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In this note we explain the use of the cavity method directly at zero temperature,
in the case of the spin glass on a lattice with a local tree like structure, which is
the proper generalization of the usual Bethe lattice to frustrated problems. The
computation is done explicitly in the formalism equivalent to ‘‘one step replica
symmetry breaking;’’ we compute the energy of the global ground state, as well
as the complexity of equilibrium states at a given energy. Full results are pre-
sented for a Bethe lattice with connectivity equal to three. The main assump-
tions underlying the one step cavity approach, namely the existence of many
local ground states, are explicitely stated and discussed: some of the main
obstacles towards a rigorous study of the problem with the cavity method are
outlined.
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1. INTRODUCTION

The cavity method, initially invented to deal with the Sherrington
Kirkpatrick model of spin glasses, (1, 2) is a powerful method to compute the
properties of ground states in many condensed matter and optimization
problems. It was originally developed at finite temperature, but if one is
mainly interested in the optimization problem concerning the structure of
ground states, it turns out to be easier to apply it directly at zero tempera-
ture, where many of the concepts can be explained in a more straightfor-
ward way. The aim of this note is to discuss the use of the cavity method at
zero temperature. In order to be definite, we will study the concrete case of



a spin glass on the Bethe lattice (the precise definition of the Bethe lattice
which we use for spin glasses is given in Section 2), although the scope of
application of the method is much wider; indeed the best applications of
the formalism we present here are those dealing with optimization
problems, (3) like for instance the K-satisfiability problem (4) or some of its
variants. (5, 6)

The cavity method is in principle equivalent to the replica method, but
it turns out to have a much clearer and more direct interpretation, that
allows in practice to find solutions to some problems which remain rather
difficult to understand in the replica formalism: the replica approach is
very elegant and compact, but it is more difficult to get an intuitive feeling
of what is going on. Also, the cavity approach deals with usual probabilis-
tic objects, and can lend itself to rigorous studies. (7, 8) We shall present it
here at two successive levels of approximation. The first one, corresponding
in replica language to the replica symmetric (RS) solution, is an easy one
and has already been studied a lot. The main aim of the paper is to explain
in some details how one can solve the problems at the level of a ‘‘one step
replica symmetry breaking’’ (1RSB). For years, this was only possible for
systems with infinite range interactions. We have recently found a general
procedure allowing to get this 1RSB solution for problems defined on the
Bethe lattice, (9) and here we explain in some details its use directly at zero
temperature. We shall give an explicit example of this 1RSB solution for
the Bethe lattice spin glass with connectivity equal to three.

The paper is organised as follows: in Section 2 we introduce the Bethe
lattice spin glass, the basic ideas of iterative techniques, and the main
questions which one wants to answer. Section 3 presents the cavity method
when one assumes that there is only one local ground state (the RS
approximation). The 1RSB solution is described in Section 4. The paper
ends with some remarks (Section 5), and is complemented by two appen-
dices: Appendix A shows how the present zero temperature work is con-
nected to the limit T Q 0 of finite temperature analyses, and how this can
be used to estimate the validity of a given level of RSB. Appendix B
explains how the cavity equations can be interpreted from a variational
point of view. Appendix C contains some miscellaneous comments on the
definition of the local ground states.

2. GENERALITIES

We consider an Ising spin glass model on a special class of random
lattices which we call Bethe lattice. This is defined here as as a random
lattice with fixed connectivity k+1. Such graphs locally look like a portion
of a Cayley tree, but they display loops at large distances (of length of
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order log(N)/log(k), where N is the number of points in the lattice). In
unfrustrated problems, the Bethe lattice is defined as the interior of a large
Cayley tree, but this definition is not appropriate for frustrated systems like
spin glasses, where the presence of loops is essential to insure the existence
of frustration. It has been argued in ref. 9 that the natural generalization of
the Bethe lattice to frustrated systems is provided by the random lattices
with fixed connectivity which we study here. Notice that in these systems,
the frustration and the disorder are due to the presence of loops, and thus
occur only on large scales. Locally, the structure around almost all point is
tree-like.

Spins are located at the vertices of the graph, and interact with neigh-
bouring spins with exchange couplings. In the spin glass case the Hamiltonian
is defined as:

H=−C
OijP

Jijsisj. (1)

The sum is over all links of the lattice (there are k+1 links incoming onto
each site i). For each link OijP the coupling Jij is an independent random
variable chosen with the same probability distribution P(J).

One of our aims is to compute, in the infinite N limit, the value of the
energy density of the global ground state (GGS), which is the configuration
of Ising spins si= ± 1 which minimizes the Hamiltonian. More precisely
the ground state energy of a N spin system, averaged over the distribution
of samples (i.e., both over the choices of random graphs, and the values of
the couplings) will be denoted by EN. We want to compute

U= lim
N Q .

EN

N
. (2)

We are also interested in computing, in the same limit, the number of
local ground states (LGS) with a given energy, where a LGS is defined as
a configuration whose energy cannot be decreased by flipping a finite
number of spins (when N Q .).

The basic locally tree-like structure is best exploited by an iterative
method that has been called, in the context of spin glasses, the cavity
method. Let us introduce an intermediate object which is a spin glass
model with N spins, on a slightly different random lattice, where q
andomly chosen ‘‘cavity’’ spins have only k neighbours, while the other
N − q spins all have k+1 neighbours (see Fig. 1). We call such a graph a
GN, q ‘‘cavity graph.’’ The cavity spins are fixed, their values are s1,..., sq. The
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Fig. 1. An example, for the case k=2, of a GN, 6 cavity graph where q=6 randomly chosen
cavity spins have 2 neighbours only. All the other N − 6 spins outside the cavity are connected
through a random graph such that every spin has k+1=3 neighbours.

GGS energy of the corresponding spin glass model obviously depends on
the values of the cavity spins.

While our primary interest is in the ground state configurations on
GN, 0 graphs, the intermediate construction of GN, q is helpful. The basic
operations which one can perform on cavity graphs are the following (see
Figs. 2 and 3):

• Iteration: By adding a new spin s0 of fixed value into the cavity,
connecting it to k of the cavity spins say s1,..., sk, and optimizing the
values of these k spins, one changes a GN, q into a GN+1, q − k+1 graph:

dN=1, dq=−k+1. (3)

N-6

1                                          2 

5

6

σ σ

σ

σ

σ4

σ3

N-6

1                                          2

3

45

6

σ σ

σ

σσ

σ

Fig. 2. Starting from the GN, 6 cavity graph, one can either add two sites (left figure) and
create a GN+2, 0 graph, or add three links (right figure) and create a GN, 0 graph.
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Fig. 3. In the iteration procedure, one adds a new spin into the cavity, and connects it to k
randomly chosen cavity spins, with some randomly chosen couplings. Here an example with
k=2.

• Link addition: By adding a new link between two randomly chosen
cavity spins s1, s2, and optimizing the values of these 2 spins one changes a
GN, q into a GN, q − 2 graph:

dN=0, dq=−2. (4)

• Site addition: By adding a new spin s0 into the cavity, connecting it
to k+1 of the cavity spins say s1,..., sk+1, and optimizing the values of the
k+2 spins s1,..., sk+2, one changes a GN, q into a GN+1, q − k − 1 graph:

dN=1, dq=−k − 1. (5)

In particular (see Fig. 2), if one starts from a GN, 2(k+1) cavity graph and
perform k+1 link additions, one gets a GN, 0 graph, i.e., our original spin
glass problem with N spins. Starting from the same GN, 2(k+1) cavity graph
and performing 2 site additions, one gets a GN+2, 0 graph, i.e., our original
spin glass problem with N+2 spins. Therefore the variation in the GGS
energy when going from N to N+2 sites (EN+2 − EN) is related to the
average energy shifts DE (1) for a site addition, and DE (2) for a link addition,
through:

EN+2 − EN=2 DE (1) − (k+1) DE (2). (6)

Using the fact that the total energy is asymptotically linear in N, the energy
density of the ground state is finally

U= lim
N Q .

EN/N=
EN+2 − EN

2
=DE (1) −

k+1
2

DE (2). (7)
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An intuitive interpretation of this result (for even k+1) is that in order
to go from N to N+1 one should remove (k+1)/2 links (the energy for
removing a link is minus the energy for adding a link) and then add a site.
There are several alternative derivations and expressions of this energy
density, (10) but the previous one is the simplest one for our purpose.

3. ‘‘REPLICA SYMMETRIC’’ SOLUTION

3.1. General Case

When q/N ° 1, generically, the distance on the lattice between two
generic cavity spins is large (it diverges logarithmically in the large N limit).
It is thus reasonable to assume that the various cavity spins become
uncorrelated. This is the basic assumption of the RS solution, although it
is in general not explicitly formulated. Several papers have worked out
this RS solution in details at all temperatures. (11–19) Here we are presenting
for completeness the zero temperature version of this RS approach, the
modifications induced in the 1RSB case will be explained below. This RS
assumption amounts to saying that the GGS energy of a GN, q spin glass can
be written as an additive function of the values of the q cavity spins:

E({s})=E0 − C
q

i=1
hisi. (8)

The quantities hi, that we call the local cavity fields, depend on the sample.
When considering the ensemble of random cavity graphs, they are inde-
pendent identically distributed (iid) random variables, and their distribu-
tion is denoted P(h). The computation of P(h) will be a crucial step in our
approach. The reader should notice that in general there is no simple
expression for the local cavity fields of the type: hi — ; k Jiksk: These fields
are related to the difference in energy of two GGS with flipped cavity spins,
and these two GGS may in principle differ in an arbitrarily large number of
spins. Indeed the quantity E({s}) is computed by minimizing the energy as
function of the other N − q spins for fixed values of the q cavity spins.

The key hypothesis of the RS treatment is that the GGS of the spin
glass before and after any of the previous graph operations (e.g., iteration)
are related. Equivalently one should assume that the perturbation corre-
sponding to the variation of one of the cavity spins remains localized and it
does not propagate to the whole lattice. Under this hypothesis (whose
consistency can be checked and, as we shall see later, is not always correct)
a self consistent equation for this distribution is easily found by considering
the iteration procedure (see Fig. 3). We add a new spin in the cavity, fix its
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value to s0, and connect it to the spins s1,..., sk through a new set of cou-
pling constants J1,..., Jk. Each of the spins si, i ¥ {1, ..., k}, sees a local
magnetic field hi+Jis0, and has to point into the direction of this field in
order to minimize its energy (if the local field is zero this spin is free to
point in any direction). The energy of the link between s0 and si is thus:

Ei=min
si

(−hi − Jis0) si=−|hi+Jis0 | — − a(Ji, hi) − s0u(Ji, hi), (9)

where an elementary computation gives:

u(Ji, hi) — 1
2 (|hi+Ji | − |hi − Ji |),

a(Ji, hi) — 1
2 (|hi+Ji |+|hi − Ji |)=|hi |+|Ji | − |u(Ji, hi)|.

(10)

This shows in particular that the new local field on site 0, i.e., the coeffi-
cient of s0 in the expression for the GGS energy, is given by: (20)

h0= C
k

i=1
u(Ji, hi). (11)

This implies a recursion relation for the distribution P(h):

P(h)=EJ
5F D

k

i=1
[dhi P(hi)] d 1h − C

k

i=1
u(Ji, hi)26 (12)

(Throughout this paper, we use a generic notation EJ[ · ] to indicate the
average over the distribution of all coupling constants and over random
graphs).

Let us suppose that the previous equation is sufficient to determine the
distribution P(h). If we know this distribution we can compute the energy.
The average energy shift due to a site addition is

DE (1)=−EJ
5F D

k+1

i=1
[dhi P(hi)] 1 C

k+1

j=1
a(Jj, hj)+: C

k+1

j=1
u(Jj, hj) : 26 , (13)

and the average energy shift due to a link addition is

DE (2)=−EJ
5F D

2

i=1
[dhi P(hi)] max

s1, s2

(h1s1+h2s2+Js1s2)6 . (14)

These expressions give the ground state energy density through (7).
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3.2. Application to the ±J Model

In order to obtain the RS solution, one must first solve the functional
equation (12) for P(h). This is particularly easy in the case where the cou-
plings are taken from the distribution P(J)=(1/2)(d(J − 1)+d(J+1)).
The definition of the local fields implies that they are integers, and the
functions u and a take simpler forms:

a(J, h)=|h|+dh, 0, u(J, h)=JS(h), (15)

where S(h)=0 if h=0, S(h)=Sign(h) otherwise. In other words the func-
tion S(h) is − 1 or +1 depending on the sign of h and it is zero for h=0.

We can write the most general P(h) in the form

P(h)= C
k

r=−k
prd(h − r). (16)

Furthermore the symmetry of the J distribution, together with (12), implies
that P(h) is symmetric (pr=p−r). The property of the function S(h) implies
that what matters is only the sign of h. The probabilities p+=p− for
having a positive or negative h are obviously given by (1 − p0)/2, where in
our notation (16) p0 is probability of having a zero h. The self consistency
condition (12) now becomes a closed equation for p0,

p0= C
[k/2]

q=0
C2q

k pk − 2q
0

11 − p0

2
22q

Cq
2q, (17)

(where Cq
k=k!/(q!(k − q)!)) and the other coefficients are given by

pr=p−r= C
[(k − r)/2]

q=0
C2q+r

k pk − 2q − r
0

11 − p0

2
22q+r

Cq
2q+r. (18)

If we specialize for simplicity to a Bethe lattice with k=2, the solution
is p0=1/3, p1=2/9, p2=1/9, and the ground state energy is E=−23/18
% − 1.278. All these results were obtained in ref. 17.

We would like to comment here on the fact that the fields are integers.
It was noticed already long ago that, even in the simple RS case, the itera-
tion equations (12) admit some solutions which are not distributed only on
integers, but have a continuous part; in fact a lot of efforts have been
devoted to find ‘‘the best’’ among these solutions. Moreover, if a computa-
tion is done at finite temperature, where no ambiguity is present, and the
results are extrapolated at zero temperature, a continuous part is found in
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this RS case. A detailed computation shows that if, working at zero tem-
perature, one starts from fields that are integer plus a small correction, this
correction is amplified under the iteration procedure until the final distri-
bution is no more concentrated near the integers. In our opinion it is quite
likely that this instability is a signal that the RS solution is incorrect.
A similar effect can be found on the 1RSB solution but it is weaker (see
Appendix A). We believe that whenever one reaches the correct solution
(which in the present case should be full RSB), this artefact will disappear.
Roughly speaking the rational for this belief is the following: the fact that a
small variation of the field in one point propagates and leads to a large
effect throughout the whole lattice is precisely the so called ‘‘replicon’’
instability (that would make the whole approach inconsistent). The RSB
solution was invented just to cure this problem and we know that it is very
successful in doing this. (2)

4. REPLICA SYMMETRY BREAKING AT THE ONE STEP LEVEL

4.1. Basic Hypotheses of the Cavity Method

It is well known that the above result is wrong, (9, 21–25) because the
hypothesis of continuity of the global ground state when we add new spins
or links to the graph is incorrect.

A mechanism leading to the breaking of this continuity hypothesis,
which is not taken into account in the RS approximation, is the existence
of several local ground states (LGS, not to be confused with GGS). By a
LGS here we mean a state whose energy cannot be lowered by flipping
a finite number of spins. Of course such a definition applies only to the
N=. limit. In principle one should define the LGS for a finite system as
being stable with respect to flipping a number of spins less than f(N),
where f(N) is a well chosen increasing function of N, diverging at large N.
Determining the most appropriate form of f is a difficult problem. In its
simplest version, the cavity method assumes the existence of a function
f(N) such that there are many ground states, but does not try to prove it.
Controlling this point would allow one to turn the cavity into a full math-
ematical proof, and has been done so far in only a few non trivial
cases). (7, 8) Here we shall not try to provide this kind of rigorous treatment,
we just want to show how the cavity method works, within its usual
assumptions, and check it through the validity of its results. Some further
comments on the definition and counting of LGS are displayed in
Appendix C. Although the precise definition of LGS is a very subtle issue,
we want to underline that there exists at least one model, rather closely
related to our Bethe lattice spin glass problem, where the present one step
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RSB cavity method can be applied. (5) In this system the LGS can be
characterized and enumerated fully and the results can be checked versus
exact computations done using completely different methods. (5, 6)

In presence of several ground states, the assumption is that there is a
one-to-one correspondence among the LGS before and after the addition
of spins or links (at least for the LGS with low energies). Equivalently we
assume that the perturbation due to the change of the value of a cavity spin
propagates (in the limit N going to infinity) only to an infinitesimal frac-
tion of the lattice. Therefore it is possible to write an iteration procedure
for the whole population of LGS with given energy. However it may well
be that the order of the LGS energies change during the graph operations,
and the GGS after iteration is not the same LGS as the one before.
The problem is to take into account these ‘‘level crossings,’’ which is not
done in the RS solution of the previous section, and is done in the RSB
solutions. Below we shall describe one such solution, which is equivalent to
what is called in replica language the 1RSB solution. One is forced to
follow a large population of the LGS of lowest energy, large enough so
that one can be sure to obtain the GGS when iterating.

Let us state here the postulates of the cavity method, at the level
equivalent to the 1RSB solution in the replica language.

• The cavity spins are uncorrelated within one given LGS. Labelling
by a a LGS of a GN, q spin glass, its energy Ea is given by:

E({s})a=Ea
0 − C

q

i=1
ha

i si. (19)

The previous equation would be wrong for the GGS because the GGS may
correspond to different LGS depending on the value of the cavity spins s.
This extreme sensitivity of the GGS to the variation of a single variable is
typical of hard optimization problems.

• The energies Ea
0 of the LGS of low energy (near to that of the GGS)

are assumed to be iid variables with a distribution given by a Poisson
process of density

r(E0)=exp(m(E0 − Eref)) (20)

where Eref is a reference energy, which is near to the GGS energy, and m is
a parameter whose physical interpretation will be explained in Section 4.4.
This hypothesis is compatible with the idea that LGS are extremes of the
energies, and with the Gumbel universality class for extremes. (26, 27)

• On a given site i, the local cavity fields in the various states, ha
i , are iid

variables taken from the same distribution Pi(h). However the distribution
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Pi(h) fluctuates from site to site, so that the correct order parameter is a
functional Q[P(h)] giving the probability, when one picks up a site at
random to find on this site a cavity field distribution Pi(h)=P(h). (28)

Moreover the cavity fields and the LGS energies are not correlated.

These hypotheses are by no means evident and are likely to be wrong
in many models where subtle correlations exist among the different cavity
fields. This more complex situation can appear, for instance, in cases where
higher order breaking of the replica symmetry is present and it will not be
discussed here. One should note that, while the 1RSB which we discuss
here has a nice interpretation in terms of LGS having independent energies
(and thus a Gumbel distribution), the higher order RSB solutions involve
correlated variables and thus describe new universality classes of extremes.
In the spin glass case which we study here, we expect that an infinite order
of RSB will be needed to solve the problem (as is well known for the
large k case, (29, 2) which is equivalent to the Sherrington Kirkpatrick (SK)
model). (30) The 1RSB which we explore is thus an approximation to the
problem, which usually produces better results than the RS approach. In
the limit where k goes to infinity it is known that the GGS energy per spin
(divided by a normalization factor k−1/2) is − 0.798 in the RS case, − 0.766
in the 1RSB , to be compared with the conjectured correct value − 0.763.

It is interesting to notice that the RS case of only one LGS can be
obtained in this framework by fixing the local distribution to be Pi(h)=
d(h − ai), so that all the LGS are automatically equal. On a given site i, this
distribution is fixed by the single number ai. The various ai’s are iid, taken
from a distribution P(a) which satisfies exactly the RS recursion relation
(12), and the result is m independent, as it should. Alternatively in the limit
where m Q 0, the number of different LGS does no more increase with the
energy, the gap between the two lowest LGS diverges, and thus level cros-
sings can be neglected. We shall see that in this limit we again recover the
RS value of the average energy.

4.2. Self Consistency Under Iteration

Let us study the effect of the iteration, starting from these hypotheses.
When iterating, the new local cavity field, in one given LGS labeled by a, is
given by the same expression as (11):

ha
0= C

k

i=1
u(Ji, ha

i ) (21)
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and the energy of the LGS a is globally shifted from Ea
0 to Ea

0+DEa
0 , where

DEa
0=− C

k

i=1
a(Ji, ha

i ). (22)

The functions u and a are given in (10).
In this case the energy shifts and the local fields on the new spin s0

are correlated. Given a site (and thus fixing the couplings Ji), the pairs
(ha

0 , DEa
0) are iid, taken from a distribution P0(h0, DE0) which can be read-

off from the iteration equations above:

P0(h0, DE0)=F D
k

i=1
[Pi(hi) dhi ] d 1h0 − C

k

i=1
u(Ji, hi)2 d 1DEa

0+ C
k

i=1
a(Ji, hi)2

(23)

Let us call Ea
0 Œ=Ea

0+DEa
0 the LGS energy after adding the new spin s0.

We first note that Ea
0 Œ are iid, described again by a Poisson process with an

exponential density:

r(E −

0)=exp(m(E −

0 − Eref)) F dh0 d(DE0) P0(h0, DE0) exp(−m DE0). (24)

Therefore the exponential distribution is stable under iteration. The only
effect of the iteration is a shift of the reference energy from Eref to some
new value E −

ref.
As we are concerned with the LGS of lowest energies, we should study

the states which have energy close to E −

ref (alternatively, if we want to
follow the population of the M ± 1 LGS with lowest energies, we need to
keep only the states with the lowest new energy). The joint distribution
R0(h0, E −

0) of the local field and the new LGS energy is given by:

R0(h0, E −

0) 3 F dE0 d(DE0) exp(m(E0 − Eref)) P0(h0, DE0) d(E −

0 − E0 − DE0)

3 exp(m(E −

0 − E −

ref)) P −

0(h0), (25)

where

P −

0(h0)=C F d(DE0) P0(h0, DE0) exp(−m DE0)

=C F D
k

i=1
Pi(hi) d 1h0 − C

k

i=1
u(Ji, hi)2 exp 1m C

k

i=1
a(Ji, hi)2 (26)
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the constant C being fixed in such a way that P −

0(h0) is a normalized
probability distribution.

The crucial point is the following: for each given LGS the recursion
for the probability distribution of the h’s is the naive one, i.e., the previous
one with m=0. However if we look at the recursion for the probability
distribution of the h’s, conditioned to a given value of the LGS energy we
find that it depends crucially on m. The probability distribution of the
cavity field in a generic LGS is different from the probability distribution
of the cavity field for a given value of the LGS energy. The two quantities
may be different because we are looking at the LGS of low energy which
are for large N an infinitesimal fraction of the total number of local ground
states (indeed we shall see later that the total number of local ground states
increases exponentially with N).

This distribution P −

0 of the cavity field on the new site depends on the
added site through the choice of the various Pi’s and of the coupling con-
stants Ji. When one averages over these choices, the distribution of P −

0(h)
must be equal to the original Q[P(h)]: when this self-consistency equation
is satisfied, the hypotheses of the cavity method on the N spin system are
found to be true again in the N+1 spin system obtained after iteration.

4.3. Computation of the Energy

In order to compute the GGS energy, we must see the effect of adding
a site or adding a link within this 1RSB scenario.

Site Addition. The energy shift during a site addition is computed
through the same method as (24), the extra term coming from the fact that
one optimizes the value of the added spin:

exp(−m DE (1))=F D
k+1

i=1
[dhi Pi(hi)] exp 1m C

k+1

i=1
a(Ji, hi)+m : C

k+1

i=1
u(Ji, hi) : 2 .

(27)

Link Addition.

exp(−m DE (2))=F D
2

i=1
[dhi Pi(hi)] exp(m max

s1, s2

(h1s1+h2s2+Js1s2)). (28)

Note that one gets back the RS expressions when m Q 0. Once the dis-
tribution Q[P(h)] of the cavity field distributions is known, one can
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compute the energy shifts DE1, DE2 which depend on m, and deduce from
them the energy function F(m) defined as in (7):

F(m)=DE (1) −
k+1

2
DE (2). (29)

One finally finds:

F(m)=EJ
5F D

k+1

j=1
dQ[Pj] DE (1)[P1 · · · Pk+1]6

−
k+1

2
EJ

5F dQ[P1] dQ[P2] DE (2)[P1 P2]6 (30)

where dQ[P] — Q[P] dP denotes the probability distribution of the prob-
ability P (the integral is done over all the probability distributions P with
weight Q[P]). Explicitly, one has:

F(m)= −
1
m

EJ
5F D

k+1

j=1
dQ[Pj] log 1F D

k+1

i=1
[dhi Pi(hi)]

× exp 1m C
k+1

i=1
a(Ji, hi)+m : C

k+1

i=1
u(Ji, hi) : 226

+
k+1
2m

EJ
5F dQ[P1] dQ[P2]

× log 1F D
2

i=1
[dhi Pi(hi)] exp(m max

s1, s2

(h1s1+h2s2+Js1s2))26

(31)

Notice that all this program can be carried out for any given m. In order to
fix the parameter m which gives the increase rate of the number of LGS,
one must compute F as a function of m and maximize it. One justification
for that procedure can be to go back to the replica formulation: m turns out
to be the zero temperature limit of m/T, where m is the breakpoint in
Parisi’s order parameter function at the 1RSB level. (2) The necessity of
maximising over m is a well known feature of the replica method (in the
limiting case k Q . it can be rigorously proven (32) that the value of F(m) is
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a lower bound to the correct result so that it is natural that the preferred
value of m is obtained by maximizing F(m)), but this does not provide a
clear physical reason.

The next section will explain the physical meaning of m, and explain
why m must be equal to mg, chosen such that F(m) is maximum, in order to
compute the GGS energy.

It is also interesting to notice that the whole self-consistency procedure
obtained by the iteration equation (26) is a variational procedure which can
be deduced from the stationarity condition of the functional F(m) given in
(31) with respect to changes of Q[P]. This is shown in Appendix B. The
existence of this variational formulation is crucial in simplifying the com-
putation of all the derivatives with respect to the various parameters,
because only explicit derivatives must be considered.

4.4. Computing the Complexity

In presence of many LGS, one can be interested in knowing their
number. We shall make the basic assumption that for large N, the typical
number NN(E) of LGS with a given energy E behaves as

log(NN(E)) 4 NS 1E
N
2 . (32)

The function S(E) is a positive function called the complexity of the
problem. In the range of energy densities E where S(E) > 0, the log of the
number of LGS is supposed to be a selfaveraging function, so that for almost
all sample (in the large N limit), (1/N) log(NN(E)) is given by S. Techni-
cally, given a definition of the LGS (see the discussion in Appendix C), one
can thus define the complexity as S(E)=limN Q .(1/N) EJ log(1+NN(NE)).
In general, for ground states a with a fixed energy density E=Ea/N, the
local cavity fields ha

i are iid variables taken from the distribution P (E)
i (h),

which now depends on E, and fluctuates from site to site. The correspond-
ing order parameter is a functional Q (E)[P] giving the probability, when
one picks up a site at random to find on this site a cavity field distribution
(for states with energy density E): P (E)

i (h)=P(h).
Our goal here is to check the self consistency of these hypotheses

under iteration, and to determine the ‘‘complexity’’ function S. One
expects that S(E) will vanish at some value E0, which gives the GGS energy
density, and the analysis of the previous section applies for LGS having
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energy close to NE0 (plus terms of order one). In this context the value of U
can be found by looking for the solution of the equation

S(U)=0. (33)

Let us first study the effect of the iteration. The number of LGS at
energy E after iteration is given by

NN+1(E)=F P0(h0, DE) dh0 d DE exp 1NS 1E − DE
N

22 . (34)

We need to compute the distribution of local cavity fields P (E)
0 (h) at a fixed

GS energy density E/N=E. Expanding to first order in the small shift
DE/N in (34), we obtain:

P (E)
0 (h)=C F P0(h0, DE) d DE exp(−m DE)

=C F D
k

i=1
[P(E)

i (hi) dhi ] d 1h0 − C
k

i=1
u(Ji, hi)2 exp 1m C

k

i=1
a(Ji, hi)2 ,

(35)

where

m=
dS(E)

dE
. (36)

Notice that we get back exactly the same expression as in the previous
section (see (26)), but now m has a well defined meaning: it is the derivative
of the complexity with respect to the energy density E. When one varies E,
the value of m changes. The whole formalism of the previous section can be
used for any m. Its result will give the distribution of cavity fields for the
states a which have energy density E, which is related to m through (36).
The functional probability distribution found in this way is Q[P (E)(h)].

In order to compute the complexity function S(E), we must see the
effect of adding 2 sites or adding k+1 links to a GN, 2k+2 graph within this
1RSB scenario. Let us call S2k+2(E) the complexity function of the GN, 2k+2

graph from which we start.

Site Addition. By adding one site, we go to a GN+1, k+1 graph with
complexity Sk+1(E). To compute this, we notice that when one site is added
and the corresponding spin is optimised, the energy of the LGS is shifted
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by a value DE, and the corresponding probability distribution Psite(DE) is:

Psite(DE)=F D
k+1

i=1
[dhi Pi(hi)] d 1DE+ C

k+1

i=1
a(Ji, hi)+: C

k+1

i=1
u(Ji, hi) : 2 . (37)

After the site addition, the new complexity Sk+1(E) is:

exp 5(N+1) Sk+1
1 E

N+1
26

=F Psite(DE) d DE exp 5NS2k+2
1E − DE

N
26

=exp[NS2k+2(E/N)] F Psite(DE) d DE exp[ − m DE] (38)

Link Addition. By adding one link, we go to a GN, 2k graph with
complexity S2k(E). The probability distribution for the corresponding
energy shift is:

Plink(DE)=F D
2

i=1
[dhi Pi(hi)] d(DE+max

s1, s2

(h1s1+h2s2+Js1s2)). (39)

After the link addition, the new complexity S2k(E) is:

exp 5NS2k
1E

N
26=F Plink(DE) d DE exp 5NS2k+2

1E − DE
N

26

=exp[NS2k+2(E/N)] F Plink(DE) d DE exp[ − m DE].

(40)

Going from a N Site Graph to a N+2 Site Graph. As before, we
need to add two sites and take away k+1 links. When performing two
times the site addition, we go to a graph GN+2, 0 where the number of GS is

exp 5(N+2) S 1 E
N+2

26

4 exp 5NS 1E
N
26 exp 52S 1E

N
2− 2 1E

N
2 SŒ 1E

N
26 , (41)
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while performing k+1 times the link addition leads to a graph GN, 0 where
the number of LGS is exp(NS(E/N)). Adding up the effect of the link
additions and the site additions, one obtains:

S(E) − ESŒ(E)=EJ log 1F Psite(DE) d DE exp(−m DE)2

−
k+1

2
EJ log 1F Plink(DE) d DE exp(−m DE)2 (42)

where the average EJ also implies an averaging over the choices of Pi(hi)
appearing in Psite and Plink (the functions Pi have to be taken from the
functional distribution Q[P(h)]).

Comparing to the expression for the energy density derived previously
(31), one gets simply:

S(E) − Em=−mF(m), where m=SŒ(E). (43)

So the knowledge of the function F(m) allows to reconstruct the complexity
function S(E) through a Legendre transform. (31) The usual relations for
such a transform,

d(mF)
dm

=E,
dF

dm
=

S(E)
m2 =

E − F(m)
m

, (44)

show that the condition of maximisation of F(m) is equivalent to having
S=0. This proves that the GGS energy density is found by maximising
F(m) with respect to m. It also gives the practical way of deducing the
complexity from the knowledge of F(m). Because of the structure of (43),
we call F(m) the zero temperature free energy of the problem. In fact the
previous equations could also be written as

exp(−NmF(m)) ’ F dE exp(−NEm+NS(E)) ’ C
a

exp(−mEa), (45)

where a labels the LGS and Ea is the total energy of the LGS. In other
words F(m) is the free energy (at a temperature 1/m) of a system where the
sum is done only on the LGS and not over all the spin configuration (as in
the case of the usual free energy). One could also apply the same techniques
used at finite temperature (9) to rederive the previous expression for F(m)
and S(m) in a slightly different way.

Let us give here for completeness the full expressions used in the
computation of the complexity. Once one has solved the iteration equations
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at a given m, and obtained the functional probability distribution Q[P],
one can deduce F(m) from (31). The energy density E can then be obtained
as:

E= − EJ
5F D

k+1

j=1
dQ[Pj]

×
> <k+1

i=1 [dhi Pi(hi)] Dm(;k+1
i=1 a(Ji, hi)+|;k+1

i=1 u(Ji, hi)|)
> <k+1

i=1 [dhi Pi(hi)] exp(m ;k+1
i=1 a(Ji, hi)+|;k+1

i=1 u(Ji, hi)|)
6

+
k+1

2
EJ

5F dQ[P1] dQ[P2]

×
> <2

i=1 [dhi Pi(hi)] Dm(maxs1, s2
(h1s1+h2s2+Js1s2))

> <2
i=1 [dhi Pi(hi)] exp(m maxs1, s2

(h1s1+h2s2+Js1s2))
6 (46)

where we have defined the function Dm(x)=xemx. The previous equations
can be rewritten with an evident meaning of the symbols as:

E= − EJ
5F D

k+1

j=1
dQ[Pj]

> <k+1
i=1 [dhi Pi(hi)] DE1 exp(−m DE1)

> <k+1
i=1 [dhi Pi(hi)] exp(−m DE1)

6

+
k+1

2
EJ

5F dQ[P1] dQ[P2]
> <2

i=1 [dhi Pi(hi)] DE2 exp(−m DE2)
> <2

i=1 [dhi Pi(hi)] exp(−m DE2)
6

(47)

Finally the complexity is

S(E)=m(E − F), (48)

where F is given in (31) and E is given in (46).
The smart reader may cast some doubts on the consistency of the

whole approach: our first hypothesis was the existence of a one-to-one
correspondence between the ground states when increasing N by two units
(and therefore the number of ground states should no depend on N) and
from this hypothesis we arrive to the conclusion that the number of ground
states increase with N as exp(NS(E)). We believe that the hypothesis of
one-to-one correspondence of the LGS is valid only in a low energy region,
where the computation that we have presented is correct, and it should be
modified in the region where S(E) is near to its maximum.
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4.5. Factorized Case

A particularly simple case is when we assume that the distribution
Pi(h) are i independent (i.e., the Q[P(h)] is a functional d function). This
case, which was first studied in ref. 33, and developed for the Bethe lattice
spin glass in ref. 34, is named the ‘‘factorized case’’ because of the special
pattern of RSB to which it leads. It is simple because the order parameter
is a single function P(h) (fixed from the self-consistency relation (26) by
imposing P −

0(h)=P1(h)=P2(h)= · · · =Pk(h)), and the RS equation are
only slightly modified. However one should note that, in general, one may
expect a Pi(h) which fluctuates: this is obviously the case whenever the
connectivity fluctuates, but this may also happen in the case of the fixed
connectivity random graphs which we study here. Some special models
where the factorized Ansatz gives an exact solution have been studied
recently. (35, 36)

4.6. Application to the ±J Model

4.6.1. Factorized Case

Our first task is to compute the distribution Q[P(h)]. We will do it
here first in the simple factorized case where Pi(h) does not depend on the
site (so that Q[P(h)] is a functional d). The distribution Pi(h) — P(h) still
has the form of a sum of delta peaks on the integers P(h)=; r prd(h − r).
This factorized solution can be stable only if P(h) is symmetric (pr=p−r).
The equations for the weights of the d peaks p0, p1,..., pk, taking into
account the free energy shift, are:

pr=A C
k

h1=−k
· · · C

k

hk=−k
d 1 r − C

k

i=1
S(hi)2 ph1

· · · phk
exp 1m 5 C

k

i=1
(|hi |+dhi, 0)62

(49)

(the function S has already been defined as S(h)=0 if h=0, S(h)=
Sign(h) otherwise). The quantity A is a normalisation constant fixed by the
condition

1=p0+2 C
k

r=1
pr (50)

One can notice the similarity of (49) with the RS solution (16). With
respect to this RS solution, the self consistency equations are only modified
by the reweighting term in exp(m...). However the physical interpretation of
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P(h) studied here and the P(h) of the RS solution are totally different. The
present P(h) gives, for one site i, the probability that in a LGS a chosen at
random, with energy density E fixed by the value of m, the field ha

i is equal
to h. In the RS case, there is only one LGS, and P(h) governs the fluctua-
tion of hi from site to site.

In the case k=2, one obtains, for any m, an algebraic solution:

p0=(24+3e2m − (8+em) `8+e2m)/(4(em − 1)2),

p1=
2p0q

(p0+2q)2 , p2=
q2

(p0+2q)2

(51)

where

q=
p0(3p0 − 2)

em − 4p0 − 2p0em
(52)

After some algebra one finds that the energy shifts are given by:

exp(−m DE (1))=e3m[p3
0+6(p1+p2em)]+e4m[3p2

0(p1+p2em)+3(p1+p2)3]

+e5m[3p0(p1+p2em)2]+e6m[(p1+p2em)3] (53)

exp(−m DE (2))=em([2p1em+2p2e2m][p2e2m+p1em+p0+p1e−m+p2]

+p0[2p2e2m+2p1em+p0]) (54)

Using the values of p0, p1, p2 in (51), we obtain from(31) the zero T free
energy F(m) which is plotted in Fig. 4. This quantity has a maximum at
m 4 0.4174, where the GGS energy is equal to E=−1.27231. All these
results using the factorized Ansatz were derived previously with the replica
approach in ref. 34.

4.6.2. The Full 1RSB Solution

Let us now go beyond the factorized approximation. On a given site j
the probability distribution of the cavity field is

P(h | pF j)= C
k

r=−k
p j

r d(h − r). (55)

It is parametrized by a vector of weights, pF j=(p j
−k,..., p j

k) which can fluc-
tuate from one site j to the next. Because we work at zero temperature and
the fields take integer values, the probability depends on a finite number
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Fig. 4. The zero T free energy per site F(m) as a function of m=bm for k=2, T=0. Shown
are the one step solution in the factorized case (dotted) and the correct 1RSB solution (full)
computed by 104 iterations of a population of 103(1RSB) or 104(factorized) local probability
distributions. In the 1RSB solution, the full line is a spline interpolation through the data-
points. There is a clear evidence for a non-factorized solution, although the effect on the
energy is small.

(2k) of parameters, and the full order parameter is not a functional, but a
function R(pF) of the vector of weights pF=(p−k,..., pk), which is given in
the limit of large N by:

R(pF)=
1
N

C
j

5 D
k

r=−k
d(p j

r − pr)6 . (56)

Let us perform one iteration, by adding a spin s0 in the cavity, con-
necting it to the k cavity sites j1,..., jk, and optimizing the values of
sj1

,..., sjk
. The distribution of the cavity field on site 0 again takes the form

(55), with:

p0
r =A0 C

k

h1=−k
· · · C

k

hk=−k
d 1r− C

k

i=1
S(hi)2 pj1

h1
· · ·pjk

hk
exp 1m 5C

k

i=1
(|hi|+dhi, 0)62,

(57)

where A0 is a site-dependent normalisation constant, fixed by ; r p0
r =1.
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The energy shifts are given by (27) and (28), and are also site dependent.
The iteration (57) offers a way to obtain the order parameter R(pF) by

a method of population dynamics. (9) The method amounts to following a
population of N vectors pF 1,..., pFN. Each iteration of the dynamics corre-
sponds precisely to the iteration of the cavity method: one picks up k
vectors pF j1,..., pF jk at random in the population, one computes the new
vector pF 0 according to (57), and substitutes the new factor pF 0 in the popu-
lation, in the place of a randomly chosen vector pF i. This stochastic process
yields, after some transient regime, a population whose distribution is sta-
tionary, and the probability distribution of pF inside this population is
nothing but the R(pF) order parameter. The energy shifts DE (1) and DE (2)

obtained when adding one site or one link are computed as before, and
they are then averaged over many iterations. This allows to compute, for
any m, the zero T free energy F(m) using (29), which is shown in Fig. 4. It
has a maximum at a value m ’ 0.7, and predicts a GGS energy density
U 4 − 1.2717.

One should notice that in this problem the quantitative effect of RSB
on the GGS energy density are rather small. The full 1RSB result
U 4 − 1.2717 differs from the RS result U 4 − 1.2777 by 5 · 10−3, and the
factorized solution gives a very good approximation U 4 − 1.2723, precise
at 5 · 10−4. Therefore one can expect that the quantitative effects of higher
order RSB on the GGS energy will be tiny.

However, the qualitative consequences of RSB are clearly visible on
the fact that the probability distribution of cavity fields is site dependent.
This is exemplified by Fig. 5, which gives the site to site fluctuations
P(p0)=(1/N) ; i d(p i

0 − p0) of the probability of having a zero cavity
field. We have also checked that, while the individual cavity field distribu-
tions Pj(pF) are not symmetric under field reversal (i.e., Pj(pr) ] Pj(p−r)),
the full order parameter is statistically symmetric (i.e., the site to site fluc-
tuations of pr are identical to those of p−r).

Using the previous results one can compute the complexity function
S(E). In Fig. 6 we show the results in the region where the complexity is
positive. In order to obtain these results we only need the function F(m) in
the region to the left of its maximum, where dF/dm \ 0.

The complexity is rather similar in the factorized method and in the
true solution, apart from some small variation of the ground state energy.
However it shows a somewhat unusual form which we wish to comment.
One sees two branches. The right branch is concave and goes from E=U,
the ground state energy where the complexity vanishes, to E=EM, the
maximal energy beyond which one does not find any local ground state,
which corresponds to a value m=mM. It is obtained for m ¥ [mM, mg], where
mg is the point where F(m) reaches its maximum, corresponding to the
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Fig. 5. Probability distribution of p0, obtained after evolving a population of N=105 sites.
Plotted are the cases m=0.4 (black), m=0.8 (grey) and m=1.2 (light grey). Notice the big
effect of non-factorization. The best factorized solution, with m=0.4174, would give a d peak
at p0=0.3353. The RS solution would give a d peak at p0=1/3.
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Fig. 6. The complexity S as function of E, for the k=2 spin glass on the Bethe lattice. The
full curve is the result of the full 1RSB solution, the dotted curve is the result of the factorized
approximation.
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GGS energy U. The second branch is convex, and interpolates between
the RS solution (obtained at m=0) and the maximal complexity point
(obtained at m=mM). This second branch does not seem to have a direct
physical interpretation and in this context can be simply ignored. On the
other hand it must be present insofar as the m Q 0 limit of our RSB solu-
tion gives back the RS solution. Clearly a better understanding of this
second branch would be welcome.

It is curious that this type of complexity curve has not been discussed
in the literature so far, to our knowledge. In the rest of this section we want
to present a short comment on some apparent discrepancy between our
results and some widely used results on the SK model. (30) In the SK model
which corresponds to the k Q . limit of our problem, the states can be
defined at any temperature as solutions of TAP equations. (37, 2) Bray and
Moore (38) have computed the number of such solutions, and they have
deduced that in the zero temperature limit, the corresponding complexity
becomes equal to the complexity of one spin flip stable (1SF) states, which
has been computed in refs. 38 and 39. In Fig. 7 we show the complexity of
1SF states, and also the complexity at the 1RSB level computed through
the use of the Legendre transform of the free energy as in (43). This 1RSB
result is indeed very different, qualitatively and quantitatively, from the
complexity of 1SF states, and also different from the general shape found
by Bray and Moore at finite temperatures.

It seems to us that this difference can be explained by two arguments:
(1) The 1SF configurations are generically not stable to several spin flips
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Fig. 7. The complexity S as function of E, for the Sherrington Kirkpatrick model The top
curve is the complexity of configurations stable to one spin flip, the bottom curve is the result
of the 1RSB solution. The inset shows the details of the curves near to the ground state
energy.

The Cavity Method at Zero Temperature 25



(in contradiction to what is claimed in ref. 40) and in particular a change
on the cavity fields may propagate through the whole system. (2) The free
energy functions of ref. 38 admit also other new saddle points which have
not yet been considered. Clearly a full discussion of these points goes much
beyond the scope of the present paper; much more work is needed in order
to understand the relationship between TAP states, the q-spin flip stable
states, and the Legendre transform construction in spin glasses. (41)

5. CONCLUSION

With respect to our previous work (9) on the cavity method for the
Bethe lattice spin glass, the fact of working directly at zero temperature
allows to simplify the discussion of the cavity method in several aspects.3

3 We warn the maybe puzzled reader that the form of the free energy functional we use is dif-
ferent from that of our previous work. (9) There are many equivalent free energy functionals
that one can use that coincide when the recursion equations are satisfied and are variational.
The one used in this paper has been selected because of the simplicity of the derivation
(incidentally it leads to smaller statistical errors when doing numerical studies).

On the one hand, one can discuss the physics directly in terms of ground
states. The physics of RSB comes into play when there exist many LGS
and their energies may cross when one adds a new spin. At a more techni-
cal level, the cavity fields are integers, and it is thus much simpler to
parametrize their probability distributions. This allows in some cases to get
analytic solutions, but also when one has to resort to the numerical solu-
tion of the cavity equations using the population dynamics, this aspects
simplifies a lot the procedure: one can follow a population of the local dis-
tributions Pi(h), because each of them is easily parametrized, while in the
finite T approach one must represent each Pi(h) by a population of M

fields. Computationally, this zero T approach is thus much more efficient.
This is very interesting for discussing optimization problems, and in fact it
has already allowed for a full solution of the Ksat problem. (4) We expect
that it can have many other applications in this context.

APPENDIX A: THE T Q 0 LIMIT AND THE RSB LEVEL

If we study the thermodynamics of the model at finite temperature, we
can use a very similar approach where the free energy of valleys is used
instead of the energy of the configuration. A similar cavity method can be
developed at all temperatures, as was done in ref. 9. In general one would
expect that the finite free energy density computed in this way be continuous
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at T=0, which means that one should get back the results of the present
paper by using the T Q 0 limit of the finite T computations.

Strictly speaking this does not happen for the model with J= ± 1.
The reason is the following. Strictly at T=0 if the local fields have integer
values when we start the iteration, they are then always integers. On the
contrary, starting from the same initial condition at T ] 0, after a few
iterations the local fields are integer plus corrections of order T. However it
is possible (and this is what happens in the RS and in the 1RSB cases) that
the coefficient of the corrections proportional to T increases exponentially
with the iteration number so that, after a number of iterations which is
proportional to |ln T|, one obtains a distribution which is no more concen-
trated near the integers.

In our opinion it is quite likely that this instability is an artefact of not
using the full RSB scheme and it should disappear when more and more
precise computations, with higher levels of RSB, will be done. In order to
substantiate this point we have computed the distribution of the cavity
fields in the J= ± 1 case for k=2 at very small T (i.e., T=0.01) both in
the RS case and in the 1RSB case. The results are shown in Fig. 8. It is
evident that in the 1RSB case the distribution is much more concentrated
on the integers.
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Fig. 8. Crosses give the distribution of the cavity fields, P(h), computed at temperature
T=.01 in the RS approximation. Dots give the site average distribution of the cavity fields,
> dQ[P] P(h), at the same temperature, in the 1RSB approximation. Clearly the distribution
becomes more peaked onto integers when one increases the level of RSB.
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APPENDIX B: VARIATIONAL FORMULATION

It is interesting to notice that all the equations of stability under itera-
tion of the cavity procedure, giving the probability distributions of local
fields, can be obtained from a variational principle.

In the replica symmetric case, let us define, for a generic probability
distribution R(h), the functional

F[R] — F (1)[R] −
k+1

2
F (2)[R], (58)

where F (1) and F (2) are given by:

F (1)[R]=EJ F D
k+1

i=1
[dR(hi)] min

s0, s1,..., sk+1

1− C
k+1

i=1
Jis0si − C

k+1

i=1
hisi

2 (59)

and

F (2)[R]=EJ F dR(h) dR(hŒ) min
s, , sŒ

(−JssŒ − hs − hŒsŒ) (60)

where dP(h)=P(h) dh. One can show, following a method similar to the
one given in ref. 9, that the stationarity equation of this functional

dF[R]
dR(h)

=0 (61)

coincides with the Eq. (12) giving the field distribution P(h). Furthermore,
on this solution, one can use the stationarity equation in order to derive:

F (1)[P]=DE (1)[P]

F (2)[P]=DE (2)[P]
(62)

where DE (1), DE (1) are given in Eqs. (13) and (14). This shows that, on the
solution,

F[P]=U (63)

The variational formulation also exists in the 1RSB case. In this case,
we need to introduce a functional F[Q[P(h)]] (a somewhat complicated
object). We introduce first the two expressions for F (1)

rsb[Q], F (2)
rsb[Q]:
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F (1)
rsb[Q]= −

1
m

EJ F D
k+1

i=1
(dQ[Pi]) log 3F D

k+1

i=1
(dhi Pi(hi))

× exp 5− m min
s0, s1,..., sk+1

1− C
k+1

i=1
Jis0si − C

k+1

i=1
hisi

264 , (64)

and

F (2)
rsb[Q]=−

1
m

EJ F dQ[P] dQ[PŒ]

× log 1F dh P(h) dhŒ PŒ(hŒ) exp[ − m min
s, sŒ

(−JssŒ − hs − hŒsŒ)]2 ,

(65)

and then construct as before:

Frsb[Q] — F (1)
rsb[Q] −

k+1
2

F (2)
rsb[Q]. (66)

We must now compute the functional derivative with respect to Q. We first
notice that Q must be a normalized distribution so that

F dQ[P]=1 (67)

This constraint will be enforced using a Lagrange multiplier l. Let us con-
sider the functional derivative of Frsb[Q] with respect to Q[P], evaluated
on an arbitrary function P(h)=Pg(h). We find for the first piece:

dF (1)
rsb[Q]

dQ[P]
= −

k+1
m

EJ F D
k

i=1
(dQ[Pi]) log 3F dhk+1 Pg[hk+1] D

k

i=1
(dhi Pi(hi))

× exp 5− m min
s0, s1,..., sk+1

1− C
k+1

i=1
Jis0si − C

k+1

i=1
hisi

264 , (68)

and for the second one:

dF (2)
rsb[Q]

dQ[P]
=−

2
m

EJ F dQ[PŒ] log 1F dhPg(h) dhŒPŒ(hŒ)

× exp[ − m min
s, sŒ

(−JssŒ − hs − hŒsŒ)]2 . (69)
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Finally, the equation:

dFrsb[Q]
dQ[P]

=
dF (1)

rsb[Q]
dQ[P]

−
k+1

2
dF (2)

rsb[Q]
dQ[P]

=l (70)

should be true, with an appropriate choice of the Lagrange multiplier l, for
any Pg.

In the first piece we can use:

F D
k

i=1
(dhi Pi(hi)) exp 5− m min

s0, s1,..., sk+1

1− C
k+1

i=1
Jis0si − C

k+1

i=1
hisi

26

=F D
k

i=1
(dhi Pi(hi)) exp 5− m min

s0, sk+1

1− C
k

i=1
a(Ji, hi) − s0 C

k

i=1
u(Ji, hi)

− Jk+1s0sk+1 − hk+1sk+1
26 (71)

Let us then define the probability distribution P0(h0) through:

F D
k

i=1
(dhi Pi(hi)) exp 5m 1 C

k

i=1
a(Ji, hi)26 d 1h0 − C

k

i=1
u(Ji, hi)2

=C[{P}] P0(h0) (72)

where C[{P}] is a functional of the Pi with i ¥ {1,..., k}. As Q[P] satisfies
the 1RSB self-consistency equation, we know that the distribution P0(h0)
defined in (72) is generated with a probability Q[P0]. Therefore we get, on
the 1RSB self-consistent-under-iteration solution for Q[P]:

dF (1)
rsb[Q]

dQ[P]
= −

k+1
m

EJ F dQ[P0] log 1F dh0 P0(h0) dhk+1 Pg(hk+1)

× exp[ − m min
s0, sk+1

(−Jk+1s0sk+1 − h0s0 − hk+1sk+1)]2

−
k+1

m
EJ F D

k

i=1
(dQ[Pi]) ln(C[{P}]) (73)

Clearly this is equal to − (k+1)/2 times the derivative of F (2)
rsb, for any

Pg, up to some constant that compensates with the Lagrange multiplier l.
The curious reader may find interesting to know that

l=
dFrsb[Q]
dQ[P]

=−
k(k+1)

m
EJ F (dQ[P]) log 1F (dh P(h)) exp[ma(J, h)]2

(74)
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Notice that the expression (46) for the internal energy can be directly
derived using the relation d(mF(m))/dm=E. Indeed

d
dm

(mF[Q])=1 dg

dm
+

dQ
dm

·
d

dQ
2 (mF[Q]) (75)

where the derivative d*
dm acts only on the explicit dependence on m. The

second term in the previous equation is zero when Q satisfies the equilib-
rium condition. If we compute the derivative of Eq. (42) we get the result
contained in Eq. (46). It is interesting to notice that all the equations of
stability under iteration of the cavity procedure, giving the probability dis-
tributions of local fields, can be obtained from a variational principle.
Moreover the fact that the free energy we use is a variational one is crucial
in simplifying the computation of all the derivatives with respect to the
various parameters, because only explicit derivatives must be considered.

APPENDIX C: MISCELLANEOUS COMMENTS ON THE DEFINITION

OF THE STATES

In this appendix we give some further comments on the definition of
the LGS and of the complexity. The subject is rather delicate from the
mathematical point of view and if one is not precise it is easy to make
wrong statements and to find contradictions. Our aim here is just to point
out some of the subtleties which one should take into account.

In the definition of LGS we have asked that the configuration should
be stable with respect to k spin flips with the number k going to infinity
with N in some unprecised way. We could start by defining a LGS of order
k as a configuration that is stable with respect to k spin flips. In this way
one could define the complexities Sk(N) as (1/N) log(Number of k-spin-
flips-stable configurations). The complexity of LGS could be defined as

Sa= lim
k Q .

lim
N Q .

Sk(N). (76)

An alternative natural definition is to define LGS as stable to changing an
infinitesimal fraction of all spins:

Sb=lim
E Q 0

lim
N Q .

SEN(N). (77)

The question of the equivalence among various possible definitions of S,
and in particular whether Sa=Sb, is a well posed mathematical problem
and may have a non trivial answer.
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One case in which one encounters problems when studying the large k,
large N limit is the SK model. Although it is quite possible that these
problems are an artefact of the infinite number of neighbours in the SK
model and they may be not present on the Bethe lattice, let us mention
them here briefly. In the SK model one can compute (38, 39) the complexity of
one spin stable configurations, limN Q . S1(N). A detailed computation
shows that (at least at not too low energies) the probability distribution of
the local fields h in these states P(h) goes to a constant when h goes to zero.
It is easy to deduce that with probability one these states are not 2-spins
stable and therefore they do not correspond to LGS, with any reasonable
definition. This argument might seem to imply that limN Q . S2(N) <
limN Q . S1(N). However this is not true: we can count the limit for large N
of the complexity, Ŝ(d), for the ‘‘d-stable configurations’’ such that

si C
k

Jiksk > d. (78)

Irrespectively of the precise value of d, a simple computation shows that
Ŝ(d) is continuous at d=0, while Ŝ(0)=limN Q .S1(N). On the other
hand d-stable configurations are also stable for k spin flips (at least when
k ° d `N). This argument shows that for the SK model limN Q . Sk(N) is
k independent. These configurations are likely not to be LGS if we ask for
configurations that are stable with respect to k spin flips with k 3 N1/2 but
they should be k-spin-flips-stable if k 3 Nc with c < 1/2. It appears rather
likely that there will be a change of behaviour in the complexity when
k ’ `N. Further and detailed investigations are needed to clarify this
point.

After this digression on the SK model, let us come back to the com-
putation of the LGS complexity that we have done in this paper. As we
have already stressed, we do not use directly any of the previous definitions
based on Sk(N). We have just argued that a LGS must correspond to a
local solution of the cavity equations and we have counted the number of
these solutions in the infinite N limit. This procedure does not give a clue
on the finite N effects, and therefore on the definition of LGS on one given
(finite N) sample.

One possibility could be to write directly these equations on a finite
lattice (these are nothing but TAP equations (37)) and to associate to each
solution of these equation a LGS. However it is well known that in general
global solutions of TAP equations for one given sample are rather rare: (42)

the local analysis of the solution of the equations near to a given site of the
lattice that we perform does not guarantee to provide a global solution to
TAP equations. Probably the best one can hope is the following. We could

32 Mézard and Parisi



define a quasi-solution of order a of TAP equations as a configuration of
spins such that a fraction 1 − a of all TAP equations are satisfied and a
fraction a of TAP equations are not satisfied. Our N Q . analysis con-
siders on the same footing the true solutions of all TAP equations or the
quasi-solutions where a vanishing fraction (for N Q .) of the equations is
not satisfied. So one could conjecture that the LGS correspond to quasi-
solutions of order a, in the limit where a Q 0. Notice that the a Q 0 and
N Q . limits may not commute and therefore one should be rather careful
before making any precise statement on the number of TAP solutions.

In order to illustrate the previous point let us consider a simple
example, a one dimensional chain, which is a particular example of a Bethe
lattice with k=1. Let us assume that the system is antiferromagnetic (i.e.,
J(i, i+1)=−1) and that periodic boundary conditions are used.

The TAP equations are given in terms of the local cavity fields:

h P (i)=−h P (i − 1); h Q (i)=−h Q (i+1) (79)

where we have used the obvious notation h P (i)=h(i | i+1), h Q (i)=
h(i | i − 1). If N is even we have two degenerate GGS, i.e.

s(i)=(−1) i and s(i)=(−1) i+1 (80)

On the contrary if N is odd we have N degenerate GGS with one defect
in k, i.e.,

s(i)=(−1) i for i < k; s(i)=(−1) i+1 for i \ k (81)

If we look at the TAP equations we see that for N even there are two solu-
tions (corresponding to each of the two GGS)

h P (i)=h Q (i)= ± (−1) i (82)

On the contrary there are no solutions of the TAP equations for odd N as
an effect of the periodic boundary conditions. Obviously there are N quasi
solutions of order 1, that luckily correspond to the N GGS.
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