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Motivated by the concept of geometrical frustration, we introduce a class of statistical mechanics lattice
models for the glass transition. Monte Carlo simulations in three dimensions show that they display a
dynamical glass transition which is very similar to that observed in other off-lattice systems and which
does not depend on a specific dynamical rule. A mean-field study shows the existence of a discontinuous
glass transition, in agreement with the numerical observations.
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Understanding the glass transition, and the glass phase,
is one of the present major challenges in condensed matter
physics. The experimental glass transition is related to a
dramatic dynamical slowing down in which the structural
relaxation time changes 14 orders of magnitudes in a rela-
tively small window of temperatures. As a matter of fact,
the glass transition temperature Tg is empirically defined
as that where the structural relaxation time becomes of the
order of an hour. In the last 50 years there have been many
efforts to try to understand whether this phenomenon is
just a dramatic crossover, related to a pure dynamical
transition, or the signature of a true thermodynamic glass
transition, called the “ideal glass transition,” which would
take place at temperature TK below Tg but which is kineti-
cally avoided [1]. The possibility of this last scenario in
fragile glasses is supported by the closeness of the Vogel-
Fulcher temperature (where the extrapolated relaxation
time has a divergence) and of the Kauzmann temperature
(where the extrapolated excess entropy of the supercooled
liquid vanishes) [2], and has been widely explored
theoretically [1,3–7]. The analogy with mean-field
discontinuous spin glasses [6] has recently given a new
boost to this line of research [7]. These models can be
solved analytically and display striking similarities with
the experimental fragile glasses. However, they predict
(because of their mean-field character) a dynamic freezing
transition at a temperature Tc . Tg, equal to the mode
coupling transition temperature, where real systems still
have a finite relaxation time. This difference is generally
attributed to the existence in finite dimensions of acti-
vated processes which would transform the “mean-field”
dynamical transition into a crossover in such a way that
the relaxation time increases very fast in the temperature
region TK , T , Tc and eventually diverges at TK .

In this paper we introduce new lattice models of glasses.
We study them numerically in three dimensions, and show
that (1) they display a dynamic glass transition similar to
the one seen in the simulation of glass formers like binary
Lennard-Jones [8], and (2) their mean-field solution, ob-
tained using the Bethe approximation, predicts the same
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physical scenario found for mean-field discontinuous spin
glasses (in particular, a dynamic freezing transition pre-
ceding the ideal glass transition).

Our lattice glass models are defined as follows. On each
node of the lattice (e.g., a cubic lattice), there can be a 0
or 1 particle, but these occupations are restricted by a hard
“density constraint”: a particle cannot have more than �
among its six neighboring sites occupied. One possible in-
terpretation of this model is a coarse grained version of a
usual (off-lattice) hard sphere system taking into account
the effect of geometric frustration [9]. One site of our lat-
tice is then characterizing the density of spheres in a local
cell of space, of volume of the order of an icosahedron built
with the original spheres. The presence of a “particle” in
our model means that the local arrangement of spheres in
this cell is very dense, as happens when icosahedral or-
der sets in. The absence of the particle corresponds to a
less dense arrangement of spheres. Geometric frustration
means that it is not possible to fit together the high density
icosahedral structures to fill the space: this is taken into
account by the density constraint.

Notice the important difference with the Kob-
Andersen model [4,10]. In that case the jamming is forced
by a dynamical rule: a particle which violates the density
constraint is blocked. In our case, the model is defined
thermodynamically: configurations violating the density
constraint are forbidden. The thermodynamics definition
has two advantages which were absent in previous lattice
models [4,5]: (1) The existence of a dynamical phase
transition, and the value of the density at which it takes
place, do not depend on the type of local dynamics which
is used, e.g., whether particles just hop on the lattice
or whether they are exchanged grand canonically with
a reservoir. (2) One can perform some analytic studies
of the thermodynamics, relate them to the dynamical
observations, and address key issues like the possible
existence of an ideal glass transition.

We have run some numerical simulations of the lattice
glass models using two algorithms. The first one (CA)
is a simple Monte Carlo simulation at fixed density in the
© 2002 The American Physical Society 025501-1



VOLUME 88, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JANUARY 2002
canonical ensemble, where a randomly chosen particle can
hop to a neighboring site if the density constraint is satis-
fied. In order to find an acceptable initial configuration,
we prepare the system through an annealing procedure, in
which the constraint is soft: a particle with r neighbors
has an energy E � �r 2 ��u�r 2 �� (u is Heaviside’s step
function), and we simulate the system with a Metropolis
algorithm at decreasing values of the temperature T . When
a zero energy configuration is found, we turn to the hard
density-constraint case (i.e., T � 0) and start our canoni-
cal run. At equilibrium, the chemical potential is measured
from m � ln�r�p�, where p is the fraction of sites in
which it is possible to add a new particle and r is the den-
sity. The second type of simulation (GCA) uses the grand
canonical ensemble. We have a reservoir with chemi-
cal potential m which is coupled to each lattice site and
can create or destroy particles.

As expected, the GCA simulation reaches the equilib-
rium faster. The obtained results look qualitatively very
similar to the ones in Lennard-Jones systems [8]. For a
one component fluid, we find for all � $ 1 that upon in-
creasing m the system has a first order phase transition to-
wards a crystal, identified by a discontinuity of the density,
and the presence of Bragg peaks in the diffraction pattern.
In order to study the glass transition, we have considered
lattice glass binary mixtures, for which the tendency to
crystallization is reduced. In these mixtures, one obtains
a reproducible “supercooled liquid” which exhibits, when
the density increases, a dynamical glass transition. We
present the results obtained for a mixture containing 30%
of particles A with density constraint �A � 1, and 70%
of particles B with density constraint �B � 3 (called m13
mixture in the following). Figure 1 shows the density as a
function of the chemical potential, measured in the two al-
gorithms. One sees a clear saturation which takes place at
a density rc � 0.565: none of these two local algorithms
can reach a density higher than rc. The inset of Fig. 1
shows the diffusion coefficient DA �DB� of the particles
measured in the CA simulation. Their decrease with in-
creasing r is well fitted by a function vanishing at rc with
a power law:

DA,B�r� � CA,B�rc 2 r�aA,Bu�rc 2 r� (1)

with exponents of order aA � 4.2 and aB � 2.3.
This vanishing is generally taken as the numerical sig-

nature of the dynamical phase transition [11,12]. When
the chemical potential is quenched above the critical value
(corresponding to the dynamical transition) the system re-
mains out of equilibrium and has an aging behavior which
we have seen measuring the two time correlations of oc-
cupation numbers of a site. On the contrary, if we in-
crease the chemical potential very slowly, we can observe
the transition to a crystalline phase even in this case of
mixtures as shown in Fig. 1. It is quite possible that the
m13 mixture will eventually phase separate on very large
times, but we have not seen any such effect on the time
025501-2
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FIG. 1. The inverse of the density is plotted versus the chemi-
cal potential of the A particles for the mixture m13 on a 3D cubic
lattice of size 153. Circles are obtained from the canonical simu-
lation CA with 103 Monte Carlo steps per particle (MCSP). Tri-
angles, squares, and diamonds are obtained from the GCA with,
respectively, 103, 3 3 103, 105 MCSP at a fixed increasing rate
of the chemical potential between m � 0 and m � 8. In the
last case, the transition to the crystalline state is clearly visible.
Inset: The diffusion coefficient for the two types of particles, in
the CA simulation of the same mixture, is plotted in log-log scale
versus rc 2 r, showing the dynamical transition at r � rc .

scales of our simulations. Whether there exist mixtures
where the true equilibrium state at large m is a glass, with
a thermodynamic phase transition from the liquid to this
glass, is under current study [13]. Let us finally note that
the existence of a metastable glassy phase does not de-
pend on the type of local dynamics we use (GCA or CA),
only the time to nucleate the crystal (contrary to the Kob-
Andersen model).

We now present a mean field theory of the finite dimen-
sional lattice glass models. We focus on the Bethe lat-
tice version of these models [14], whose underlying lattice
structure is a random graph with fixed connectivity: every
vertex has exactly k 1 1 neighbors, but the graph is other-
wise random (to study the three dimensional case one takes
k � 5). Locally (on finite length scales), such a graph has
the structure of a Cayley tree with a fixed branching ratio,
but it also has loops of typical size lnN . The presence of
these loops is crucial to induce the geometric frustration,
but the local tree structure allows for an analytic solution
of the model. For the sake of clarity, we shall describe this
solution in the simple case where there is only one type
of particle, with a density constraint given by the integer
�; we have extended these computations to mixtures [15],
and we shall present the results for the m13 mixture.

Since the underlying lattice structure is locally treelike,
one can write iterative equations on the local probability
measure. More precisely, let us analyze one branch of the
tree ending on site i. We denote by j [ �1, . . . , k� all the
neighbors of i. We call Z

�i�
0 the partition function of this

branch, restricted to configurations where site i is empty,
and Z

�i�
1,p the partition function restricted to configurations
025501-2
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where site i is occupied and has p neighbors occupied.
Defining S

�i�
q �

Pq
p�0 Z

�i�
1,p, we find the recursion relations

Z
�i�
0 �

kY
j�1

�Z� j�
0 1 S

� j�
� � ,

Z
�i�
1,p � em

X
1#j1,...,jp#k

S
� j1�
�21 . . . S

� jp �
�21

Y
m”� j1,...,jp�

Z
�m�
0 .

(2)

It is convenient to introduce on any site m the local fields
hm � ln�S�m�

� �Z
�m�
0 � and am � ln�S�m�

�21�Z
�m�
0 � 2 hm, in

terms of which the iteration reads

ehi � em

√
kY

j�1

1
1 1 ehj

!
s�, eai �

s�21

s�
, (3)

where

sq �
qX

p�0

" X
1#j1,...,jp#k

ehj1 1aj1 1···1hjp 1ajp

#
(4)

and the sum over j1 , · · · , jp is defined to take the value
1 when p is 0.

From these fields, one can obtain [15] the grand canoni-
cal potential A � 2 log�Z� as a sum of sites and links
contribution [14,16]: A � 2k

P
i A

�1�
i 1

P
	i,i0
 A

�2�
i,i 0. The

contribution from the bond 	i, i0
 is given by the local fields
obtained from the two branches arriving on i (in absence
of i0) and on i0 (in absence of i) as

exp�2A
�2�
i,i 0� � 1 1 ehi 1 ehi0 1 ehi1ai1hi01ai0 . (5)

The contribution from site i reads

exp�2A
�1�
i � � 1 1 eHi , (6)

where Hi is the total field on site i, given by formula
(3) where k is changed to k 1 1. The shift in grand
potential when merging the k branches ending at points
j � 1, . . . , k onto the node i is given by

exp�2A0
i� � 1 1 ehi . (7)

Starting from the previous equations, we find at low
density a liquid phase characterized by a homogeneous
solution hi � h, ai � a, where h, a verify two simple
self-consistent equations. Given this solution one can eas-
ily obtain all the thermodynamic quantities, and in par-
ticular the density r and the entropy per lattice site S �
A 2 rm. For every k $ 2 and � # k (and for generic
mixtures), the entropy becomes negative when the chemi-
cal potential m becomes larger than a certain critical value
ms�0. Therefore a thermodynamic phase transition takes
place at a chemical potential m # ms�0, as shown in
Fig. 2.

To gain some further insight to the thermodynamic tran-
sition we study the stability of the liquid phase; i.e., we
analyze all the generalized susceptibilities:

Jp �
1
N

X
i,j

	ninj
p
c �

X
d

kd�Gd�p , (8)

where ni [ �0, 1� is the occupation number of site i and
	ninj
c � Gd denotes the connected correlation function
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FIG. 2. The entropy per site (continuous line) and the total
density (dashed line) predicted by the liquid solution are plotted
as a function of the chemical potential of the A particles for the
mixture m13 on a k � 5 Bethe lattice.

between points i and j at a distance d. Since there is
only one finite path (with probability one) connecting two
points at a finite distance d, the computation of Gd (and
therefore the stability analysis) can be reduced to a one-
dimensional problem which can be solved by transfer ma-
trix technique [15]. The divergence of J1 signals an
instability toward a cyclic solution of the iteration equa-
tions [15], which corresponds to the crystal as found for
l � 0 by Runnels [17]. Here we focus on the next insta-
bility related to the divergence of the “glass susceptibility”
J2. Depending on the value of k, l (and the type of mix-
ture), we can encounter two types of situations. The first
one is when the glass susceptibility remains always finite
(this is found for k � 1, 2, 3 and every l . 0) the glass
transition is then discontinuous. Instead, when the suscep-
tibility J2 diverges at m � m2, either there is a continuous
glass phase transition at m � m2 (this is found for � � 0,
which is nothing but the vertex covering model studied in
[18]) or a discontinuous phase transition (without any di-
vergence of J2) takes place at mc , m2. This happens
for sure whenever ms�0 , m2 (this is found, e.g., in the
k � 5, l � 3 case). The discontinuous transition case, on
which we focus in the following, is the one relevant for
glasses, contrary to the continuous transition which is typi-
cal of spin glasses [7].

The high-density glassy phase can be analyzed in the
Bethe approximation, taking into account the existence of
many different local minima of the Thouless-Anderson-
Palmer free energy (called pure states in the following;
see [19]). In this case the fields hi and ai fluctuate not
only from site to site but also from pure state to pure state.
One defines for each site a probability distribution Ri�h, a�
that the fields hi, ai equal h, a for a randomly chosen pure
state. In our case we have verified that Ri does not fluctuate
from site to site, and the analysis of the high-density glassy
025501-3
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phase reduces to obtaining a single function R�h, a�. Using
the cavity or the replica method [15] we find that this
function satisfies the self-consistent equation

N R�h, a�
�1 1 eh�2m �

Z kY
j�1

�dhj daj R�hj , aj��

3 d�h 2 hi�d�a 2 ai� , (9)

where N is a normalization constant, hi, ai are the lo-
cal fields on site i obtained when merging the k branches
that carry the fields �hj, aj� [see Eq. (3)], and m is a La-
grange multiplier which fixes the value of the free energy
density of the pure states giving rise to R�h, a� [20]. We
have solved this equation numerically using the algorithm
of [14]. For some choices of k and �, we find a sce-
nario identical to the one of discontinuous spin glasses,
with two transitions: (1) a dynamical transition at md , rd ,
and (2) an equilibrium glass transition, due to an entropy
crisis à la Kauzmann, at a certain density req . rd and
chemical potential meq . md . Precisely, when we in-
crease m starting from the liquid phase [where Rliq�h, a� �
d�hliq 2 h�d�aliq 2 a�], we first encounter at m � md a
nontrivial solution Rm�1

glass�h, a� of (9) which appears discon-
tinuously, signaling the existence of many pure states. The
static (equilibrium) transition appears at a higher chemical
potential when these new solutions dominate the thermo-
dynamics [7,20]. For the m13 mixture on a k � 5 lattice,
we find rd � 0.58, which is surprisingly close to the 3D
value. The discontinuous character of the transition is as-
sured by the fact that the difference q1 2 q0 is finite and
positive at the transition, where the overlaps q0 and q1
are defined as usual [19]: q0 � �1�N �

P
i	ni
a	ni
b�N

and q1 � �1�N�
P

i	ni
2
a�N and the indices a, b denote

two pure states randomly chosen according to their Boltz-
mann weights. Moreover we have checked, by running a
CA simulation on the Bethe lattice [15], that the dynamical
transition takes place at the density where the diffusion co-
efficients vanish. A detailed study of the thermodynamics
of the lattice glass models, and of their equilibrium transi-
tion, will be presented elsewhere [13].

In this Letter we have introduced a new class of lat-
tice models of glasses. Their 3D numerical simulations
display a phenomenology very similar to the one of the
Lennard-Jones systems, whereas their solution in the Bethe
approximation exhibits a discontinuous glass transition.
These models allow one to bridge the gap between the phe-
nomenology of fragile glasses and their disordered spin
glass analogs. They should allow one to study key is-
sues like the existence or not of a true thermodynamic
phase transition, and the finite dimensional counterpart of
the mean-field dynamical transition, because (1) they are
among the simplest systems to exhibit a glass transition in
3D, (2) this transition is not linked to a specific dynamical
rule, but it is present in any local dynamics, (3) contrary
to off-lattice models, they can be solved in the Bethe ap-
proximation (i.e., in the limit of infinite dimension), and
025501-4
(4) within such an approximation scheme they present a
discontinuous spin glass transition.
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