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Abstract

We introduce a simple model of economy, where the time evolution is described by an
equation capturing both exchange between individuals and random speculative trading, in such a
way that the fundamental symmetry of the economy under an arbitrary change of monetary units
is insured. We investigate a mean-�eld limit of this equation and show that the distribution of
wealth is of the Pareto (power-law) type. The Pareto behaviour of the tails of this distribution
appears to be robust for �nite range models, as shown using both a mapping to the random
‘directed polymer’ problem, as well as numerical simulations. In this context, a phase transition
between an economy dominated by a few individuals and a situation where the wealth is more
evenly spread out, is found. An interesting outcome is that the distribution of wealth tends to
be very broadly distributed when exchanges are limited, either in amplitude or topologically.
Favouring exchanges (and, less surprisingly, increasing taxes) seems to be an e�cient way to
reduce inequalities. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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It is a well-known fact that the individual wealth is a very broadly distributed quantity
among the population. Even in developed countries, it is common that 90% of the total
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wealth is owned by only 5% of the population. The distribution of wealth is often
described by ‘Pareto’-tails, which decay as a power law for large wealths [1–5].

P¿(W ) ∼
(
W0
W

)�
; (1)

where P¿(W ) is the probability to �nd an agent with wealth greater than W , and
� is a certain exponent, of order 1 both for individual wealth or company sizes (see
however [6]).
Here, we want to discuss the appearance of such Pareto tails on the basis of a

very general model for the growth and redistribution of wealth, that we discuss in
some simple limits. We relate this model to the so-called ‘directed polymer’ problem
in the Physics literature (for a review, see Ref. [7]), for which a large number of
results are known, that we translate into the present economical framework. We discuss
the inuence of simple parameters, such as the connectivity of the exchange network,
the role of income or capital taxes and of state redistribution of wealth, on the value
of the exponent �. One of the most interesting output of such a model is the generic
existence of a phase transition, separating a phase where the total wealth of a very large
population is concentrated in the hands of a �nite number of individuals (corresponding,
as will be discussed below, to the case �¡ 1), from a phase where it is shared by a
�nite fraction of the population.
The basic idea of our model is to write a stochastic dynamical equation for the

wealth Wi(t) of the ith agent at time t, that takes into account the exchange of wealth
between individuals through trading, and is consistent with the basic symmetry of the
problem under a change of monetary units. Since the unit of money is arbitrary, one
indeed expects that the equation governing the evolution of wealth should be invariant
when all Wi’s are multiplied by a common (arbitrary) factor. The evolution equation
that we consider is therefore the following:

dWi
dt

= �i(t)Wi +
∑
j(6=i)

JijWj −
∑
j(6=i)

JjiWi ; (2)

where �i(t) is a Gaussian random variable of mean m and variance 2�2, which describes
the spontaneous growth or decrease of wealth due to investment in stock markets,
housing, etc., while the terms involving the (asymmetric) matrix Jij describe the amount
of wealth that agent j spends buying the production of agent i (and vice versa).
It is indeed reasonable to think that the amount of money earned or spent by each
economical agent is proportional to its wealth. This makes Eq. (2) invariant under the
scale transformation Wi → �Wi. Technically, the above stochastic di�erential equation
is interpreted in the Stratonovich sense [8]. 3

The simplest model one can think of is the case where all agents exchange with all
others at the same rate, i.e., Jij ≡ J=N for all i 6= j. Here, N is the total number of
agents, and the scaling J=N is needed to make the limit N → ∞ well de�ned. In this

3 With the Ito convention, our evolution equation would have an extra factor of �2Wi on the right-hand side.
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case, the equation for Wi(t) becomes

dWi
dt

= �i(t)Wi + J (W −Wi) ; (3)

where W=N−1∑
i Wi is the average overall wealth. This is a ‘mean-�eld’ model since

all agents feel the very same inuence of their environment. By formally integrating
this linear equation and summing over i, one �nds that the average wealth becomes
deterministic in the limit N → ∞:

W (t) =W (0) exp((m+ �2)t) : (4)

It is useful to rewrite Eq. (3) in terms of the normalized wealths wi ≡ Wi=W . This
leads to

dwi
dt

= (�i(t)− m− �2)wi + J (1− wi) ; (5)

to which one can associate the following Fokker–Planck equation for the evolution of
the density of wealth P(w; t):

@P
@t
=
@[J (w − 1) + �2w]P

@w
+ �2

@
@w

[
w
@wP
@w

]
: (6)

The equilibrium, long time solution of this equation is easily shown to be

Peq(w) =Z
exp− (� − 1)=w

w1+�
; � ≡ 1 + J

�2
; (7)

where Z= (�− 1)�=�[�] is the normalization factor. One can check that 〈w〉 ≡ 1, as
it should be.
Therefore, one �nds in this model that the distribution of wealth exhibits a Pareto

power-law tail for large w’s. In agreement with intuition, the exponent � grows (cor-
responding to a narrower distribution), when exchange between agents is more active
(i.e., when J increases), and also when the success in individual investment strategies
is more narrowly distributed (i.e., when �2 decreases).
Also, one can actually de�ne the above model in discrete time, by writing:

Wi(t + �) = [J�W + (1− J�)Wi]e−V (i; t) ; (8)

where V is an arbitrary random variable of mean m� and variance 2�2�, and J�¡ 1.
In this setting, this amounts to study the so-called Kesten variable [9] for which the
asymptotic distribution again has a power-law tail, with an exponent � found to be the
solution of

(1− J�)�〈e−�V 〉= 〈e−V 〉� : (9)

Therefore, this model leads to power-law tails for a very large class of distributions
of V , such that the solution of the above equation is non-trivial (that is if the dis-
tribution of V decays at least as fast as an exponential). It is easy to check that �
is always greater than one and tends to � = 1 + J=�2 in the limit � → 0. Let us no-
tice that a somewhat similar discrete model was studied in Ref. [10] in the context
of a generalized Lotka–Volterra equation. However, that model has an additional term
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Fig. 1. Fraction of total wealth Sn owned by the �rst n agents, plotted versus n, in a population of 5000
agents. The wealths have been drawn at random using a distribution with a Pareto tail exponent �=3. Inset:
detail of the �rst 80 agents. One sees that Sn grows linearly with n, with rather small uctuations around
the average slope 1=N .

(the origin of which is unclear in an economic context) which breaks the symmetry
under wealth rescaling, and as a consequence the Pareto tail is truncated for large
wealths.
In this model, the exponent � is always found to be larger than one. In such a

regime, if one plots the partial wealth Sn =
∑n

i=1 wi as a function of n, one �nds an
approximate straight line of slope 1=N , with rather small uctuations (see Fig. 1). This
means that the wealth is not too unevenly distributed within the population. On
the other hand, the situation when �¡ 1, which we shall encounter below in some more
realistic models, corresponds to a radically di�erent situation (see Fig. 2). In this case,
the partial wealth Sn has, for large N , a devil staircase structure, with a few individu-
als getting hold of a �nite fraction of the total wealth. A quantitative way to measure
this ‘wealth condensation’ is to consider the so-called inverse participation ratio Y2
de�ned as

Y2 =
N∑
i=1

w2i : (10)

If all the wi’s are of order 1=N then Y2 ∼ 1=N and tends to zero for large N . On the
other hand, if at least one wi remains �nite when N → ∞, then Y2 will also be �nite.
The average value of Y2 can easily be computed and is given by 〈Y2〉=1−� for �¡ 1
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Fig. 2. Fraction of total wealth owned by the �rst n agents, plotted versus n, in a population of 5000 agents.
The wealths have been drawn at random using a distribution with a now Pareto tail exponent � = 0:5¡ 1.
Inset: Zoom on �ner details of the curve. One clearly sees that the curve is a ‘devil’ staircase on all scales,
with a strong dominance of a few individuals.

and zero for all �¿ 1 [11–13]. 〈Y2〉 is therefore a convenient order parameter which
quanti�es the degree of wealth condensation.
It is interesting to discuss several extensions of the above model. First, one can

easily include, within this framework, the e�ect of taxes. Income tax means that a
certain fraction �I of the income dWi=dt is taken away from agent i. Therefore, there
is a term −�I dWi=dt appearing on the right-hand side of Eq. (2). Capital tax means
that there is a fraction �C of the wealth which is subtracted per unit time from the
wealth balance, Eq. (2). If a fraction fI of the income tax and fC of the capital tax
are evenly redistributed to all, then this translates into a term +fI�I dW=dt +fC�CW
on the right-hand side of the wealth balance, which now reads:

dWi
dt

= �i(t)Wi + J (W −Wi)− �I dWidt − �CWi + fI�I dWdt + fC�CW : (11)

All these terms can be treated exactly within the above mean-�eld model allowing for
a detailed discussion of their respective roles. The rate of exponential growth of the
average wealth W (t) becomes equal to

 ≡ m+ �2=(1 + �I )− �C(1− fC)
1 + �I (1− fI ) : (12)
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The Pareto tail exponent � is now given by

� − 1 = J (1 + �I )
�2

+
1 + �I

�2(1 + �I (1− fI ))
×
[
�IfI

(
m+

�2

1 + �I

)
+ �C(fC + �I (fC − fI ))

]
: (13)

This equation is quite interesting. It shows that income taxes tend to reduce the in-
equalities of wealth (i.e., lead to an increase of �), even more so if part of this tax
is redistributed. On the other hand, quite surprisingly, capital tax, if used simultane-
ously to income tax and not redistributed, leads to a decrease of �, i.e., to a wider
distribution of wealth. Only if a fraction fC ¿fI�I =(1 + �I ) is redistributed will the
capital tax be a truly social tax. Note that in the above equation, we have implicitly
assumed that the growth rate  is positive. In this case, one can check that � is always
¿ 1 + (J + �CfC)(1 + �I )=�2, which is larger than one.
Another point worth discussing is the relaxation time associated with the Fokker–

Planck equation (6). By changing variables as w = �−2 and P(w) = �3Q(�), one can
map the above Fokker–Planck equation to the one studied in Ref. [14], which one can
solve exactly. For large time di�erences T , one �nds that the correlation function of
the w’s behaves as

〈w(t + T )w(t)〉 − 〈w(t)〉2 ˙ exp(−(� − 1)�2T ); �¿ 2 (14)

and

〈w(t + T )w(t)〉 − 〈w(t)〉2 ˙ 1
(�2T )3=2

exp(−�2�2T=4); �¡ 2 (15)

This shows that the relaxation time is, for �¡ 2, given by 4=�2�2. Therefore, rich
people become poor (and vice versa) on a �nite time scale in this model. A reasonable
order of magnitude for � is 10% per

√
year. In order to get � − 1 ∼ 1, one therefore

has to choose J ∼ 0:01 per year, i.e., 1% of the total wealth of an individual is used
in exchanges. [This J value looks rather small, but in fact we shall see below that a
more realistic (non-mean �eld model) allows to increase J while keeping � �xed.] In
this case, the relaxation time in this model is of the order of 100 years.
Let us now escape from the mean-�eld model considered above and describe more

realistic situations, where the number of economic neighbours to a given individual
is �nite. We will �rst assume that the matrix Jij is still symmetrical, and is either
equal to J (if i and j trade), or equal to 0. A reasonable �rst assumption is that the
graph describing the connectivity of the population is completely random, i.e., that two
points are neighbours with probability c=N and disconnected with probability 1− c=N .
In such a graph, the average number of neighbours is equal to c. We thus scale Ĵ =J=c
in order to compare results with various connectivities (and insure a smooth large
connectivity limit). We have performed some numerical simulations of Eq. (2) for
c = 4 and have found that the wealth distribution still has a power-law tail, with an
exponent � which only depends on the ratio J=�2. This is expected since a rescaling of
time by a factor � can be absorbed by changing J into �J and � into

√
��; therefore,
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Fig. 3. Plot of the numerical values of � for the model on a random graph with connectivity c = 4, as a
function of J=�2 – we have indeed checked that this scaling holds for our numerical discretization of Eq. (2).
The plain line corresponds to the mean-�eld prediction �=1+J=�2. For c=4, we �nd that the condensation
transition takes place for J=�2 ∼ 0:3.

long time (equilibrium) properties can only depend on the ratio J=�2. As shown in
Fig. 3, the exponent � can now be smaller than one for su�ciently small values of
J=�2. In this model, one therefore expects wealth condensation when the exchange rate
is too small. Note that we have also computed numerically the quantity 〈Y2〉 and found
very good agreement with the theoretical value 1−� determined from the slope of the
histogram of the wi’s.
From the physical point of view, the class of models which we consider here belong

to the general family of directed polymers in random media. The two cases we have
considered so far correspond, respectively, to a polymer on a fully connected lattice,
and a polymer on a random lattice. A variant of this model can be solved exactly using
the method of Derrida and Spohn [15] for the so-called directed polymer problem on
a tree. In this variant, one assumes that at each time step � the connectivity matrix is
completely changed and chosen anew using the same probabilities as above. Each agent
i chooses at random exactly c new neighbours ‘(i; t), the wealth evolution equation
becomes

Wi(t + �) =

[
J�
c

c∑
‘=1

W‘(i; t) + (1− J�)Wi(t)
]
e−V (i; t) ; (16)
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where V is a Gaussian random variable of mean zero and variance 2�2�. One can
then write a closed equation for the evolution of the wealth distribution [15]. In this
case, the wealth condensation phenomenon takes place whenever �2� + J� ln(J�=c) +
(1 − J�) ln(1 − J�)¿ 0. For J�.1 the transition occurs for �2 = �2c =
J (1 + ln(c=J�)).
For �¿�c, one �nds that � is given by

� ' ln(c=�2�)
ln(c=J�)

(17)

and is ¡ 1; signalling the onset of a phase where wealth is condensed on a �nite
number of individuals. This precisely corresponds to the glassy phase in the directed
polymer language. The above formula shows that � depends only weakly on � or J ,
in qualitative agreement with our numerical result for the continuous time model (see
Fig. 3). Note that in the limit c → ∞; �c → ∞ and the glassy phase disappears, in
agreement with the results above, obtained directly on the mean-�eld model. Note also
that in the limit � → 0, where the reshu�ing of the neighbours becomes very fast,
wealth di�usion within the population becomes extremely e�cient and, as expected,
the transition again disappears. Finally, in the simple case where J� = 1 (each agent
trading all of his wealth at each time step), the critical value is �2c� = ln c and the
exponent � in the condensed phase is simply � = �c=�, and � = �2=�2c for �¿ 1 (see
Ref. [15]).
Let us note, en passant, that the model considered by Derrida and Spohn has another

interesting interpretation if the Wi’s describe the wealth of companies. The growth of
a company takes place either from internal growth (leading to a term �i(t)Wi much as
above), but also from merging with another company. If the merging process between
two companies is completely random and takes place at a rate � per unit time, then the
model is exactly the same as the one considered in Section 3 of [15] (see in particular
their Eq. (3:2)).
Although not very realistic, one could also think that the individuals are located on

the nodes of a d-dimensional hypercubic lattice, trading with their neighbours up to
a �nite distance. In this case, one knows that for d¿ 2 there exists again a phase
transition between a ‘social’ economy where �¿ 1 and a rich dominated phase �¡ 1.
On the other hand, for d62, and for large populations, one is always in the extreme
case where � → 0 at large times. In the case d = 1, i.e., operators organized along
a chain-like structure, one can actually compute exactly the distribution of wealth
by transposing the results of Ref. [16]. One �nds, for example, that the ratio of the
maximum wealth to the typical (e.g. median) wealth behaves as exp

√
N , where N is

the size of the population, instead of N 1=� in the case of a Pareto distribution with
�¿ 0. The conclusion of the above results is that the distribution of wealth tends to
be very broadly distributed when exchanges are limited, either in amplitude (i.e., J too
small compared to �2) or topologically (as in the above chain structure). Favouring
exchanges (in particular with distant neighbours) seems to be an e�cient way to reduce
inequalities.
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Let us now discuss in a cursory way the extension of this model to the case where
the matrix Jij has a non-trivial structure. One can always write:

Jij = Dij exp− Fij
2
; Jji = Dij exp +

Fij
2
; (18)

where Dij is a symmetric matrix describing the frequency of trading between i and j.
Fij is a local bias: it describes by how much the amount of trading from i to j exceeds
that from j to i. In the absence of the speculative term �iWi, Eq. (2) is actually a
Master equation describing the random motion of a particle subject to local forces
Fij, where Jij is the hopping rate between site j and site i. This problem has also
been much studied (for a review, see e.g.: [17]). One can, in general, decompose the
force Fij into a potential part Ui − Uj and a non-potential part. For a purely potential
problem, the stationary solution of Eq. (2) with �i ≡ 0 is the well-known Bolzmann
weight:

Wi;eq =
1
Z
exp (−Ui); Z =

N∑
i=1

exp (−Ui) : (19)

The statistics of the Wi therefore reects that of the potential Ui; in particular, large
wealths correspond to deep potential wells. Pareto tails correspond to the case where
the extreme values of the potential obey the Gumbel distribution, which decays expo-
nentially for large (negative) potentials [13].
The general case where �i is non-zero and=or Fij contains a non-potential part is

largely unknown, and worth investigating. A classi�cation of the cases where the Pareto
tails survive the introduction of a non-trivial bias �eld Fij would be very interesting.
Partial results in the context of population dynamics have been obtained recently in
Ref. [18]. The case where the i’s are on the nodes of a d dimensional lattice should be
amenable to a renormalization group analysis along the lines of [19,20], with interesting
results for d62. Work in this direction is under way [21].
In conclusion, we have discussed a very simple model of the economy, where the

time evolution is described by an equation capturing, at the simplest level, exchange
between individuals and random speculative trading in such a way that the fundamental
symmetry of the economy under an arbitrary change of monetary units is obeyed.
Although our model is not intended to be fully realistic, the family of equations given
by Eq. (2) is extremely rich, and leads to interesting generic predictions. We have
investigated in detail a mean-�eld limit of this equation and showed that the distribution
of wealth is of the Pareto type. The Pareto behaviour of the tails of this distribution
appears to be robust for more general connectivity matrices, as a mapping to the
directed polymer problem shows. In this context, a transition between an economy
governed by a few individuals from a situation where the wealth is more evenly spread
out is found. The important conclusion of the above model is that the distribution of
wealth tends to be very broadly distributed when exchanges are limited. Favouring
exchanges (and, less surprisingly, increasing taxes) seems to be an e�cient way to
reduce inequalities.
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