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Abstract

We propose a general interpretation for long-range correlation ef-
fects in the activity and volatility of financial markets. This interpreta-
tion is based on the fact that the choice between ‘active’ and ‘inactive’
strategies is subordinated to random-walk like processes. We numeri-
cally demonstrate our scenario in the framework of simplified market
models, such as the Minority Game model with an inactive strategy.
We show that real market data can be surprisingly well accounted for
by these simple models.

A well documented ‘stylized fact’ of financial markets is volatility clus-
tering [1, 2, 3, 4]. Figure 1 compares the time series of the daily returns
of the Dow-Jones index since 1900 and that of a Brownian random walk.
Two features are immediately obvious to the eye: the volatility does indeed
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have rather strong intermittent fluctuations, and these fluctuations tend to
persist in time. A more quantitative analysis shows that the daily volatil-
ity σt (defined, for example, as the average squared high frequency returns)
has a log-normal distribution [6], and that its temporal correlation function
〈σtσt+τ 〉 can be fitted by an inverse power of the lag τ , with a rather small
exponent in the range 0.1−0.3 [2, 5, 6, 7]. This suggests that there is no char-
acteristic time scale for volatility fluctuations: outbursts of market activity
can persist for rather short times (say a few days), but also for much longer
times, months or even years. A very interesting observation is that these
long ranged volatility correlations are observed on many different financial
markets, with qualitatively similar features: stocks, currencies, commodities
or interest rates. This suggests that a common mechanism is at the origin of
this rather universal phenomenon.

A first possibility is that the apparent lack of time scale associated with
the power-law dependence of the correlation function is a consequence of
the fact that human activity is naturally rythmed by days, weeks, months,
quarters and years. Now, the ratio between these successive time scales
is roughly constant. The superposition of correlation functions with time
constants uniformly distributed on a log-scale may easily be confused with a
single power-law with a small exponent [8].

However, very important insights into market dynamics have recently
been gained by the study of several agent based models [9, 10, 11, 12, 13,
14, 15, 16]. These models postulate some simple behaviour at the level of
the agents and investigate the resulting price dynamics. Among others, the
model by Lux and Marchesi [14] assumes that each agent can behave, as a
function of time, either as a fundamentalist (i.e. determining his action by
comparing the current market price to some fundamental ‘true’ price), or
as a ‘trend follower’, influenced by observed past trends on the price itself.
Agents switch between the two strategies as a function of their relative per-
formance. Numerical simulations based on this model produce quite realistic
price charts. In particular, long-ranged, power-law type volatility correla-
tions are reported. Another family of models, the ‘Minority Game’ (mg) and
its variants [10, 17, 18, 20, 21], has recently become the focus of intense the-
oretical scrutiny. The Minority Game describes the behaviour of competing
agents that can choose between different individual strategies as a function
of their past performance. In its original version, this model is rather remote
from financial markets; in particular, there is no price dynamics. Several at-
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Figure 1: Top panel: daily returns of the Dow-Jones index since 1900. One very
clearly sees the intermittent nature of volatility fluctuations. Note in particular
the sharp feature in the 30’s. Lower panel: daily returns for a Brownian random
walk, showing a featureless pattern.
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tempts have been made to generalize it and construct more realistic market
models [17]. As first noticed in [18], if one allows the agents to be inac-
tive, intermittent volatility fluctuations can be generated. We have ourselves
studied a market model that allows traders to switch between a bond mar-
ket and a stock market, and accounts properly for their wealth balance and
for market clearing. The phenomenology of this model is very rich and a
detailed account of our results will be published separately [22]. One of our
main result is the existence of a ‘turbulent’ market phase where volatility
fluctuations are intermittent and show a power-law correlation (see Figure
3 below). A very important point is that all these models are different in
their details but all show qualitatively similar behaviour, without the explicit
introduction of any of the ‘human’ time scales mentioned above. In other
words, these agent based models assume a unique elementary time scale (say
the ‘day’) and the long-ranged volatility correlations spontaneously emerge
from the dynamics.

We wish to propose a simple and robust mechanism to account for the
appearance of these long-ranged correlations in the above simplified mod-
els. We then argue that this mechanism also very naturally operates in real
financial markets, and accounts well for the empirical findings. The follow-
ing discussion is intentionally rather qualitative; more detailed and technical
results will be presented elsewhere [22].

The idea is the following: in the above models, scores are attributed by
agents to their possible strategies, as a function of their past performance.
In a region of the parameter space where these models lead to an efficient
market, the autocorrelation of the price increments is close to zero, which
means that to a first approximation, no strategy can on average be profitable.
This implies that for any reasonable definition of the update of the scores,
these scores will locally behave, as a function of time, as random walks.
Furthermore, the scores associated to different strategies generically behave
as independent random walks. Now, in all these models, the switch between
two strategies occurs when their scores cross. Therefore, in the case where
each agent has two strategies, say one ‘active’ (trading in the market) and
one ‘inactive’ (holding bonds), the survival time of any one of these strategies
will be given by the return time of a random walk (the difference between
the scores of the two strategies) to zero. The interesting point is that these
return times are well known to be power-law distributed (see below): this
leads to the non trivial behaviour of the volume autocorrelation function.
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In other words, the very fact that agents compare the performance of two
strategies on a random signal leads to a multi-time scale situation.

More formally, let us define the quantity θi(t) that is equal to 1 if agent
i is active at time t, and 0 if inactive. The total activity is given by a(t) =
∑

i θi(t). The time autocorrelation of the activity is given by 1:

Ca(t, t
′) = 〈a(t)a(t′)〉 =

∑

i,j

〈θi(t)θj(t
′)〉. (1)

We will actually use in the following the so-called activity variogram, defined
as:

Va(t, t
′) = 〈[a(t) − a(t′)]

2〉 = Ca(t, t) + Ca(t
′, t′) − 2Ca(t, t

′). (2)

One can consider two extreme cases which lead to the same result, up to a
multiplicative constant: (a) agents follow completely different strategies and
have independent activity patterns, i.e. 〈θiθj〉 ∝ δi,j or (b) agents follow very
similar strategies, for example by all comparing the perfomance of stocks
to that of bonds, in which case θi = θj . In both cases, one has Ca(t, t

′) is
proportional to 〈θi(t)θi(t

′)〉. This quantity can be computed in terms of the
distribution P (s) of the survival time s of the strategies (in the following, we
assume that both the inactive and active strategies have the same survival
time distribution). Two cases must be distinguished: if P (s) has a finite
first moment 〈s〉 (finite average lifetime of the strategies), then Ca(t, t

′) is
stationary, i.e. it only depends on the difference τ = t′ − t. Introducing
the Laplace transforms LCa(E) and LP (E) of Ca(τ) and P (s), the general
relation between the two quantities reads [23]:

ELCa(E) =

(

1 − 2[1 − LP (E)]

〈s〉E[1 + LP (E)]

)

. (3)

If one the other hand P (s) has an infinite first moment, then Ca(t, t
′) depends

both on t and t′: this is known as the aging phenomenon [24, 23]. For an
unconfined random walk, the return time distribution decays as s−3/2 for
large s and therefore its first moment is infinite. However, in all the models
mentioned above, there exist ‘restoring’ forces which effectively confine the
scores to a finite interval [22]. This can be attributed, both in the case of
the mg or of more realistic market models, to ‘market impact’, which means

1Up to an additive constant which disappears from the variogram.
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that good strategies tend to deteriorate because of their very use. There are
many reasons to believe that such confining forces also operate in financial
markets. The consequence of these effects is to truncate the s−3/2 tail for
values of s larger than a certain equilibrium time s0. Therefore, the first
moment of P (s) actually exists, such that Eq. (3) is valid. Nevertheless, one
can see from Eq. (3) that the characteristic s−3/2 behaviour of P (s) for short
time scales leads to ELCa(E) ∼ 1 − B/

√
E + ... for s−1

0 ≪ E ≪ 1. This
in turn leads to a singular behaviour for the variogram Va(τ) at small τ ’s,
as Va(τ) ∝ √

τ , before saturating to a finite value for τ ∼ s0. Intuitively,
this means that the probability for the activity to have changed significantly
between t and t + τ is proportional to

∫ τ
0 ds sP (s) ∝ √

τ (for τ ≪ s0), where
sP (s) is the probability to be at time t playing a strategy with lifetime s.

Let us illustrate this general scenario with the example of the mg with an
inactive strategy, first introduced in [18]. Each agent has a certain number
of fixed strategies to choose from. A strategy is a mapping from a signal (for
example the past history) into a decision, say +1 or −1. The aim of the game
at each time step is to make the decision that is chosen by the minority of
the agents at that time [10]. If a strategy is successful (or would have been
if it had been played), its score increases, conversely, if the wrong decision is
made (or again, would have been if it had been played), the score decreases.
The chosen strategy is the one that has the highest score. If all the strategies
of an agent have negative scores, then the agent does not play. The relevant
parameter α of this model is the ratio of the number of possible histories to
the number N of agents. The history is given by the M past steps of the
game, therefore α = 2M/N . One finds [19, 22] that there is a critical value αc

above which all agents finally become inactive. Below this value, the activity
is non zero. A plot of the activity as a function of time in this model is given
in Figure 2, for a value of α smaller than αc. In the inset, we have plotted
the activity variogram Va(τ), which reveal the characteristic

√
τ singularity

discussed above, before saturating for large τ (∼ s0). This
√

τ singularity is
present in the whole active phase α < αc, although s0 is large compared to
1 only if α is not too small. Very similar variograms have also been found
in the more realistic market model that we have investigated, showing the
universality of this result (see Figure 3) [22]. Note that a similar mechanism
might also be present in the Lux-Marchesi model, where it has been observed
that the activity bursts are associated to a large number of agents switching
from being ‘fundamentalists’ to being ‘trend followers’ [14].
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Figure 2: Volume of activity (number of active agents) as a function of time in
the mg with two active strategies and one inactive strategy per agent, and for
α = 0.51 (αc ≃ 1.). The number of agents is 501. Inset: The corresponding
activity variogram as a function of the lag τ , in a log-log plot to emphasize the√

τ singularity at small τ ’s.
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Figure 3: Volatility variogram (squares) for a market model, inspired from the
mg, where agents buy and sell a stock, and can switch from the stock market
to bonds. The full line corresponds to the prediction of the simple mg with an
inactive strategy. Inset: Price changes as a function of time in the same model,
showing volatility clustering.
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It is interesting to compare the above results with real market data. Fig-
ure 4 shows the volume of activity on the S&P 500 futures contract in the
years 1985-1998. This plot is to the eye very similar to the one of Figure
3, obtained with the mg. This is quantitatively confirmed by the activity
variogram, shown in the inset. On the same graph, we have reproduced the
mg result. Both the time scale and the volume scale (arbitrary in the mg

model) have been adjusted to get the best agreement. Furthermore, a con-
stant has been added to Va (corresponding to a δτ,0 contribution to Ca), to
account for the fact that part of the trading activity is certainly white noise
(e.g. motivated by news, or by other non strategic causes). As can be seen,
the agreement is rather good. Most significant is the clear

√
τ behaviour at

small τ (τ < 50 days). We therefore suggest that the effect captured by the
mg (Figure 2) or more sophisticated variants (Figure 3), namely the subor-
dination of the activity on random walk like signals, is also present in real
markets. It seems to us that this makes perfect sense since market partic-
ipants indeed compare the results of different strategies to decide whether
they should remain active in a market or leave it.

Since the volatility and the volume of activity are strongly correlated
in financial markets [25, 26], our interpretation should naturally carry over
to volatility fluctuations as well. This is illustrated in Figure 5, where the
variogram of the log-volatility for major stock indices is shown, together with
the very same mg result. Again, the agreement is very good. We have also
shown for comparison the prediction of the multifractal model of ref. [7],
Va(τ) = 2λ2 log(τ/τ0). It is interesting to note that the two model, although
very different, lead to nearly indistinguishable numerical fits.

The analogy between volatility clustering in financial markets and inter-
mittency effects in turbulent flows has recently been emphasized [27, 7, 28].
It is tempting to speculate that the mechanism discussed here might also be
at work in turbulent flows, where outburts of activity are due to localized
structures [29]. If the motion of these localized structures locally resembles
that of a random walk, similar conclusions can be expected.

In summary, we have proposed a very general interpretation for long-
range correlation effects in the activity and volatility of financial markets.
This interpretation is based on the fact that the choice between different
strategies is subordinated to random-walk like processes. We have numeri-
cally demonstrated our scenario in the framework of simplified market mod-
els, and showed that, somewhat surprisingly, real market data can actually
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Figure 5: Variogram of the log-volatility, 〈log2(σt/σt+τ )〉 as a function of τ , av-
eraged over 17 different stock indices (American, European, Asian). The full line
is the mg result, with again both axis rescaled and a constant added to account
for the presence of ‘white noise’ trading. The dashed line is the prediction of the
multifractal model of [7], and is nearly indistinguishable from the mg result.
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be quite accurately accounted for by these simple models (see Figs 4 and 5).
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