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Abstract
We revisit two classic Thouless–Anderson–Palmer (TAP) studies of the
Sherrington–Kirkpatrick model (Bray A J and Moore M A 1980 J. Phys.
C: Solid State Phys. 13 L469; De Dominicis C and Young A P 1983 J. Phys.
A: Math. Gen. 16 2063). By using the Becchi–Rouet–Stora–Tyutin (BRST)
supersymmetry, we prove the general equivalence of TAP and replica partition
functions, and show that the annealed calculation of the TAP complexity is
formally identical to the quenched thermodynamic calculation of the free
energy at one step level of replica symmetry breaking. The complexity we
obtain by means of the BRST symmetry turns out to be considerably smaller
than the previous non-symmetric value.

PACS numbers: 05.50.+q, 75.10.Nr, 12.60.Jv

1. Introduction

The static properties of mean-field spin glasses have been investigated in the past mainly
by means of two different approaches: standard thermodynamics, which through the replica
method [1–5] aims to compute the partition function and the equilibrium free energy density
of the system, and the Thouless–Anderson–Palmer (TAP) method [6–13], which introduces
a mean-field free energy FTAP, function of the set m of local magnetizations, m ≡ {mi}Ni=1.
The local minima of FTAP(m) are identified with the metastable states of the system, which
at the mean-field level are well defined. At low temperatures the total number N of minima
of the TAP free energy becomes exponentially large [7, 8, 10], and the density of states is
given by

ρ(f ) ∼ eN�(f ). (1)

In this expression �(f ) is the complexity of the TAP states with free energy density between
f and f + df .
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The existence of two apparently different methods for the study of the static properties
of mean-field spin glasses clearly poses a problem of consistency. Both these methods are
in principle correct, and the equivalence between the two approaches should hold in general.
A direct argument in its favour is the cavity approach [14, 15]: on the one hand the cavity
approach is known to be mathematically equivalent to the replica approach; on the other hand,
the first step of the cavity approach consists in clustering the configurations into states which
are nothing but the TAP states. From the cavity analysis, one can expect a priori the existence
of a formal relationship between the replica results computed at a given order k of replica
symmetry breaking, and the results of TAP solutions, correctly weighted and with an average
computed at the order k − 1. Unfortunately, when considering the detailed results published
so far, there seemed to exist a discrepancy between the two approaches. For instance, the
number of TAP solutions computed directly at the order k = 0 (annealed average) in [7],
disagrees with the one obtained indirectly through the replica method with one step of replica
symmetry breaking (i.e. a k = 1 computation) [15]. This apparent discrepancy has led us to
give a careful look at this consistency problem. We show here that the TAP approach must
be reconsidered: using a supersymmetry, one finds that the two approaches are in fact fully
consistent.

From a general point of view, the problem of consistency between the TAP approach and
standard thermodynamics can be posed in a twofold way. First, the two methods must agree in
the calculation of the thermodynamic quantities that can be computed in both frameworks. This
requirement is a strong form of consistency. At a weaker level, regarding objects which are
inherently defined only within the TAP method, we may still expect to find some consistency,
and even some formal connections, with the standard thermodynamic approach.

The strong consistency basically asks that the equilibrium free energy computed within
the two approaches must be the same. Given that FTAP is a function of the local magnetization,
it is not obvious how to compute the partition function in this framework. More specifically,
due to the large degeneracy of TAP minima, there is the problem of how to weight correctly
these states. This problem was solved by De Dominicis and Young [12] (DDY), who proposed
to weight each TAP state α with

wα = exp[−βFTAP(m
α)]/ZTAP. (2)

The strong equivalence of the TAP approach to the standard thermodynamic approach
is therefore encoded in the equality (which should hold in the thermodynamic limit)
1
N

log Z = 1
N

log ZTAP, that is,

1

N
log

(∑
σ

exp[−βH(σ)]

)
= 1

N
log

( N∑
α=1

exp[−βFTAP(m
α)]

)
. (3)

Proving relation (3) in general is highly nontrivial, especially because in spin glasses we
can only compare averages over the disorder, and thus, from a practical point of view,
we need to compare the average of the replicated partition functions, which will typically
require some tricky integration over complicated order parameters. This programme has been
carried out by DDY for the Sherrington–Kirkpatrick (SK) model [2]. Their conclusion is that
relation (3) is indeed verified, provided that the complexity of the dominant TAP states at
any temperature is zero. This restrictive hypothesis is satisfied in the SK model, but not in
other models where the TAP approach is nevertheless used. Thus, it may seem that either
condition (3) is not broadly valid, or that a general proof of it must give up the hypothesis used
by DDY.

In the present paper, we show that the proof of (3) given by DDY for the SK model is
valid with no extra hypothesis. The key point is that the TAP partition function can be written



On the formal equivalence of the TAP and thermodynamic methods in the SK model 1177

in an integral form, with an action which is invariant under the Becchi–Rouet–Stora–Tyutin
(BRST) supersymmetry [16, 17]. This symmetry provides the mathematical relations needed
to prove equation (3), without the need to invoke any further hypothesis on the complexity of
the states.

Concerning the weak consistency of the two methods, the key object is the complexity
�(f ). Even though there is no obvious way to compute � in the standard thermodynamic
framework, we may still impose an important consistency condition: at low temperatures
(below the static transition) we expect the equilibrium thermodynamic states to have the same
free energy density as the lowest TAP states. In other words, we require that at low enough
temperatures there must be no static contribution of the metastable states. This condition is
encoded in the equation

feq = f0 (4)

where feq is the equilibrium free energy density computed in the standard thermodynamic
framework, and f0 is defined by the TAP relation �(f0) = 0. Apart from this minimal
requirement, one may ask whether in the TAP calculation of � emerge some deeper formal
connections with the standard calculation of the free energy. This fact, of course, seems
more than likely if the strong consistency condition (3) holds, even though it is in general not
obvious. In the p-spin spherical model [18], relation (4) is satisfied [19–22]. Moreover, for
this same model it has been shown in [23] that by means of the BRST supersymmetry the
saddle-point equations involved in the TAP calculation of � at f = f0 become identical to
the static equations in the replica approach. In the SK model, however, relation (4) is not
easy to check [7–11, 24], since it requires a full replica symmetry breaking (RSB) calculation
of the complexity. Moreover, up to now there was no formal connection between the TAP
complexity and equilibrium free energy in the SK model.

The fact that the BRST supersymmetry plays a crucial role in the p-spin, suggests that even
in the SK model this symmetry may help to prove (4), and discover other formal connections
between the two methods. This is what we show in section 4, where we revisit the annealed
calculation of the SK complexity of Bray and Moore [7] (BM), and thanks to the BRST
supersymmetry show that at f = f0 this calculation becomes equal to the standard static
calculation of the free energy, at one step level of replica symmetry breaking. This result
comes hardly as a surprise, once the strong consistency (3) of the two methods is proved.
However, there is a subtle point: it is not clear a priori whether a formal connection between
static and TAP approaches is valid only for the correct full RSB solution of the SK model, or if
such a connection is preserved at each finite (though approximated) level of replica symmetry
breaking. Our result shows that this second scenario is the correct one.

A further, highly nontrivial consistency check of the static and TAP approaches comes
from a comparison of the TAP complexity with the complexity computed by means of
constrained thermodynamics, which results in the Legendre transform construction of [21].
Within this method the complexity is given by the Legendre transform of the thermodynamic
free energy of the system, thus establishing a connection between TAP and static methods at
a generic value of f . We will prove that, as in the p-spin spherical model, in the SK model
the TAP complexity, once the BRST relations are considered, coincides with the complexity
of [21].

In section 2 we introduce the BRST supersymmetry in the context of the TAP approach,
and derive the BRST relations that will be used in the rest of the paper. In section 2 we
show how the BRST relations enforce the DDY proof of (3), without the need of any extra
hypothesis. In section 4 we present the BM calculation of the SK complexity, exploiting
the BRST supersymmetry, and in section 5 we show the connection between our results and
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the Legendre transform method for the computation of the complexity. Finally, we draw our
conclusion in section 6.

2. The BRST supersymmetry in the TAP context

In this section we show why the BRST supersymmetry is helpful in the context of the TAP
approach. This is just a specific example of the application of the supersymmetric formalism
to statistical mechanics, and in particular to the field of disordered systems [25–29]. As we
have seen, the TAP free energy FTAP is a function of the local magnetizations mi , and the
minima of this function are identified with the metastable states of the system (TAP states). In
the rhs of equation (3) we have a typical example of a sum over different TAP states, as often
needed in this approach. In addition to the partition function ZTAP, we may also compute the
density of TAP states (1),

ρ(f ) =
N∑

α=1

δ[FTAP(m
α) − Nf ] (5)

which is the quantity one needs for the computation of the complexity �(f ). In (5), as in (3),
TAP states are labelled by α, and mα indicates the corresponding set of local magnetizations.
More generally, in the TAP context we always have to deal with expressions of the form

R =
N∑

α=1

r[FTAP(m
α)] (6)

r being a generic function of FTAP. The quantity R can be written as

R =
N∑

α=1

∫ ∏
i

dmiδ
(
mi − mα

i

)
r[FTAP(m)]

=
∫ ∏

i

dmiδ(∂iFTAP(m))|det(∂i∂jFTAP(m))|r[FTAP(m)] (7)

where the TAP states have been identified with solutions of the TAP equations ∂iFTAP(m) = 0.
In (7) the modulus of the determinant is quite hard to handle, and due to this it is disregarded in
most supersymmetric calculations3. This approximation is a priori unjustified, since without
the modulus we are weighting each TAP solution with the sign of the Hessian determinant,
with the risk of uncontrolled cancellations. The situation may slightly improve if the function
r(FTAP) is peaked only on low values of the free energy FTAP, as it happens in the calculation
of ZTAP at low temperatures, and of ρ(f ) at low free energies. In these cases, we may hope
that at low temperatures (free energies) only minima of FTAP will dominate the integral in (7).
Minima have positive-defined Hessian, and thus the modulus becomes redundant. Moreover,
the very identification of TAP states with TAP solution is only sensible if these solutions are
minima, rather than generic saddles. Yet, the validity of this scenario should be checked
carefully, as can be done for the p-spin spherical model, where the effect of disregarding
the modulus is completely under control, due to the fact that the free energy distribution of
minima and saddles is completely known [30]. In the SK model we do not have such a precise
information about the TAP free energy saddle points, and therefore dropping the modulus is
quite risky. However, our aim here is to show that all the classic TAP calculations (where

3 For an illuminating discussion of the problem of removing the determinant in the supersymmetric formalism see
[28]. This same problem was already taken into consideration in [25, 26].
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the modulus was disregarded) are formally consistent with the standard static approach, thus
justifying a posteriori this approximation.

We can use an exponential representation for the δ function and the determinant,∏
i

δ(∂iFTAP) =
∫ +i∞

−i∞

∏
i

dxi

2π i
exp

(∑
i

xi∂iFTAP(m)

)
(8)

det(∂i∂jFTAP) =
∫ +∞

−∞

∏
i

dψ̄i dψi exp


∑

ij

ψ̄ iψj ∂i∂jFTAP(m)


 (9)

where {ψ̄, ψ} are anti-commuting Grassmann variables. In this way we can write [27]

R =
∫

DmDxDψ̄Dψ eS(m,x,ψ̄,ψ) (10)

where the action S is given by

S(m, x, ψ̄, ψ) =
∑

i

xi∂iFTAP(m) +
∑
ij

ψ̄ iψj ∂i∂jFTAP(m) + w[FTAP(m)]. (11)

In the case r is an ordinary function we have w = log r , while if r(FTAP) = δ(FTAP) then
w = uFTAP, where u is an imaginary integration variable to implement the δ function (see
the next section). The measures in (10) include the sum over the indices and the constant
prefactors. A key property of action (11) is its invariance under a generalization of the Becchi–
Rouet–Stora–Tyutin (BRST) supersymmetry [16, 17] (see also [27]): if ε is an infinitesimal
Grassmann parameter, it is straightforward to verify that (11) is invariant under the following
transformation:

δmi = εψi δxi = −εw′ψi δψ̄i = −εxi δψi = 0 ⇒ δS = 0. (12)

This generalization of the standard BRST supersymmetry to the case where w �= 0 has been
first introduced in [23], in the context of a TAP calculation for the p-spin spherical model.
The BRST invariance does not depend on the explicit form of the function FTAP(m), but
simply on the formal structure of action (11). In particular, it is essential that w is a function
of the magnetizations mi only through FTAP(m). The fact that δS = 0 under the BRST
supersymmetry implies that the average of any observable of the same variables performed
with this action must be invariant too. For an observable O,

〈O(�)〉 =
∫

D�O(�) eS(�) (13)

with � = {m, x, ψ̄, ψ}, we have

〈O(�)〉 − 〈O(� − δ�)〉 = 〈δO(�)〉 = 0. (14)

This property can be used to generate some useful Ward identities. A fruitful choice is
O = mk

i ψ̄ i and O = xk
i ψ̄ i , whose variation gives

k
〈
mk−1

i ψ̄ iψi

〉 = −〈
mk

i xi

〉
(15)

k
〈
xk−1

i w′ψ̄ iψi

〉 = 〈
xk

i xi

〉
. (16)

In particular, the case k = 1 gives the BRST equations already used in [23],

〈ψ̄ iψi〉 = −〈mixi〉 [BRST1] (17)

〈w′ψ̄ iψi〉 = 〈xixi〉 [BRST2]. (18)

The BRST relations are crucial. Thanks to them we will be able to prove in general that any
TAP average must give the same result as the equivalent thermodynamic average, and more
specifically to reduce the TAP calculation of the complexity to the standard replica calculation
of the free energy.
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3. The De Dominicis–Young calculation revisited

In 1983, De Dominicis and Young [12] (DDY) introduced the statistical weight (2) for the
TAP states and explicitly proved that under a key hypothesis the average of the replicated TAP
partition function is equal to the average of the replicated standard partition function, i.e.∫

DJP (J )Zn(J ) =
∫

DJP (J )Zn
TAP(J ) (19)

which is the practical way to write equation (3). This result is very important, because it
proves the identity of the TAP and static approaches before any Ansatz for the overlap matrix
is done. The hypothesis that DDY invoked to justify their computation is that the complexity
of the dominant TAP states at any temperature is zero. More precisely, we can write

ZTAP =
∫

df ρ(f ) exp[−βNf ] =
∫

df exp[−βN(f − T �(f ))]

= exp[−βN(f � − T �(f �))] (20)

where the dominant free energy f � is solution of the equation

β = ∂�(f �)

∂f
. (21)

DDY assumed as a necessary condition that

�(f �) = 0. (22)

In the present section we argue that although relation (22) is in fact verified in the SK model, it
is not a necessary condition for the self-consistency of the TAP approach and for its equivalence
with the statics.

3.1. The problem and its solution in the DDY formulation

Let us briefly summarize the arguments of DDY leading to condition (22) (in order to keep the
notation as clear as possible we treat m as a one-dimensional variable in this section; things
do not change with the full N-dimensional representation). First, we introduce an auxiliary
magnetic field h both in FTAP(m) through the term −hm, and in the Hamiltonian H(σ) with
−hσ . From the very definition of equilibrium magnetization and energy we trivially have

1

β

∂Z

∂h
=

∑
σ

σ exp[−βH(σ)] = 〈σ 〉Z (23)

−∂Z

∂β
=

∑
σ

H(σ) exp[−βH(σ)] = 〈H 〉Z. (24)

On the other hand, from (3) we get

1

β

∂ZTAP

∂h
= X −

N (h,β)∑
α

∂FTAP(mα)

∂h
exp[−βFTAP(mα)] = X + 〈σ 〉Z (25)

−∂ZTAP

∂β
= Y +

N (h,β)∑
α

∂FTAP(mα)

∂β
exp[−βFTAP(mα)] = Y + 〈H 〉Z. (26)

To obtain this result we used the following relation,

−∂FTAP(mα)

∂h
=

∑
σ∈α

σ exp[−βH(σ)] (27)
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where the sum over σ is restricted to those configurations belonging to state α (an analogous
relation is valid for ∂FTAP/∂β). On the other hand, in equations (25), (26) X and Y are the
contributions coming, respectively, from the dependence on h and β of the total number of TAP
states, N (h, β). DDY correctly noted that X = 0 and Y = 0 are necessary conditions for the
consistency of the TAP approach. Moreover, by using (20), they noted that if �(f �) = 0, these
extra contributions are indeed vanishing in the thermodynamic limit, and thus consistency is
recovered. Thus, DDY assumed �(f �) = 0 and accordingly imposed X = Y = 0 in their
computation. More precisely, after averaging over the disorder, the relations X = Y = 0
become two equations for the auxiliary fields (equations (32) and (42) of [12]), which DDY
used to prove (3). Our point, however, is that the equations X = Y = 0 are always satisfied,
irrespective of the value of �(f �).

3.2. Role of the supersymmetry

We now show that the mathematical conditions on the auxiliary variables that DDY impose are
nothing else than the BRST relations, which are valid in general, and contain no information
on �(f �). Let us define

G(m, h) = ∂(βFTAP)

∂m
r(m, h) = e−βFTAP(m,h). (28)

We consider relation (23) (a similar reasoning can be easily done also for relation (24)) and
use the integral representation of section 2 for ZTAP to obtain

∂ZTAP

∂h
= −

∫
dm dx x exG(m,h) ∂G

∂m
r(m, h) +

∫
dm dx exG(m,h) ∂G

∂m

∂r

∂h
. (29)

In this expression the first term is X, whereas the second term is just 〈σ 〉Z. Integrating by
parts we have

X =
∫

dm δ(G(m, h))
∂r

∂m
. (30)

At this point note that for a generic function r(m, h) there is no need for X to be zero, in much
the same way as action (11) is not BRST invariant if r is not a function of FTAP. If, however,
r(h,m) = r(FTAP(m, h)), as in the case under examination, we have

X =
∫

dm δ(G(m, h))G(m, h)
∂r

∂FTAP
= 0. (31)

Thus, the extra term coming from the differentiation of N (h, β) with respect to h vanishes
if the TAP states are weighted with a function of the TAP free energy. A similar conclusion
can be easily drawn for differentiation with respect to β, which leads to Y = 0. In particular,
these relations hold in the case r(FTAP) = exp(−βFTAP), which is the one analysed by DDY.

The important fact is that from a mathematical point of view, X = 0, Y = 0 are
consequences of the particular form of action (11), and of its symmetry properties. Indeed, if
we express (23) and (24) in the supersymmetric representation (13), we get

X = 〈x〉

Y =
〈[

x + ψ̄ψ
∂

∂m

]
∂G

∂β

〉
=

∑
k

ck〈mkx〉 + k〈mk−1ψ̄ψ〉 (32)
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with

ck = 1

k!

∂k

∂mk

∂G

∂β
. (33)

A comparison between (32) and (15) clearly shows that the relations X = 0 and Y = 0 are
a direct consequence of the BRST symmetry. Thus, the relations imposed by DDY in the
calculation of Zn

TAP, and in their demonstration of the equivalence between TAP and static
averages, are a consequence of the BRST supersymmetric form of the TAP action (11). These
relations are therefore not the expression for the absence of an extensive complexity of the
equilibrium states, i.e. they do not imply �(f �) = 0. For this reason, the result of DDY
is more general than what originally thought. This is consistent with the fact that a similar
formal connection between TAP and static approaches is valid in the p-spin spherical model,
where, in a certain range of temperature, �(f �) > 0.

3.3. Disregarding the modulus

Before closing this section, here is a word of caution on the modulus of the determinant
[26, 28, 30]. As already noted above, disregarding the modulus can be very risky, especially
if the function r(FTAP) weighting the TAP states in (6) is not peaked on low free energies, and
thus minima. As an extreme illustration of this risk we consider the function r(FTAP) = 1.
Clearly, from (6) we have

R(h) = N (h) ⇒ dR

dh
= dN

dh
�= 0. (34)

However, if we use for R the integral representation (7) and disregard the modulus, we obtain

dR

dh
= 0 (35)

since the BRST supersymmetry is trivially satisfied with r(FTAP) = 1. The problem here is
that by disregarding the modulus, and with a flat weight r, we are summing over all stationary
points of FTAP, each multiplied by the sign of the determinant. The Morse theorem states that
this quantity must be a topological constant, only dependent on the manifold over which FTAP

is defined and on the boundary conditions on FTAP. Result (35) is therefore correct, but the
quantity in this equation is not the same R(h) as in (34). This trivial example shows how
important is to weight TAP solutions with a function peaked as much as possible on low free
energies when the modulus is disregarded.

4. The Bray–Moore calculation revisited

In the present section we will compute the annealed complexity of the TAP states for the
SK model, following closely the classic calculation of Bray and Moore (BM) [7]. Our new
contribution will be to exploit the BRST relations (17) and (18) in order to simplify the
resulting saddle-point equations. In this way we will prove that the complexity is intimately
connected to the 1RSB static free energy.

4.1. General definitions

The TAP free energy for the SK model is given by [6]

FTAP(m) = −1

2

∑
ij

Jijmimj +
1

β

∑
i

φ0(q,mi) (36)
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with

φ0(q,m) = 1

2
(1 + m) log

[
1

2
(1 + m)

]
+

1

2
(1 − m) log

[
1

2
(1 − m)

]
− β2

4
(1 − q)2

= 1

2
log(1 − m2) + m tanh−1(m) − log 2 − β2

4
(1 − q)2. (37)

The variables mi are the local magnetizations, and q is the self-overlap of the TAP states,

q = 1

N

∑
i

m2
i (38)

while the quenched couplings J are random variables with Gaussian distribution,

P(Jij ) =
√

N/2π exp
( − NJ 2

ij /2
)
.

The TAP equations and the Hessian of the free energy are respectively,

β∂iFTAP(m) = −β
∑
j �=i

Jijmj + φ1(q,mi) = 0

β∂i∂jFTAP(m) = −βJij + φ2(q,mi)δij

with

φ1(q,m) = β2(1 − q)m + tanh−1(m)

φ2(q,m) = β2(1 − q) +
1

1 − m2
+ O(1/N).

(39)

The term of order 1/N in φ2(q,m) will be dropped in what follows. Following BM we perform
an annealed calculation of the number of TAP states, i.e. we directly average ρ(f, β|J ) in (5)
over the distribution of the quenched couplings Jij ,

N (β, f ) =
∫

DJP (J )ρ(f, β|J ).

We use for ρ the integral representation of equations (10) and (11), with

δ(FTAP − Nf ) =
∫ +i∞

−i∞

du

2π i
exp[u(FTAP − Nf )] (40)

and thus w(FTAP) = u(FTAP − Nf ) and w′ = u. Thus, the average number of TAP states
becomes

N (β, f ) =
∫

DJP (J )DmDx Dψ̄ Dψ du eβS(m,x,ψ̄,ψ,u) (41)

where we have multiplied the action by β in order to keep our calculation as close as possible
to BM. Before proceeding we mention an important point: in the calculation of BM the
J -dependent part of FTAP(m) in S is eliminated by using the equations ∂iFTAP(m) = 0, which
are enforced by the δ function. More specifically, BM use the equation

−1

2

∑
ij

Jijmimj = − 1

2β

∑
i

miφ1(q,mi) (42)

which is valid in the TAP states. This substitution simplifies considerably the calculation,
but unfortunately the action obtained in this way is no longer BRST invariant. Thus, in the
present calculation we must use the full form of FTAP(m), equation (36), and for this reason
some parts of the calculation differ from BM.
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4.2. The calculation

The J -dependent part of the action in (41) is given by

βSJ = −β
∑
ij

Jij

(
ximj + ψ̄ iψj +

1

2
u mimj

)
(43)

and after averaging N over the disorder we obtain the new effective action

βS =
∑

i

xiφ1(q,mi) +
∑

i

ψ̄ iψiφ2(q,mi) + u
∑

i

φ0(q,mi) − Nβuf +
β2q

2

∑
i

x2
i

+
β2

2N

(∑
i

mixi

)2

− β2

2N

(∑
i

ψ̄ iψi

)2

+ N
β2

4
u2q2 + β2uq

∑
i

mixi. (44)

In order to linearize the quadratic terms, we introduce in (41) the following δ functions,

δ

(
qN −

∑
i

m2
i

)
=

∫ +i∞

−i∞

dλ

2πi
e−λqN+λ

∑
i m2

i (45)

δ

(
RN −

∑
i

mixi

)
=

∫ +i∞

−i∞

dr

2πi
e−rRN+r

∑
i mixi (46)

δ

(
T N −

∑
i

ψ̄ iψi

)
=

∫ +i∞

−i∞

dt

2πi
e−tT N+t

∑
i ψ̄ iψi (47)

and integrate over q,R and T. In this way the integrals in xi and (ψ̄ i, ψi) become Gaussian
and can be performed explicitly. The effective action becomes

βS(�,m) = N�0(�) +
∑

i

L(�,mi) (48)

where � = {q, λ, r, R, t, T , u}, and,

�0(�) = β2

2
R2 − β2

2
T 2 − rR − tT − 1

2
log(2πβ2q) − ufβ − λq +

β2

4
u2q2 + β2uqR

L(�,m) = uφ0(q,m) − 1

2β2q
[φ1(q,m) + rm]2 + log[φ2(q,m) + t] + λm2.

(49)

We can now write the average number of TAP states as

N (β, f ) =
∫

D� eN�0(�)
∏

i

∫
dmi eL(�,mi ) =

∫
D� eN�0(�)+N log

∫
dm eL(�,m)

. (50)

Thanks to the prefactor N in the exponential, the integral in D� can be performed with the
steepest descent method. In this way we can write the complexity �(β, f ) as

�(β, f ) = 1

N
logN (β, f ) = �0(�̂) + log

∫
dm eL(�̂,m) (51)

where �̂ is a solution of the saddle-point equations,

∂�0(�)

∂�
+

〈〈
∂L(�,m)

∂�

〉〉
= 0 (52)

with

〈〈O(m)〉〉 = 1∫
dm eL(�,m)

∫
dmO(m) eL(�,m). (53)
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We can reduce the number of variables by directly solving the saddle-point equations for R
and T,

∂�0

∂R
= 0 ⇒ R = r/β2 − qu

(54)
∂�0

∂T
= 0 ⇒ T = −t/β2.

In order to have expressions as similar as possible to the ones of BM, we define

B = β2(1 − q) + t � = −β2(1 − q) − s. (55)

Using the explicit forms of φ1, φ2 in (39), and relations (54) and (55), we can rewrite (49) as

�0(�) = −λq − βuf − (B + �)(1 − q) +
(B2 − �2)

2β2

− 1

2
log(2πβ2q) − β2

4
u2q2 − uq� − β2uq(1 − q) (56)

L(�,m) = log

(
1

1 − m2
+ B

)
− [tanh−1(m) − �m]2

2β2q
+ λm2 + uφ0(q,m) (57)

where φ0 is given in (37). The remaining saddle-point equations (52) for the variable
{λ, u,B,�, q} are

∂�

∂λ
= 0 ⇒ q = 〈〈m2〉〉 (58)

∂�

∂u
= 0 ⇒ βf = 〈〈φ0(q,m)〉〉 − β2

2
uq2 − q� − β2q(1 − q) (59)

∂�

∂B
= 0 ⇒ B

[
1 − β2

〈〈
(1 − m2)2

1 + B(1 − m2)

〉〉]
= 0 (60)

∂�

∂�
= 0 ⇒ � = −β2

2
(1 − q) +

1

2q
〈〈m tanh−1(m)〉〉 − β2

2
uq (61)

∂�

∂q
= 0 ⇒ λ = B + � − 1

2q

{
1 − 1

β2q
〈〈[tanh−1(m) − �m]2〉〉

}

+ u

〈〈
∂φ0(q,m)

∂q

〉〉
−

[
β2

2
u2q + u� + β2u(1 − 2q)

]
. (62)

These equations, together with relations (56) and (57), can be compared with equations (15)–
(17) of BM [7]. The differences are due to the different representation of FTAP(m) we have
taken, in order to preserve the BRST supersymmetry. However, the final result, i.e. the values
of �0 and L in the solution of the saddle-point equations, is exactly the same (in the last of
equations (17) of BM, however, there is a term u∂f/∂q missing). Of course, if we set u = 0,
i.e. if we do not impose the constraint on the free energy, our expressions become formally
identical to BM.

4.3. Role of the supersymmetry and connection with the statics

Solving the saddle-point equations above, even numerically, is not a simple task. However,
the problem becomes much easier if we make use of the two BRST relations (17) and (18).
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From (47), (54) and (55), we have

〈ψ̄ iψi〉 = T = −t/β2 = −B/β2 + (1 − q)

〈ximi〉 = R = r/β2 − qu = −�/β2 − (1 − q) − qu

and thus the first BRST equation becomes

B + � = −β2qu [BRST1]. (63)

In order to write the second BRST equation we need 〈xixi〉, which can be computed from
equation (44),

〈xixi〉 = − 1

β2q

{
1 − 1

β2q
〈〈[tanh−1(m) − �m]2〉〉

}
.

In this way the second BRST relation becomes (we recall that w′ = u)

1

q

{
1 − 1

β2q
〈〈[tanh−1(m) − �m]2〉〉

}
= u[B − β2(1 − q)] [BRST2]. (64)

Equation (60) admits the solution B = 0, and following BM this is the solution we adopt.
Setting B = 0 into the first BRST relation we obtain

� = −β2qu (65)

while substituting equation (37) and the second BRST relation into (62), we find

λ = 1
2β2u2q. (66)

We now use these two results (65) and (66) to rewrite the complexity �(β, f ) in (51). By
making the change of variable m → h = tanh−1(m) in the integral in (51), and using (56) and
(57), we obtain

�(β, f ) = u

{
−log 2 − 1

2u
log(2πβ2q) +

β2

4
[(−u − 1)q2 + 2q − 1]

+
1

u
log

∫
dh eF(h;q,u)

}
− βuf (67)

with

F(h; q, u) = − h2

2β2q
− u log cosh h. (68)

This form of the complexity can be fully appreciated by recalling the expression for the free
energy of the SK model at the one-step level of replica symmetry breaking (1RSB). The 1RSB
free energy density is given by [4]

βF1RSB(β; q1, x) = −log 2 +
1

2x
log(2πβ2q1) +

β2

4

[
(x − 1)q2

1 + 2q1 − 1
]

− 1

x
log

∫
dh eF(h;q1,−x) (69)

where the self-overlap q1 and the breaking point x satisfy the saddle-point equations
∂F1RSB/∂q1 = 0, ∂F1RSB/∂x = 0, and where we have set to zero the mutual overlap q0.
Clearly, we see that there is a striking formal correspondence between � and F1RSB. Indeed
we have

�(β, f ; q, u) = βu[F1RSB(β; q,−u) − f ] (70)

and,

0 = ∂�

∂q
= βu

∂F1RSB(β; q,−u)

∂q
(71)
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0 = ∂�

∂u
= βu

∂F1RSB(β; q,−u)

∂u
+ β[F1RSB(β; q,−u) − f ]. (72)

Therefore the saddle-point equations for � and F1RSB coincide, provided that f =
F1RSB(β; q1, x). Moreover, for f = F1RSB we trivially have

�[β, F1RSB(β; q1, x)] = 0 (73)

and therefore f0 = F1RSB: as expected, and anticipated in the introduction, the lowest TAP
states have the static free energy density.

The fact that q1 = q and x = −u, at f0 can also be obtained by directly setting
f = f0 = F1RSB in the saddle-point equations (58)–(62). From (59) and (61), after some
algebra, we obtain

−1

4
β2q2u +

1

2u
log(2πβ2q) − 1

u
log

∫
dh eF(h;q,u) − 〈〈log cosh h〉〉 = 0 (74)

while equation (58) becomes

1 + β2qu[(u + 1)q − 1] − 1

β2q
〈〈h2〉〉 = 0 (75)

where the averages 〈〈·〉〉 are now performed with the distribution exp[F(h; q, u)] of (68).
Once we set u = −x and q = q1 equations (74) and (75) coincide with the 1RSB saddle-point
equations, i.e. ∂F1RSB/∂x = 0 and ∂F1RSB/∂q1 = 0 [4]. Summarizing, the complexity �

vanishes at the 1RSB free energy density, and at this point the two calculations are formally
equivalent, since the saddle-point parameters coincide, and � and F1RSB are related by
equation (70).

Some considerations are in order. First, this identification of the saddle-point parameters
in the two calculations has a clear physical meaning,already discussed in [23]. The self-overlap
q1 of the 1RSB states is just the same as the self-overlap of the TAP states at f = F1RSB.
Less obvious is the relation u = −x, since the 1RSB breaking point x does not seem trivially
related to the parameter u. However, we must note that

d�(f )

df
= −βu(f ) (76)

and thus −βu(F1RSB) is the slope of the complexity at the lowest free energy, which is indeed
equal to the static breaking point βx.

Secondly, we recall that we have set q0 = 0 in the 1RSB calculation. This is due to
the fact that we performed an annealed computation of �, and thus we only had one value
of the overlap. We believe that a quenched, but replica symmetric, calculation of � will be
equivalent to the 1RSB static calculation with q0 �= 0. This brings us to the final point: the
TAP method has one less step of replica symmetry breaking as compared to the standard static
one. This is simply due to the fact that the elementary objects in the TAP approach are states,
while in the static one are configurations. For this reason, a model as the p-spin spherical spin
glass, which is exactly solved by a 1RSB Ansatz, has a complexity which is exactly replica
symmetric. In the SK model, however, which needs a full RSB static solution, also the correct
complexity will need to be computed at a full RSB level [23].

4.4. Numerical solution of the saddle-point equations

We now consider the saddle-point equations for � at a generic value of f � F1RSB. We are
left with two unknown variables, q and u, and with three unused equations, that is (58), (59)
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Figure 1. Complexity � as a function of the free energy density difference f − F1RSB(β), for
T = 0.7Tc .

and (61). However, by using the BRST relations it is possible to show that actually equations
(58) and (61) coincide. To prove this fact, one must use the formula

〈〈h2〉〉 = β2q − β4q2u + β4q2u(u + 1)〈〈tanh2 h〉〉 (77)

in (64), and then substitute this second BRST relation into either (58) or (61). Thus, the two
remaining saddle-point equations for q and u, (58) and (59), become

q = 〈〈tanh2 h〉〉
(78)

βf + 〈〈log cosh h〉〉 +
β2

4
[q2(1 + 2u) − 2q + 1] + log 2 = 0

where the formula
1
2 log(1 − m2) = − log cosh h

was used. It is not difficult to solve numerically the two equations above, and this shows how
drastic is the simplification of the calculation due to the use of the BRST supersymmetry. In
figure 1 we plot � as a function of f − F1RSB(β), at T = 0.7Tc (we recall that Tc = 1).
The system of equations (78) have solution only up to a threshold value f = fth(β), where
the complexity takes its maximum value �th. The threshold free energy turns out to be quite
close to F1RSB(β). An expansion of the equations close to Tc shows that fth = F1RSB + O(ε5),
where ε = Tc − T , whereas q = O(ε) and u = O(ε).

An interesting comparison with the result of BM can be done by computing the total
complexity of TAP solutions, �tot. BM obtain this quantity by removing the constraint given
by the δ function on the free energy, that is by setting u = 0 in the saddle-point equations and
in the complexity. The complexity �tot that BM find in this way is nontrivial (figure 1 of [7]).
If we set u = 0 in our equation (67), however, we obtain a trivial result, that is � = 0. This is
consistent with our initial remarks on the modulus of the determinant: without the constraint
on the free energy we are counting all the stationary points of the TAP free energy, each one
weighted with the sign of the determinant. This quantity must be a topological invariant due
to the Morse theorem, and thus the complexity must vanish. The fact that this happens in
our calculation and not in the calculation of BM shows that the BRST symmetry selects the
saddle-point solution which preserves Morse’s invariance.
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Figure 2. The threshold complexity �th as a function of the temperature. Due to the exponential
form of the number of states, �th is also the total TAP complexity of the system.

In order to obtain �tot in our case we simply note that at each temperature the dominant
value of the complexity is given by its maximal value, and therefore �tot(T ) = �th(T ).
Thus, the (annealed) average global number of solutions of the TAP equations is given by
Ntot(T ) ∼ exp(N�th(T )). The threshold values fth and �th can be obtained by requiring that
the system of equations (78) ceases to have solution, i.e. by imposing a marginality condition
on their Hessian. The quantity �th(T ) is plotted in figure 2: it turns out to be considerably
smaller than the non-BRST symmetric value of [7]. This might be one of the reasons why
it is so difficult to find solutions of the TAP equations numerically. A numerical analysis of
�tot(T ) shows that it goes to zero for ε = Tc − T → 0 as

�tot(T ) = 0.01ε6 + O(ε7). (79)

We conclude this section with an interesting remark on the comparison between the SK
and the p-spin spherical model. In the p-spin model when we compute the complexity without
the constraint on the free energy (i.e. setting u = 0) and without the modulus, we find two
saddle points: a BRST symmetric one, which gives � = 0, as in the SK case, and a non-BRST
symmetric saddle point, which gives a nontrivial complexity, �′ �= 0. In the p-spin spherical
model this second value �′ of the complexity coincides with �th, that is the maximal value
of �(f ) obtained by keeping u �= 0 and which is BRST symmetric. The fact that our result,
figure 2, does not coincide with the result of BM (figure 1 of [7]) shows that this identity does
not hold in the SK model. Thus, the identity �′ = �th seems to be a peculiarity of the p-spin
spherical model.

4.5. The zero-temperature limit of the total complexity

The largest value of the total complexity �tot(T ) is achieved at T = 0. We find

lim
T →0

�tot(T ) = 0.0073. (80)

This value is remarkably smaller than the value �0
tot = 0.199 obtained in [7, 10, 31] by directly

solving the zero-temperature limit of the TAP equations. In this section we want to discuss
this difference and its implications.
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Figure 3. The value of the threshold overlap is used to plot 1 − q as a function of T. The full line
is the best fit to 1 − q = h0T , with h0 = 0.49.

The TAP equations at finite β are given by

mi = tanh{β[hi − β(1 − q)mi]} (81)

where the local field hi is

hi =
N∑

j �=i

Jijmj . (82)

For very large, but finite, β, we can write

mi = sign[hi − β(1 − q)mi] (83)

where the magnetizations are now spin variable, mi = ±1. In the limit β → ∞ we have
q → 1, and thus we must be careful with the expression in the square bracket. Let us write in
general for β � 1,

(1 − q) = h0β
−α α > 0 (84)

such that the TAP equations become

mi = sign

[
hi − h0mi

βα−1

]
. (85)

According to the value of α we have different scenarios. For α < 1 there is no finite limit of
the TAP equations (85). This case is therefore uninteresting. For α = 1, on the other hand,
we have a well-defined zero-temperature limit of the TAP equations, i.e.

mi = sign[hi − h0mi]. (86)

This is our case: in figure 3 we show that in the limit T → 0 the overlap q corresponding to
the threshold (i.e. total) complexity behaves like

q = 1 − h0T h0 = 0.49 (87)

so that α = 1. Thus, the zero-temperature limit of the BRST complexity, �0
tot = 0.0073, is

the complexity of the solutions of equations (86). Note that the T-dependence of the overlap
may be different from (87) at values of the free energy different from the threshold.

In the case α > 1 the zero-temperature limit of the TAP equations (85) yields

mi = sign[hi] . (88)

These are the equations considered in [7, 10, 31] in order to compute the zero-temperature
complexity (in particular, equations (88) were obtained by assuming that q = 1 − O(T 2),
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i.e. α = 2). Therefore, the value �0
tot = 0.0073 we obtain as zero-T limit of the BRST

complexity and the value �0
tot = 0.199 obtained in [7, 10, 31], refer to two different sets of

equations, that is (86) and (88). The fact that solutions of (86) have a much smaller complexity
than those of (88), is due to the fact that the former are actually a subset of the second. Indeed,
from equations (86) we have

|hi| > h0 (89)

for all i, which is a very restrictive condition not necessarily satisfied by the solutions of (88).
We note that equations (85) imply

mihi >
h0

βα−1
(90)

and thus, given a TAP solution, the change in energy �E(K) when we flip K spins satisfies
the relation

�E(K) =
K∑
i

mihi −
K∑
ij

Jijmimj ∼
K∑
i

mihi − K√
N

> K

(
h0

βα−1
− 1√

N

)
. (91)

The condition of stability under K spin flips [33] requires �E(K) > 0. A sufficient (but not
necessary) condition for this to hold is given by

h0

βα−1
− 1√

N
> 0. (92)

In the case α = 1 this condition is trivially satisfied, while for α > 1 the order of the two
limits β → ∞ and N → ∞ becomes important, and the stability under K spin flips may be
trickier to prove. Nevertheless, a word of caution on the concept of stability is in order at this
point. At finite temperature a stable solution of the TAP equations is a local minimum of the
TAP free energy, that is a solution with positive Hessian. Unstable saddle points of the TAP
free energy will exist, typically at high free energies. Unfortunately, at T = 0 this topological
stability is impossible to assess, because of the discrete nature of the model. On the other
hand, the K-spin flip stability is easily defined at T = 0. However, it is not straightforward to
understand what is the relation between these two definitions of stability. We simply note that
we have computed the total complexity by finding the threshold states: for free energies above
the threshold value the saddle-point equations become unstable. Results in continuous mean-
field spin glasses (as the p-spin spherical model) suggest that the threshold may indeed be the
border between topologically stable solutions, that is TAP minima, and unstable saddle points.
It is therefore plausible that our total complexity refers only to TAP minima. The connections
we have discovered between complexity and thermodynamics support this hypothesis.

5. Connection with the Legendre transform approach

As discussed in the previous section there is a precise correspondence between the TAP
computation at the lower band edge f0 and the computation of the thermodynamic free energy
of the system. However, the relation between the TAP approach and the usual static one (which
involves Boltzmann averages) is still deeper: as can be appreciated in (70) there is a formal
connection between the TAP complexity at generic f and the free energy function F1RSB.
These equations also represent an important bridge between the TAP approach and some
different methods to compute the complexity which do not rely on TAP equations, but rather
on constrained thermodynamics [21, 22]. In [21], it is argued that the complexity �(β, f )

of the ergodic components, i.e. states, present at low temperature is given by the Legendre
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transform of the free energy F(β, n) of n coupled real replicas of the original system. More
precisely,

�(β, f ) = max
n

[βnf − βF(β, n)] (93)

where n and f are Legendre conjugated variables, i.e.

f = ∂F (β, n)

∂n
. (94)

If we assume, as is generally accepted, that TAP minima correspond to low-temperature
states, then the complexity computed via equation (93) and the complexity obtained from the
TAP approach should be equal. In other words, we expect the TAP complexity to satisfy
equations (93) and (94).

To establish this point one has first to compute the free energy F(β, n) of the coupled
system with the replica method and choose an appropriate Ansatz. This problem is discussed
for the SK model in [24], where different kinds of Ansatz are analysed: within a generalized
two-group Ansatz for F(β, n), equation (93) is formally satisfied by the BM solution, as
already noted by these authors in [7, 8]. Moreover, a simpler sub-class of two-group saddle-
point solutions exists, which corresponds to the following procedure: F(β, n) at the k-level of
RSB is given by n times the free energy of one system evaluated with k + 1 steps of RSB, and
breaking parameters nx1, nx2, . . . , nxk, n. Thus, at the lowest possible level of RSB (k = 0)

one has

F(β, n) = nF1RSB(β; q1, q0, n) (95)

as also suggested in [21]. With this expression of F(β, n), equation (93) has been verified
within the TAP approach for models which are exactly solved by 1RSB replica solution
[23, 32]. It has also been derived for the Bethe lattice at zero temperature with the cavity
method [15], and seems therefore quite robust. Surprisingly, for the SK model this point was
still unclear, since the BM solution [7], despite its formal correspondence to a more general
two-group static solution, does not appear to satisfy relation (93) with the simpler Ansatz
(95). The reason for this can be understood in the light of the previous section: in [7] BM
do not use the BRST supersymmetry and consequently consider a larger set of solutions than
those physically relevant, much as the generalized two-group Ansatz has a larger set of saddle
points than the simpler Ansatz (95). We therefore may expect that once the BRST relations are
taken into account, as we have done in the previous section, consistency must be recovered.
Indeed, this is precisely what happens: as can be easily verified, once (95) is implemented,
equation (70) is equal to (93), with q0 = 0, q1 = q and n = −u. The parameters q1 and
n are variationally fixed: (72) is equal to (94), while variation with respect to q1 gives back
equation (71).

Thus, also for the SK model, we have demonstrated within the TAP approach the validity
of relation (93). We note that a crucial element to establish this point is the exploitation of
the BRST relations. This is not a surprise since, as discussed in section 3 for equilibrium
averages, the BRST supersymmetry is what mathematically guarantees relations of physical
significance as (23) and (24).

6. Conclusions

In this paper, we have discussed the equivalence between the TAP approach and the standard
thermodynamic method for mean-field spin-glass systems, and have shown that the use of the
BRST symmetry of the TAP action is crucial to establish this equivalence.
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We demonstrated in section 3 that the BRST relations guarantee the mathematical
consistency of the TAP approach and ensure the validity of physically relevant relations.
We have shown that the DDY computation, which establishes for the SK model a formal
connection between the TAP and the thermodynamic partition functions, is generally valid if
the BRST symmetry is taken into consideration, and does not rely on any hypothesis about
the nature of the equilibrium states. Furthermore, we have revisited the BM calculation of the
complexity for the SK model, with the support of the BRST relations. Thanks to them, we have
been able to solve the saddle-point equations at given free energy, we have explicitly shown
the equivalence of the lowest TAP solutions with the thermodynamic equilibrium states and
we have verified the consistency of the TAP computation of the complexity with the Legendre
transform construction.

It should be noted that the BRST relations have a very delicate role due to the presence
of quenched disorder. Indeed, once the average over the disorder is taken and the auxiliary
variables are introduced, the BRST symmetry of the effective action is much less transparent.
In the thermodynamic limit, the auxiliary variables become variational parameters which must
satisfy the saddle-point equations. The solutions of these equations correspond to averaged
quantities (for example, in the BM calculation R = 〈ximi〉) and should therefore satisfy the
appropriate BRST relations. However, these relations are not automatically satisfied by all
the saddle-point solutions. In other words, the set of solutions of the saddle-point equations
in general also includes solutions which are not BRST invariant. Thus, the BRST relations
must be explicitly imposed, providing some additional equations that must be satisfied by the
variational parameters. Besides, as we have seen, this procedure provides a great simplification
in the computation, since it drastically decreases the number of unknown variables.

Our BRST calculation gives a total complexity at T = 0 which is much smaller than the
value previously obtained by other classic calculations. We have shown that technically this
is due to the fact that the BRST saddle point provides a set of TAP equations at T = 0 which
are different from the ones previously considered. In particular, the zero-temperature BRST-
TAP solutions have local fields larger than a finite value h0 at all sites, and this condition is
responsible for the drastic decrease in the complexity. We have outlined what are the possible
physical explanations of this difference, but more study on the T → 0 limit is necessary for a
complete clarification of this point.
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