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Abstract

We propose a general interpretation for long-range correlation e-ects in the activity and volatil-
ity of .nancial markets. This interpretation is based on the fact that the choice between ‘active’
and ‘inactive’ strategies is subordinated to random-walk like processes. We numerically demon-
strate our scenario in the framework of simpli.ed market models, such as the Minority Game
model with an inactive strategy, or a more sophisticated version that includes some price dy-
namics. We show that real market data can be surprisingly well accounted for by these simple
models. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

When looking at the time series of the daily returns in liquids markets, it appears
to the naked eye that the observed behaviour is markedly non-Gaussian: 8uctuations
are intermittent and strong, localized outbursts of volatility can be identi.ed. This
fact, known as volatility clustering [1–3], can be analyzed more quantitatively by
looking at the daily volatility �t (de.ned for example, as the average squared high
frequency return). This quantity follows a log-normal distribution [4,5], and its tem-
poral correlation function 〈�t�t+�〉 can be .tted by an inverse power of the lag �,
with a rather small exponent in the range 0:1–0:3 [1,6–8]. This suggests that there
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is no characteristic time scale for volatility 8uctuations: outbursts of market activ-
ity can persist for rather short times (say a few days), but also for much longer
times, months or even years. Besides, these long ranged volatility correlations are ob-
served on many di-erent .nancial markets and over di-erent periods of time, with
qualitatively similar features: stocks, currencies, commodities or interest rates (see for
example the BUND contract discussed in Ref. [3]). This suggests that a common
mechanism is at the origin of this rather universal phenomenon. This universality,
which is also observed for other ‘stylized facts’ of .nancial markets (for example the
power law behaviour of the return distribution) has attracted much attention, espe-
cially among physicists [39]. It indeed supports the idea of the market as a complex
interacting system of the kind usually studied in physics, where complex behaviour
arises from individual actions, not crucially depending on the details of the microscopic
interactions.
In this line of thought, the approach of agent based modelling has been inten-

sively pursued, and important insights into market dynamics have recently been gained
[9–20]. These models postulate some simple behaviour at the level of the agents and
investigate the resulting price dynamics. Their aim is to reproduce real market phe-
nomenology and understand its distinctive features in terms of microscopic mechanisms.
Of course the possibilities of modelling are a priori numerous, since very little is known
about the relevant ingredients needed to construct a realistic arti.cial market. In this
context two possible strategies of investigation can be followed. The .rst is to look
for very simple models, which may be in some respects unrealistic, but where both
analytical resolution and intuitive understanding can be reached. Alternatively, one can
focus on more complex models, trying to select the necessary microscopic structure
needed to reproduce the stylized facts, and identify the ‘universality class’ of real
markets.
In this paper we consider models of the two types and we look for the microscopic

origin of volatility clustering. We propose a simple and robust mechanism to account
for the appearance of long-ranged correlations in the above simpli.ed models [21]. We
then argue that this mechanism also very naturally operates in real .nancial markets,
and accounts well for the empirical .ndings. Similar ideas (although quantitatively
di-erent) were recently discussed in Refs. [16,17,22].

2. Simple models: the Minority Game

As an example of the .rst family of models we consider the Minority Game (MG)
and its variants [10,23–29]. This model describes the behaviour of competing agents
that can choose between di-erent individual strategies as a function of their past per-
formance. It was originally introduced to model bounded rationality and inductive rea-
soning behaviour (see e.g. Refs. [10,30,31]), but it has since then become a paradigm
for systems with heterogeneous adaptive agents.
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The setup of the model is very simple. At a given time each agent i can take
two possible actions ai=± 1. Once that the global action A(t)=

∑
i ai is determined,

those agents who are in the minority group win whereas the others lose. The game is
repeated at each time step. It would of course be trivial if the agents took their actions
by tossing a coin. In fact it is not, since the opinion formation mechanism is not trivial
at all. Its distinctive properties are:

• Heterogeneities: Each agent i is endowed with s=1; : : : ; S “strategies” of action
which are randomly chosen among all possible strategies at the initial time, and are
kept .xed throughout the game.

• Information: A public and common information I , (for example the m-steps past
history [10], or an exogenous signal [27]) is available at each time step. Each agent
processes this information (the same for all) using one of his strategies, and decides
of his action.

• Adaptivity: Agents evaluate the performance of their strategies. Agent i gives scores
to each of his strategies according to its observed predictive power

Pi;s(t + 1)=Pi;s(t)− ai; sA(t) ; (1)

where s is a strategy label, and a simple minority payo- function −aA has been
implemented. Then, at each time t the best strategy, the one with the highest score,
is actually used to decide the action.

The collective behaviour of the MG is extremely rich and has been extensively studied
in numerical and analytical works. The main feature is the possibility, by tuning the
parameter � given by the ratio of the number of di-erent ‘patterns’ of information
to the number of agents, to obtain an ‘eLcient’ or an ‘ineLcient’ behaviour (in a
sense very close to the analogous concept in economics). However, in its original
version, this model is rather remote from .nancial markets; in particular, there is no
price dynamics. Several attempts have been made to generalize it and construct more
realistic market models [23–26]. As .rst noticed in Refs. [25,26], if one also allows
the agents to be inactive, intermittent volatility 8uctuations can be generated. This
fact con.rms in the context of generalized MG what has been observed also for real
markets, that is that volatility 8uctuations are related to activity correlations [36,37].
For what concerns our main point, i.e., to explain volatility clustering, this means that
we can focus on the temporal pattern of activity in these models. From this point of
view, the simplest model which exhibits long-ranged activity correlations is the MG
with inactive strategies. Here we just consider the original setup of the MG, but we
give to each agent one more ‘inactive’ strategy whose prediction is always ai=0 (see
also Refs. [25,26,32,33]). The number of active agents will then 8uctuate from time to
time, and for this reason we shall refer to this version of the model as Grand-Canonical
MG. As we shall see in the next sections, in this case it is rather intuitive to understand
how the microscopic individual patterns determine a speci.c behaviour of the activity
correlations.
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3. More complicated market models

In order to go beyond the above mentioned limits of the MG we have studied a
more complicated market model that, while retaining the non-trivial opinion formation
structure of the MG, allows traders to switch between a ‘bond’ market (representing
the inactive state) and a ‘stock’ market, and accounts properly both for their wealth
balance and for market clearing.
As in the MG each agent has S random active strategies plus an inactive one. Besides

he owns a number �i of stocks and Bi of bonds which he can trade at each time step.
The price X (t) of the stock evolves in time according to a supply=demand dynamics
which is de.ned through the following steps:

• Information: As in the MG at each time t an information is given to the agents. We
choose it to be given by the m last steps of the past history of the return time series:
I(t)= (�(t − m); : : : ; �(t − 1)) with �(t)= sign (X (t)− X (t − 1)). In this sense, our
traders are chartists on short time scales, and take their decision based on the past
pattern of price changes (note that this decision is not the same for di-erent agents).

• Opinion formation mechanism: As in the MG agents use adaptive strategies to take
a decision, which in this case can be ‘buy’, ‘sell’, or ‘do nothing’. Besides, each
agent wishes to buy=sell a quantity proportional to his current belongings, that is
ai= gBi(t)=X (t) if he wants to buy, ai= − g�i(t) if he wants to sell. Also, each
agent can act as a fundamentalist with a certain probability pfond that depends on
the di-erence between the observed price and some ‘reference’ price that grows with
the risk-free interest rate. This leads, on the long run, to a mean reverting behaviour
of the price towards its reference value.

• Price formation mechanism: Once the individual o-ers ai(t) are made the price
update is de.ned by [11–13]

�X (t)
X (t)

=
X (t + 1)− X (t)

X (t)
= �

∑
i

ai(t) ; (2)

where � is a measure of the liquidity of the market. Highly liquid markets correspond
to small �.

• Market clearing mechanism: We consider a two steps dynamics. First the decisions=
orders are made and the price is updated. Then a matching between supply=o-er is
realized, which may leave a certain amount of unful.lled orders. More precisely, the
amount of stocks ��∗i actually traded by agent i is geBi(t)=X (t + 1) if he buys and
−ge�i(t) if he sells, where ge is such that

∑
i ��

∗
i ≡ 0. Unful.lled orders are then

removed from the order book.
• Wealth dynamics: After this ‘market clearing’ the individual wealths are updated
using the quantity ��∗i of stocks actually traded by agent i, i.e.,

�i(t + 1)=�i(t) + ��∗i Bi(t + 1)=Bi(t)(1 + �)− ��∗i X (t + 1) ; (3)
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where � represents the interest rate. The total wealth of agent i is therefore wi(t)=
�i(t)X (t) + Bi(t).

• Scores update: The scores of the strategies are .nally updated according to their real
pro.tability over the interest rate �

Pi;s(t + 1)= �Pi;s(t)− ai; s(t − 1)
[
�X (t)
X (t)

− �
]
: (4)

When �¡ 1, only the recent past is used to assess the performance of the strategies.

The phenomenology of this model is very rich and a detailed account of our results
will be published separately [34]. From the previous description we see that there are
at least four parameters which enter crucially in the model: �; g; � and one entering
the precise de.nition of pfond. Tuning these parameters we observe two qualitatively
di-erent regimes:

(1) An Oscillatory regime (for small values of � and g), where speculative bubbles
are formed, and .nally collapse in sudden crashes induced by the fundamentalist
behaviour. In this regime, markets are not eLcient, and a large fraction of the
orders is (on average) unful.lled.

(2) A Turbulent regime (for large � and g) where the ‘stylized’ facts of liquid mar-
kets are well reproduced: the market is approximately eLcient (although some
persistent or anti-persistent correlations survive), the returns follow a power law
distribution, and volatility clustering is present.

Both these two regimes present interesting features that can be analyzed. However, for
the objective of the present paper, we focus here on the second one. In this regime
both the volatility and the activity show power-law like correlations (in time) which
are quantitatively very similar to those observed in the much simpler Grand-Canonical
MG: see Figs. 1 and 2 below. This strongly indicates that volatility=activity correlations
are uniquely determined by the opinion formation structure which is common to the
two models. In the next section we propose an explanation of how this can happen.

4. A simple universal mechanism

In the above models, scores are attributed by agents to their possible strategies, as
a function of their past performance. In a region of the parameter space where these
models lead to an eLcient market, the autocorrelation of the price increments is close
to zero, which means that to a .rst approximation, no strategy can on average be
pro.table. This implies that the di-erence between the score of two strategies will
locally behave, as a function of time, as a random walk. Now, the switch between
two strategies occurs when their scores cross. Therefore, in the case where each agent
has two strategies, say one ‘active’ (trading in the market) and one ‘inactive’ (holding
bonds), the survival time of any one of these strategies will be given by the return
time of a random-walk (the di-erence between the scores of the two strategies) to
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Fig. 1. (a) Cumulative distributions for the survival times of the active strategy in the Grand-Canonical
MG with an inactive strategy and two active strategies, for .ve di-erent agents. The parameter � is set to
�=0:51 (�c � 1:), and the number of agents is 501. (b) Volume of activity (number of active agents) as a
function of time for the MG with the same values of parameters. Inset: The corresponding activity variogram
as a function of the lag �, in a log–log plot to emphasize the

√
� singularity at small �’s.
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Fig. 2. Returns (relative price di-erences) as a function of time in the market model described in the text
(Section 3). Large frame: The corresponding volatility variogram as a function of the lag �, in a log–log
plot to emphasize the

√
� singularity at small �’s. The full line is the .t Eq. (8).

zero. The interesting point is that these return times are well known to be power-law
distributed (see below): this leads to the non-trivial behaviour of the volume autocor-
relation function. In other words, the very fact that agents compare the performance of
two strategies on a random signal leads to a multi-time scale situation. More formally,
let us de.ne the quantity "i(t) that is equal to 1 if agent i is active at time t, and 0 if
inactive. The total activity is given by a(t)=

∑
i "i(t). The time autocorrelation of the

activity is given by

Ca(t; t′)= 〈a(t)a(t′)〉=
∑
i; j

〈"i(t)"j(t′)〉 : (5)

We will actually use in the following the so-called activity variogram, directly related
to the autocorrelation through:

Va(t; t′)= 〈[a(t)− a(t′)]2〉=Ca(t; t) + Ca(t′; t′)− 2Ca(t; t′) : (6)

One can consider two extreme cases which lead to the same result, up to a multiplica-
tive constant: (a) agents follow completely di-erent strategies and have independent
activity patterns, i.e., 〈"i"j〉 ˙ �i; j or (b) agents follow very similar strategies, for
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example by all comparing the performance of stocks to that of bonds, in which case
"i= "j. In both cases, Ca(t; t′) is proportional to 〈"i(t)"i(t′)〉. This quantity can be com-
puted in terms of the distribution P(s) of the survival time s of the strategies. More
details can be found in Refs. [21,35]. When P(s) has a .nite .rst moment 〈s〉 (.nite
average lifetime of the strategies), then Ca(t; t′) is stationary, i.e., it only depends on
the di-erence �= t′ − t. Introducing the Laplace transforms LCa(E) and LP(E) of
Ca(�) and P(s), the general relation between the two quantities reads [35]

ELCa(E)=
(
1− 2[1−LP(E)]

〈s〉E[1 +LP(E)]

)
: (7)

For an uncon.ned random walk, the return time distribution decays as s−3=2 for large
s and therefore its .rst moment is in.nite. However, in all the models mentioned
above, there exist ‘restoring’ forces which e-ectively con.ne the scores to a .nite
interval [34]. This can be attributed, both in the case of the MG or of more realistic
market models, to ‘market impact’, which means that good strategies tend to deteriorate
because of their very use, or to the .nite memory time of market operators used to
assess their strategies (cf. the parameter � de.ned above). The consequence of these
e-ects is to truncate the s−3=2 tail for values of s larger than a certain equilibrium
time s0. Therefore, the .rst moment of P(s) actually exists, such that Eq. (7) is valid.
Nevertheless, one can see from Eq. (7) that the characteristic s−3=2 behaviour of P(s)
for short time scales leads to ELCa(E) ∼ 1 − B=√E + · · · for s−1

0 �E�1. This in
turn leads to a singular behaviour for the variogram Va(�) at small �’s, as Va(�)˙

√
�,

before saturating to a .nite value for � ∼ s0. Intuitively, this means that the probability
for the activity to have changed signi.cantly between t and t + � is proportional to∫ �
0 ds sP(s)˙

√
� (for ��s0), where sP(s) is the probability to be at time t playing a

strategy with lifetime s.
Let us illustrate and justify this general scenario for the MG with an inactive strategy.

In this model [32,34] there is a critical value �c of the relevant parameter above which
all agents .nally become inactive. However, below this value, the system is always
‘eLcient’ and our assumption about the local random-walk behaviour of the strategy
scores is thus well grounded. However, in order to con.rm this point we show in
Fig. 1a the cumulative distribution of the survival time of the active strategy, for .ve
di-erent agents. In the case of a pure random-walk this distribution should behave as
s−1=2. We can see that this is precisely what happens up to a certain time scale s0
(which does not 8uctuate much from agent to agent) above which the distributions are
truncated. In Fig. 1b, for a value of � smaller than �c, we have plotted the volume
of activity as a function of the time. In the inset, the activity variogram Va(�) reveals
the characteristic

√
� singularity discussed above, before saturating for large � (∼ s0).

This
√
� singularity is present in the whole active phase �¡�c; s0 is found to be

proportional to N (for �=1). The analogous variograms for the volume of activity
and for the volatility of the more realistic market model of Section 3 are shown in
Fig. 2, together with the result of the MG. The two behaviours are very similar and
con.rm the universality of this result [34]. Note that the activity variogram of the MG
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model can be very accurately .tted by the following simple form:

Va(�)|fit =V∞
a

(
1− exp

(
−
√
�
�0

))
: (8)

We note that a similar mechanism might also be present in other models where
agents can switch between di-erent strategies or classes of strategies. For example, in
Refs. [16,17] each agent can behave either as a fundamentalist or as a trend follower,
switching between the two strategies as a function of their relative performance. For
this model it has been observed that the activity bursts are indeed associated to a large
number of agents switching from one behaviour to the other. The importance of the
fact that these strategies are on average equivalent was also clearly stressed [16,17]
(see also Ref. [22]). It would be interesting to see if the activity variogram in this
model can also be .tted using Eq. (8). Another example is the adaptive evolutionary
system of [18], where agents can use di-erent expectation functions to estimate future
prices and dividends (and then act di-erently according to a mean-variance optimiza-
tion procedure) and choose between them according to a evolutionary performance
measure. 1

It is interesting to compare the above results with real market data. Fig. 3 shows
the volume of activity on the S&P 500 futures contract in the years 1985–1998. On
the same graph, we have reproduced the MG .t Eq. (8). Both the time scale and the
volume scale (arbitrary in the MG model) have been adjusted to get the best agreement.
Furthermore, a constant has been added to Va (corresponding to a ��;0 contribution to
Ca), to account for the fact that part of the trading activity is certainly white noise (e.g.
motivated by news, or by other non-strategic causes). As can be seen, the agreement
is rather good. Most signi.cant is the clear

√
� behaviour at small � (�¡ 50 days).

We therefore suggest that the e-ect captured by the MG or more sophisticated variants
(Figs. 1 and 2), namely the subordination of the activity on random walk like signals,
is also present in real markets. It seems to us that this makes perfect sense since
market participants indeed compare the results of di-erent strategies to decide whether
they should remain active in a market or leave it. Note furthermore that although our
scenario is based on the comparison between the scores of strategies, similar results
would be obtained if the volume was subordinated to the di-erence between the price
and certain ‘psychological levels’ (i.e., the value 1000 for the S&P, etc.). It is indeed
reasonable that such levels play a role in determining the activity on .nancial markets
(see however Ref. [38] for a discussion of this point).
Since the volatility and the volume of activity are strongly correlated also in .nancial

markets [36,37], our interpretation should carry over to volatility 8uctuations as well.
This is illustrated in Fig. 4 (lower panel), where the variogram of the log-volatility

1 In this model the presence of positive dividends on stocks is crucial to implement a reasonable market
dynamics. In the market model described above, on the other hand, we do not expect dividends to change
substantially the dynamics since a dividend at time t is in fact followed by an immediate decrease of the
price X (t) of the same amount, leaving the scores updates unchanged.
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Fig. 3. Total daily volume of activity (number of trades) on the S&P 500 futures contracts in the years
1985–1998: compare to Figs. 1 and 2. Inset: Corresponding variogram (diamonds) as a function of the
square-root of the lag. Note the clear linear behaviour for small

√
�. The full line is the MG .t Eq. (8),

with both axes rescaled and a constant added to account for the presence of ‘white noise’ trading.

for major stock indices is shown, together with the very same MG .t. Again, the agree-
ment is very good. We have however also shown for comparison the prediction of the
multi-fractal model of Refs. [7,8] Va(�)= 2�2 log(�=�0) (middle panel). We note that
the two models, although very di-erent, lead to nearly indistinguishable numerical .ts
over the time scale considered. In the literature, it is also customary to .t the volatil-
ity correlations with power-laws. We have therefore also shown in the upper panel
the corresponding .t for the variogram Va(�)= c0 − c1=�(, with (=0:1. This .t is
also consistent with the data (and is numerically very close to a logarithmic function
because ( is small). However, neither the power-law nor the logarithm have clear mi-
croscopic motivations. If, as we believe, the simple mechanism that we have advocated
is at the origin of the correlations behaviour then the truly universal feature is in the√
� behaviour of the variogram for small �, and not in the long time behaviour of the

correlation function. In other terms, the exponent ( might be an e-ective, non-universal
exponent masking the true universal 1

2 exponent that describes the initial increase of
the variogram.
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Fig. 4. Variogram of the log-volatility, 〈log2(�t=�t+�)〉 as a function of �, averaged over 17 di-erent stock
indices (American, European, Asian). The upper panel shows a .t with a power-law of time, the mid-
dle panel a .t with the logarithmic (multi-fractal) prediction, whereas the lower panel shows the MG .t
Eq. (8), with again both axes rescaled and a constant added to account for the presence of ‘white noise’
trading. Note that the three models lead to nearly indistinguishable .ts.

In summary, we have proposed a very general interpretation for long-range correla-
tion e-ects in the activity and volatility of .nancial markets. This interpretation is based
on the fact that the choice between di-erent strategies is subordinated to random-walk
like processes. We have numerically demonstrated our scenario in the framework of
simpli.ed market models, and showed that, somewhat surprisingly, real market data can
actually be quite accurately accounted for by these simple models (see Figs. 3 and 4).
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