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We derive analytical solutions for p-spin models with finite connectivity at
zero temperature. These models are the statistical mechanics equivalent of
p-XORSAT problems in theoretical computer science. We give a full charac-
terization of the phase diagram: location of the phase transitions (static and
dynamic), together with a description of the clustering phenomenon taking place
in configurational space. We use two alternative methods: the cavity approach
and a rigorous derivation.

KEY WORDS: Spin glass; satisfiability; leaf removal; cavity method.

1. INTRODUCTION

The very last years have seen a growth of interest in disordered models
defined on Bethe-lattices-like topologies, that is finite connectivity random
graphs (see, e.g., ref. 1). Appropriate generalizations of mean-field theory
are exact on such structures allowing for an exact solution of spin-glass like
models. The presence of large loops may induce frustration leading to
highly non trivial properties at low enough temperatures. Interacting
models defined over finite connectivity graphs provide a better approxima-
tion to finite-dimensional models than fully connected mean-field models,
allowing for qualitatively new effects to be discussed. At zero temperature,



spin glass like models over random graphs correspond to some random
combinatorial optimization problems of central relevance in theoretical
computer science. (2)

Quite in general, spin glass models show an interesting phase diagram
in the (c, T) plane (see, e.g., Fig. 2 in ref. 3), where c is a parameter pro-
portional to the mean connectivity of the underlying random graph and T
is the temperature. The frozen phase is located at high c and/or low T.

Open questions are, for example, the exact location of the critical lines
(dynamic and static ones), the full characterization of the configurational
space in the frozen phase (e.g., ground state energy and threshold energies),
etc.

Here we focus on the simplest non trivial model that can be defined on
a random graph with finite mean connectivity, namely the p-spin model.
We concentrate on the zero temperature limit, which corresponds to the
p-XORSAT problem in theoretical computer science. (4)

The decision problem of XORSAT, which is equivalent to stating if a
system of linear equations in GF[2] has a solution, is known to be a poly-
nomial problem, but the optimization problem, where one wants to minimize
the number of unsatisfied equations, is NP-hard, and inapproximable. (5)

In this limit the model undergoes two relevant phase transitions. (6) The
first one takes place at cd (for p=3, cd=0.818469) and corresponds to a
clustering phenomenon: For c < cd all the ground states (GS) form a
unique cluster, while for c > cd they split into an exponentially large (in N)
number of clusters, each one containing an exponential number of GS.
This clustering phenomenon coincides with the formation, in the configu-
rational space, of barriers (clusters are well defined only because of the
presence of barriers) and of metastable states, which make any greedy
search algorithm inefficient. This is why it is usually called dynamic transi-
tion. (7) The second phase transition takes place at cc > cd (for p=3,
cc=0.917935) and marks the SAT/UNSAT transition, that is the point
where frustration becomes manifest in the system and the GS energy
becomes larger than zero.

We will derive the above scenario via two distinct and complementary
methods. The first one is the cavity method. Its power relies in its general-
ity, since it can be applied easily to more complex systems too, e.g.,
random k-SAT. (8, 9) Within this method the above scenario can be obtained
using an Ansatz with a single step of replica symmetry breaking (1RSB).
The second method is a rigorous derivation based on the ‘‘leaf removal’’
algorithm which is able to reduce the random (hyper)graph to its relevant
core. On the core, any interesting quantity (e.g., the number of GS, cluster
size and distance) can be easily calculated, since annealed averages coincide
with quenched ones.
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This rigorous derivation is of great importance also because this is one
of the few cases (10) where a highly non trivial scenario, previously obtained
with a replica calculation, (6, 11, 12) can be confirmed with rigorous methods.
These results confirm the validity of the cavity approach, and may open the
way towards the construction of mathematical bases for the Parisi’s replica
symmetry breaking theory. (13)

2. DEFINITION OF THE MODEL

The random p-XORSAT problem consists in finding an assignment to
N boolean variables xi ¥ {0, 1}, such that a set of M=cN parity checks on
these variables are satisfied. Each parity check is of the kind

xim
1
+ · · · +xim

p
=ym mod 2, m=1,..., M (1)

where, for each m, the p indices im
1 ,..., im

p ¥ {1,..., N} are chosen randomly
and uniformly among the (N

p) possible p-uples of distinct indices, and the
‘‘coupling’’ ym takes randomly value 0 or 1 with equal probability. The
above set of constraints can be written in a more compact way as
ÂxF=yF mod 2, where Â is a M × N random sparse matrix with exactly p
ones per row and y is a random vector of 0s and 1s.

Once the mapping s=(−1)x and J=(−1)y is performed, the
XORSAT problem can be also studied as the zero-temperature limit of the
following p-spin Hamiltonian giving the energy for a configuration of N
Ising spins si ¥ { − 1, 1}:

H= C
M

m=1
(1 − Jmsim

1
· · · sim

p
). (2)

Unfrustrated ground states (GS) configurations have zero energy and cor-
respond to solutions of the XORSAT problem, since they satisfy all the
constraints: -m, sim

1
· · · sim

p
=Jm.

3. T=0 PHASE DIAGRAM FROM THE ONE-STEP CAVITY METHOD

In this section we shall display the analysis of the phase diagram of the
p-spin problem as it arises from the one-step cavity approach. We consider
the cavity formalism directly at zero temperature as discussed by Mézard
and Parisi (1, 14) and developed further in ref. 9. We refer to those papers for
a review of the method and the notations. Here we shall limit ourselves to
the technical aspects of the analytical calculation for p=3 case, general-
izations to p > 3 being straightforward.
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The zero temperature p-spin model can be viewed as a relatively
simple limit case of more general problems such as random k-SAT for
which the cavity calculations have also been carried out recently. (9) The
main technical difference between random k-SAT like problems and the
p-spin model consists in the fact that the site dependence of the functional
order parameter simplifies dramatically in the p-spin problem below the
static transition. This allows for a rigorous derivation of the cavity and
replica results by alternative methods, as we shall thoroughly discuss in the
subsequent sections.

In the cavity formalism (13) one works with ‘‘cavity fields’’ hi associated
to the sites and ‘‘cavity biases’’ uJ associated to the hyperedges. The cavity
field is the effective field on a variable once one of its interactions has been
removed. Under a cavity iteration, cavity biases generate cavity fields and
vice versa (see Fig. 1). The cavity field h is always the sum of the cavity
biases u coming from all its interactions, but the one removed. The rule for
generating u biases from h fields is in general more complex.

For T=0 the formalism simplifies a lot: (14) Cavity fields and cavity
biases only take integer values and the cavity equations can be derived
easily by implementing the energy minimization condition under the cavity
iteration. Let us imagine to add a hyperedge connecting 3 spins, say spins
s0, s1 and s2 among which spin s0 plays the role of cavity spin. We need to
perform a partial minimization of the effective energy

min
s1, s2

[E(s0, s1, s2) − (h1s1+h2s2)]=−wJ(h1, h2) − uJ(h1, h2) s0, (3)

where E(s0, s1, s2)=1 − Js0s1s2. The above relation defines the cavity
biases w and u as functions of the ‘‘input’’ cavity fields h. After a little
algebra one finds

wJ(h1, h2)=|h1 |+|h2 | − |uJ(h1, h2)|,

uJ(h1, h2)=S(Jh1h2),
(4)

1u

u2
h1 h2

u

Fig. 1. A pictorial view of the cavity iteration: h1 and h2 cavity fields are the sum of some
cavity biases u, and in turn they generate a new cavity bias u according to Eq. (3).
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where the function S(x) is defined as

S(x)=˛ sign(x) if x ] 0,
0 if x=0.

(5)

The free-energy of the system can be expressed either in terms of probabil-
ity distributions of the cavity fields or of the cavity biases. (1, 9, 14)

In a one step scenario the phase space breaks into many pure states
and the order parameter of the model is a complete histogram, over the
system, of probability distribution functions of fields, P[P(h)], and biases,
Q[Q(u)]. Such a rich structure of the order parameter can be understood
by noticing that each spin may fluctuate from state to state and therefore
the whole collection of single site probability distributions might be needed
to capture such fluctuations. In the simple case of a single pure state, the so
called replica symmetric (RS) phase, single site probability distributions
become delta functions and the order parameter simplifies to a single
global probability distribution.

Following the general scheme discussed in refs. 1, 9, 8, and 14, but
with a more convenient normalization for the Q(u), the self-consistency
equation for the Q[Q(u)] reads

Q(u)=EJ F dh P (k)(h) dg P (kŒ)(g) d(u − uJ(h, g))

with prob. e−3c
(3c)k

k!
e−3c

(3c)kŒ

kŒ!
,

P (k)(h)=
1

Ak
F du1 Q1(u1) · · · duk Qk(uk) d 1h − C

k

i=1
ui
2

× exp 5− y 1 C
k

i=1
|ui | − : C

k

i=1
ui
: 26 ,

Ak=F du1 Q1(u1) · · · duk Qk(uk) exp 5− y 1 C
k

i=1
|ui | − : C

k

i=1
ui
: 26 ,

(6)

where all the Qi(u) on the r.h.s. are chosen randomly from the distribution
Q[Q(u)]. The average EJ over the coupling signs J= ± 1 forces all the dis-
tributions to be symmetric under u Y − u or h Y − h. The parameter y is
the so called reweighting coefficient (y=bm where m is the Parisi breaking
parameter) which takes into account level crossing of states under the
cavity iterations. (14) The parameter y must be chosen such as to maximize
the free energy.
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As the cavity biases take values in {0, ± 1}, and thanks to above
mentioned symmetry, each Qi(u) can be written, in full generality, as

Qi(u)=gi d(u)+
1 − gi

2
[d(u+1)+d(u − 1)]. (7)

Thus the self-consistency equation for Q[Q(u)] can be rewritten as a self-
consistency equation for the probability distribution of gi, r(g).

Eventually, given the whole set of stationary {Qi(u)} or the stationary
r(g), the average ground state energy and the complexity can be deduced
from the formulae of refs. 1, 9, 8, and 14.

3.1. Solution of the Self-Consistency Equation

3.1.1. RS Solution

We first notice that it is always possible to get back the simple replica
symmetric solution by fixing y=0 and assuming that the cavity biases are
‘‘certain,’’ Qj(u)=d(u − uj), where the uj are independent and identically
distributed random variables taken from a distribution

Q(u)=c0 d(u)+
(1 − c0)

2
[d(u − 1)+d(u+1)]. (8)

Plugging the above form into Eq. (6), one finds for c0

1 − `1 − c0=e−3c C
k

(3c)k

k!
C
Nk/2M

q=0

1 k
2q
212q

q
211 − c0

2
22q

ck − 2q
0

=e−3c(1 − c0)I0[3c(1 − c0)], (9)

where NxM is the integer part of x. However, the above equation leads to
wrong predictions: a solution different from the trivial paramagnetic one,
Qj(u)=d(u), appears at c=1.16682 with a negative energy. At cRS=
1.29531 the energy becomes positive, giving a lower bound for the true
energy of the system.

3.1.2. 1RSB Solution and the Existence of Non Trivial Fields

The numerical solution of Eq. (6) indicates that there exits a non-
trivial solution in the region c N 0.82 for sufficiently large values of the
reweighting y. A careful look at the numerics shows that the probability
distributions of gi takes the form

r(g)=t d(g − 1)+(1 − t) r̃(g), (10)
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that is a fraction t of cavity biases are trivial. The non trivial cavity biases
are characterized by a distribution r̃ which shrinks in the limit of large y,
converging to delta function in g=0. The y Q . limit is particularly
relevant in the region up to cc.

3.1.3. The y Q . Limit: The Complexity and the Location of the
Phase Transition

Looking at the self-consistency equations (6), the only way one can
obtain a non-trivial distribution Q(u) on the l.h.s. is when both P (k)(h)
] d(h) and P (kŒ)(g) ] d(g). Moreover the probability that P (k)(h)=d(h)
equals the probability of picking up k trivial distributions Q(u), i.e., tk.
Putting everything in formulae, one has

1 − t = e−6c C
.

k, kŒ=0

(3c)k

k!
(3c)kŒ

kŒ!
(1 − tk)(1 − tkŒ)

2 1 − t=(1 − e−3c(1 − t))2. (11)

For c < cd=0.818469 the only solution is t=1 (the system is a paramagnet)
whereas above cd a non-trivial solution appears.

For y=., a direct inspection of the numerical results shows that the
cavity biases spontaneously divide in two categories, such that r(g)=
t d(g − 1)+(1 − t) d(g). In terms of Q[Q(u)] it corresponds to having

Q(u)=3d(u) with prob. t
d(u − 1)+d(u+1)

2 with prob. 1 − t
(12)

which indeed is a fixed point under the iteration process (6) for y=.,
provided the fraction of trivial biases t satisfies Eq. (11).

Using the expressions of refs. 1, 9, 8, and 14, for very large y, the free
energy can be written as F(y)=k

y. As expected, one finds that, as long as
k < 0 the maximum of F(y) is located in y=. and corresponds to a zero
ground state energy. Consequently the complexity or configurational
entropy of zero-energy states, i.e., the normalised logarithm of the number
of solutions clusters is given by

S=−k=log(2) 51 −
l

3
− e−l 11+

2
3

l26 , (13)

where l=3c(1 − t) satisfies the self-consistency equation

l=3c(1 − e−l)2. (14)
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The critical point, i.e., the SAT/UNSAT threshold, cc=0.917935 can be
found as the c value where the complexity becomes zero (see Fig. 2). For
c > cc the free energy F(y) has a positive maximum in a finite value of y,
which corresponds to a positive ground state energy.

3.1.4. Expansion at Large y: The Ground State Energy in the UNSAT
Phase (MAX-3-XORSAT)

In order to study the ground state energy for c > cc we need to take
care of the leading corrections in the limit y ± 1. For finite y, the distribu-
tion in Eq. (12) is no longer stable and we need to study a more general
distribution of biases which takes care of the appearance of a non-trivial
contribution to the peak in u=0 arising from frustrated interactions.
This more general Q[Q(u)] is such that a fraction t of messages is still
completely trivial, Q(u)=d(u), while non-trivial messages comes from
distributions of the following kind

Q(u)=te−2y d(u)+
1 − te−2y

2
[d(u − 1)+d(u+1)]. (15)

The factor e−2y has been introduced in order to have finite t in the limit of
very large y. Moreover, from numerical solution of Eq. (6) we observe that
t takes only integers values. Let us call am the fraction of non-trivial
distributions having t=m. The generating function a(z)=;m amzm satis-
fies the equation

a(z)=[Aa(z)+Bz+1− A − B]2, (16)

where A= e − l
l

1 − e − l
and B=e − l

l
2/2

1 − e − l
.
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Fig. 2. The complexity as a function of c.
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Using the distributions in Eq. (15) one can obtain the free energy
density F(y) up to the first correction

F(y)=
k

y
−

w

y
e−2y+O(e−4y), (17)

where

w=
l

3
51 − e−l 11+

3
2

l+l22+OtP(1 − e−l(1+2l))6 . (18)

The mean value of t can be easily obtained differentiating Eq. (16) with
respect to z and then putting z=1,

OtP=aŒ(1)=
2B

1 − 2A
=

e−ll2

1 − e−l(1+2l)
, (19)

and thus we have

w=
l

3
11 − e−l 11+

3
2

l22 . (20)

Summarizing the statistical mechanics analysis, for any c > cd=
0.818469, one can solve Eq. (14) for l, deduce the large y behaviour of
F(y) from Eq. (17) and maximize F(y) with respect to y. We find a critical
value of c, cc=0.917935, where k changes sign. For c < cc, k < 0 and
therefore the maximum of F(y) is found at y=.. The distribution of
cavity biases is given by Eq. (12), and the maximum value of F is 0,
showing that all hyperedges are satisfied (apart from maybe a vanishing
fraction at large N).

At c=cc, k changes sign and, for c > cc, F(y) has a maximum at a
finite y, which shows that the ground state energy becomes strictly positive:
It is no longer possible to satisfy simultaneously all the constraints.

The value of the energy for c slightly above cc can be computed from
the large y expansion. Moreover, such an expansion allows us to compute
the complexity S(E) of states of given energy E by a Legendre transfor-
mation of the free energy. The complexity function S(E) is obtained by
solving E=“y(yF) and S=y2

“yF.
From Eq. (17) for F we get

E=2we−2y+O(e−4y), (21)

S= − k+(2y+1) we−2y+O(e−4y). (22)
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Fig. 3. Ground state energy for c values above the critical point cc=0.917935. Numerical
data seem to converge to the analytic prediction. Finite-size corrections roughly decrease as
1/N.

For cd < c < cc, the constant k is negative and one finds a complexity curve
which starts positive at E=0

S(E) 4 − k −
E
2
5log 1 E

2w
2− 16 . (23)

In particular, the number of lowest lying states, which have an energy
E=0, scales with the number of N of spins as exp(−Nk).

For c > cc, the expression (23) for the complexity still holds, but k is
positive. The regime of energies close to 0 where S(E) is negative corre-
sponds to a region where the average number of states is exponentially
small in N. Therefore there are no states in this region in the typical
sample. States appear above the ground state energy E0 which is the point
where S(E) vanishes, and corresponds to the maximum of F(y). In Fig. 3
we show the analytic prediction for the ground state energy E0 (lowest
curve) together with numerical results from exact optimization on small
systems. Numerical data are compatible with the analytic solution, which
has been obtained expanding around the critical point.

4. RIGOROUS DERIVATION OF THRESHOLDS AND CLUSTERING

We now show how the results of the previous Section can be rederived
in a rigorous way. We will exploit concepts from graph theory and all the
calculations will be simple annealed averages, which are rigorous. All the
formulas will be written for generic p, and the particular case p=3 will be
considered in order to make connection with calculations in the Section 3.
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The physical idea behind the graph theoretical derivation is the
following. In a random hypergraph there are many variables with connec-
tivities 0 and 1, whose cavity fields are null. A small fluctuation in the
number of these variables, induce very large fluctuations in physical
observables, like, e.g., in the entropy. Thus the idea is to remove all these
spins and to study the properties of the residual hypergraph, the core. We
find that, on the core, sample-to-sample fluctuations are negligible and this
allow us to study its properties by means of very simple annealed averages.

The plan of this section is the following: (1) definition of some graph
theoretical concepts, like random hypergraph and hyperloop; (2) introduc-
tion of the ‘‘leaf removal’’ algorithm and solution to its dynamics (estima-
tion of the cd threshold); (3) statistical description of the hypergraph core
(the part left by the application of leaf removal algorithm); (4) calcula-
tion of cc, the SAT/UNSAT threshold; (5) derivation of GS clustering
properties.

4.1. Random Hypergraphs and Hyperloops

In the Hamiltonian (2) disorder enters in 2 ways: in the sign of the
couplings Jm= ± 1 and in the M random p-uples of indices {im

1 ,..., im
p }m=1,..., M,

which define the interactions topology. This topology has finite connecti-
vity (each variable appears on average in pc interactions) and locally tree-
like (a Husimi tree for p > 2).

This topology can be represented as a hypergraph G made of a set of N
vertices (corresponding to the variables in the problem) and a set of M
hyperedges (corresponding to the constraints in the problem), each one
connecting p vertices. The disorder ensemble thus corresponds to all the
possible ways one can place M=cN hyperedges among N vertices, each
hyperedge connecting p vertices and carrying a random sign Jm= ± 1.

Analogously to what happens with loops in usual graphs (p=2), in a
disordered model defined on a hypergraph (p > 2) frustration is induced by
the presence of hyperloops, (6, 11) which are also called hypercycles in the
literature. (15) The definition of a hyperloop can be given both in terms of
the hypergraph G or in terms of the matrix Â.

A hyperloop is a sub-hypergraph C … G, i.e., a set of hyperedges
belonging to G, such that every vertex has even degree (connectivity) in C.

In terms of the matrix Â it corresponds to a set of rows R such
that, for every column, the sum modulo 2 of the elements is zero, i.e.,
;i ¥ R Aij mod 2=0 -j.

The presence of hyperloops is directly related to the presence of frus-
tration in the system: If the product of the signs of hyperloop interactions
is negative, <m ¥ C Jm=−1, then not all such interactions can be satisfied at
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the same time. The critical point cc, where hyperloops percolate, is a T=0
phase boundary for the p-spin glass models defined by Hamiltonian (2):
For c < cc all the interactions can be satisfied and the GS energy is zero,
while for c > cc the system is in a frustrated spin glass phase and GS of
zero energy no longer exist.

The critical point cc corresponds to the SAT/UNSAT threshold for
the random p-XORSAT problem. In terms of the random linear system
ÂxF=yF mod 2, as long as c < cc, solutions to the system will exist with
probability 1 in the large N limit for any y.

4.2. ‘‘Leaf Removal’’ Algorithm

Given a hypergraph the leaf removal algorithm proceeds as follows: (16)

As long as there is a vertex of degree 1 remove its unique hyperedge. A
single step of the algorithm is illustrated in Fig. 4 for a graph (p=2) and
for a hypergraph (p=3). Very similar algorithms have been recently
studied in refs. 17 and 18.

During the whole process the remaining hypergraph is still a random
one, since no correlation can arise among the hyperedges if it was not
present at the beginning. When there are no more vertices of degree 1 in the
hypergraph the process stops and we call core the resulting hypergraph,
cleared of all isolated vertices.

The leaf removal algorithm is not able to break up any hyperloop,
since each vertex in the hyperloop has at least degree 2. The c value where
the core size becomes different from zero, let us call it cd, is certainly
smaller than the percolation point of hyperloops cc (for p=2 these two
values coincide).

p = 2

p = 3

Fig. 4. A single step of the ‘‘leaf removal’’ algorithm on a graph (top) and on a hypergraph
(bottom).
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The evolution of a hypergraph under the application of the leaf
removal algorithm can be described in terms of the probability, fk(t), of
finding a vertex of degree k after having removed tN hyperedges where the
‘‘time’’ t ranges from 0 to c. The initial condition is fk(0)=e−pc (pc)k

k! and the
evolution equations read (see ref. 18 for a detailed derivation of similar
equations)

“f0(t)
“t

=(p − 1)
f1(t)
m(t)

+1,

“f1(t)
“t

=(p − 1)
2f2(t) − f1(t)

m(t)
− 1, (24)

“fk(t)
“t

=(p − 1)
(k+1) fk+1(t) − kfk(t)

m(t)
-k \ 2,

where m(t)=;k kfk(t)=p(c − t), since the mean degree linearly decreases
with time (we remove one interaction per step) and vanishes at t=c.

Thanks to the simplicity of the leaf removal process, the degree distri-
bution always remains Poissonian for degrees larger than 1, with a time
dependent average l(t),

fk(t)=e−l(t) l(t)k

k!
-k \ 2. (25)

The solution to Eqs. (24) reads

l(t)=p[c(c − t)p − 1]
1
p , (26)

f1(t)=l(t) 5e−l(t) − 1+1l(t)
pc

2
1

p − 16 , (27)

f0(t)=1 − C
.

k=1
fk(t). (28)

The leaf removal algorithm stops when there are no more vertices of degree 1,
so one can predict the resulting core by fixing l(t)=lg, where lg is the
largest zero of the equation f1=0 or equivalently

e−l* − 1+1lg

pc
2

1
p − 1

=0. (29)

More precisely lg is the first zero of Eq. (27) one finds decreasing l, start-
ing from the initial value of l(0)=pc, but this always coincides with the
largest zero. Note that once we define m=[lg/(pc)]1/(p − 1), Eq. (29) can be
rewritten as

1 − m=exp( − pcmp − 1), (30)
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tree-like graph

graph with loops

core

Fig. 5. On graphs (p=2) the leaf removal algorithm is not able to break loops, which thus
remain in the residual core.

which is nothing but the equation for the magnetization in the ferromagne-
tic state, (6) equivalently the equation for the backbone size in any cluster.
Note that Eq. (29) with p=3 is identical to Eq. (14), which indeed deter-
mines the mean connectivity of the sub-hypergraph made of hyperedges
with non-trivial biases.

In the p=2 case the leaf removal algorithm is able to delete all the
edges only for tree-like graphs. As soon as there are loops in the graph, a
core containing these loops arises (see Fig. 5). In a random graph the leaf
removal transition coincides with the percolation one at cp=1/2. The
shape of the function f1(l) is shown in Fig. 6. For c [ cp, there is only one
zero in lg=0; While, for c > cp, lg > 0 and a core arises, whose size grows
as (c − cp)2 near the critical point.

For p > 2 the percolation transition, taking place at cp= 1
p(p − 1), does

not affect at all the leaf removal algorithm which is able to delete all the
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Fig. 6. The function f1(l)/l for p=2.
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Fig. 7. For p > 2 the leaf removal algorithm is able to break loops (but not hyperloops!).

hyperedges, even those forming loops (but not those forming hyperloops!),
far beyond cp (see Fig. 7).

The leaf removal transition takes place at cd, which is defined as the
first c value where a second solution to Eq. (30) appears. For p=3 we have
cd=0.818469. The transition is first order and, at the critical point, the
core already occupies a finite fraction of the system. In Fig. 8 we show
the function f1(l) for p=3. It is clear (see inset of Fig. 8) that when lg(c)
becomes different from zero it directly jumps to a finite value: lg(cd)=
1.25643 for p=3.

4.3. Statistical Description of the Core

Once the leaf removal process has come to an end the distribution of
connectivities on the core (normalized with respect to the original number
of vertices) is a truncated Poissonian

Pc(k)=30 for k=0, 1
e−l*(c) l*(c)k

k! for k \ 2 (31)
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Fig. 8. The function f1(l)/l for p=3. Inset: function lg(c) for p=3.
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The number of vertices Nc and the number of hyperedges Mc in the core
can be expressed in terms of p, c and lg(c) as

Nc(c)=N C
.

k=2
fk(lg)=N[1 − (1+lg) e−l*], (32)

Mc(c)=M − Ntg=N 51
c
1lg

p
2p6

1
p − 1

=cN(1 − e−l*)p=N
lg

p
(1 − e−l*).

(33)

The first of these equations has a simple interpretation: The number of
vertices in the core is nothing but the number of vertices with a degree
larger than 1, after the application of the leaf removal algorithm. The
second equation states that the number of hyperedges left is the initial one
minus the number of step the leaf removal algorithm has been run (during
each step only one hyperedge is deleted). The running time tg is the solu-
tion to Eq. (26) with lg on the left hand side. The last two, and more
compact, expressions for Mc have been obtained with the use of Eq. (29).
The lower curves in Fig. 9 show the normalized number of vertices Nc/N
and number of interactions Mc/N in the core as a function of c, for p=3.

It is natural now to study the residual problem on the core, Âc xFc

=yFcmod 2, where Âc is the Mc × Nc sparse random matrix obtained from Â
deleting all the rows corresponding to removed interactions and all empty
columns. In the next subsection we will derive a general result that, when
applied to the problem on the core, gives a necessary and sufficient condi-
tion for the existence of solutions to Âc xFc=yFc mod 2. Then we will show
that, from a solution in the core, a solution for the original system can
always be constructed.
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Fig. 9. From bottom to top (on the left): For p=3, normalized number of hyperedges and
vertices in the core, and fraction of frozen sites, i.e., magnetization (or backbone) in a state.
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4.4. Calculation of the cc Threshold

Let us call NJ, N, M the number of GS for a given disorder realization
J (i.e., a given hypergraph and coupling signs) with N variables and M
interactions. We will show that, in the large N limit, if the hypergraph does
not contain any vertex of degree less than 2, NJ, N, M is a self averaging
quantity, that is it does not fluctuate changing J.

In order to show self-averageness we will prove that, on hypergraphs
(p > 2) with minimum degree at least 2, the following equalities hold

NJ, N, M=2N − M, lim
N Q .

N 2
J, N, M − (NJ, N, M )2

(NJ, N, M )2 =0, (34)

where the overline stands for the average over the disorder ensemble, that
is over the ways of choosing M hyperedges among (N

p) and the ways of
giving them a sign Jm= ± 1. The above equalities state that the probability
distribution of NJ, N, M over the disorder ensemble is a delta function, and
thus the quenched average equals the annealed one

log NJ, N, M=log NJ, N, M=log(2) (N − M). (35)

Given the definition

NJ, N, M=C
sF

D
M

m=1
d(sim

1
· · · sim

p
=Jm), (36)

the first moment is trivially given by

NJ, N, M=C
sF

D
M

m=1
d(Jm=sim

1
· · · sim

p
)=2N − M, (37)

since, for every given spin configuration and topology, the probability that
coupling signs satisfy all the M interactions is exactly 2−M.

The second moment is given by

N 2
J, N, M=C

sF sFŒ

D
M

m=1
d(sim

1
· · · sim

p
=Jm) d(s −

im
1

· · · s −

im
p
=Jm)

=C
sF

D
M

m=1
d(Jm=sim

1
· · · sim

p
) C

sFŒ

D
M

m=1
d(s −

im
1

· · · s −

im
p
=sim

1
· · · sim

p
)

=2N − M C
yF

D
M

m=1
d(yim

1
· · · yim

p
=1), (38)
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where yi=sis
−

i and the last expression is nothing but the annealed average
of the partition function at T=0 for a system where all the coupling signs
have been set to 1, i.e., a ferromagnetic model. Such an average can be
computed by standard saddle point integration and the final result is

FN, M= lim
N Q .

1
N

log C
yF

D
M

m=1
d(yim

1
· · · yim

p
=1)=C

k
P(k) log(xk

++xk
− ), (39)

where P(k) is the distribution of connectivities in the hypergraph and
x+, x− solve the following equations

x++x− =5C
k

kP(k)
OkP

xk − 1
+ +xk − 1

−

xk
++xk

−

6p − 1

, (40)

x+ − x− =5C
k

kP(k)
OkP

xk − 1
+ − xk − 1

−

xk
++xk

−

6p − 1

. (41)

Here OkP=;k kP(k)=p M
N is the mean connectivity. When more than one

solution to Eqs. (40) and (41) exist, the one maximizing Eq. (39) must be
chosen. The value of x+ (resp. x− ) is proportional to the fraction of
variables taking values 1 (resp. − 1) in the set of configurations which
maximize the sum in Eq. (39). Then the typical magnetization of this model
is given by m=x+ − x−

x++x−
.

Solutions to Eqs. (40) and (41) can be classified depending on the
value of magnetization m. In full generality there are 3 solutions: a first
symmetric one (x+=x− ) with m=0, a second one with large magnetiza-
tion and a third one with an intermediate value of m. For some choices of
P(k) (e.g., a Poissonian) solutions with m > 0 may exist only for M

N large
enough. The solution with intermediate magnetization always corresponds
to a minimum of FN, M and can be in general neglected.

The symmetric solution x+=x− =2−1/p always exists and gives FN, M=
log(2) (1 − M

N). For p > 2 and P(0)=P(1)=0, i.e., for hypergraphs with
minimum degree 2, the solution with large magnetization also exist for any
c value and has x+=1, x− =0 and FN, M=0. As expected, the intermediate
solution, when it exists, has FN, M < 0.

Then, for p > 2 and P(0)=P(1)=0, we can conclude that the average
in the last term of Eq. (38) equals eNFN, M=2N − M (the coefficient can be
easily calculated and is exactly 1). Thus, equalities in Eq. (34) hold and the
number of GS is a self-averaging quantity.
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Since the core generated by the leaf removal algorithm has minimum
degree 2, we may apply the above result, and find that the SAT/UNSAT
threshold is given by the condition

Nc(cc)=Mc(cc) 2 1 − (1+lc) e−lc=
lc

p
(1 − e−lc), (42)

where lc=lg(cc). For c [ cc there are 2Nc − Mc solutions (i.e., unfrustrated
GS) in the core, while for c > cc there is none. For p=3, solution to
Eq. (42) gives lc=2.14913 and cc=0.917935.

For any given solution in the core, a solution for the whole original
system can be easily reconstructed. Indeed, we reintroduce in the system
the interactions removed during the leaf removal process, but in a reversed
order (i.e., the last removed is the first to be reintroduced). At each step,
together with one interaction, at least one variable is reintroduced in the
system (the variable having degree 1 when that interaction was removed)
and this variable must be set such as to satisfy the interaction. Very often
more than one variable per step is reintroduced, allowing for multiple and
equivalent choices. This redundancy is what makes the total number of
solutions larger than the number of solutions in the core (see below).

In the table below we report the thresholds cd and cc for some p
values.

p cd cc

2 1/2 1/2

3 0.818469 0.917935

4 0.772278 0.976770

5 0.701780 0.992438

6 0.637080 0.997380

4.5. Clustering of Ground States

Let us come back to the problem of clustering solutions below the
SAT/UNSAT threshold (c [ cc). In this region the system is not frustrated
and then a gauge transformation setting all coupling signs to 1 can always
be found: Given an unfrustrated GS sF 0 a possible gauge transformation is
s −

i=sis
0
i and J −

m=Jms0
im
1

· · · s0
im
p
=1. Thanks to this, in the rest of the paper

we will consider only a ferromagnetic system (Jm=1 -m), which corre-
sponds to the linear system ÂxF=0F mod 2.
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The solutions to the linear system ÂxF=0F mod 2 form a group: The
sum of 2 solutions is still a solution and the null element is the solution
xF=0F. The symmetry group is telling us that if one looks at the configura-
tional space sitting on a reference GS, the set of GS will look the same,
whatever the reference GS is. An immediate consequence of this symmetry
is that, if GS form clusters, these clusters must be all of the same size.

For c [ cc, hyperloops are absent and the total number of GS (or
solutions) is always given by 2N − M, i.e., their entropy is S(c)=
log(2) (1 − c). Let us divide the N variables in 2 sets: xFc represents the Nc

variables in the core, and xFnc the N − Nc variables in the non-core part of
the hypergraph, that is variables corresponding to vertices remained
isolated at the end of the leaf removal process. Thus also the entropy can
be divided in 2 parts. One part is given by the solutions in the core, that is
by the possible assignments of xFc,

Sc(c)=log(2)
Nc(c) − Mc(c)

N
, (43)

which is non-negative for cd [ c [ cc. The other part is given by the pos-
sible multiple assignments of xFnc during the reconstruction process

Snc(c)=S(c) − Sc(c). (44)

This separation of the entropy in 2 parts is physically relevant, and we will
show here that it corresponds to the proper clustering of the solutions.

The physical picture we have in mind is sketched in Fig. 10. For
cd [ c [ cc, the solutions of ÂxF=yF mod 2, or equivalently the ground states

ΣN N  – Mc c

N – N

N

# clusters = e = #    = 2
= core solution

 

non-core variables give
the intra-cluster entropy

ncS   = S – S  = S – Σc

c

c

Fig. 10. Schematic picture of the clustering of solutions for cd < c < cc.
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Fig. 11. Total entropy S(c) and configurational entropy S(c) for p=3.

of (2), spontaneously form clusters. By definition, two solutions having a
finite Hamming distance d, i.e., d/N Q 0 for N Q ., are in the same
cluster, while two solutions in different clusters must have an extensive
distance, that is d/N ’ O(1) for large N.

In virtue of the property stated at the beginning of this subsection, all
the clusters have the same size. Their number is eNS(c), where S(c) is called
complexity or configurational entropy. We will show that the number of
clusters equals the number of solution in the core, that is

S(c)=Sc(c). (45)

The intra-cluster entropy, i.e., the normalized logarithm of the cluster size,
is then given by the non-core entropy Snc(c)=S(c) − Sc(c)=S(c) − S(c).
For p=3 these entropies are shown in Fig. 11.

The proof of Eq. (45) is given in 2 steps. First we show that all the
solution assignments of the core variables xFc are ‘‘well separated’’, that is
the distance among any pair of them is extensive. This is what gives rise to
the clustering, with a number of clusters which is at least as large as the
number of core solutions (S \ Sc). Then we show that, for any fixed xFc, all
possible assignments of non-core variables xFnc belong to the same cluster,
and so S=Sc.

The first step is accomplished by calculating the probability distribu-
tion of the distance among any two solutions in the core. Thanks to the
group property, we can restrict the calculation fixing one solution to the
null vector 0F. For simplicity we have performed an annealed average

S(d, c)= lim
Nc Q .

1
Nc

log C
sF

d 1C
i

si=Nc − 2d2 D
Mc

m=1
d(sim

1
· · · sim

p
=1), (46)
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which gives an upper bound to the exact result. The expression for this
entropy is given by Eq. (39), where x+ comes from the solution of Eq. (40),
keeping the ratio d

Nc
= x−

x++x−
fixed.

In Fig. 12 we plot the resulting entropy as a function of the distance d,
for p=3 and some values of c. For cd < c < cc the entropy is negative for
0 < d < dmin(c), and so dmin(c) is a lower bound on the minimum distance
among any two solutions in the core. This minimum distance is shown for
p=3 in Fig. 13.

Then all the eNSc core solutions are well separated, and can be repre-
sented as the centers of the clusters (see Fig. 10). It remains to be proven
that, for any fixed xFc, the solution assignments of xFnc form a single cluster.
Thus no further clustering is present and the picture of Fig. 10 is correct.

This last proof is given in the Appendix, and it is based on an algo-
rithm which allows one to change the value to any variable in xFnc by simply
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Fig. 13. Lower bound for the minimum distance among any 2 solutions in the core for
p=3.
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adjusting other O(1) variables in xFnc. This shows that all the solutions in
one cluster are connected in the following sense. One solution can be
reached from any other one by a sequence of moves, where each move
involves flipping only a finite number of spins.

5. CONCLUSION AND DISCUSSION

In this work we have solved, with two alternative methods, the
p-XORSAT model, which corresponds to the zero-temperature limit of the
diluted p-spin model.

Increasing the c parameter (number of interactions per variable) the
model undergoes two phase transitions. At cd, solutions to the p-XORSAT
problem (i.e., ground states for the p-spin model) spontaneously form an
exponentially large number of clusters, thus giving a finite configurational
entropy. At cc, frustration percolates throughout the system, and conse-
quently the number of clusters (and solutions) goes to zero, and the ground
state energy becomes positive. cc corresponds to the SAT/UNSAT
threshold. These exact results perfectly agree with previous replica calcula-
tions (6, 11, 12) and may suggest new approaches for finding mathematical
bases to Parisi’s theory of spin glasses. (13)

The use of the cavity method combined with a rigorous derivation
based on the topological properties of the interaction hypergraph, allow us
to establish some interesting links among distributions of cavity fields on a
given variable and the position of the corresponding vertex in the
hypergraph. In particular all the variables with a non-trivial distribution of
cavity fields belong to the ‘frozen’ part of the hypergraph (see Appendix),
that is to the core and to the part that can be uniquely fixed, once an
assignment to core variables has been chosen. The ‘‘frozen’’ part is exactly
the backbone of a cluster (variables which take the same value for all the
solutions in the cluster) and its size is given by the largest solution to
Eq. (30). The rest of the hypergraph, the ‘‘floppy’’ part, only contains
paramagnetic variables, that is variables always having a null cavity field.

APPENDIX A

In this appendix we show that assignments of non-core variables xFnc

are not clustered. To this end, we define an algorithm which allows one to
flip any non-core variable, by simply adjusting other O(1) non-core
variables. With this algorithm one can move through all the xFnc assign-
ments by doing finite steps, thus proving that non-core solutions form a
single cluster.
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Let us fix the core variables xFc to any solution, and call them
‘‘frozen.’’ All the variables, belonging to at least one equation where the
other p − 1 variables are already frozen, must be frozen too (see e.g., the
dashed triangle in Fig. 14, where the dashed blobs represent the frozen
core). In this way one is able to freeze a number of variables m(c) N, where
m(c) turns out to coincide with the largest solution of Eq. (30), that is with
the magnetization in the ferromagnetic state or the backbone in a generic
cluster. For p=3 the function m(c) is shown in Fig. 9 (upper curve).

After having fixed all the variables one could, one is left with the
‘‘floppy’’ part of the hypergraph. The typical situation is sketched in
Fig. 14, where the dashed part is frozen (hereafter we refer only to the
p=3 case for the sake of clarity). All the interactions involving both frozen
and floppy variables (those which form the boundary between the frozen
and the floppy part of the hypergraph) must contain 2 floppy and 1 frozen
variables, otherwise (2 frozen and 1 floppy) that interaction would become
frozen as well and would not longer be on the boundary.

The numbers in Fig. 14 have been assigned during a slightly different
leaf removal process with the following rule. Starting with the original
hypergraph, the number ‘‘1’’ is given to all the vertices of degree less than 2
(isolated vertices and leafs) and their hyperedges are deleted. Then, in the
new hypergraph, the number ‘‘2’’ is given to all vertices of degree less than
2 and their hyperedges deleted. And so on. We call these numbers the depth
of a vertex. Vertices of depth 1 represent the ‘external boundary’ or the
‘‘surface’’ of the hypergraph.

The evolution of this ‘‘collective’’ leaf removal process can be
described in terms of the same function f1(t) used previously. At each time
step a depth is assigned to a fraction f1(t) of vertices and then the time is

Fig. 14. The bold tree-like structure is a possible seaweed (see text) in order to flip the vari-
able on the circled vertex and still keep all the interactions satisfied. Note that the seaweed
passes through at most 2 vertices on the same interaction.
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increased by Dt=f1(t), in order to take into account the deletion of
hyperedges leaving from the just numbered vertices. For very large times
and depths, f1(t) is very small and can be approximated by f1(t) 4

(t − tg) “t f1(tg), where tg is such that f1(tg)=0. In this regime we have
that

Dt=f1(t), (A.1)

Df1(t)=
“f1(t)

“t
:
t*

Dt=
“f1(t)

“t
:
t*

f1(t), (A.2)

and so f1(t+Dt)=f1(t)[1+“t f1(tg)]. Then the probability of having a
(large) depth h satisfies the equation P(h+1) 4 P(h) m, where

m(c)=1+
“f1(t)

“t
:
t*

=1+
“f1(l)

“l

“l(t)
“t

:
l*(c)

. (A.3)

Since the probability of having depth h drops exponentially for large h as
P(h) 3 mh, the largest depth assigned with this process is O(log N). For any
c ] cd we have that m(c) < 1, since l(t) is a decreasing function of t and
“l f1(l) is positive in the largest root lg, unless c=cd.

Once depths have been assigned, there is an algorithm (described
below) which allows one to change the value to any floppy variable, by
adjusting, at the same time, only O(1) other floppy variables. Such a new
configuration will be a finite distance far apart, and, by definition, will
belong to the same cluster. In this way one can change the configuration of
the floppy (and non-core) variables to any admissible one, and these
configurations will form a unique cluster.

The physical idea behind the algorithm for flipping any floppy vari-
able, keeping all the interactions satisfied, and adjusting only a finite
number of other variables, is the following. Suppose, as in Fig. 14, that
we flip the variable of depth 5. Then the interactions it participates to will
be unsatisfied, and we have to move this ‘‘excess energy’’ by flipping
other variables, along the shortest way, towards the boundaries of the
hypergraph, that is the vertices of depth 1, where it can be freely released.
The only delicate point is the definition of the ‘‘path to the boundary,’’
which has to contain a finite number of vertices. In Fig. 14 we show a pos-
sible way to release the excess energy generated by flipping variable of
depth 5. Flipping all the variables belonging to the tree-like bold structure
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will keep all the interactions satisfied, since every interaction contains an
even number of vertices belonging to the bold structure.

We will call this tree-like structure a seaweed, since it has a root, cor-
responding to the vertex of maximum depth, and the number of its
branches grows approaching the surface. Now we give the rules for con-
structing a seaweed, such that its size is finite.

Let us start with some nomenclature: We say that a hyperedge e is
‘‘below’’ a vertex v, and analogously v is ‘‘above’’ e, if the depth of v is the
smallest among the depths of all the vertices in e.

Thanks to the way depths have been assigned, each vertex may have at
most 1 hyperedge below. This property can be easily proved, remembering
that to any given vertex v the depth is assigned only when its connectivity is
0 or 1. At this time, all the other hyperedges of v have been removed, since
we have assigned smaller depths to its neighbours. The only hyperedge
which can be below v is the last one. Moreover, if the depth is assigned to v
when its connectivity is 0 (isolated vertex), the vertex v will have no
hyperedges below, and we will call it a root.

The construction of the seaweed starts from the vertex corresponding
to the variable that we want to flip (let us call it seed). In this way we are
sure that such a vertex will be in the structure, and the corresponding
variable flipped. The seaweed is built up recursively, that is we give the
rules for growing a single branch, both upwards (i.e., towards the surface)
and downwards (i.e., towards a root), and then these rules must be applied
to any branch of the seaweed, until it reaches the surface of the hyper-
graph or a root vertex. The branches are such that along an upwards
(downwards) direction the depth strictly decreases (increases). Rare excep-
tions to this property will be illustrated below.

When a branch passes through a hyperedge it will visit only 2 vertices
in this hyperedge, such that, when all the variables belonging to the
seaweed will be flipped, the interaction will remain satisfied.

Suppose the seed vertex has connectivity k. Then we start k different
branches, 1 downwards entering the only hyperedge below the seed vertex
and k − 1 upwards entering the other hyperedges.

Any upwards branch entering a hyperedge e through vertex v has to be
continued with the vertex above e. If there are many vertices of the same
minimum depth in e, any of them can be chosen equivalently. With this
rule we are ensuring that the new vertex added to the upwards branch is of
smaller depth than v.

Any downwards branch entering hyperedge e through vertex v has to
be continued with the vertex of maximum depth in e. If there are many
vertices of the same maximum depth in e, any of them can be chosen
equivalently. With this rule we can ensure that the new vertex added
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to the downwards branch will be deeper than v, since v is of minimum depth
in e.

Any growing branch reaching a vertex v of connectivity k has to be
continued with k − 1 branches, in order to satisfy the rule that all the
hyperedges of v must be visited by a branch. If the just reached vertex is on
the surface (i.e., it has depth 1 and connectivity 1) the branch ends there.
On the contrary, reaching a vertex of connectivity larger than 2, the
growing branch generates new branches. More in particular, if the branch
is an upwards one it will generate only upwards branches (since it is coming
from the only hyperedge below v). While, if it is the downwards one, it may
generate at most one downwards branch (all the rest being upwards ones).
This is a consequence of the property that every vertex may have at most 1
hyperedge below it.

In two cases the unique downwards branch ends in a vertex v, which is
thus the root of the seaweed: (1) v is a root vertex, that is it has no
hyperedges below it (2) vertex v is above hyperedge e, but v is not the only
vertex of minimum depth in e. In this case the branch entering e through v
becomes an upwards one, and makes a single step without decreasing the
depth (this is the only exception to the rule on the monotonicity of the
depth along a branch stated above).

Since each branch of the seaweed is grown independently, it may be
that a the end of the process some vertices result in more than one branch.
This is not a problem: The rule says that every vertex which has been
included an odd number of times in the seaweed must be in it; While those
entering an even number of times must be left out. The net result is a
decrease in the total number of vertices in the structure. The seaweed can
eventually break up in more than a single connected component. All the com-
ponents, but that containing the seed, can be removed from the seaweed.

The choice of growing the branches always along vertices of maximum
and minimum depths is dictated by the need of reaching a root vertex and
the surface of the hypergraph as soon as possible, thus making the seaweed
as small as possible. It is worth noticing that the probability that a vertex is
a root increases for larger depths.

The last point to be proven is that the typical distance, a, measured
along any branch, among the root of the seaweed and the surface, is finite
(and not order log N). This property together with the fact that the
branching ratio is proportional to the connectivity, which is finite too,
implies that the number of vertices in the seaweed, which is roughly pro-
portional to (3c − 1)a, is finite. On the contrary if a would be of order
log N, the volume of the seaweed would diverge for large N.

In order to show that a is finite, even when the root depth is as large as
possible (i.e., order log N), we need to know the probability that a vertex
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has depth h. This probability distribution function, P(h), can be calculated
exactly, but its expression is too involved to be presented here. We only
report some features relevant for our purposes. It depends on the connec-
tivity of the vertex, Pk(h), and for k=0 or k=1 it is trivially given by
P0, 1(h)=d(h − 1). For any k \ 2, it decreases exponentially fast for large h,
and the probability of reaching a vertex (not on the surface) of depth h is
Q(h)=;k \ 2 kfk(0) Pk(h) 3 m(c)h for large h. For the present calculation
the exact shape of Q(h) at small depths is irrelevant, and we only care
about its tail, so we can hereafter use Q(h)=mh for all h.

We show now that, with such a distribution of depths, even starting
from a root of depth O(log N), an upwards branch needs only a finite
number of steps to reach the surface (for simplicity we fix to 0, instead of
1, the surface depth). The probability of going in a single step from depth
h1 to depth h2 is

w(h1 Q h2)=
1 − m

1 − mh1
mh2, (A.4)

which has the correct normalization ;h1 − 1
h2=0 w(h1 Q h2)=1. The probability

of going from depth h to depth 0 in m steps is then

Wh(m)= C
h − 1

h1=h2+1
C

h1 − 1

h2=h3+1
· · · C

hm − 2 − 1

hm − 1=1
w(h Q h1) w(h1 Q h2) · · ·

w(hm − 2 Q hm − 1) w(hm − 1 Q 0)

=
1 − m

1 − mh

(1 − m)m − 1

(m − 1)!
CŒ

{i}
D
m − 1

j=1

m ij

1 − m ij

<
1 − m

1 − mh

(1 − m)m − 1

(m − 1)!
5 C

h − 1

i=1

m i

1 − m i
6m − 1

, (A.5)

where the primed sum is over the m − 1 intermediate depths, taking differ-
ent values between 1 and h − 1, and the inequality follows since in the last
term we have included also configurations with indices taking equal values.
So Wh(m) is upper bounded by a Poissonian distribution with a mean
number of steps

a(h)=(1 − m) C
h − 1

i=1

m i

1 − m i. (A.6)

As expected, a is an increasing function of h. In the limit of a very deep
root, h Q ., the series converges for any m < 1 (i.e., c > cd), and thus a(.)
is still finite.
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