximal current phase of the TASEP.

2. How to generalize detailed balance to non-equilibrium systems

As in non-equilibrium systems, the steady state measure P (C) depends on the couplings
to the heat baths and on the dynamics of the system, each model of a non-equilibrium
has to incorporate a description of these couplings and of the dynamics (various ways of
modelling the effect of heat baths or of reservoirs are described in, for example, [1, 56]). It
is often theoretically simpler to represent the effect of the heat baths (or of the reservoirs
of particles) by some stochastic terms such as Langevin forces corresponding to the
temperatures of the heat baths. In practice the dynamics becomes a Markov process.

For a system with stochastic dynamics given by a Markov process (such as the SSEP
or mechanical systems with heat baths represented by Langevin forces) the evolution is
specified by a transition matrix W (C ′, C) which represents the rate at which the system
jumps from a configuration C to a configuration C ′ (i.e. the probability that the system
jumps from C to C ′ during an infinitesimal time interval dt is given by W (C ′, C) dt). For
simplicity, we will limit the discussion to the case where the total number of accessible
configurations is finite. The probability Pt(C) of finding the system in configuration C at
time t evolves therefore according to the Master equation

dPt(C)

dt
=
∑
C′

W (C, C ′)Pt(C
′) − W (C ′, C)Pt(C). (4)

One can then wonder what should be assumed on the transition matrix W (C ′, C) to
describe a system in contact with one or several heat baths (as, for example, in figure 1).

At equilibrium, (i.e. when the system is in contact with a single heat bath at
temperature T ) one usually requires that the transition matrix satisfies detailed balance

W (C ′, C)e−E(C)/kT = W (C, C ′)e−E(C′)/kT . (5)

This ensures the time reversal symmetry of the microscopic dynamics: at equilibrium
(i.e. if the initial condition is chosen according to (1)), the probability of observing any
given history of the system {Cs, 0 < s < t} is equal to the probability of observing the
reversed history

Pro({Cs, 0 < s < t}) = Pro({Ct−s, 0 < s < t}). (6)

Therefore, if ε is the energy transferred from the heat bath at temperature T to the
system, and Wε(C

′, C) dt is the probability that the system jumps during dt from C to
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C ′ by receiving an energy ε from the heat bath, one can rewrite the detailed balance
condition (5) as

Wε(C
′, C) = e−ε/kTW−ε(C, C ′). (7)

If detailed balance gives a good description of the coupling with a single heat bath
at temperature T , the straightforward generalization of (7) for a system coupled to two
heat baths at unequal temperatures like in figure 1 is [57]

Wεa,εb
(C ′, C) = exp

[
− εa

kTa
− εb

kTb

]
W−εa,−εb

(C, C ′) (8)

where εa, εb are the energies transferred from the heat baths at temperatures Ta, Tb to the
system when the system jumps from configuration C to configuration C ′. By comparing
with (7), this simply means that the exchanges of energy with the heat bath at temperature
Ta tend to equilibrate the system at temperature Ta and the exchanges with the heat bath
at temperature Tb tend to equilibrate the system at temperature Tb.

For a system in contact with two reservoirs of particles at fugacities za and zb, as in
figure 2, the generalized detailed balance (8) becomes

Wqa,qb
(C ′, C) = zqa

a zqb

b W−qa,−qb
(C, C ′) (9)

where qa and qb are the numbers of particles transferred from the two reservoirs to the
system when the system jumps from configuration C to configuration C ′.

From the definition of the dynamics of the SSEP, it is easy to check that it satisfies (9)
with

za =
α

γ
; zb =

δ

β
. (10)

One can also check from (3) that if one interprets the particles as quanta of energy, (8) is
satisfied.

One way of justifying (8) is to consider the composite system made up of the system
we want to study and of the two reservoirs. This composite system is isolated and therefore
its total energy E

E = E(C) + Ea + Eb (11)

is conserved by the dynamics. In (11) E(C) is the energy of the system we want to study
and Ea, Eb. are the energies of the two reservoirs (for simplicity we assume that the energy
of the coupling between the reservoirs and the system is small). Whenever there is an
evolution step in the dynamics, the system jumps from the microscopic configuration C
to the configuration C ′ and the energies of the reservoirs jump from Ea, Eb to E ′

a, E
′
b.

For the composite system to be able to reach the microcanonical distribution and for
microcanonical detailed balance to hold one needs that the transition rates satisfy

exp

[
Sa(Ea) + Sb(Eb)

k

]
Pro({C, Ea, Eb} → {C ′, E ′

a, E
′
b})

= exp

[
Sa(E

′
a) + Sb(E

′
b)

k

]
Pro({C ′, E ′

a, E
′
b} → {C, Ea, Eb}) (12)
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Figure 5. For a system of N particles in total volume V , the probability Pv(n)
of having n particles in a large subvolume v is given by (14).

where Sa(Ea) and Sb(Eb) are the entropies of the two reservoirs at energies Ea and Eb.
Then if the heat baths are large enough, one has (using the microcanonical definition of
the temperature 1/T = dS/dE for each reservoir)

S(Ea) − S(E ′
a) =

Ea − E ′
a

Ta
; S(Eb) − S(E ′

b) =
Eb − E ′

b

Tb
(13)

where Ta and Tb are the (microcanonical) temperatures of the two heat baths and (12)
reduces to (8).

Remark. The quantity −(εa/Ta)−(εb/Tb) in (8) is the entropy produced in the reservoirs.
In fact, in the theory of non-equilibrium phenomena, one can associate to an arbitrary
Markov process, defined by transition rates W (C ′, C), an entropy production [46]–
[48], [50, 58, 59] (in the surrounding heat baths) given by

ΔS(C → C ′) = k log
W (C ′, C)

W (C, C ′)

and (8) appears as one particular case of this general definition.

3. Free energy and the large deviation function

At equilibrium the free energy is defined by

F = −kT log Z = −kT log

[∑
C

exp

(
−E(C)

T

)]
.

In this section we are going to see that the knowledge of the free energy gives also the
distribution of the fluctuations and the large deviation function of the density. This will
enable us to extend the notion of free energy to non-equilibrium systems by considering
the large deviation functional [22, 60, 61] of the density.

If one considers a box of volume V containing N particles, as in figure 5, the
probability Pv(n) of finding n particles in a subvolume v located near a position �r has the
following large v dependence:

Pv(n) ∼ exp

[
−va�r

(
n

v

)]
(14)

doi:10.1088/1742-5468/2007/07/P07023 8
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Figure 6. A typical shape of the large deviation function a�r(ρ). The most likely
density ρ∗ is the value where a�r(ρ) vanishes.

Figure 7. In (15) one specifies the densities ρi in each box i.

where a�r(ρ) is a large deviation function. Figure 6 shows a typical shape of a�r(ρ) for
a homogeneous system (i.e. not at a coexistence between different phases) with a single
minimum at ρ = ρ∗ where a�r(ρ) vanishes.

One can also define the large deviation functional F for an arbitrary density profile.
If one divides (as in figure 7) a system of linear size L into n boxes of linear size l (in
dimension d, one has of course n = Ld/ld such boxes), one can try to determine the
probability of finding a certain density profile {ρ1, ρ2, . . . ρn}, i.e. the probability of seeing
ldρ1 particles in the first box, ldρ2 particles in the second box, . . . ldρn in the nth box. For
large L one expects the following L dependence of this probability:

Pro(ρ1, . . . ρn) ∼ exp[−LdF(ρ1, ρ2, . . . ρn)] (15)

where F is a large deviation function which generalizes a�r(ρ) defined in (14). If one
introduces a reduced coordinate �x

�r = L�x (16)

and if one takes the limit L → ∞, l → ∞ with l � L so that the number n of boxes
becomes large, this becomes a functional F(ρ(�x)) for an arbitrary density profile ρ(�x)

Pro(ρ(�x)) ∼ exp[−LdF(ρ(�x))]. (17)

doi:10.1088/1742-5468/2007/07/P07023 9
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Clearly the large deviation function a�r(ρ) or the large deviation functional F(ρ(�x)) can
be defined for equilibrium systems as well as for non-equilibrium systems.

For equilibrium systems, one can show that a�r(ρ) is closely related to the free energy:
if the volume v is sufficiently large, for short-ranged interactions and in the absence of
external potential, the large deviation function a�r(ρ) is independent of �r and its expression
is given by

a�r(ρ) = a(ρ) =
f(ρ) − f(ρ∗) − (ρ − ρ∗)f ′(ρ∗)

kT
(18)

where f(ρ) is the free energy per unit volume at density ρ and ρ∗ = N/V . This can
be seen by noticing that, if v1/d is much larger than the range of the interactions and if
v � V , one has

Pv(n) =
Zv(n)ZV −v(N − n)

ZV (N)
exp[O(v(d−1)/d)] (19)

where ZV (N) is the partition function of N particles in a volume V and the term
exp[O(v(d−1)/d)] represents the interactions between all pairs of particles, one of which
is the volume v and the other one is V − v. Then taking the log of (19) and using the
fact that the free energy f(ρ) per unit volume is defined by

lim
V →∞

log ZV (V ρ)

V
= −f(ρ)

kT
(20)

one gets (18). The functional F can also be expressed in terms of f(ρ): if one considers
V ρ∗ particles in a volume V = Ld, one can generalize (19) for systems with short-range
interactions and no external potential

Pro(ρ1, . . . , ρn) =
Zv(vρ1) · · ·Zv(vρn)

ZV (V ρ∗)
exp

[
O

(
Ld

l

)]
(21)

where v = ld. Comparing with (15), in the limit L → ∞, l → ∞, keeping n fixed gives

F(ρ1, ρ2, . . . , ρn) =
1

kT

1

n

n∑
i=1

[f(ρi) − f(ρ∗)]. (22)

In the limit of an infinite number of boxes, this becomes

F(ρ(�x)) =
1

kT

∫
d�x [f(ρ(�x)) − f(ρ∗)]. (23)

Thus for a system with short-range interactions, at equilibrium, the large deviation
functional F is fully determined by the knowledge of the free energy f(ρ) per unit volume.
In (23), we see that

• The functional F is a local functional of ρ(�x).

• It is also a convex functional of the profile ρ(�x), i.e. for two arbitrary density profiles
ρ1(�x) and ρ2(�x) one has for 0 < α < 1

F(αρ1(�x) + (1 − α)ρ2(�x)) ≤ αF(ρ1(�x)) + (1 − α)F(ρ2(�x)) (24)

as the free energy f(ρ) is itself a convex function of the density ρ, (i.e. f(αρ1 + (1 −
α)ρ2) ≤ αf(ρ1) + (1 − α)f(ρ2) for 0 < α < 1).
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• When f(ρ) can be expanded around ρ∗ (i.e. at densities where the free energy f(ρ)
is not singular) one obtains also from (23) that the fluctuations of the density profile
are Gaussian. In fact, if one expands (18) near ρ∗ and one replaces it into (14) one
gets that the distribution of the number n of particles in the subvolume v is Gaussian
(if v is large enough)

Pv(n) ∼ exp

[
−v

f ′′(ρ∗)

2kT
(ρ − ρ∗)2

]
= exp

[
−f ′′(ρ∗)

2vkT
(n − vρ∗)2

]
(25)

and its variance, as predicted by Smoluchowki and Einstein, is given by

〈n2〉 − 〈n〉2 = v
kT

f ′′(ρ∗)
= vkTκ(ρ∗) (26)

where the compressibility κ(ρ) is defined by

κ(ρ) =
1

ρ

dρ

dp
(27)

(and the pressure p is given as usual by p = −(d/dV )[V f(N/V )] = ρ∗f ′(ρ∗)− f(ρ∗)).
Note that, at a phase transition, f(ρ) is singular and the fluctuations of density are
in general non-Gaussian.

• One also knows (by the Landau argument) that, with short-range interactions, there
is no phase transition if the dimension of space is one dimensional.

In contrast to equilibrium systems, one can observe in non-equilibrium steady states of
systems such as the ones described in figures 1 and 2.

• The large deviation functional F may be non-local. For example, in the case of the
SSEP, we will see in section 8 that the functional is given for ρa−ρb small by (see (74)
below):

F({ρ(x)}) =

∫ 1

0

dx

[
ρ(x) log

ρ(x)

ρ∗(x)
+ (1 − ρ(x)) log

1 − ρ(x)

1 − ρ∗(x)

]

+
(ρa − ρb)

2

[ρa(1 − ρa)]2

∫ 1

0

dx

∫ 1

x

dy x(1 − y)(ρ(x) − ρ∗(x))(ρ(y) − ρ∗(y))

+ O(ρa − ρb)
3 (28)

where ρ∗(x) is the most likely profile

ρ∗(x) = (1 − x)ρa + xρb. (29)

• For the ASEP, there is a range of parameters where the functional F is non-convex
(see [53, 54] and section 16 below).

• There are also cases where, in the maximal current phase, the density fluctuations
are non-Gaussian (see [55] and section 17 below).

• In non-equilibrium systems nothing prevents the existence of phase transitions in one
dimension [9]–[11], [32], [62]–[72].
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4. Non-locality of the large deviation functional of the density and long-range
correlations

A feature characteristic of non-equilibrium systems is the presence of weak long-range
correlations [73]–[78]. For example, for the SSEP, we will see [73] in the next section (45)
and (46) that for large L the correlation function of the density is given for 0 < x < y < 1

〈ρ(x)ρ(y)〉c = −(ρa − ρb)
2

L
x(1 − y). (30)

We are going to see in this section that the presence of these long-range correlations is
directly related to the non-locality of the large deviation functional F . Let us introduce
the generating function G({α(x)}) of the density defined by

exp[LG({α(x)})] =

〈
exp

[
L

∫ 1

0

α(x)ρ(x) dx

]〉
(31)

where α(x) is an arbitrary function and 〈.〉 denotes an average over the profile ρ(x) in
the steady state. As the probability of this profile is given by (17) the average in (31)
is dominated, for large L, by an optimal profile, which depends on α(x), and G is the
Legendre transform of F

G({α(x)}) = max
{ρ(x)}

[∫ 1

0

α(x)ρ(x) dx − F({ρ(x)})
]

. (32)

It is clear from (32) that, if the large deviation F is local (as in (23)), then the generating
function G is also local.

By taking derivatives of (31) with respect to α(x) one gets that the average profile
and the correlation functions are given by

ρ∗(x) ≡ 〈ρ(x)〉 =
δG

δα(x)

∣∣∣∣
α(x)=0

(33)

〈ρ(x)ρ(y)〉c ≡ 〈ρ(x)ρ(y)〉 − 〈ρ(x)〉〈ρ(y)〉 =
1

L

δ2G
δα(x)δα(y)

∣∣∣∣
α(x)=0

. (34)

This shows that the non-locality of G is directly related to the existence of long-range
correlations.

Derivation of (34). To understand the L dependence in (34) let us assume that the
non-local functional G can be expanded as

G(α(x)) =

∫ 1

0

dx A(x)α(x) +

∫ 1

0

dx B(x)α(x)2 +

∫ 1

0

dx

∫ 1

x

dy C(x, y)α(x)α(y) + · · · .

(35)

If one comes back to a lattice gas of L sites with a number ni of particles on site i and
one considers the generating function of these occupation numbers, one has for large L

log

[〈
exp

∑
i

αini

〉]
� LG(α(x)) (36)
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when αi is a slowly varying function of i of the form αi = α(i/L). By expanding the
lhs of (36) in powers of the αi one has

log

[〈
exp

∑
i

αini

〉]
=

L∑
i=1

Aiαi +
L∑

i=1

Biα
2
i +
∑
i<j

Ci,jαiαj + · · · (37)

and therefore

〈ni〉 = Ai; 〈n2
i 〉c = 2Bi; 〈ninj〉c = Ci,j. (38)

Comparing (35) and (37) in (36) one sees that

Ci,j =
1

L
C

(
i

L
,
j

L

)
(39)

which leads to (34). �
A similar reasoning would show that

〈ρ(x1)ρ(x2) · · ·ρ(xk)〉c =
1

Lk−1

δkG
δα(x1) · · · δα(xk)

∣∣∣∣
α(x)=0

. (40)

This 1/Lk−1 dependence of the k point function can indeed be proved in the SSEP [78]. We
see that all the correlation functions can in principle be obtained by expanding, when this
expansion is meaningful (see [53, 54] for counter-examples), the large deviation function
G in powers of α(x).

5. The symmetric simple exclusion model

For the SSEP, the calculation of the average profile or of the correlation functions can
be done directly from the definition of the model. If τi = 0 or 1 is a binary variable
indicating whether site i is occupied or empty, one can write the time evolution of the
average occupation 〈τi〉

d〈τ1〉
dt

= α − (α + γ + 1)〈τ1〉 + 〈τ2〉
d〈τi〉
dt

= 〈τi−1〉 − 2〈τi〉 + 〈τi+1〉 for 2 ≤ i ≤ L − 1

d〈τL〉
dt

= 〈τL−1〉 − (1 + β + δ)〈τL〉 + δ.

(41)

The steady state density profile (obtained by writing that d〈τi〉/dt = 0) is [27, 79]

〈τi〉 =
ρa(L + 1/(β + δ) − i) + ρb(i − 1 + 1/(α + γ))

L + 1/(α + γ) + 1/(β + δ) − 1
(42)

with ρa and ρb defined as in (2). One can notice that for large L, if one introduces a
macroscopic coordinate i = Lx, this becomes

〈τi〉 = ρ∗(x) = (1 − x)ρa + xρb (43)

and one recovers (29). For large L one can also remark that 〈τ1〉 → ρa and 〈τL〉 → ρb,
indicating that ρa and ρb defined by (2) represent the densities of the left and right
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reservoirs. One can, in fact, show [26]–[28] that the rates α, γ, β, δ do correspond to the
left and right boundaries being connected respectively to reservoirs at densities ρa and ρb.

The average current in the steady state is given by

〈J〉 = 〈τi(1 − τi+1) − τi+1(1 − τi)〉 = 〈τi − τi+1〉 =
ρa − ρb

L + 1
α+γ

+ 1
β+δ

− 1
. (44)

This shows that for large L, the current 〈J〉 � (ρa − ρb)/L is proportional to the gradient
of the density (with a coefficient of proportionality which is here simply 1) and therefore
follows Fick’s law.

One can write down the equations which generalize (41) and govern the time evolution
of the two-point function or higher correlations. For example, one finds [73, 78] in the
steady state for 1 ≤ i < j ≤ L

〈τiτj〉c ≡ 〈τiτj〉 − 〈τi〉〈τj〉 = −
( 1

α+γ
+ i − 1)( 1

β+δ
+ L − j)

( 1
α+γ

+ 1
β+δ

+ L − 1)2( 1
α+γ

+ 1
β+δ

+ L − 2)
(ρa − ρb)

2. (45)

For large L, if one introduces macroscopic coordinates i = Lx and j = Ly, this becomes
for x < y

〈τLxτLy〉c = −x(1 − y)

L
(ρa − ρb)

2 (46)

which is the expression (30).
One could believe that these weak, but long-range, correlations play no role in the

large-L limit. However, if one considers macroscopic quantities such as the total number
N of particles in the system, one can see that these two-point correlations give a leading
contribution to the variance of N

〈N2〉 − 〈N〉2 =
∑

i

[〈τi〉 − 〈τi〉2] + 2
∑
i<j

〈τiτj〉c � L

[∫
dx ρ∗(x)(1 − ρ∗(x))

− 2(ρa − ρb)
2

∫ 1

0

dx

∫ 1

x

dy x(1 − y)

]
. (47)

For the SSEP (see section 1 for the definition), one can write down the steady state
equations satisfied by higher correlation functions to get, for example, for x < y < z

〈τLxτLyτLz〉c = −2
x(1 − 2y)(1 − z)

L2
(ρa − ρb)

3 (48)

but solving these equations become quickly too complicated. We will see in the
next section that the matrix ansatz gives an algebraic procedure to calculate all these
correlation functions [78].

6. The matrix ansatz for the symmetric exclusion process

The matrix ansatz is an approach inspired by the construction of exact eigenstates in
quantum spin chains [80]–[82]. It gives an algebraic way of calculating exactly the weights
of all the configurations in the steady state. In [10] it was shown that the probability
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Figure 8. The three configurations which appear on the left-hand side of (53) and
from which one can jump to the configuration which appears on the right-hand
side of (53).

of a microscopic configuration {τ1, τ2, . . . τL} can be written as the matrix element of a
product of L matrices

Pro({τ1, τ2, . . . τL}) =
〈W |X1X2 · · ·XL|V 〉
〈W |(D + E)L|V 〉 (49)

where the matrix Xi depends on the occupation τi of site i

Xi = τiD + (1 − τi)E (50)

and the matrices D and E satisfy the following algebraic rules

DE − ED = D + E

〈W |(αE − γD) = 〈W |
(βD − δE)|V 〉 = |V 〉.

(51)

Let us check on the simple example of figure 8 that expression (49) does give the
steady state weights: if one chooses the configuration where the first p sites on the left
are occupied and the remaining L − p sites on the right are empty, the weight of this
configuration is given by

〈W |DpEL−p|V 〉
〈W |(D + E)L|V 〉 . (52)

For (49) to be the weights of all configurations in the steady state, one needs that
the rate at which the system enters each configuration and the rate at which the system
leaves it should be equal. In the case of the configuration whose weight is (52), this means
that the following steady state identity should be satisfied (see figure 8):

α
〈W |EDp−1EL−p|V 〉
〈W |(D + E)L|V 〉 +

〈W |Dp−1EDEL−p−1|V 〉
〈W |(D + E)L|V 〉 + β

〈W |DpEL−p−1D|V 〉
〈W |(D + E)L|V 〉

= (γ + 1 + δ)
〈W |DpEL−p|V 〉
〈W |(D + E)L|V 〉 . (53)
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This equality is easy to check by rewriting (53) as

〈W |(αE − γD)Dp−1EL−p|V 〉
〈W |(D + E)L|V 〉 − 〈W |Dp−1(DE − ED)EL−p−1|V 〉

〈W |(D + E)L|V 〉

+
〈W |DpEL−p−1(βD − δE)|V 〉

〈W |(D + E)L|V 〉 = 0 (54)

and by using (51). A similar reasoning [10] allows one to prove that the corresponding
steady state identity holds for any other configuration.

A priori one should construct the matrices D and E (which might be infinite-
dimensional [10]) and the vectors 〈W | and |V 〉 satisfying (51) to calculate the weights (49)
of the microscopic configurations. However, these weights do not depend on the particular
representation chosen and can be calculated directly from (51). This can be easily seen
by using the two matrices A and B defined by

A = βD − δE

B = αE − γD
(55)

which satisfy

AB − BA = (αβ − γδ)(D + E) = (α + δ)A + (β + γ)B. (56)

Each product of D’s and E’s can be written as a sum of products of A’s and B’s which
can be ordered using (56) by pushing all the A’s to the right and all the B’s to the left.
One then gets a sum of terms of the form BpAq, the matrix elements of which can be
evaluated easily (〈W |BpAq|V 〉 = 〈W |V 〉) from (51) and (55).

One can calculate with the weights (49) the average density profile

〈τi〉 =
〈W |(D + E)i−1D(D + E)L−i|V 〉

〈W |(D + E)L|V 〉
as well as all the correlation functions

〈τiτj〉 =
〈W |(D + E)i−1D(D + E)j−i−1D(D + E)L−j|V 〉

〈W |(D + E)L|V 〉
and one can recover that way (42) and (45).

Using the fact that the average current between sites i and i + 1 is given by

〈J〉 =
〈W |(D + E)i−1(DE − ED)(D + E)L−i−1|V 〉

〈W |(D + E)L|V 〉 =
〈W |(D + E)L−1|V 〉
〈W |(D + E)L|V 〉

(of course in the steady state the current does not depend on i) and from the
expression (44) one can calculate the normalization

〈W |(D + E)L|V 〉
〈W |V 〉 =

1

(ρa − ρb)L

Γ(L + 1
α+γ

+ 1
β+δ

)

Γ( 1
α+γ

+ 1
β+δ

)
(57)

where Γ(z) is the usual Gamma function which satisfies Γ(z + 1) = zΓ(z). (see
equation (3.11) of [27] for an alternative derivation of this expression.)
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Remark. When ρa = ρb = r, the two reservoirs are at the same density and the steady
state becomes the equilibrium (Gibbs) state of the lattice gas at this density r. In this
case, the weights of the configurations are those of a Bernoulli measure at density r,
that is

Pro({τ1, τ2, . . . τL}) =

L∏
i=1

[rτi + (1 − r)(1 − τi)]. (58)

This case corresponds to a limit where the matrices D and E commute (it can be recovered
by making all the calculations with the matrices (49) and (51) for ρa �= ρb and by taking
the limit ρa → ρb in the final expressions, as all the expectations, for a lattice of finite
size L, are rational functions of ρa and ρb).

7. Additivity as a consequence of the matrix ansatz

In this section we are going to show how, from the matrix ansatz, to establish an
identity (65) which will be used in section 8 to relate the large deviation function F
of a system to those of its subsystems.

As in (49) the weight of each configuration is written as the matrix element of a
product of L matrices, one can try to insert at a position L1 a complete basis in order
to relate the properties of a lattice of L sites to those of two subsystems of sizes L1 and
L − L1. To do so let us define the following left and right eigenvectors of the operators
ρaE − (1 − ρa)D and (1 − ρb)D − ρbE

〈ρa, a|[ρaE − (1 − ρa)D] = a〈ρa, a|
[(1 − ρb)D − ρbE]|ρb, b〉 = b|ρb, b〉.

(59)

It is easy to see, using the definition (2), that the vectors 〈W | and |V 〉 are given by

〈W | = 〈ρa, (α + γ)−1|
|V 〉 = |ρb, (β + δ)−1〉.

(60)

It is then possible to show, using simply the fact (51) that DE − ED = D + E and the
definition of the eigenvectors (59), that (for ρb < ρa)

〈ρa, a|Y1Y2|ρb, b〉
〈ρa, a|ρb, b〉

=

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b(ρ − ρb)

〈ρa, a|Y1|ρ, b〉
〈ρa, a|ρ, b〉

〈ρ, 1 − b|Y2|ρb, b〉
〈ρ, 1 − b|ρb, b〉

(61)

where Y1 and Y2 are arbitrary polynomials of the matrices D and E.

Proof of (61). To prove (61) it is sufficient to choose Y1 of the form [ρaE − (1 −
ρa)D]n[D + E]n

′
(clearly any polynomial of the matrices D and E can be rewritten as

a polynomial of A ≡ D + E and B ≡ ρaE − (1 − ρa)D. Then as AB − BA = A,
which is a consequence of DE − ED = D + E, one can push all the A’s to the right
and all the B’s to the left. Therefore any polynomial can be written as a sum of terms
of the form [ρaE − (1 − ρa)D]n[D + E]n

′
). Similarly one can choose Y2 of the form
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[D + E]n
′′
[(1 − ρb)D − ρbE]n

′′′
. Therefore proving (61) for such choices of Y1 and Y2

reduces to proving

〈ρa, a|(D + E)n′+n′′|ρb, b〉
〈ρa, a|ρb, b〉

=

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b(ρ − ρb)

〈ρa, a|(D + E)n′|ρ, b〉
〈ρa, a|ρ, b〉

× 〈ρ, 1 − b|(D + E)n′′ |ρb, b〉
〈ρ, 1 − b|ρb, b〉

. (62)

As from (57) one has

〈ρa, a|(D + E)L|ρ, b〉
〈ρa, a|ρ, b〉 =

Γ(L + a + b)

(ρa − ρb)LΓ(a + b)
. (63)

Then (61) and (62) follow as one can easily check that

Γ(n′ + n′′ + a + b)

(ρa − ρb)n′+n′′ =

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b

(ρa − ρ)a+b+n′(ρ − ρb)n′′+1

Γ(n′ + a + b)Γ(n′′ + 1)

Γ(a + b)
.

(64)

�
An additivity relation more general than (61) can be proved for the ASEP [54]. The
special case of the TASEP will be discussed in section 16 below.

If one normalizes (61) by (57) one gets

〈ρa, a|Y1Y2|ρb, b〉
〈ρa, a|(D + E)L+L′ |ρb, b〉

=
Γ(L + L′ + a + b)

Γ(L + a + b)Γ(L′ + 1)

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)
a+b+L+L′

(ρa − ρ)a+b+L(ρ − ρb)1+L′

× 〈ρa, a|Y1|ρ, b〉
〈ρa, a|(D + E)L|ρ, b〉

〈ρ, 1 − b|Y2|ρb, b〉
〈ρ, 1 − b|(D + E)L′ |ρb, b〉

. (65)

8. Large deviation function of density profiles

We are going to see now how the large deviation functional F(ρ(x)) of the density can be
calculated for the SSEP from the additivity relation (65).

If one divides a chain of L sites into n boxes of linear size l (there are of course n = L/l
such boxes), one can try to determine the probability of finding a certain density profile
{ρ1, ρ2, . . . , ρn}, i.e. the probability of seeing lρ1 particles in the first box, lρ2 particles in
the second box, . . . , lρn in the nth box. For large L one expects (see (15)) the following
L dependence of this probability

ProL(ρ1, . . . ρn|ρa, ρb) ∼ exp[−LFn(ρ1, ρ2, . . . ρn|ρa, ρb)]. (66)

If one defines a reduced coordinate x by

i = Lx (67)

and if one takes the limit l → ∞ with l � L so that the number of boxes becomes infinite,
one gets as in (17) the large deviation functional F(ρ(x))

ProL({ρ(x)}) ∼ exp[−LF({ρ(x)}|ρa, ρb)]. (68)

For the SSEP (in one dimension), the functional F(ρ(x)|ρa, ρb) is given by the following
exact expressions:
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At equilibrium, i.e. for ρa = ρb = r

F({ρ(x)}|r, r) =

∫ 1

0

B(ρ(x), r) dx (69)

where

B(ρ, r) = (1 − ρ) log
1 − ρ

1 − r
+ ρ log

ρ

r
. (70)

This can be derived easily. When ρa = ρb = r, the steady state is a Bernoulli measure (58)
where all the sites are occupied independently with probability r. Therefore, if one divides
a chain of length L into L/l intervals of length l, one has

ProL(ρ1, . . . , ρn|r, r) =

L/l∏
i

l!

[lρi]![l(1 − ρi)]!
rlρi(1 − r)l(1−ρi) (71)

and using Stirling’s formula one gets (69) and (70).
For the non-equilibrium case, i.e. for ρa �= ρb, it was shown in [26, 27, 43] that

F({ρ(x)}|ρa, ρb) =

∫ 1

0

dx

[
B(ρ(x), F (x)) + log

F ′(x)

ρb − ρa

]
(72)

where the function F (x) is the monotone solution of the differential equation

ρ(x) = F +
F (1 − F )F ′′

F ′2 (73)

satisfying the boundary conditions F (0) = ρa and F (1) = ρb. This expression shows that
F is a non-local functional of the density profile ρ(x) as F (x) depends on the profile ρ(y)
at all points y. For example, if the difference ρa−ρb is small, one can expand F and obtain
the expression (28) where the non-local character of the functional is clearly visible: at
second order in ρa − ρb, one can check that

F = ρa − (ρa − ρb)x − (ρa − ρb)
2

ρa(1 − ρa)

[
(1 − x)

∫ x

0

y(ρ(y)− ρa) dy

+ x

∫ 1

x

(1 − y)(ρ(y) − ρa) dy

]
+ O((ρa − ρb)

3)

= ρ∗(x) − (ρa − ρb)
2

ρa(1 − ρa)

[
(1 − x)

∫ x

0

y(ρ(y) − ρ∗(x)) dy

+ x

∫ 1

x

(1 − y)(ρ(y) − ρ∗(x)) dy

]
+ O((ρa − ρb)

3) (74)

is a solution of (73) and this leads to (28) by replacing into (72).

Derivation of (72), (73). In the original derivation of (72) and (73) from the matrix
ansatz [26, 27] the idea was to decompose the chain into L/l boxes of l sites and to sum
the weights given by the matrix ansatz (49) and (51) over all the microscopic configurations
for which the number of particles is lρ1 in the first box, lρ2 in the second box . . . , lρn in
the nth box.

An easier way of deriving (72) and (73) (for simplicity we do it here in the particular
case where a + b = 1, i.e. 1/(α + γ) + 1/(β + δ) = 1, and ρb < ρa but the extension to
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other cases is easy) is to use (65) when Y1 and Y2 represent sums over all configurations
with kl sites with a density ρ1 in the first l sites, . . . ρk in the kth l sites and Y2 a similar
sum for the (n − k)l remaining sites:

Pnl(ρ1, ρ2 · · · ρn|ρa, ρb) =
(kl)!((n − k)l)!

(nl)!

∮
ρb<|ρ|<ρa

dρ

2iπ

× (ρa − ρb)
nl+1

(ρa − ρ)kl+1(ρ − ρb)(n−k)l+1
Pkl(ρ1 · · · ρk|ρa, ρ) P(n−k)l(ρk+1 · · · ρn|ρ, ρb).

(75)

Note that in (75) the density ρ has become a complex variable. This is not a difficulty as
all the weights (and therefore the probabilities which appear in (75)) are rational functions
of ρa and ρb.

For large nl, if one writes k = nx, one gets by evaluating (75) at the saddle point

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb) = max
ρb<F<ρa

xFk(ρ1, . . . , ρk|ρa, F ) + (1 − x)Fn−k(ρk+1, . . . , ρn|F, ρb)

+ x log

(
ρa − F

x

)
+ (1 − x) log

(
F − ρb

1 − x

)
− log(ρa − ρb). (76)

(To estimate (75) by a saddle point method, one should find the value F of ρ which
maximizes the integrand over the contour. As the contour is perpendicular to the real
axis at their crossing point, this becomes a minimum when ρ varies along the real axis.)
If one repeats the same procedure n times, one gets

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb) = max
ρb=F0<F1···<Fi<···<Fn=ρa

1

n

n∑
i=1

F1(ρi|Fi−1, Fi)

+ log

(
(Fi−1 − Fi)n

ρa − ρb

)
. (77)

For large n, as Fi is monotone, the difference Fi−1 − Fi is small for almost all i and one
can replace F1(ρi|Fi−1, Fi) by its equilibrium value F1(ρi|Fi, Fi) = B(ρi, Fi). If one writes
Fi as a function of i/n

Fi = F

(
i

n

)
(78)

(77) becomes

F({ρ(x)}|ρa, ρb) = max
F (x)

∫ 1

0

dx

[
B(ρ(x), F (x)) + log

F ′(x)

ρb − ρa

]
(79)

where the maximum is over all the monotone functions F (x) which satisfy F (0) = ρa and
F (1) = ρb and one gets (72), (73). �

Remark. One can easily get from (72) and (73) the generating function G({α(x)}) of the
density (31) for the SSEP:

G({α(x)}) =

∫ 1

0

dx

[
log(1 − F + F eα(x)) − log

F ′

ρb − ρa

]
(80)
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where F is the monotone solution of

F ′′ +
F ′2(1 − eα(x))

1 − F + F eα(x)
= 0 (81)

with F (0) = ρa and F (1) = ρb. For small α(x) the solution of (81) is, to second order in
the difference ρa − ρb

F (x) = ρ∗(x) − (ρa − ρb)
2

[
(1 − x)

∫ x

0

yα(y) dy + x

∫ 1

x

(1 − y)α(y) dy

]
. (82)

This leads to G(α(x)) at order (ρa − ρb)
2

G({α(x)}) =

∫ 1

0

dx

[
ρ∗(x)α(x) +

ρ∗(x)(1 − ρ∗(x))

2
α(x)2

]

− (ρa − ρb)
2

∫ 1

0

dx

∫ 1

x

dy x(1 − y)α(x)α(y) (83)

and one recovers through (34) the expression of the two-point correlation function (30).

9. The macroscopic fluctuation theory

For a general diffusive one-dimensional system (figure 2) of linear size L the average
current and the fluctuations of this current near equilibrium can be characterized by two
quantities D(ρ) and σ(ρ) defined by

lim
t→∞

〈Qt〉
t

=
D(ρ)

L
(ρa − ρb) for (ρa − ρb) small (84)

lim
t→∞

〈Q2
t 〉

t
=

σ(ρ)

L
for ρa = ρb (85)

where Qt is the total number of particles transferred from the left reservoir to the system
during time t.

Starting from the hydrodynamic large deviation theory [22, 25, 73] Bertini, De Sole,
Gabrielli, Jona-Lasinio and Landim [42]–[44] have developed a general approach, the
macroscopic fluctuation theory, to calculate the large deviation functional F of the
density (17) in the non-equilibrium steady state of a system in contact with two (or
more) reservoirs as in figure 2. Let us briefly sketch their approach. For diffusive systems
(such as the SSEP), the density ρi(t) near position i at time t and the total flux Qi(t)
flowing through position i between time 0 and time t are, for a large system of size L and
for times of order L2, scaling functions of the form

ρi(t) = ρ̂

(
i

L
,

t

L2

)
, and Qi(t) = LQ̂

(
i

L
,

t

L2

)
. (86)

(Note that, due to the conservation of the number of particles, the scaling form of ρi(t)
implies the scaling form of Qi(t).) If one introduces the instantaneous (rescaled) current
defined by

ĵ(x, τ) =
∂Q̂(x, τ)

∂τ
(87)
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the conservation of the number of particles implies that

∂ρ̂(x, τ)

∂τ
= −∂2Q̂(x, τ)

∂τ∂x
= −∂ĵ(x, τ)

∂x
. (88)

Note that the total flux of particles through position i = [Lx] during the macroscopic

time interval dτ , i.e. during the microscopic time interval L2 dτ , is Lĵ(x, τ) dτ . Thus the

microscopic current is of order 1/L while the rescaled current ĵ remains of order 1.
The macroscopic fluctuation theory [42]–[44] starts from the probability of observing

a certain density profile ρ̂(x, τ) and current profile ĵ(x, τ) over the rescaled time interval
τ1 < τ < τ2

Qτ1,τ2({ρ̂(x, τ), ĵ(x, τ)}) ∼ exp

⎡
⎢⎣−L

∫ τ2

τ1

dτ ′
∫ 1

0

dx

[
ĵ(x, τ ′) + D(ρ̂(x, τ ′))∂ρ̂(x,τ ′)

∂x

]2
2σ(ρ̂(x, τ ′))

⎤
⎥⎦ (89)

where the current ĵ(x, s) is related to the density profile ρ̂(x, s) by the conservation
law (88) and the functions D(ρ) and σ(ρ) are defined by (84) and (85). Similar expressions
were obtained in [83, 84] by considering stochastic models in the context of shot noise in
mesoscopic quantum conductors.

Then Bertini et al [42] show that to calculate the probability of observing a density
profile ρ(x) in the steady state, at time τ , one has to find out how this deviation is

produced. For large L, one has to find the optimal path {ρ̂(x, s), ĵ(x, s)} for −∞ < s < τ
in the space of density and current profiles and

Pro(ρ(x)) ∼ max
{ρ̂(x,s),ĵ(x,s)}

Q−∞,τ({ρ̂(x, s), ĵ(x, s)}) (90)

which goes from the typical profile ρ∗(x) to the desired profile

ρ̂(x,−∞) = ρ∗(x); ρ̂(x, τ) = ρ(x). (91)

This means that the large deviation functional F of the density (68) is given by

F(ρ(x)) = min
{ρ̂(x,s),ĵ(x,s)}

∫ τ

−∞
dτ ′
∫ 1

0

dx

[
ĵ(x, τ ′) + D(ρ̂(x, τ ′))∂ρ̂(x,τ ′)

∂x

]2
2σ(ρ̂(x, τ ′))

(92)

where the density and the current profiles satisfy the conservation law (88) and the
boundary conditions (91). Obviously (90) or (92) do not depend on τ as the probability
of producing a certain deviation ρ(x) in the steady state does not depend on the time τ
at which this deviation occurs.

Finding this optimal path ρ̂(x, s), ĵ(x, s) with the boundary conditions (91) is usually
a hard problem. Bertini et al [42] were, however, able to write an equation satisfied by
F : as (92) does not depend on τ , one can isolate in the integral (92) the contribution of
the last time interval (τ − δτ, τ) and (92) becomes

F(ρ(x)) = min
δρ(x),j(x)

[
F(ρ(x) − δρ(x)) + δτ

∫ 1

0

dx
[j(x) + D(ρ(x))ρ′(x)]2

2σ(ρ(x))

]
(93)
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where ρ(x) − δρ(x) = ρ̂(x, τ − dτ) and j(x) = ĵ(x, τ). Then if one defines U(x) by

U(x) =
δF({ρ(x)})

δρ(x)
(94)

and one uses the conservation law δρ(x) = −(dj(x)/dx) dτ one should have, according
to (93), that the optimal current j(x) is given by

j(x) = −D(ρ(x))ρ′(x) + σ(ρ(x))U ′(x). (95)

Therefore starting with ρ̂(x, τ) = ρ(x) and using the time evolution

dρ̂(x, s)

ds
= −dĵ(x, s)

dx
(96)

with ĵ related to ρ̂ by (95) one should get the whole time-dependent optimal profile ρ̂(x, s)
which converges to ρ∗(x) in the limit s → −∞. The problem, of course, is that F(ρ(x))
is in general not known and so is U(x) defined in (94).

One can write from (93) (after an integration by parts and using the fact that
U(0) = U(1) = 0 if ρ(0) = ρa and ρ(1) = ρb) the equation satisfied by U ′(x)∫ 1

0

dx

[(
Dρ′

σ
− U ′

)2

−
(

Dρ′

σ

)2
]

σ

2
= 0 (97)

which is the Hamilton–Jacobi [42] equation of Bertini et al . For general D(ρ) and σ(ρ)
one does not know how to find the solution U ′(x) of (97) for an arbitrary ρ(x) and thus
one does not know how to get a more explicit expression of the large deviation function
F({ρ(x)}).

One can, however, check rather easily whether a given expression of F({ρ(x)})
satisfies (97) since U ′(x) can be calculated from (94). For the SSEP one gets from (79), (94)

U(x) = log

[
ρ(x)(1 − F (x))

(1 − ρ(x))F (x)

]
(98)

with F (x) related to ρ(x) by (73). One can then check that (97) is indeed satisfied using
the expressions of D = 1 and σ = 2ρ(1 − ρ) for the SSEP (see (117) below).

In fact, when F is known, one can obtain the whole optimal path ρ̂(x, s) from the

evolution (96) with ĵ related to ρ̂ by (95) which becomes for the SSEP

ĵ(x, s) = −dρ̂(x, s)

dx
+ σ(ρ̂(x, s)) log

[
ρ̂(x, s)(1 − F̂ (x, s))

(1 − ρ̂(x, s))F̂ (x, s)

]
(99)

where F̂ is related to ρ̂ by (73). For (72) and (73) to coincide with (92), the optimal
profile ρ̂ evolving according to (96) should converge to ρ∗(x) as s → −∞. One can check

that this evolution of ρ̂(x, s) is equivalent to the following evolution [43] of F̂

dF̂ (x, s)

ds
= −d2F̂ (x, s)

dx2
(100)

where F̂ is related to ρ̂ by (73). Clearly (100) is a diffusion equation and, because of

the minus sign, F̂ (x, s) → ρ∗(x) and therefore ρ̂(x, s) → ρ∗(x) as s → −∞. Thus (96)
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and (99) do give the optimal path in (92) with the right boundary conditions (91) and (92)
coincides for the SSEP with the prediction (72) and (73) of the matrix approach.

Apart for the SSEP, the large deviation functional F of the density is so far known only
in a very few cases: the Kipnis–Marchioro–Presutti model [85, 86], the weakly asymmetric
exclusion process [28, 87] and the ABC model [64, 71] on a ring for equal densities of the
three species.

10. Large deviation of the current and the fluctuation theorem

For a system in contact with two reservoirs at densities ρa and ρb, as in figure 2, one
can try to study the probability distribution of the total number Qt of particles which
flows through the system during time t. For finite t, this distribution depends on the
initial condition of the system as well as on the place where the flux Qt is measured
(along an arbitrary section of the system, at the boundary with the left reservoir or at the
boundary with the right reservoir). In the long-time limit, however, if the system has a
finite relaxation time and if the number of particles in the system is bounded (i.e. infinitely
many particles cannot accumulate in the system) the probability distribution of Qt takes
the form

Pro

(
Qt

t
= j

)
∼ e−tF (j) (101)

where the large deviation function F (j) of the current j depends neither on the initial
condition nor on where the flux Qt is measured. This large deviation function F (j) has
usually a shape similar to a�r(ρ) in figure 6, with a minimum at the typical value j∗ = 〈J〉
(the average current) where F (j∗) = 0.

It is often as convenient to work with the generating function 〈eλQt〉. In the long-time
limit

〈eλQt〉 ∼ eμ(λ)t (102)

where μ(λ) is clearly the Legendre transform of the large deviation function F (j)

μ(λ) = max
j

[λj − F (j)]. (103)

As in section 4, the knowledge of μ(λ) determines the cumulants of Qt

lim
t→∞

〈Qk
t 〉c
t

=
dkμ(λ)

dλk

∣∣∣∣
λ=0

(104)

when the expansion in powers of λ is justified.
According to the fluctuation theorem [46]–[50], [58, 59], [88]–[92], the large deviation

function F (j) of the current satisfies the following symmetry property

F (j) − F (−j) = −j[log za − log zb] and μ(λ) = μ(−λ + log zb − log za). (105)

Proof. Following previous derivations [49, 50, 90] for stochastic dynamics the fluctuation
theorem (105) can be easily recovered [57] from the generalized detailed balance
relation (9). This can be seen by comparing the probabilities of a trajectory in phase space
and of its time reversal for a system in contact with two reservoirs. A trajectory ‘Traj’ is
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specified by a sequence of successive configurations C1, . . . .Ck visited by the system, the
times t1, . . . tk spent in each of these configurations and the number of particles qa,i, qb,i

transferred from the reservoirs to the system when the system jumps from Ci to Ci+1

Pro(Traj) = dtk−1

[
k−1∏
i=1

Wqa,i,qb,i
(Ci+1, Ci)

]
exp

[
−

k∑
i=1

tir(Ci)

]

where r(C) =
∑

C′
∑

qa,qb
Wqa,qb

(C ′, C) and dt is the infinitesimal time interval over which
jumps occur.

For the trajectory ‘−Traj’ obtained from ‘Traj’ by time reversal, i.e. for which the
system visits successively the configurations Ck, . . . , C1, exchanging −qa,i,−qb,i particles
with the reservoirs each time the system jumps from Ci+1 to Ci, one has

Pro(−Traj) = dtk−1

[
k−1∏
i=1

W−qa,i,−qb,i
(Ci, Ci+1)

]
exp

[
−

k∑
i=1

tir(Ci)

]
.

One can see from the generalized detailed balance relation (9) that

Pro(Traj)

Pro(−Traj)
= exp

[k−1∑
i=1

qa,i log za − qb,i log zb

]
= exp[Q

(a)
t log za − Q

(b)
t log zb] (106)

where Q
(a)
t =

∑
i qa,i and Q

(b)
t =

∑
i qb,i are the total number of particles transferred from

the reservoirs a and b to the system during time t.

In general Q
(a)
t and Q

(b)
t grow with time but their sum remains bounded (if one

assumes that particles cannot accumulate in the system—see [93] for a counter-example).

Therefore for large time Qt ≡ Q
(a)
t = −Q

(b)
t + o(t) and

Pro(Traj)

Pro(−Traj)
∼ exp[Qt(log za − log zb)]. (107)

Summing over all trajectories [57], taking the log and then the long-time limit (101) leads
to the fluctuation theorem (105). �

Remark. The fluctuation theorem predicts a symmetry relation similar to (105) for the
heat current for a system in contact with two heat baths at unequal temperatures as in
figure 1. Under similar conditions as for the current of particles (the energy of the system
is bounded and the relaxation time is finite—see [94]–[96] for counter-examples where the
energy is not bounded in which case the fluctuation theorem has to be modified) one gets
that the distribution of the energy Qt flowing through the system during a long time t
is given by (101) and that the large deviation function F (j) or its Legendre transform
satisfy

F (j) − F (−j) = −j

(
1

kTb
− 1

kTa

)
; μ(λ) = μ

(
−λ +

1

kTa
− 1

kTb

)
(108)

which states that the difference F (j) − F (−j) is linear in j with a universal slope
related to the difference of the inverse temperatures. Note that j(1/Tb − 1/Ta) is the
rate of entropy production which is the quantity generally used to state the fluctuation
theorem [46, 47, 50, 59].
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11. The fluctuation–dissipation theorem

In this section we are going to see how the fluctuation–dissipation theorem can be
recovered from the fluctuation theorem of section 10 when the system is close to
equilibrium.

In the limit of small Ta − Tb (i.e. close to equilibrium), the fluctuation–dissipation
theorem relates the response to a small temperature gradient

〈Qt〉
t

→ (Ta − Tb)D̃ for Ta − Tb small (109)

and the variance of the energy flux at equilibrium

〈Q2
t 〉

t
→ σ̃ for Ta = Tb. (110)

In fact from these definitions of D̃ and σ̃, one has for μ(λ) defined in (102)

μ(λ) = (Ta − Tb)D̃λ +
σ̃

2
λ2 + O(λ3, λ2(Ta − Tb), λ(Ta − Tb)

2) (111)

and using the fluctuation theorem (108), one gets that the coefficients σ̃ and D̃ have to
satisfy

σ̃ = 2kT 2
a D̃ (112)

which is the usual fluctuation–dissipation relation. In general both D̃ and σ̃ depend on
the temperature Ta.

The same close-to-equilibrium expansion of (105) for a current of particles leads to

σ̃ = 2
dρ

d log z
D̃ = 2kTρ2κ(ρ)D̃ (113)

where the coefficients σ̃ and D̃ are defined as in (109), (110) by

〈Qt〉
t

→ (ρa − ρb)D̃ for ρa − ρb small and
〈Q2

t 〉
t

→ σ̃ for ρa = ρb (114)

and where κ(ρ) is the compressibility (27) at equilibrium.
To see why the compressibility appears in (113), one can write log Z = −F/kT =

−V f(N/V )/kT where F is the total free energy and f the free energy per unit volume.
One then uses the facts that the fugacity z is given by kT log z = dF/dN = f ′(ρ), that
p = −dF/dV = ρf ′(ρ) − f(ρ) and thus dρ/d log z = kT/f ′′(ρ) = kTρ dρ/dp = kTρ2κ(ρ).

In the case of the SSEP, one has from (44) and (84) that DSSEP = 1. As the free
energy f(ρ) of the SSEP (at equilibrium at density ρ) is

f(ρ) = kT [ρ log ρ + (1 − ρ) log(1 − ρ)] (115)

one has

log z = log
ρ

1 − ρ
. (116)

Thus dρ/d log z = kT/f ′′(ρ) = ρ(1− ρ) and, thanks to (113) and (44) and (84), one gets

DSSEP = 1; σSSEP = 2ρ(1 − ρ). (117)

Note that in (84) and (85) there is, compared with ((110), (109) and (114)), an extra 1/L
factor in the definition of σ and D to get a finite large L limit of σ and D. Of course,
with this extra 1/L factor, both (112) and (113) remain valid.
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12. Current fluctuations in the SSEP

For the SSEP, if Qt is the total number of particles transferred from the left reservoir to
the system during a long time t, one has (102)〈

eλQt
〉
∼ eμ(λ)t. (118)

The fluctuation theorem (105) implies (116) a symmetry relation satisfied by μ(λ)

μ(λ) = μ

(
−λ − log

ρa

1 − ρa
+ log

ρb

1 − ρb

)
(119)

but of course this symmetry does not determine μ(λ). In this section we are going to see
that, because the evolution is Markovian, μ(λ) can be determined as the largest eigenvalue
of a certain matrix [51], [97]–[99] and we will sketch an approach allowing us to determine
μ(λ) perturbatively in λ.

The probability Pt(C) of finding the system in a configuration C at time t evolves
according to (4)

dPt(C)

dt
=
∑
C′

W (C, C ′)Pt(C
′) − W (C ′, C)Pt(C). (120)

Among all the matrix elements W (C, C ′), some correspond to exchanges of particles with
the left reservoir and others represent internal moves in the bulk or exchanges with the
right reservoir. Thus one can decompose the matrix W (C, C ′) into three matrices

W (C, C ′) = W1(C, C ′) + W0(C, C ′) + W−1(C, C ′) (121)

where here the index is the number of particles transferred from the left reservoir to
the system during time dt, when the system jumps from the configuration C ′ to the
configuration C. One can then show [51, 97, 98] that μ(λ) is simply the largest eigenvalue
(more precisely the eigenvalue with the largest real part) of the matrix Mλ defined by

Mλ(C, C ′) = eλW1(C, C ′) + W0(C, C ′) + e−λW−1(C, C ′) − δ(C, C ′)
∑
C′′

W (C ′′, C). (122)

In fact the joint probability Pt(C, Qt) of C and Qt evolves according to

dPt(C, Qt)

dt
=
∑
C′

∑
q=−1,0,1

Wq(C, C ′)Pt(C
′, Qt − q) −

∑
C′

W (C ′, C)Pt(C, Qt). (123)

Then if P̃t(C) =
∑

Qt
eλQtPt(C, Qt) one has

dP̃t(C, Qt)

dt
=
∑
C′

Mλ(C, C ′)P̃t(C
′) (124)

and this shows that μ(λ) is the eigenvalue with largest real part of the matrix Mλ.
The size of the matrix Mλ grows like 2L (which is the total number of possible

configurations of a chain of L sites). In [51] a perturbative approach was developed
to calculate μ(λ) in powers of λ. Let us sketch briefly this approach: one can write
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down exact expressions for the time evolution 〈eλQt〉 or of 〈eλQtH(C)〉 where H(C) is an
arbitrary function of the configuration C at time t. For example

Qt+dt =

⎧⎪⎨
⎪⎩

Qt with probability 1 − α(1 − τ1) dt − γτ1 dt

Qt + 1 with probability α(1 − τ1) dt

Qt − 1 with probability γτ1 dt

(125)

and therefore

d〈eλQt〉
dt

= α(eλ − 1)〈(1 − τ1)e
λQt〉 + γ(e−λ − 1)〈τ1e

λQt〉. (126)

Similarly one can show that for 1 < i < L

d〈τie
λQt〉

dt
= α(eλ − 1)〈(1 − τ1)τie

λQt〉 + γ(e−λ − 1)〈τ1τie
λQt〉 + 〈(τi+1 − 2τi + τi−1)e

λQt〉
(127)

the cases i = 1 are i = L being slightly different

d〈τ1e
λQt〉

dt
= αeλ〈(1 − τ1)e

λQt〉 − γ〈τ1e
λQt〉 + 〈(τ2 − τ1)e

λQt〉 (128)

d〈τLeλQt〉
dt

= α(eλ − 1)〈(1 − τ1)τLeλQt〉 − γ(e−λ − 1)〈τ1τLeλQt〉 + 〈(τL−1 − τL)eλQt〉

+ δ〈(1 − τL)eλQt〉 − β〈τLeλQt〉. (129)

In the long-time limit
〈
eλQt

〉
∼ eμ(λ)t and one can define a measure 〈·〉λ on the

configurations C

〈H(C)〉λ = lim
t→∞

〈H(C)eλQt〉
〈eλQt〉 . (130)

From (126)–(129) one gets

μ(λ) = α(eλ − 1)〈(1 − τ1)〉λ + γ(e−λ − 1)〈τ1〉λ (131)

μ(λ)〈τi〉λ = α(eλ − 1)〈(1 − τ1)τi〉λ + γ(e−λ − 1)〈τ1τi〉λ + 〈(τi+1 − 2τi + τi−1)〉λ (132)

μ(λ)〈τ1〉λ = αeλ〈(1 − τ1)〉λ − γ〈τ1〉λ + 〈(τ2 − τ1)〉λ (133)

μ(λ)〈τL〉λ = α(eλ − 1)〈(1 − τ1)τL〉λ − γ(e−λ − 1)〈τ1τL〉λ
+ 〈(τL−1 − τL)〉λ + δ〈(1 − τL)〉λ − β〈τL〉λ. (134)

We see that to get μ(λ) at order λk, one needs to know (131) the one-point function
〈τi〉λ at order λk−1, the two-point functions 〈τiτj〉λ at order λk−2 (see (132)–(134)) and so
on up to the k-point functions at order λ0. As the steady state weights P (C) for the SSEP
are known exactly (sections 5 and 6) [10, 26, 27], all the correlation functions are known
at order λ0 and one can truncate the hierarchy at the level of the k-point functions.

In [51] this perturbation theory based on the hierarchy (131)–(134) was developed to
calculate μ(λ) in powers of λ. The main outcome of this perturbation theory [51] is that
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μ(λ), which in principle depends on L, λ and on the four parameters α, β, γ, δ, takes for
large L a simple form

μ(λ) =
1

L
R(ω) + O

(
1

L2

)
(135)

where ω is defined by

ω = (eλ − 1)ρa + (e−λ − 1)ρb − (eλ − 1)(1 − e−λ)ρaρb (136)

where ρa and ρb are given in (2). The perturbation theory gives up to fourth order in ω

R(ω) = ω − ω2

3
+

8ω3

45
− 4ω4

35
+ O(ω5). (137)

The fact that μ(λ) depends only on ρa, ρb and λ through the single parameter ω is
the outcome of the calculation, but so far there is no physical explanation why it is so.
However ω remains unchanged under a number of symmetries [51] (left–right, particle–
hole, the Gallavotti–Cohen symmetry (119)), implying that μ(λ) remains unchanged as
it should under these symmetries.

From the knowledge of R(ω) up to fourth order in ω, one can determine [51] the first
four cumulants (104) of the integrated current Qt for arbitrary ρa and ρb:

• For ρa = 1 and ρb = 0, one finds

〈Qt〉
t

=
1

L
+ O

(
1

L2

)
(138)

〈Q2
t 〉c
t

=
1

3L
+ O

(
1

L2

)
(139)

〈Q3
t 〉c
t

=
1

15L
+ O

(
1

L2

)
(140)

〈Q4
t 〉c
t

=
−1

105L
+ O

(
1

L2

)
. (141)

These cumulants are the same as the ones known for a different problem of
current flow: the case of non-interacting fermions through a mesoscopic disordered
conductor [100, 101]. This can be understood as a theory [84] similar to the
macroscopic fluctuation theory of Bertini et al [42]–[45] can be written for these
mesoscopic conductors with the same D(ρ) and σ(ρ) as for the SSEP (117).

• For ρa = ρb = 1
2

which corresponds to an equilibrium case with the same density 1/2
in the two reservoirs, one finds that all odd cumulants vanish as they should and that

〈Q2
t 〉c
t

=
1

2L
+ O

(
1

L2

)
(142)

〈Q4
t 〉c
t

= O

(
1

L2

)
. (143)
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Figure 9. In the additivity principle one tries to relate the large deviation function
of the current FL+L′(j) of a system of size L+L′ to the large deviation functions
FL(j) and FL′(j) of its two subsystems (147).

Because μ(λ) depends on the parameters ρa, ρb and λ through the single parameter ω, if
one knows μ(λ) for one single choice of ρa and ρb, then (136) and (137) determine μ(λ)
for all other choices of ρa, ρb. In [51], it was conjectured that, for the particular case
ρa = ρb = 1

2
, not only the fourth cumulant vanishes as in (143), but also all the higher

cumulants vanish, so that the distribution of Qt is Gaussian (to leading order in 1/L).
This fully determines the function R(ω) to be

R(ω) = [log(
√

1 + ω +
√

ω)]2. (144)

One can then check that, with this expression of R(ω), not only (138) and (141) but all
the higher cumulants of Qt in the case ρa = 1 and ρb = 0 coincide with those of fermions
through mesoscopic conductors [51, 100].

13. The additivity principle

In [52], another conjecture, the additivity principle based on a simpler physical
interpretation, was formulated which leads for the SSEP to the same expression (136)
and (144) as predicted in section 12 and can be generalized to obtain F (j) or μ(λ) defined
in (101) and (102) for more general diffusive systems.

For a system of length L+L′ in contact with two reservoirs of particles at densities ρa

and ρb, the probability of observing, during a long time t, an integrated current Qt = jt
has the following form (101)

ProL+L′ (j, ρa, ρb) ∼ e−tFL+L′ (j,ρa,ρb). (145)

The idea of the additivity principle (see figure 9) is to try to relate the large deviation
function FL+L′(j, ρa, ρb) of the current to the large deviation functions of subsystems by
writing that for large t

ProL+L′(j, ρa, ρb) ∼ max
ρ

[ProL(j, ρa, ρ) × ProL′(j, ρ, ρb)]. (146)

This means that the probability of transporting a current j over a distance L+L′ between
two reservoirs at densities ρa and ρb is the same (up to boundary effects which give for
large L subleading contributions) as the probability of transporting the same current j
over a distance L between two reservoirs at densities ρa and ρ times the probability of
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transporting the current j over a distance L′ between two reservoirs at densities ρ and ρb.
One can then argue that choosing the optimal density ρ makes this probability maximum.
From (146) one gets the following additivity property of the large deviation function

FL+L′(j, ρa, ρb) = min
ρ

[FL(j, ρa, ρ) + FL′(j, ρ, ρb)]. (147)

Thus the large deviation function of the current for a system of length L + L′ between
two reservoirs at densities ρa and ρb is the same as the sum of the large deviations of two
subsystems of lengths L and L′ with a fictitious reservoir at density ρ between them.

Suppose that we consider a diffusive system for which we know the two functions
D(ρ) and σ(ρ) defined in (84) and (85). If one accepts the additivity property (147) of
the large deviation function, one can cut the system into more and more pieces so that

FL(j, ρa, ρb) = min
ρ1,...,ρn−1

{
n−1∑
i=0

FL/n(j, ρi, ρi+1)

}
(148)

where ρ0 = ρa and ρn = ρb.
For large n, the optimal choice of the ρi’s is such that the differences ρi − ρi+1 are

small. For a current j of order 1/L, and for ρi − ρi+1 small, one can replace (84) and (85)
Fl for l = L/k by

Fl(j, ρi, ρi+1) �
[j − (D(ρi)(ρi − ρi+1)/l)]

2

2(σ(ρi)/l)
. (149)

In the limit n → ∞ (keeping l = L/n large for (84) and (85) to be still valid) (148)
becomes [52]

FL(j, ρa, ρb) =
1

L
min
ρ(x)

[∫ 1

0

[jL + D(ρ)ρ′]2

2σ(ρ)
dx

]
(150)

where the optimal profile ρ(x) (for large n, the optimal ρi in (148) is given by ρi = ρ(i/n))
should satisfy ρ(0) = ρa and ρ(1) = ρb.

One can show [52, 57] that the optimal profile in (150) (when ρa �= ρb and the deviation
of current j is small enough for this optimal profile to be still monotone) is given by

ρ′(x)2 =
(Lj)2(1 + 2Kσ(ρ(x))

D2(ρ(x))
(151)

where the constant K is adjusted to ensure that ρ(0) = ρa and ρ(1) = ρb. Replacing ρ(x)
by (151) in (150) leads to

FL(j, ρa, ρb) = j

∫ ρa

ρb

[
1 + Kσ(ρ)

[1 + 2Kσ(ρ)]1/2
− 1

]
D(ρ)

σ(ρ)
dρ (152)

where the constant K is fixed from (151) by the boundary conditions (ρ(0) = ρa and
ρ(1) = ρb)

Lj =

∫ ρa

ρb

D(ρ)

[1 + 2Kσ(ρ)]1/2
dρ. (153)

Expressions (152) and (153) give therefore FL(j) in a parametric form.
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The optimal profile (150) remains unchanged when j → −j (simply the sign of
[1 + 2Kσ(ρ)]1/2 is changed) in (152) and (153) and one gets that (113)

FL(j) − FL(−j) = −2j

∫ ρa

ρb

D(ρ)

σ(ρ)
dρ = −j(log za − log zb). (154)

Thus the expressions (152) and (153) do satisfy the fluctuation theorem (105).
From (152) and (153) one can calculate μ(λ) by (103) and one gets [52, 57] a

parametric form

μ(λ, ρa, ρb) = −K

L

[∫ ρa

ρb

D(ρ) dρ√
1 + 2Kσ(ρ)

]2

, (155)

with K = K(λ, ρa, ρb) is the solution of

λ =

∫ ρa

ρb

dρ
D(ρ)

σ(ρ)

[
1√

1 + 2Kσ(ρ)
− 1

]
. (156)

One can then get [52], by eliminating K (perturbatively in λ) the expansion of μ(λ) in
powers of λ and therefore the cumulants (104) in the long-time limit for arbitrary ρa and
ρb

〈Qt〉
t

=
1

L
I1,

〈Q2
t 〉 − 〈Qt〉2

t
=

1

L

I2

I1
,

〈Q3
t 〉c
t

=
1

L

3(I3I1 − I2
2 )

I3
1

,

〈Q4
t 〉c
t

=
1

L

3(5I4I
2
1 − 14I1I2I3 + 9I3

2 )

I5
1

(157)

where

In =

∫ ρa

ρb

D(ρ)σ(ρ)n−1 dρ. (158)

Using the fact (117) that for the SSEP D(ρ) = 1 and σ(ρ) = 2ρ(1−ρ), one can recover [52]
from (155)–(157) the above expressions (138)–(141) and (144). The validity of (152)
and (153) has also been checked for weakly interacting lattice gases [102].

It was understood by Bertini et al [103, 104] that the additivity principle (146) and
(148) and its consequences (150)–(157) are not always valid. As explained in section 9 the
macroscopic fluctuation theory gives the probability (89) of arbitrary (rescaled) density

and current profiles ρ̂, ĵ. Therefore, according to the macroscopic fluctuation theory, to
observe (101) an average current j over a long time t one should have

F (j) = lim
t→∞

1

t
L min

ρ̂(x,τ),ĵ(x,τ)

∫ t/L2

0

dτ

∫ 1

0

dx

[
ĵ(x, τ) + D(ρ̂(x, τ))∂ρ̂(x,τ)

∂x

]2
2σ(ρ̂(x, τ))

(159)

with the constraint that

jL =
L2

t

∫ t/L2

0

ĵ(x, τ) dτ. (160)

Comparing (150) and (159) we see that the two expressions coincide when the optimal

ρ̂, ĵ in (159) are independent of the time τ . Therefore the additivity principle gives the
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large deviation function F (j) of the current only when the optimal profile ρ̂(x, τ) in (159)
is time-independent.

Bertini et al [103, 104] pointed out that it can happen, for some σ(ρ) and D(ρ), that
the expression (150), (152) and (153) is non-convex and therefore cannot be the right
expression of the large deviation function F (j) (which is always convex). In such cases,
the expression (150) is no longer valid (it becomes [103, 104] simply an upper bound
of F (j)). This is because the optimal profile in (159) is no longer constant in time.
When this optimal profile is time-dependent, one has to solve a much harder optimization
problem [57, 105] than (150).

Restrictions on σ(ρ) and D(ρ) for (150) to be valid have been given in [104] and there
are cases, such as the weakly asymmetric exclusion process (for which the hopping rate q
of figure 4 is close to 1: q − 1 = O(L−1)) on a ring [57, 105], for which by varying λ or the
asymmetry one can observe a phase transition between a phase where the optimal profile
in (159) is constant in time and a phase where it becomes time-dependent.

14. The matrix approach for the asymmetric exclusion process

The matrix ansatz of section 6 (which gives the weights of the microscopic configurations
in the steady state) has been generalized to describe the steady state of several other
systems [12, 63], [106]–[126], with of course modified algebraic rules for the matrices the
vectors 〈W | and |V 〉.

For example, for the asymmetric exclusion process (ASEP), for which the definition
is the same as the SSEP except that particles jump at rate 1 to their right and at rate
q �= 1 to their left it the target site is empty (see figure 4), one can show [10, 107, 118, 120]
that the weights are still given by (49) with the algebra (51) replaced by

DE − qED = D + E (161)

〈W |(αE − γD) = 〈W | (162)

(βD − δE)|V 〉 = |V 〉. (163)

One should notice that for the ASEP, the direct approach of calculating, as in section 5,
the steady state properties by writing the time evolution leads nowhere. Indeed (41)
becomes

d〈τ1〉
dt

= α − (α + γ + 1)〈τ1〉 + q〈τ2〉 + (1 − q)〈τ1τ2〉
d〈τi〉
dt

= 〈τi−1〉 − (1 + q)〈τi〉 + q〈τi+1〉 − (1 − q)(〈τi−1τi〉 − 〈τiτi+1〉)
d〈τL〉

dt
= 〈τL−1〉 − (q + β + δ)〈τL〉 + δ − (1 − q)〈τL−1τL〉

(164)

and the equations which determine the one-point functions are no longer closed. Therefore
all the correlation functions have to be determined at the same time and this is what
the matrix ansatz (49) does. Alternative combinatorial methods to calculate the steady
state weights of exclusion processes with open boundary conditions have been obtained
in [127, 128].
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The large deviation function F of the density defined by (68) has been calculated for
the ASEP [28, 53, 54] by an extension of the approach of sections 7 and 8 (see section 16).

15. The phase diagram of the totally asymmetric exclusion process

The last three sections 15–17 present, as examples, three results which can be obtained
rather easily from the matrix ansatz (161)–(163) for the totally asymmetric case (TASEP),
i.e. for q = 0 (in the particular case where particles are injected only at the left boundary
and removed only at the right boundary, i.e. when the input rates γ = δ = 0). In this
case the algebra (161) becomes

DE = D + E (165)

〈W |αE = 〈W | (166)

βD|V 〉 = |V 〉. (167)

As for the SSEP the average current 〈J〉 is still given in terms of the vectors 〈W |, V 〉 and
of the matrices D and E by

〈J〉 =
〈W |(D + E)L−1|V 〉
〈W |(D + E)L|V 〉 . (168)

However, as the algebraic rules have changed, the expression of the current is different for
the SSEP and the ASEP. From the relation DE = D+E it is easy to prove by recurrence
that

DF (E) = F (1)D + E
F (E) − F (1)

E − 1

for any polynomial F (E) and

(D + E)N =

N∑
p=1

p(2N − 1 − p)!

N !(N − p)!
(Ep + Ep−1D + · · ·+ Dp).

Using the fact that

〈W |EmDn|V 〉
〈W |V 〉 =

1

αm

1

βn
,

one gets [10]

〈W |(D + E)N |V 〉
〈W |V 〉 =

N∑
p=1

p(2N − 1 − p)!

N !(N − p)!

1/αp+1 − 1/βp+1

1/α − 1/β
. (169)

For large N this sum is dominated either by p ∼ 1, or p ∼ N depending on the values of
α and β and one obtains

〈W |(D + E)N |V 〉
〈W |V 〉 ∼

⎧⎪⎨
⎪⎩

4N if α > 1
2

and β > 1
2

[β(1 − β)]−N if β < α and β < 1
2

[α(1 − α)]−N if β > α and α < 1
2
.

(170)
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This leads to three different expressions of the current (168) for large L, corresponding to
the three different phases:

• the low density phase (β > α and α < 1
2
) where 〈J〉 = α(1 − α);

• the high density phase (α > β and β < 1
2
) where 〈J〉 = β(1 − β);

• the maximal current phase (α > 1
2

and β > 1
2
) where 〈J〉 = 1

4
;

which is the exact phase diagram of the TASEP [9]–[11], [32]. The existence of phase
transitions [65], [67]–[69] in these driven lattice gases is one of the striking properties
of non-equilibrium steady states, as it is well known that one-dimensional systems at
equilibrium with short-range interactions cannot exhibit phase transitions.

16. Additivity and large deviation function for the TASEP

Let us now see how the additivity relation (61) can be generalized for the TASEP in
order to obtain the large deviation functional of the density. For the algebra (165), if one
introduces the following eigenvectors

〈ρ|E =
1

ρ
〈ρ|; D|ρ〉 =

1

1 − ρ
|ρ〉 (171)

it is clear that

〈W | = 〈ρa|; |V 〉 = |ρb〉 (172)

with ρa = α and ρb = 1 − β. Note that in general 〈ρa|ρb〉 �= 0 even when ρa �= ρb. Now
one can prove, as in (61), that for ρb < ρa

〈ρa|Y1Y2|ρb〉
〈ρa|ρb〉

=

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)

(ρa − ρ)(ρ − ρb)

〈ρa|Y1|ρ〉
〈ρa|ρ〉

〈ρ|Y2|ρb〉
〈ρ|ρb〉

(173)

where Y1 and Y2 are arbitrary polynomials in D and E.

Proof of (173). Any polynomial Y of the operators D and E can be written, using
DE = D + E, as

Y =
∑
n,n′

an,n′EnDn′
(174)

by pushing all the D’s to the right and all the Es to the left. Therefore to prove (173) it
is sufficient to do it for Y1 and Y2 of the form

Y1 = En1Dn′
1, Y2 = En2Dn′

2 . (175)

If n′
1 = 0 or n2 = 0, the identity (173) is easy to check. Then one can prove it by recursion

on n′
1 + n2: if Y1 = Z1D and Y2 = EZ2, and one assumes that the identity (173) is valid

for Z1DZ2 and Z1EZ2, the lhs of (173) can be written as (165)

〈ρa|Z1DEZ2|ρb〉
〈ρa|ρb〉

=
〈ρa|Z1(D + E)Z2|ρb〉

〈ρa|ρb〉
=

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)

(ρa − ρ)(ρ − ρb)

[
1

ρ
+

1

1 − ρ

]

× 〈ρa|Z1|ρ〉
〈ρa|ρ〉

〈ρ|Z2|ρb〉
〈ρ|ρb〉
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and simply because 1/ρ + 1/(1 − ρ) = 1/(ρ(1 − ρ)) this becomes∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)

(ρa − ρ)(ρ − ρb)

1

ρ(1 − ρ)

〈ρa|Z1|ρ〉
〈ρa|ρ〉

〈ρ|Z2|ρb〉
〈ρ|ρb〉

=

∮
ρb<|ρ|<ρa

dρ

2iπ

(ρa − ρb)

(ρa − ρ)(ρ − ρb)

〈ρa|Z1D|ρ〉
〈ρa|ρ〉

〈ρ|EZ2|ρb〉
〈ρ|ρb〉

which is the rhs of (173). �
We are now going to see, as an example, how the large deviation function F of the

density can be derived for the TASEP from (173) when ρa > ρb. If one defines K(ρa, ρb)
by

K(ρa, ρb) = lim
L→∞

1

L
log

〈ρa|(D + E)L|ρb〉
〈ρa|ρb〉

(176)

one can easily check from (170) that for ρb(= 1 − β) < ρa(= α)

K(ρa, ρb) = − max
ρb<ρ<ρa

log(ρ(1 − ρ)). (177)

Using a saddle-point method in (173) when Y1 and Y2 are sums of long products of D’s
and Es, one gets

〈ρa|Y1Y2|ρb〉
〈ρa|ρb〉

� min
ρb≤F≤ρa

〈ρa|Y1|F 〉
〈ρa|F 〉

〈F |Y2|ρb〉
〈F |ρb〉

. (178)

(Note that in applying the saddle-point method, one needs to find the maximum F over
the circular integration contour. This maximum is at the same time a minimum when F
varies along the real axis.) Then as for a system of large size L (176) and (177) one has

〈ρa|Y |ρb〉
〈ρa|(D + E)L|ρb〉

∼ e−K(ρaρb)L
〈ρa|Y |ρb〉
〈ρa|ρb〉

. (179)

One can, of course, repeat (178) several times to relate a large system of size L to its
subsystems (as long as these subsystems are large). Therefore one gets

〈ρa|Y1Y2 · · ·Yk|ρb〉
〈ρa|(D + L)L|ρb〉

∼ e−K(ρaρb)L min
ρa≥F1≥F2···≥Fn−1>ρb

n∏
i=1

[
〈Fi−1|Yi|Fi〉

〈Fi−1|(D + E)l|Fi〉
eK(Fi−1,Fi)l

]

(180)

where F0 = ρa, Fn = ρb and l = L/n. If Yi is the sum of the matrix elements of all
configurations of l sites with lρi particles one gets for the large deviation function Fn

defined in (15)

Fn(ρ1, ρ2, . . . , ρn|ρa, ρb)

= K(ρa, ρb) + max
ρb=F0<F1···<Fi<···<Fn=ρa

1

n

n∑
i=1

F1(ρi|Fi−1, Fi) − K(Fi−1, Fi). (181)

For large n, almost all the differences Fi−1 − Fi are small, so that

F1(ρi|Fi−1, Fi) � F1(ρi|Fi, Fi) = ρi log
ρi

Fi
+ (1 − ρi) log

1 − ρi

1 − Fi
≡ B(ρi, Fi)
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since when the two densities Fi−1 and Fi are equal, the steady state measure is Bernoulli
and this leads to

F({ρ(x)}) = − max
ρb<r<ρa

[log(r(1 − r)) + sup
F

∫ 1

0

dx [B(ρ(x), F (x)) + log(F (x)(1 − F (x)))],

(182)

which is the expression of the large deviation function of the density of the TASEP (and
also of the ASEP [53, 54]) for ρa > ρb.

For ρa > ρb, one can also obtain [28, 53, 54] this large deviation function, starting
from a relation similar to (173) obtained by deforming the circular contour to ensure that
ρb remains inside and ρa outside. One can note that, when Y1 and Y2 are polynomials in
D and E, all the matrix elements in (173) are rational functions of ρa and ρb which can
be easily analytically continued from the case ρa > ρb to the case ρa < ρb. The result
is [53, 54]

F({ρ(x)}) = inf
0<y<1

[∫ y

0

dx

(
B(ρ(x), ρa) + log

ρa(1 − ρa)

〈J〉

)

+

∫ 1

y

dx

(
B(ρ(x), ρb) + log

ρb(1 − ρb)

〈J〉

)]
. (183)

For the TASEP one knows [10, 11] that along the line ρa = 1 − ρb < 1
2

there is a first-
order phase transition line. Along this line 〈J〉 = ρa(1 − ρa) = ρb(1 − ρb) and the typical
configurations ρz(x) are shocks [115, 117, 129] located at arbitrary positions z between a
region of density ρa and a region of density 1 − ρa

ρz(x) =

{
ρa for 0 < x < z

1 − ρa for z < x < 1.
(184)

For all these profiles ρz(x), the functional (183) vanishes. It is also easy to check that
F(ρ(x)) > 0 for a profile of the form

ρ(x) = αρz(x) + (1 − α)ρz′(x) (185)

and this shows that F is non-convex. Therefore, in contrast to equilibrium systems (24),
the functional F(ρ(x)) may be non-convex in non-equilibrium steady states.

17. Correlation functions in the TASEP and Brownian excursions

In this last example, we will see that the fluctuations of the density are non-Gaussian in the
maximal current phase of the TASEP. In this maximal current phase (α > 1

2
and β > 1

2
)

one can show [55], using the matrix ansatz, that the correlation function of the occupations
of k sites at positions i1 = Lx1, i2 = Lx2, . . . , ik = Lxk with x1 < x2 < · · · < xk are given
by〈(

τLx1 −
1

2

)
. . .

(
τLxk

− 1

2

)〉
=

1

2k

1

Lk/2

dk

dx1 . . .dxk
〈y(x1) . . . y(xk)〉, (186)

where y(x) is a Brownian excursion between 0 and 1 (a Brownian excursion is a Brownian
path constrained to y(x) > 0 for 0 < x < 1 with the boundaries y(0) = y(1) = 0). The
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probability P (y1 . . . yk; x1 . . . xk) of finding the Brownian excursion at positions y1 . . . yk

for 0 < x1 < . . . < xk < 1 is

P (y1 . . . yk; x1 . . . xk) =
hx1(y1)gx2−x1(y1, y2) . . . gxk−xk−1

(yk−1, yk)h1−xk
(yk)√

π
, (187)

where hx and gx are defined by⎧⎪⎨
⎪⎩

hx(y) =
2y

x3/2
e−y2/x

gx(y, y′) =
1√
πx

(e−(y−y′)2/x − e−(y+y′)2/x).

One can derive easily (186) in the particular case α = β = 1 using a representation
of (165) which consists of two infinite-dimensional bidiagonal matrices

D =
∑
n≥1

|n〉〈n| + |n〉〈n + 1| =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 1 1 0 0 · · ·
0 0 0 1 1 0 · · ·

. . .
. . .

⎞
⎟⎟⎟⎟⎠

E =
∑
n≥1

|n〉〈n + 1| + |n〉〈n| =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 1 1 0 0 · · ·

. . .
. . .

⎞
⎟⎟⎟⎟⎠

with

〈W | = 〈1| = (1, 0, 0 . . .)

〈V | = 〈1| = (1, 0, 0 . . .).

With this representation one can write 〈W |(D + E)L|V 〉 as a sum over a set ML of one-
dimensional random walks w of L steps which remain positive. Each walk w is defined by a
sequence (ni(w)) of L−1 heights (ni(w) ≥ 1) (with at the boundaries n0(w) = nL(w) = 1
and the constraint |ni+1 − ni| ≤ 1):

〈W |(D + E)L|V 〉 =
∑

w∈ML

Ω(w),

where

Ω(w) =

L∏
i=1

v(ni−1, ni) with v(n, n′) =

{
2 if |n − n′| = 0

1 if |n − n′| = 1.

One has v(n, n′) = 〈n|D + E|n′〉 since D + E has a tridiagonal form

D + E =

⎛
⎜⎜⎝

2 1 (0)

1
. . .

. . .
. . .

. . . 1
(0) 1 2

⎞
⎟⎟⎠ .
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Then from the matrix expression one gets 〈τi〉 and 〈τiτj〉:〈(
τi1 −

1

2

)
. . .

(
τik −

1

2

)〉
=

1

2k

∑
w

ν(w)(ni1 − ni1−1) . . . (nik − nik−1), (188)

where ν(w) is the probability of the walk w induced by the weights Ω:

ν(w) =
Ω(w)∑′
w Ω(w′)

.

The expression (188) is the discrete version of (186).
The result (186) can be extended [55] to arbitrary values of α and β in the maximal

current phase (i.e. for α > 1/2 and β > 1/2). From (186) one can, in particular, recover
the leading 1/L correction to the flat profile [130]〈

τi −
1

2

〉
� 1

2
√

πL

1 − 2x√
x(1 − x)

for i = Lx.
From this link between the density fluctuations and Brownian excursions, one can

also show that, for a TASEP of L sites, the number N of particles between sites Lx1

and Lx2, has non-Gaussian fluctuations in the maximal current phase: if one defines the
reduced density

μ =
N − L(x2 − x1)/2√

L
(189)

one can show [55] that for large L

P (μ) =

∫ ∞

0

dy1

∫ ∞

0

dy2
1√

2π(x2 − x1)
exp

(
−(2μ + y1 − y2)

2

x2 − x1

)
. (190)

This contrasts with the Gaussian fluctuations of the density (25) at equilibrium. According
to numerical simulations [55] the distribution (189) and (190) (properly rescaled) of
the fluctuations of the density remains valid for more general driven systems in their
maximal current phase. Of course, proving it in a more general case is an interesting open
question.

18. Conclusion

These lectures have presented a number of recent results concerning the fluctuations and
the large deviation functions of the density or of the current in non-equilibrium steady
states.

For general diffusive systems, the macroscopic fluctuation theory [42]–[45], [103, 104]
discussed in section 9 gives a framework to calculate the large deviation of the density
F(ρ(x)) leading to equations (97), (96) and (95) which are, in general, difficult to solve.
One can, however, check that the expressions (72), (73) and (79) obtained [26, 27] in
sections 6–8 by the matrix ansatz do solve these equations. So far the large deviation
functional is only known for very few examples [26]–[28], [86]. There remains a lot to be
done to understand the general properties of the functional F(ρ(x)). For example, with
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Thierry Bodineau we tried, so far without success, to calculate F(ρ(x)) (97), (96) and (95)
for general D and σ in powers of ρa−ρb. Also for the SSEP, we did not succeed in obtaining
the large deviation functional of the density F(ρ(x)) for the λ-measure defined in (130).
Other situations which would be interesting to consider are the cases of several species of
particles, several conserved quantities [131, 132] or non-conserved quantities [133].

For driven diffusive systems, the situation is worse: so far F(ρ(x)) is only known
for the ASEP [53, 54] and, to my knowledge, there does not exist so far a general theory
to calculate this large deviation functional for general driven diffusive systems [134]. In
contrast to equilibrium systems, for the ASEP, the large deviation functional may be
non-convex (section 16) or fluctuations of the density may be non-Gaussian (section 17).

For current fluctuations in diffusive systems, the additivity principle gives explicit
expressions (section 13) of the large deviation function of the current for general diffusive
systems. In some cases, however, these expressions are not valid, when the profile to
produce a deviation of current becomes time-dependent. In such cases the calculation
of the large deviation function F (j) of the current is much harder [57]. So far the
predictions (150), (152), (153), (155)–(157) of the additivity principle remain to be checked
in specific examples: even for the SSEP, only the first four cumulants are known to
agree with (157) but a direct calculation of F (j) for the SSEP is, to my knowledge,
still missing. It would be nice to see whether this could be done by a Bethe ansatz
calculation for the SSEP with open boundaries [135]. It would also be useful to test the
predictions of the additivity principle on other diffusive systems and to try to extend them
to more complicated situations, in particular when there is more than a single conserved
quantity [131, 132].

Concerning the fluctuations or the large deviations of the current of driven diffusive
systems, there has been lots of progress over the last ten years [136]–[141]. On the infinite
line exact results for the TASEP and the PNG (polynuclear growth model) lead to a
universal distribution of current characteristic of the KPZ universality class. On the
ring too, Bethe ansatz calculations [66, 97, 98], [142]–[150], allow us to calculate the large
deviation function of the current which exhibits a universal shape in the scaling regime.
For driven diffusive systems, however, there is not yet a general approach allowing us to
calculate the large deviation function or the fluctuations of the current for all geometries,
including finite systems with open boundary conditions [135]. Of course it would be nice
to extend the macroscopic fluctuation theory to get a framework allowing us to calculate
both the large deviation functions of the current and of the density for general driven
diffusive systems.
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[11] Schütz G and Domany E, Phase transitions in an exactly soluble one-dimensional asymmetric exclusion

model , 1993 J. Stat. Phys. 72 277
[12] Derrida B, Janowsky S A, Lebowitz J L and Speer E R, Exact solution of the totally asymmetric simple

exclusion process—shock profiles, 1993 J. Stat. Phys. 73 813
[13] Evans M R, Majumdar S N and Zia R K P, Factorized steady states in mass transport models, 2004 J.

Phys. A: Math. Gen. 37 L275
[14] Eckmann J P and Young L S, Temperature profiles in Hamiltonian heat conduction, 2004 Europhys. Lett.

68 790
[15] Eckmann J P and Young L S, Nonequilibrium energy profiles for a class of 1-D models, 2006 Commun.

Math. Phys. 262 237
[16] Bonetto F, Lebowitz J L and Lukkarinen J, Fourier’s law for a harmonic crystal with self-consistent

stochastic reservoirs, 2004 J. Stat. Phys. 116 783
[17] Srebro Y and Levine D, Exactly solvable model for driven dissipative systems, 2004 Phys. Rev. Lett.

93 240601
[18] Narayan O and Ramaswamy S, Anomalous heat conduction in one-dimensional momentum-conserving

systems, 2002 Phys. Rev. Lett. 89 200601
[19] Bernardin C and Olla S, Fourier’s law for a microscopic model of heat conduction, 2005 J. Stat. Phys.

121 271
[20] Lepri S, Livi R and Politi A, On the anomalous thermal conductivity of one-dimensional lattices, 1998

Europhys. Lett. 43 271
[21] Eyink G, Lebowitz J L and Spohn H, Lattice gas models in contact with stochastic reservoirs: local

equilibrium and relaxation to the steady state, 1991 Commun. Math. Phys. 140 119
[22] Kipnis C, Olla S and Varadhan S, Hydrodynamics and large deviations for simple exclusion processes, 1989

Commun. Pure Appl. Math. 42 115
[23] Spohn H, 1991 Large Scale Dynamics of Interacting Particles (Berlin: Springer)
[24] Liggett T, 1999 Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Fundamental

Principles of Mathematical Sciences vol 324) (Berlin: Springer)
[25] Kipnis C and Landim C, 1999 Scaling Limits of Interacting Particle Systems (Berlin: Springer)
[26] Derrida B, Lebowitz J L and Speer E R, Free energy functional for nonequilibrium systems: an exactly

solvable case, 2001 Phys. Rev. Lett. 87 150601
[27] Derrida B, Lebowitz J L and Speer E R, Large deviation of the density profile in the steady state of the

open symmetric simple exclusion process, 2002 J. Stat. Phys. 107 599
[28] Enaud C and Derrida B, Large deviation functional of the weakly asymmetric exclusion process, 2004 J.

Stat. Phys. 114 537
[29] Andjel E D, Bramson M D and Liggett T M, Shocks in the asymmetric exclusion process, 1988 Probab.

Theory Relat. Fields 78 231
[30] Ferrari P A, Kipnis C and Saada E, Microscopic structure of traveling waves in the asymmetric simple

exclusion process, 1991 Ann. Probab. 19 226
[31] Ferrari P A, Shock fluctuations in asymmetric simple exclusion, 1992 Probab. Theroy Relat. Fields 91 81

doi:10.1088/1742-5468/2007/07/P07023 41

http://arxiv.org/abs/math-ph/0002052
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1023/A:1004537730090
http://dx.doi.org/10.1007/s10955-005-9021-7
http://dx.doi.org/10.1063/1.1768674
http://dx.doi.org/10.1023/A:1004593915069
http://dx.doi.org/10.1007/BF01018556
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1007/BF01048050
http://dx.doi.org/10.1007/BF01052811
http://dx.doi.org/10.1088/0305-4470/37/25/L02
http://dx.doi.org/10.1209/epl/i2004-10291-5
http://dx.doi.org/10.1007/s00220-005-1462-y
http://dx.doi.org/10.1023/B:JOSS.0000037232.14365.10
http://dx.doi.org/10.1103/PhysRevLett.93.240601
http://dx.doi.org/10.1103/PhysRevLett.89.200601
http://dx.doi.org/10.1007/s10955-005-7578-9
http://dx.doi.org/10.1209/epl/i1998-00352-3
http://dx.doi.org/10.1007/BF02099293
http://dx.doi.org/10.1002/cpa.3160420202
http://dx.doi.org/10.1103/PhysRevLett.87.150601
http://dx.doi.org/10.1023/A:1014555927320
http://dx.doi.org/10.1023/B:JOSS.0000012501.43746.cf
http://dx.doi.org/10.1007/BF00322020
http://dx.doi.org/10.1007/BF01194491
http://dx.doi.org/10.1088/1742-5468/2007/07/P07023


J.S
tat.M

ech.(2007)
P

07023

Non-equilibrium steady states

[32] Krug J, Boundary-induced phase-transitions in driven diffusive systems, 1991 Phys. Rev. Lett. 67 1882
[33] Bundschuh R, Asymmetric exclusion process and extremal statistics of random sequences, 2002 Phys. Rev.

E 65 031911
[34] Shaw L B, Zia R K P and Lee K H, Totally asymmetric exclusion process with extended objects: a model

for protein synthesis, 2003 Phys. Rev. 68 021910
[35] Richards P M, Theory of one-dimensional hopping conductivity and diffusion, 1977 Phys. Rev. B 16 1393
[36] Chowdhury D, Santen L and Schadschneider A, Statistical physics of vehicular traffic and some related

systems, 2000 Phys. Rep. 329 199
[37] Halpin-Healy T and Zhang Y C, Kinetic roughening phenomena, stochastic growth directed polymers and

all that , 1995 Phys. Rep. 254 215
[38] Widom B, Viovy J L and Defontaines A D, Repton model of gel-electrophoresis and diffusion, 1991

J. Physique I 1 1759
[39] Kardar M, Parisi G and Zhang Y C, Dynamic scaling of growing interfaces, 1986 Phys. Rev. Lett. 56 889
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