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We develop a new analytic approach for the study of lattice heteropolymers, and apply it to

copolymers with correlated Markovian sequences. According to our analysis, heteropolymers

present three different dense phases depending upon the temperature, the nature of the

monomer interactions, and the sequence correlations: (i) a liquid phase, (ii) a “soft glass”

phase, and (iii) a “frozen glass” phase. The presence of the new intermediate “soft glass”

phase is predicted for instance in the case of polyampholytes with sequences that favor the

alternation of monomers.

Our approach is based on the cavity method, a refined Bethe Peierls approximation

adapted to frustrated systems. It amounts to a mean field treatment in which the nearest

neighbor correlations, which are crucial in the dense phases of heteropolymers, are handled

exactly. This approach is powerful and versatile, it can be improved systematically and

generalized to other polymeric systems.

PACS numbers: 81.05.Lg, 64.70.Pf, 36.20.Ey

I. INTRODUCTION

In the last 20 years much effort has been devoted to the theoretical study of heteropolymers

[21, 58]. One of the main motivations was to understand the statistical physics of protein folding

[9, 10, 17, 48, 50, 69]. Despite the insight that has been accumulated, the goal remains distant.

On the one hand, most analytical studies have been limited to random bond models [20, 60] (in

which the interaction energies of all the couples of monomers along the chain are independent

random variables), or to uncorrelated random copolymer sequences [19, 57]. However, there are

many indications that sequence correlations induced by natural selection play an important role

for the folding and stability of proteins. On the other hand, in this difficult problem, analytic

computations have to resort to some approximations which are not easy to control. It is thus
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important to have a variety of different techniques at hand in order to crosscheck the predictions.

In this paper we develop a new tool for the analytical study of heteropolymers, based on the

cavity method as used in various frustrated systems (a short account of our results has appeared

in [43]). We use this method to investigate the phase diagram of copolymers with Markovian

sequences. Within our approach we find copolymers to exist in three distinct dense phases (apart

from the diluted coil phase at high temperature) depending upon the structure of the interaction

energy matrix, the sequence correlations and the temperature: (i) The liquid globule phase in

which distinct monomers are essentially uncorrelated and can freely rearrange within the globule

(apart from obvious constraints on monomers that are close along the chain); (ii) the “frozen

glass” phase in which the polymer is stuck in one out of a few well-separated low-energy confor-

mations; (iii) a “soft glass” phase with broken ergodicity (in the thermodynamic limit) in which

the thermodynamically relevant conformations form a continuum in configuration space. This last

phase has never been predicted in an analytical computation (although such a possibility has been

envisioned in phenomenological models [50, 52], and a very similar phase seems to be present in

the numerical results of [67] on the dynamics of heteropolymers.). Albeit frustrated, it has a much

larger entropy, and appears already at a smaller density than the usual “frozen glass” phase.

Some of the most successful tools used so far in the study of random heteropolymers are mean

field approaches based on the replica method [20, 57, 60]. Crucial to these calculations was the

identification of some relevant order parameter, and the proposition of a suitable Ansatz describing

the phase transition in a coupled space of real space coordinates and replica indices. This type

of approach is potentially very powerful, but it becomes quite complex for heteropolymers. On

the one hand, it requires a physical intuition for identifying the relevant degrees of freedom and of

their behavior. On the other hand, an Ansatz tailored to describe a certain type of physics may

hide other, unexpected features.

Our cavity method consists in a refined version of the Bethe Peierls approximation. While

this also represents a kind of mean-field approximation, it differs fundamentally from the previous

ones. Applying the Bethe-Peierls approximation to lattice heteropolymers allows to describe self-

consistently the frustration on a local microscopic level. This approach can be thought of as

the first step in the series of cluster variational (or Kikuchi) approximations [33]. Its general

philosophy consists in keeping track of local correlations inside some small region exactly, while

treating the external degrees of freedom as an environment whose statistical properties have to be

determined self-consistently. In the Bethe approximation, the only correlations which are treated

exactly are the ones between neighboring sites on the lattice. This is an improvement with respect
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to the näıve mean field that treats distinct sites as statistically independent. Moreover, it is the

first of such approximations to be meaningful for polymers, since the backbone structure induces

strong correlations between neighbors [1, 2, 3, 4, 5, 47]. Another potential advantage of the cavity

method is that it can be used for one given polymer, without the need to average over an ensemble

of sequences as in the replica method. While in the present work we focus on ensemble-averaged

properties, one should keep in mind this possibility which could lead to interesting algorithmic

developments in the future. Finally, the refined Bethe-Peierls approximation is supposed to be

exact on locally tree-like structures (e.g., on random graphs). This is an important feature: It

allows one to set up the mean-field analysis in a mathematically well-defined way, and its predictions

can be checked against numerical simulations on those random “mean-field” lattices for which the

theory is expected to be exact.

Within our cavity method, any heteropolymer is found to undergo a glass transition at large

enough densities. Two main schemes of glass transitions can occur, depending on the details of

the sequence, each of them being associated with one of the types of glasses mentioned above.

The transition to the frozen glass phase is a discontinuous transition, which is called random

first order, or one step replica symmetry breaking (1RSB) transition in the replica language. It

corresponds to the type of transition which has been found in many previous studies, of which the

Random Energy Model (REM) [14] is the simplest archetype.

The transition to the soft glass phase is a continuous one, corresponding to full replica symmetry

breaking (FRSB). This is more in line with recent scenarios proposing a freezing that proceeds

gradually from small scales to larger and larger structures [46, 65]. In a series of papers exploiting

a Gaussian variational technique to deal with the dynamics of heteropolymers, copolymers in

particular, a much richer phase diagram was proposed, where the ultimate REM-like folding to a

unique ground state is preceded by a less structured but still frustrated glassy phase [66, 67, 68].

As for the glass transition, the random copolymer was proposed to be in the same universality

class as the Ising spin glass [46], which would imply a continuous transition with a full breaking of

the replica symmetry.

Beside providing an alternative and well controlled analytical approach, our cavity analysis adds

to the above pictures in that it highlights the dependence of the scenario to be expected on the

correlations of the monomer sequences.

In order to keep the computations more transparent we avoid here the use of replicas (although

it would be possible to write all of the ensemble-averaged cavity equations using replicas), but we

keep to the traditional replica vocabulary of 1RSB and FRSB to denote the two types of transitions.
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We will apply here the general method to treat Markov-correlated sequences. However, a much

wider range of possible applications of this technique is open.

The paper is organized as follows: In Section II we define the lattice model and review the

treatment of polymers in the grand canonical ensemble. We then introduce the basic ideas of the

Bethe approximation and discuss the Θ-collapse from the random coil to the liquid globule phase.

Section III discusses the shortcomings of the liquid solution and generalizes the method to the case

where many pure states exist (as typically in a glassy phase). In particular, we propose a set of

local order parameters that allow to distinguish both theoretically and experimentally between two

different types of glass transitions. In Section IV we describe some basic tools for analyzing the

glass transition. We present a local stability criterion for the liquid phase and the 1RSB cavity

equations which are used to describe the glassy phase. This formalism is illustrated in Section V by

considering the exemplary cases of alternating sequences with attractive or repulsive interactions

of like monomers.

It turns out that the two types of interactions imply very different phase transitions: either

a continuously emerging “soft” glass phase or the “standard” discontinuous freezing transition.

These two scenarios are found in the study of Markovian chains in Sec. VI. The properties of the

strongly frozen phase is analyzed in Section VII by focusing on maximally compact conformations.

We conclude with a summary of our results and a discussion of their relevance for protein folding.

Several technical developments are included in the seven appendices.

II. THE CAVITY APPROACH TO HETEROPOLYMERS

In this Section we describe the type of heteropolymer models which we shall study. We derive

their phase diagram under the assumption that the polymer is “liquid” meaning that any sta-

tistically relevant conformation is dynamically accessible to the molecule. In replica jargon this

corresponds to assuming replica symmetry. The next sections will render more precise the regions

of the phase diagram where this liquid phase is stable and corresponds to the physically relevant

state.

A. The lattice polymer model

Our starting point is the standard model of lattice polymers [11, 63], which we generalize for

polymers living on a general graph G. We denote by i, j, . . . ∈ V the vertices of G (with |V| = V ),
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and by (i, j), . . . ∈ E the edges of G. Let ω = (ω1 . . . ωN ), ωa ∈ V denote a self-avoiding walk (SAW)

of length N on G. The position of a monomer along the chain is denoted by a, b, . . . ∈ {1 . . . N},
and we assume an interaction matrix eab to be assigned. The corresponding energy reads:

HN (ω) =
∑

(a,b)|(ωa,ωb)∈E

eab, (1)

where the sum runs over couples of non-consecutive monomers which are nearest neighbors on the

lattice.

The choice of the matrix eab is crucial. The standard homopolymer model is recovered by

setting eab = e0. A popular model in heteropolymer studies is the random bond model [60] which

assumes the eab to be independent identically distributed (i.i.d) quenched random variables. In

this work we study the more realistic case where the interaction energies are determined by the

underlying monomer sequence. The sequence will be given by {σ1, . . . , σN}, with σa ∈ A being

the type of the monomer at position a in the sequence. The interaction energy of two monomers

is assumed to depend only upon the monomer type: eab = Eσaσb
. In particular, we shall focus

on copolymers (although the approach is general) where there are only two types of monomers:

A = {A,B}. Interaction matrices Eσ,σ′ of particular interest are:

• The HP model. A and B monomers represent (respectively) hydrophobic and polar

aminoacids, and the interaction matrix is chosen accordingly, e.g., EAA = −1, EAB =

EBB = 0. This is a popular toy model for protein folding [15].

• The polyampholyte. A and B are supposed to carry screened charges which suggests EAA =

EBB = +1 and EAB = EBA = −1. Sometime we shall refer to this interaction matrix as the

antiferromagnetic (AF) model.

• The symmetrized HP model. We take EAA = EBB = −1 and EAB = EBA = +1. This is

the standard model for copolymers with monomers that have a tendency to segregate [58].

We shall refer to it as the ferromagnetic (F) model.

As for the graph G we shall consider two particular cases: (i) A V -sites portion of the d-

dimensional cubic lattice. (ii) A V -sites Bethe lattice, i.e., a random lattice with connectivity

(k + 1). Its interest stems from the observation that, in the thermodynamic limit, our mean-field

calculations are exact on such a graph.

Both for our analytical computations and for the simulations on the Bethe lattice we shall

need to consider periodic sequences with period L: σi = σi+L. The complete sequence is therefore
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determined by its first period (σ1 . . . σL). Hereafter, we shall use the shorthand notation “monomer

a” to refer to all monomers in positions a + nL with integer n. Furthermore, monomer indices

always should be read modulo L. We expect the non-periodic case to be recovered in the L→ ∞
limit, even if this limit is taken after the limit N,V → ∞.

The random-bond model is obtained in the |A| = L→ ∞ limit by setting σ1 6= σ2 6= . . . 6= σL,

and taking the Eσ,σ′ to be i.i.d. random variables.

In order to understand the influence of the correlations in the sequence of monomers, we shall

consider Markovian random copolymer chains in the large L limit. In these chains the probability

of a monomer to be of a certain type depends only on the preceding monomer in the sequence. For

the sake of simplicity we assume the two types of monomers to occur with the same frequencies.

The statistical ensemble of the chains is then fully characterized by the probability π ∈ [0, 1] of a

monomer to be of the same type as the preceding one.

We study the system at thermal equilibrium at a temperature T = 1/β. We define a canonical

free energy density as

− β fL(β, ρ) = lim
N,V →∞

N=ρV

1

V
EG log

(
∑

ω

e−βHN (ω)

)
, (2)

and its grand-canonical counterpart

− β ωL(β, µ) = lim
V →∞

1

V
EG log




∑

N≥0

eβµN
∑

ω

e−βHN (ω)



 , (3)

where the expectation value EG is taken with respect to the graph ensemble (whenever G is a

random graph). The L → ∞ limit, and the expectation with respect to the sequence (σ1 . . . σL)

are (eventually) taken afterwards.

The two free energies defined above satisfy the usual Legendre transform relation ωL(β, µ) =

fL(β, ρ) − µρ. In order to describe free polymers (in equilibrium with the solvent) the chemical

potential has to be adjusted to the critical value µc such that ωL(µc) = 0 [12]. In the grand-

canonical picture this critical line corresponds to a phase transition between an infinitely diluted

phase for µ < µc and a dense phase with non-vanishing osmotic pressure for µ > µc. If this

phase transition is continuous, the density on the coexistence line vanishes, while it is finite if

the transition is first order. On this coexistence line, the tricritical point where the nature of the

transition changes is nothing but the Θ-point where the collapse of the unconstrained polymer

takes place.

In a homopolymer, the above description captures the essential of the phase diagram [36].

However, in a heteropolymer, the low temperature dense phase will be strongly influenced by the
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a a a

a−1 a+1

0 aa 2a

FIG. 1: Possible conformations of a site (or oriented edge) on the regular Bethe lattice. The cavity site is

considered as the root of a branch with k leaves (here k = 5). The thick lines and filled circles represent the

chain backbone and monomers.

sequence heterogeneity. Due to the connectivity of the polymer chain it is in general impossible to

find a compact folding where all interactions are favorable. The system is frustrated, and a glass

transition will take place at sufficiently low temperature.

B. The Bethe Peierls approximation

As already mentioned, the Bethe approximation is asymptotically exact on locally tree-like

graphs. Following [40], we define a Bethe lattice as a random lattice with fixed connectivity. Such

a lattice is locally tree-like since the typical loop size diverges as log V with the lattice size. In

order to handle the heteropolymer problem on a d-dimensional hypercubic lattice within the Bethe

approximation, our approach idealizes the graph as a Bethe lattice with the same connectivity,

k + 1 = 2d.

The local tree structure of the graph can be exploited in a recursion procedure. Suppose for a

moment that the lattice is a tree, and let us single out a single branch of the tree which is rooted

at one ‘cavity site’ 0 having only k neighbors i = 1, .., k. In the absence of 0, the branch would

become a collection of k other branches, rooted at i = 1, .., k. This structure allows for a recursive

computation of the probabilities of the polymer’s conformations on the tree.

We first list the possible local conformations of the cavity site 0 in its branch (see Fig. 1). (0):

the site is unoccupied; (↑ a) or (↓ a): the site is occupied by the monomer a and the backbone

continues towards the remainder of the tree, with monomer a− 1 or a+ 1, respectively; (2a): the

site is occupied by monomer a, but the polymer returns back to the leafs. (On a real tree the parts

of the polymer on different branches are necessarily disconnected. However, on the Bethe lattice

this is no longer the case and the polymer may be present on more than two leaves.)
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For each local conformation α ∈ {0, ↑ a, ↓ a, 2a} of the root site 0, we denote by p
(0)
α the

corresponding probability (as given by the Boltzmann measure). The (3L+ 1) dimensional vector

of weights p(0), with components p
(0)
α , can be expressed in terms of the corresponding k weight

vectors p(i) on the neighboring sites. Note that p
(i)
α is the Boltzmann weight for the configuration

α on i when the site 0 is absent. We will refer to these weight vectors on root-sites as cavity fields.

The mapping between cavity fields, p(0) = I
[
p(1), ...,p(k)

]
, can be written explicitly as:

p
(0)
0 = C−1

k∏

i=1

ψ
(i)
0 , (4)

p
(0)
↑a = C−1eβµ

k∑

i=1

p
(i)
↑a+1

∏

j 6=i

ψ(j)
a , (5)

p
(0)
↓a = C−1eβµ

k∑

i=1

p
(i)
↓a−1

∏

j 6=i

ψ(j)
a , (6)

p
(0)
2a = C−1eβµ

∑

i1 6=i2

p
(i1)
↓a−1p

(i2)
↑a+1

∏

j 6=i1,i2

ψ(j)
a , (7)

where C ≡ C[{p(i)}] is a normalization constant which enforces the condition
∑

α p
(0)
α = 1 and we

have introduced the quantities

ψ
(i)
0 = p

(i)
0 +

L∑

a′=1

p
(i)
2a′ , ψ(j)

a = p
(j)
0 +

L∑

a′=1

p
(j)
2a′e

−βeaa′ . (8)

The full lattice is built by merging k + 1 branches. Therefore, once the cavity fields have been

computed, one can express any local quantity using the neighboring cavity fields. The monomer

density ρ(i) at site i is a function of the k + 1 cavity fields p(j) on the j = 1, ..., k + 1 neighboring

sites of i (recall that p(j) gives the probability of a local conformation on j in the absence of i):

ρ(i) =

L∑

a=1

∑

j1 6=j2

p
(j1)
↑a+1p

(j2)
↓a−1

∏
j 6=j1,j2

ψ
(j)
a

w
(i)
s (p(1), ...,p(k+1))

, (9)

where we have defined the normalization constant

w(i)
s (p(1), ...,p(k+1)) =

k+1∏

j=1

ψ
(j)
0 + eβµ

L∑

a=1

∑

j1 6=j2

p
(j1)
↓a−1p

(j2)
↑a+1

∏

j 6=j1,j2

ψ(j)
a . (10)

The internal energy uij of a link (i, j) can be written in terms of the cavity fields on i and j

(giving the probabilities of local conformations on i and j in the absence of the link (i, j)):

uij =
L∑

a,b=1

eab nij(a, b) , nij(a, b) =
p
(i)
2ap

(j)
2b e−βeab

w
(ij)
l (p(i),p(j))

, (11)
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where nij(a, b) is the probability of having a contact between two monomers a and b along the link

(ij) of the graph. The normalization wl(p
(i),p(j)) is given by

w
(ij)
l (p(i),p(j)) = p

(i)
0 p

(j)
0 +

L∑

a,b=1

p
(i)
2ap

(j)
2b e−βeab +

L∑

a=1

(
p
(i)
0 p

(j)
2a + p

(i)
2ap

(j)
0 + p

(i)
↓a−1p

(j)
↑a + p

(i)
↑ap

(j)
↓a−1

)
.(12)

For each edge (i, j) of a given graph, one can introduce a pair of cavity fields, describing

respectively the probability of local configurations of the two points i and j in the absence of the

edge (i, j). One can write a Bethe free energy, which is a functional of all these cavity fields and

has Eqs. (4)-(7) as stationarity conditions. It reads

V βω[{p(i)}] = −
∑

i∈V

log[w(i)
s ] +

∑

(ij)∈E

log[w
(ij)
l ] , (13)

where w
(i)
s and w

(ij)
l are the expressions given in (10) and (12), respectively. Notice moreover

that the density (9) and the internal energy (11) can be obtained by differentiating the Bethe free

energy with respect to the chemical potential µ and the inverse temperature β.

It is easy to show that the above expressions are exact if the graph G is a tree. On a general

lattice it holds approximately to the extent that one can neglect the correlations between the fields

on the k + 1 neighbors of any site i, once the site i itself has been deleted.

On a Bethe lattice, since the typical loop size diverges as log V in the large-V limit, these

k + 1 sites neighbors of i are generically distant from each other, when i is absent. Therefore

the correlations of their fields can be beglected, if the system is in a single pure state: at low

temperature the Gibbs measure usually has to be decomposed into pure states, within which the

correlations between two sites decay with their distance along the graph. We thus expect the above

cavity approximation to become asymptotically exact, insofar as cavity fields are computed within

one pure state.

C. The liquid solution and the Θ-point

Both on the random Bethe lattice and on the d-dimensional cubic graph, each site has generically

the same environment within any distance R (as long as R is kept finite in the V → ∞ limit). A

liquid phase is therefore expected to enjoy translational invariance and will be described by a set of

fields p
(i)
α that is independent of the site. We thus look for a fixed point p

(i)
α ≡ p∗α of the recursions

(4)-(7).

It turns out that the liquid solutions can be found by solving a system of |A| + 2 non-linear

equations, |A| being the number of monomer species in the model. This is a great complexity
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reduction with respect to the 3L + 1 equations (4)-(7). The task can be further simplified by

using particular symmetries of the interaction matrix. This is, for instance, the case of the F- and

AF-models defined in Sec. II A, which are symmetric under the interchange A ↔ B. We refer to

App. A for a detailed discussion of how the solution is obtained.

As shown in Appendix A all the thermodynamic quantities depend upon the sequence (σ1 . . . σL)

only through the fractions νσ of monomers of type σ. As a byproduct, the L → ∞ limit can

immediately be taken. The physical meaning of this result is easily understood. In the liquid

phase, the correlations induced by the sequence play some role just along the chain, and their net

effect vanishes at large distance. In particular, the monomer a is surrounded by a certain fraction

of monomers of type σ′ which only depends on the type of a, σa (apart from the sites occupied by

the monomers a− 1 and a+ 1, of course).

Let us now discuss the various solutions of liquid type.

The random coil phase is described by the trivial solution p∗α = δα,0, which exists for any

choice of the parameters. This phase has vanishing grand potential ω and density ρ. At high

temperatures this is the only solution when µ is smaller than the critical chemical potential µc

given by exp(βµc) = 1/k. At µc a non-trivial solution emerges continuously. The latter describes

a liquid phase under pressure (ω > 0 for µ > µc) with a density that vanishes on approaching the

critical line.

The collapse of a free polymer from the random coil state to the liquid globule occurs at the

so-called Θ-point. In the grand-canonical description, it appears as the tricritical point on the line

exp(βµ) = 1/k. Expanding around p∗α = δα,0, one obtains the following relation which determines

the Θ-point temperature

∑

σ,τ∈A

νσντ e
−βΘEστ =

k

k − 1
, (14)

see App. A. This result has previously been obtained within the framework of the standard cluster

variational method [54]. At temperatures below the Θ-point, β > βΘ, the grand-canonical phase

transition becomes first order (see Fig. 2). The critical line µc(β) is obtained by equating the

grand potentials in the coil and globule phases, i.e., by solving ω = 0 for the globule solution. The

density, internal energy, and free energy are obtained by plugging the globule solution p∗α into Eqs.

(9), (11), (13).

In the low temperature region β > βΘ, the dense solution can be continued to values of the

chemical potentials smaller than the critical one µc(β), and ceases to exist on a spinodal line.

Likewise, the trivial dilute solution stays locally stable beyond the coexistence line up to the
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β

βµ
coexistence

ρ > 0

Θ

ρ = 0

spinodals

FIG. 2: The phase diagram corresponding to the liquid (translation invariant) solution in the grand canonical

ensemble. Above the Θ-temperature, β < βΘ, the phase transition from the random coil phase (µ < µc) to

the globule solution with finite density (µ > µc) is continuous. At low temperatures,β > βΘ , the transition

becomes first order and is accompanied by two spinodals. The globule solution on the critical line describes

a free polymer in coexistence with the surrounding pure solvent. The free polymer undergoes a collapse

transition at the Θ-point

spinodal exp(βµ) = 1/k.

The above results compare reasonably with the outcomes of numerical simulations on d-

dimensional lattice. For instance, the homopolymer Θ-point on the cubic lattice given by TΘ = 1.50

for d = 2 [24], 3.716(7) for d = 3 [64], and 5.98(6) (d = 4) [53]. Moreover the authors of Ref. [35]

found TΘ = 2.25(10) on the three-dimensional diamond lattice (connectivity k + 1 = 4). These

results should be compared with the outcome of the Bethe approximation, cf. (14), which yields

TΘ,Bethe ≈ 2.4663035 (for k = 3), 3.4760595 (k = 4), 4.4814201 (k = 5). 6.4871592 (k = 7). As for

heteropolymers, the authors of Ref. [23, 31] estimated TΘ ≈ 1.2 both for the F- and AF-models of

Sec. IIA in d = 3. This result is compatible with TΘ = 1/ log(2) ≈ 1.442695 which comes out of

Eq. (14).

Finally, several numerical studies [6, 41] have focused on the Θ-point of random bonds models,

and have argued that its location is extremely well approximated by an annealed computation.

Once again, this confirms that Eq. (14) is a reasonable approximation (the random-bond model is

recovered by setting |A| = L, νσ = 1/L and Eστ i.i.d.’s random variables). This is also related to

the numerical finding that the global collapse in protein folding dynamics is essentially unsensitive

to the specific structure of the sequence, but only depends on its global composition [9].
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III. GLASS PHASES

If we follow the entropy density s(β) of the liquid solution as a function of temperature, we

find that in any heterogeneous sequence s(β) turns negative at sufficiently low temperatures. This

indicates the existence of a phase transition to a glass phase which breaks the translational invari-

ance.

As we will show, this glass transition can be of two types. In certain sequences the “entropy

crisis” is preceded by a local instability of the cavity recursions (4)-(7) around the liquid fixed

point p∗α. This implies the divergence of a properly defined spin-glass susceptibility and signals a

continuous glass transition towards a phase with fully broken replica symmetry.

In other sequences, and in the Gaussian random bond model, this local instability is irrelevant

since it occurs - if at all - in the region of negative entropy of the liquid globule. The glass transition

is thus necessarily discontinuous (1RSB), as was predicted from replica calculations for the random

bond model [59].

Dealing with the glass phases requires some modifications of the simple Bethe Peierls approxima-

tion which we have been using so far. In this section we will describe first some general properties of

the glass phases, and explain the general technical tools that can be used to study glass transitions

using the cavity method.

A. Proliferation of pure states

In a glassy phase, the space of conformations is expected to split up in a multitude of pure

states that are separated by large free energy barriers. The slowest time scale of the system,

corresponding to jumps between pure states, increases dramatically.

In mean field approximation, or on the Bethe lattice, this time scale diverges and ergodicity

is broken at the “dynamic” phase transition. The system eventually undergoes a “static” phase

transition (with a non-analyticity in the thermodynamic potentials) at a lower temperature [8, 34].

In a finite-dimensional model the “dynamic” phase transition becomes a crossover where the

nature of the most important dynamical processes changes. Whether the “static” phase transition

survives in a given model, or not, is not known in general. We shall not enter this dispute here

since we have little to say about it. In any case, the mean-field-like Bethe approximation, assuming

the existence of many pure states, yields some useful insight on the glass phase.

Within one pure state, the conformational probabilities on a given site are well-defined [39, 40].
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FIG. 3: Schematic phase diagram of copolymers as a function of inverse temperature β and chemical

potential µ. A polymer in equilibrium with the solvent is described by the coexistence line. Beyond the

Θ-point, β > βΘ it is in a collapsed phase with a finite density. Depending on the sequence correlations of

the copolymer there may be a local instability of the liquid (dash-dotted line), giving rise to a continuous

glass transition at βi (see upper graph). In the absence of a local instability down to a critical temperature

in the range of β ≈ 1.23, a discontinuous glass transition will take place. The thermodynamic (static) phase

transition at βs is preceded by a dynamic glass transition at βd where the phase space splits up into different

pure states. In the glass phase, the critical chemical potential depends on whether the dynamically relevant

threshold states (dashed line) or the states dominating the static equilibrium (solid line) are described.

However, there is no reason to assume the equality of local fields on different sites. Rather one

expects that in a given pure state the sites will have different preferences for certain polymer

conformations.

To proceed, one has to use a statistical description of local fields. We shall not explain here all

the details of this description, but just give the main definitions and refer the reader to [39, 40] for
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detailed discussions. In a glassy phase, the number of pure states NV (ω) increases exponentially

with the volume of the system. The complexity Σ(ω) is the monotonously increasing, concave

function defined by NV (ω) ∼ exp(V Σ(ω)). The natural order parameter is the distribution of local

fields over the pure states γ whose free energy density ωγ is fixed to a value ω0:

ρ(p) ∝
∑

γ

δ(p − p(i,γ))δ(ωγ − ω0). (15)

An alternative description consists in using a Legendre transformation of the complexity, by intro-

ducing the parameter m = (1/β)Σ′(ω0) and working at fixed m instead of fixed ω0 [42]. This com-

putation is equivalent to a 1RSB scheme with Parisi parameter m. From the free energy at fixed m,

φ1(m), the complexity Σ(ω) is obtained through the Legendre transform: mβφ1(m) = mβω−Σ(ω).

In a system with a discontinuous (1RSB) glass transition, this approach gives a full description.

The complexity is strictly positive in the interval ωs < ω < ωd, corresponding to the interval

md < m < ms in the 1RSB parameter. The thermodynamically dominant metastable states are

obtained by minimizing the one-replica free energy ω − β−1Σ(ω). In an intermediate temperature

regime Ts < T < Td, the minimum is attained for some free energy ω∗ (corresponding to m∗ = 1),

with ωs < ω∗ < ωd. Below the glass transition, T < Ts, the minimum is attained at the lower edge

ω∗ = ωs (with Σ(ω∗) = 0), corresponding to the 1RSB parameter 0 < m∗ < 1.

In a system with a continuous glass transition (FRSB), the full solution should involve grouping

states into clusters, and clusters into superclusters, building up a continuous ultrametric hierarchy.

The approach above amounts to a 1RSB approximation of this full structure, and we shall not

attempt to go beyond this level of approximation.

B. Order parameters

In this section we present two types of order parameters which can be used to identify the glass

phase.

For a polymer in Euclidean space, described by the position ~Ri of monomer i, let us consider

two replicas of the polymer in the same pure state. In the glass phase, provided the global rotation

symmetry is broken, the local conformation of the two polymers will have a certain tendency to

be the same while the liquid phase is completely disordered in this respect. In order to measure

this effect, we introduce the scalar product of the distance vectors between nearby monomers in

the replicas (1) and (2):

F
(1,2)
d =

∑

i

(~R
(1)
i+d − ~R

(1)
i ) · (~R(2)

i+d − ~R
(2)
i ) . (16)
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We shall be interested in computing the average of this quantity when the replicas are constrained

to remain in the same pure state. More precisely, we want to evaluate

〈
F

(1,2)
d

〉

state
=
∑

γ

wγ

〈
F

(1,2)
d

〉

1,2∈γ
, (17)

where we average over all states γ with their Boltzmann weigth wγ . This quantity is accessible

numerically. We consider a polymer which is thermalized at time 0 in a configuration ~Ri(t = 0).

We let it evolve for a time t, to a configuration ~Ri(t). The order parameter is given by the quantity

〈
F

(1,2)
d

〉

state
=

〈
1

tMAX

∫ tMAX

0
dt

1

N

∑

i

(~Ri+d(t) − ~Ri(t)) · (~Ri+d(0) − ~Ri(0))

〉

{Ri(t=0)}

, (18)

evaluated over timescales tMAX which are large but much smaller than the typical timescale for

interstate transitions or even full equilibration (in particular much smaller than the time scale for

diffusion or rotation of the polymer, which diverges with N).

A simpler order parameter can be defined by first introducing, on each site i of the lattice, the

quantity si which takes the value si = 1 if the site is occupied by a monomer A, si = −1 if there is

a B monomer and si = 0 if the site is empty. Then the overlap between two configurations 1 and

2 of the polymer can be defined as

q
(1,2)
AB =

1

V

V∑

i=1

s
(1)
i s

(2)
i . (19)

Again, one can compute the typical distance
〈
q
(1,2)
AB

〉

state
between two conformations in the same

state by recurring to dynamical simulations.

Notice that both q
(1,2)
AB and F

(1,2)
d define a notion of distance (or similarity) between polymer

configurations. However, they describe two complementary aspects of the polymer: q
(1,2)
AB essentially

characterizes the bias of single sites towards a specific monomer type, whereas the order parameters

F
(1,2)
d measure the conformational similarity of the replicas in the vicinity of a given site, once the

monomer on that site has been fixed. They measure the freezing of the local degrees of freedom of

the polymer’s backbone, similarly to the approach of [66, 67, 68]. In contrast the parameter q
(1,2)
AB

is hardly sensitive to the geometric constraints induced by the backbone.

A dynamical evaluation of the above order parameters is particularly convenient on finite-

dimensional lattices. Notice that the equilibrium probability for two independent replicas to have

a finite overlap q
(1,2)
AB , vanishes with the volume of the lattice because of translation invariance.

On the Bethe lattice it is more natural to work at a finite monomer density, (see Sec. VD).

In this case, the random structure of the lattice acts as a “pinning field”, and two replicas of the
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same system typically have a finite overlap. Following the practice from spin-glass theory, we shall

measure the probability distribution of the quantity (19) with respect to the Gibbs measure:

PAB(q) =
〈
δ
(
q − q

(1,2)
AB

)〉
. (20)

In a liquid phase,
〈
q
(1,2)
AB

〉

state
vanishes and the function PAB(q) is a δ-function. In a glass

phase
〈
q
(1,2)
AB

〉

state
> 0 and the function PAB(q) becomes non-trivial, with support in the interval

[−
〈
q
(1,2)
AB

〉

state
,
〈
q
(1,2)
AB

〉

state
]. In the case of a continuous transition,

〈
F

(1,2)
d

〉

state
and

〈
q
(1,2)
AB

〉

state

vanish at the transition point, while they exhibit a jump in the discontinuous case.

IV. METHODS TO STUDY THE GLASS PHASES IN THE CAVITY APPROACH

In this section we present the methods that we use to study the glass transition on the Bethe

lattice. They are applied to various types of polymers in the next sections.

A. Local instability towards a soft glass phase

The simplest glass transition is the one associated with an instability of the liquid. The liquid

solution is always embedded in the 1RSB formalism as the single pure state that exists at high

temperature: it is described by the field distribution ρ(p) = δ(p − p∗). This solution becomes

locally unstable if fluctuations around p∗ grow on average under the cavity recursion (4-7). This

phenomenon occurs when

kλ2
max ≥ 1 (21)

where λmax is the largest eigenvalue of the transfer matrix for the propagation of deviations from

the liquid under the recursion (4)-(7),

Mαα′ = ∂Iα[p(1), . . . ,p(k)]/∂p
(1)
α′ |p(i)=p∗ . (22)

(Notice that the stronger instability k|λmax| = 1 [13] is irrelevant on a random lattice, since it is

associated to the establishment of a crystalline order that is inherently frustrated because of the

presence of large loops.) Beyond the local instability, the distribution of local fields ρ(p) becomes

non-trivial, but it remains centered around the unstable liquid fixed point. In physical terms this

indicates that phase space begins to divide up into a small number of states that comprise a large

number of microconfigurations. These states are characterized by weak local preferences for certain

polymer conformations that deviate only slightly from the homogeneous liquid state.
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The instability (21) generally develops below a temperature Ti. Calling Tcris the temperature

where the entropy vanishes, one can have two types of situations:

• When Ti < Tcris, the local instability of the liquid is clearly irrelevant, and a discontinuous

glass transition must take place at some temperature ≥ Tcris.

• When Tcris < Ti, either the instability drives a continuous glass transition (as we will see

in specific examples, this seems to be the generic case when the instability occurs in a

region where the liquid entropy is still large), or there exists again a discontinuous glass

transition taking place at temperatures T > Ti and rendering the instability irrelevant. It

is also possible, that a first continuous glass transition towards a slightly frustrated phase

undergoes a successive discontinuous phase transition at lower temperatures where a stronger

degree of freezing takes place.

Because of the relative simplicity of the liquid phase, it turns out that the stability condition

(21) can be studied explicitly for AB copolymers with an interaction matrix which is symmetric

under the A ↔ B interchange. The detailed calculation is given in Appendix B. The dangerous

eigenvalues λ of the matrix M in (22) are found to obey the equation

± 1

k

w sinh(β)

1 + w cosh(β)
=

λ(1 − (kλ)−L)

(k − 2) + k(kλ)−L + 2(k − 1)
∑L−1

i=1 qi(kλ)−i
, (23)

where the sign corresponds to ferromagnetic (+) and antiferromagnetic (-) interactions, respec-

tively. The temperature dependent parameter w =
∑L

a=1 p
∗
2a/p

∗
0 characterizes the liquid solution

and is independent of L, cf. App. A and Eqs. (B1), (B2). The sequence properties enter the above

expression only through the autocorrelation function qi = (1/L)
∑L

a=1 σaσa+i.

The local instability βi occurs at the smallest value of β where the characteristic polynomial

(23) has a root with |λ|2k = 1. Usually, for attractive interactions between equal monomers,

the relevant eigenvalue is λ = 1/
√
k while the instability occurs in general with λ = −1/

√
k in

ampholytes.

The location of the instability for the various types of interactions and sequences will be stud-

ied in the next sections. Let us just mention here that the (periodic) Gaussian random bond

heteropolymer generically undergoes a discontinuous 1RSB glass transition, in agreement with

previous studies [60].
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B. Cavity recursion within the 1RSB approximation

In order to study the glass phase itself, we need to compute the distribution of local fields of

(15) for the Bethe lattice. We shall do it here within the 1RSB cavity formalism of ([39, 40]).

We shall not rederive the full formalism but give the main ingredients needed for our study. The

statistical average of the simple cavity recursion (4-7), which holds within a given pure state, leads

to a recursion relation for this distribution:

ρ(p) =
1

Z

∫ k∏

i=1

dρ(p(i)) δ(p − I[p(1), . . . ,p(k)]) e−mβ∆f [p(1),...,p(k)] (24)

where I[p(1), . . . ,p(k)] is given by (4)-(7), and Z is a normalization. The non trivial reweighting,

which depends on the parameter m defined in Section IIIA, involves the free energy change induced

by the recursion, which is given by ∆f [{p(i)}] ≡ −β−1 log(C[{p(i)}]) , where C[{p(i)}] is the

normalization term appearing in (4)-(7). This reweighting accounts for the fact that the number

of pure states increases exponentially with their free energy.

The free energy is obtained by properly weighting the contributions of different pure states:

βmφ1(m) = − log

[∫ k+1∏

i=1

dρ(p(i))wm
s ({p(i)})

]
+
k + 1

2
log

[∫ 2∏

i=1

dρ(p(i))wm
l (p(1),p(2))

]
,(25)

where ws and wl are the site and link partition functions defined in Eqs. (10) and (12). The

complexity Σ(ω) is obtained from φ1(m) through a Legendre transform: mβφ1(m) = mβω−Σ(ω).

Note that the recursion relation (24) is the saddle point equation for the functional φ1(m) with

respect to ρ(p).

Close to a continuous glass transition, ρ is strongly peaked around the liquid fixed point p∗,

and we can expand the free energy as a function of the moments of the fluctuations p−p∗ over the

pure states, as outlined in Appendix D. To leading order the corrections to the liquid free energy

arise from fluctuations in the “replicon” mode, the unstable direction of the transfer matrix (22),

whose magnitude grows as (Ti − T )1/2. The continuous glass transition is found to be of third

order,

φ1 − φliq = c
1 −m

(2 −m)2
(Ti − T )3 +O

(
(Ti − T )4

)
(26)

where c is a positive constant. This is in contrast to discontinuous glass transitions which are

(generally) of second order in the free energy.



19

V. TWO EXEMPLARY CASES: THE ALTERNATING AMPHOLYTE AND HP MODEL

In this section we apply the cavity 1RSB formalism to two specific sequences: the regularly al-

ternating copolymer chains ABABAB . . . for ampholytic and symmetrized-HP interactions. These

turn out to be rather extreme representatives in the ensemble of possible neutral copolymers, but

they are the simplest ones, and they exhibit the characteristics of the continuous (ampholyte) and

discontinuous (HP) transition in a very clear manner.

The folding of an alternating copolymer on a regular Bethe lattice is a frustrated problem,

while, clearly, on a regular cubic lattice, it would just behave as a homopolymer with homogeneous

interactions EAB ≡ e. However, we expect that as soon as a certain number of defects are intro-

duced in such sequences, their folding on the cubic lattice will be similarly frustrated. In terms of

Markovian sequences, we consider here the case of π ≪ 1.

While these sequences are expected to behave differently from the alternating one π = 0 on

the cubic lattice, it is reasonable to assume that the π → 0 limit is smooth on the Bethe lattice.

Then the Bethe approximation of π ≪ 1 sequences can be studied using the perfectly alternating

sequence, as we do here here. Alternating chains are more easily studied with the cavity method,

since the number of local fields may be reduced to 5 (with 4 independent degrees of freedom): due

to the inversion symmetry the local conformations reduce to α ∈ {0, 1A, 1B, 2A, 2B}, where 1A

(1B) comprises the two conformations ↑ A and ↓ A (↑ B and ↓ B). The cavity recursion relation

(24) can thus be handled relatively easily, using a population dynamics algorithm described in

App. G

A. Ordered structures, correlations, frustration and the order of the glass transition

Before embarking on the details of the cavity computation for the alternating chains, we present

here some simple arguments explaining the very different physical nature of the glass phase in the

alternating ampholyte, which has a continuous transition, and in the symmetrized HP model, which

has a discontinuous transition.

Instead of a Bethe lattice, let us consider a regular tree and ask for a maximally dense polymer

configuration such that all interactions are satisfied (AB interactions in ampholytes and AA or BB

interactions in the symmetrized HP model). In Fig. 4 we show typical configurations for each case.

While there is a stratified order in ampholytic configurations that manifests itself in strong long

range correlations, the symmetrized HP model has an “ordered” structure that is highly correlated
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FIG. 4: Unfrustrated, maximally dense structures on a tree (k = 3). The ampholyte (left) has an evi-

dent stratified order and long range correlations of site occupancies. The location of A’s and B’s in the

HP-polymer is correlated with the backbone configuration (thick edges) which makes the distribution of

monomers look random.

with the backbone configuration. No long range correlations may persist, and this dense ground

state is difficult to distinguish from a dense liquid configuration.

If we turn back to a Bethe lattice, frustration is induced by the presence of large loops. Odd

loops are inherently frustrated in the ampholyte since they necessarily have to break up the long

range correlations of the layered structure. This is not the case in the HP-like model where

most constraints from loops can be satisfied when the backbone is arranged in the right way. In

other words, the information about local conformations and the associated constraints cannot be

propagated far away in the case of the HP-like chain, since the correlations of ordered structures

die out quickly with distance. As long as the density is not too large and there are sufficient voids

in the globule, a global frustration will not be able to establish. For the ampholyte, however, it

will be favorable, even at lower density, to develop local (site) preferences for a certain monomer

type and thus increase the probability of satisfied interactions. This mechanism is at the basis of

the instability of local fields in the liquid. Note that in the first place this instability is related

to the type of monomer accommodated on a given site rather than the backbone structure. The

latter will only come into play at larger densities/lower temperatures.

This qualitative discussion applies equally to correlated sequences which are not perfectly al-

ternating but have a strong tendency to alternate (small π). At the other extreme, if one considers

the case of π close to one, where consecutive monomers tend to be alike, one can apply the same

type of considerations, but with the roles of ampholyte and HP-like chain reversed. We can thus

conclude that the local instability of a HP-like chain with long blocks of like monomers is associ-

ated to the appearance of pure states characterized by the same monomer preferences for small

regions on the lattice. This is reminiscent of the microphase separation (MPS) [18] which has been
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much discussed in this context and becomes relevant for sequences with a distinct block structure

[16, 21, 25, 57]. However one should remember that the present formulation of the cavity method,

which neglects small loops in the lattice, does not allow any quantitative study of this phenomenon

(this could be addressed using more refined cluster variational methods).

Repeating the above arguments for more general cases of short range correlated sequences, one

sees that in general a local instability is favored by sequences whose monomer distribution tends to

be annealed (e.g., ampholytes with a tendency towards charge alternation along the sequence). It

is interesting to note that such ‘annealed sequences’ naturally result from common protein design

schemes [22, 32, 49, 62].

B. The continuous transition in the AB ampholyte

We start our quantitative study with the alternating ampholyte on a lattice with connectivity

k + 1 = 6. For this polymer, the local instability of the liquid found from (23) develops at the

inverse temperature βi ≈ 0.7947, much smaller than in most other neutral sequences. The Parisi

parameter m remains small throughout this phase.

A closer analysis of the instability shows that the most unstable eigenvector is antisymmetric

with respect to the exchange of A and B. This indicates that the pure states are essentially

characterized by the preference of the sites to accommodate one of the two monomer species, in

agreement with our qualitative discussion.

On lowering the temperature, the preference of sites for certain conformations (and not only

for the respective monomers), increases. This could be interpreted as a growing degree of freezing

that affects larger and larger length scales.

Figure 5 shows the basic thermodynamic observables ρ, s, u in the glass phase, computed in

the cavity method and compares them to the values found in the unstable liquid solution. The

data have been computed on the coexistence line, i.e., by fixing µc(β) such that the glass static

free energy vanishes, φ1(ms;µc) = 0 (as explained in App. C). The strong frustration of the

polymer can clearly be seen from the suppression of the density in the glass phase that saturates

around ρ = 0.71, while in a liquid phase it would tend to ρ = 1. The entropy crisis of the liquid is

prevented, the internal entropy of the pure states remaining rather large even at low temperature.

There is no sign of a strong (discontinuous) freezing transition.

In App. E we explain how to compute the order parameter (17) within the cavity approximation.

The result for the alternating ampholyte is shown in Fig. 6, which again shows a continuous
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FIG. 5: Alternating ampholyte on a lattice with 6 neighbors per site. The thick lines show the density

ρ, entropy s and internal energy u computed in the glass phase using the 1RSB approximation. The thin

lines give the corresponding values in the liquid solution, which is unstable beyond βi ≈ 0.7947. The glass

transition is continuous.
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FIG. 6: Alternating ampholyte: The order parameters
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〉

state
for the glass phase, defined as the time

persistent part of the distance vector between monomers at a distance d = 1, 2, 3, 4 in the backbone (see

(17)), plotted versus the inverse temperature β.

transition.

C. The discontinuous transition in the alternating HP model

The case of the symmetrized-HP alternating sequence, always on a lattice with connectivity

k + 1 = 6, is extreme in the opposite sense. The liquid solution is always locally stable, even in
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FIG. 7: Alternating HP-like polymer on a lattice with 6 neighbors per site: The thick lines show the density

ρ, entropy s and internal energy u computed in the glass phase using the 1RSB approximation. The thin

lines give the corresponding values in the liquid solution, which is always locally stable. The glass transition

is a discontinuous one; it is an almost perfect freezing transition as in the REM.

the region of negative entropy. However, running the population dynamics algorithm for the 1RSB

cavity method, one finds a discontinuous glass transition. The dynamic transition takes place at

βd ≈ 1.387, just before the entropy crisis of the liquid (βcris = 1.4525). The static phase transition

follows at βs ≈ 1.442, in a region of very high density, ρ ≈ 0.95, and almost vanishing entropy. In

Fig. 7, we plot the density, entropy and internal energy for the alternating HP-polymer along the

coexistence curve. The internal entropy of the statically dominating pure states is seen to nearly

vanish in the frozen phase, and the system barely evolves upon lowering the temperature. This

scenario is very similar to the abrupt freezing encountered in the random energy model (REM).

The computation of the order parameter (17) proceeds as in the case of the ampholyte. The

result is shown in Fig. 8 and shows clearly the discontinuous transition.

D. Numerical simulations

As we already stressed, one advantage of our approach consists in the possibility of checking

mean field computations using numerical simulations of well defined polymer models on a Bethe

lattice. Here we want to demonstrate this feature by considering the alternating AB ampholyte.

We made extensive simulations on Bethe lattices with connectivity (k + 1) = 6 and volumes V

ranging from 100 to 800. For all of the data presented in this Section, we fixed β = 2.0 above the
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much stronger freezing of local conformational degrees of freedom.
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FIG. 9: Average length of the polymers simulated on the Bethe lattice. Sizes of the lattice are indicated in

the legend. The arrow signal the liquid-soft glass phase transition.

Θ-point inverse temperature βΘ ≈ 0.693 and varied the chemical potential µ. As µ is increased,

the system undergoes at first a second order collapse transition (at µ ≈ −3.21887) and then a

continuous glass transition to the soft-glass phase (µi(β) ≈ −2.38431).

Notice that most of the algorithms for simulating polymers on finite-dimensional graphs cannot

be applied to the Bethe lattice. In fact local moves are impossible because of the absence of short

loops. On the other hand, global moves would require a detailed knowledge of the loop structure
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FIG. 10: Simulations of the alternating ampholyte on the Bethe lattice with connectivity k + 1 = 6. The

energy per site of the polymer (left) and its density (right) are plotted versus the chemical potential. In the

main frames numerical data (symbols) for various lattice sizes are compared with the cavity results (dashed

line) for average polymer length 〈l〉 → ∞. The agreement is very good. In the insets we plot the liquid

prediction for infinite (continuous line) and finite (dashed line) average polymer length, which shows that

the finite length corrections are already small. Notice that in the density inset the finite-length theoretical

curve is barely visible because it is superimposed on the data. The arrows indicate the analytic result for

the glass transition point µi.

for any graph realization.

This problem can be overcome by simulating a melt of variable-length polymers, the length

being finite in the thermodynamic limit. The single-polymer physics is recovered when the average

length diverges. We refer to App. F for a detailed description of our algorithm. In Fig. 9 we

show our numerical data for the average polymer length 〈l〉. Notice that 〈l〉 ≈ 10 ÷ 25 within the

dense phase. As will be clear from the other numerical results, this is enough for assuring small

deviations from the infinite-length limit. The main effects are: a rounding of the collapse transition

and a small shift of the soft glass transition (which occurs at µi(β,finite l) ≈ −2.40923).

In order to achieve equilibration within the soft glass phase we adopted the parallel tempering

technique [27, 38]. We tested equilibration using the method of Ref. [7], and always checked the

acceptance rate for temperature-exchange moves to be larger than 50%.

In Fig. 10 we plot the energy per lattice site and the monomer density, as functions of the

chemical potential µ. Notice that the liquid - soft glass phase transition is barely discernible from

the monomer density, and the energy curve is also quite smooth. The 1RSB cavity result gives a
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FIG. 11: Left: Finite-size scaling of the spin glass susceptibility, that exhibits a clear divergence as a function

of system size at the expected value µc. Right: probability distribution of the AB overlap, evaluated in the

soft glass phase at µ = −1. In the inset of the left frame we compare the second moment of the AB overlap

〈q2AB〉 with the analytical prediction.

very good quantitative description of the transition.

In order to get a finer description of the glass phase, we have measured the order parameter

function PAB(q) defined in (20). In Fig. 11 we report our numerical data for this quantity at the

highest chemical potential considered (µ = −1). Because of the large finite-V effects, it would be

difficult to conclude from the numerics alone that the infinite-V function is non-trivial. However,

the data agree with the 1RSB predictions for the Edwards-Anderson parameter, qEA ≈ 0.259.

In the same figure (left frame) we consider the spin-glass susceptibility:

χSG =
1

V

∑

i,j

〈sisj〉2 = V
〈[
qAB(s(1), s(2))

]2〉
, (27)

This quantity diverges as µ→ µ−c in the thermodynamic limit. In a finite size sample, its behavior

is ruled by the usual finite-size scaling form

χSG(V, µ) = V 2−η χ[V 1/ν(µ− µc)] . (28)

From the cavity solution of the model, one finds that
〈
q2AB

〉
≈ A(β)[µ − µc(β)]2 for µ & µc(β).

This result implies the following relation between the critical exponents defined in Eq. (28):

2 − η + 2/ν = 1 . (29)
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FIG. 12: Average AB overlap 〈qAB〉 among two replicas coupled through a term of the type −NǫqAB. The

full line is the prediction from the cavity method for the zero ǫ limit. Here V = 104.

In fact we find a nice collapse of data corresponding to different sizes using ν = 4 and η = 3/2.

The comparison of
〈
q2AB

〉
with the 1RSB cavity prediction is quite good.

An alternative approach for exploring the low energy structure of the system consists in cou-

pling two replicas through their overlap, cf. Eq. (19). In practice, one adds a term of the form

−NβǫqAB(s(1), s(2)) to the two-replica Hamiltonian and tries to estimate qEA as follows

qEA = lim
ǫ→0

lim
N→∞

〈
qAB(s(1), s(2))

〉
N,ǫ

. (30)

In Fig. 12 we show the numerical results for 〈qAB〉N,ǫ on a large size lattice (V = 104) and several

values of ǫ. In order to simulate large lattices, we did not use parallel tempering here. Furthermore,

we adopted a weaker equilibration criterium, requiring 〈qAB〉N,ǫ to be roughly time-independent

on a logarithmic scale. Once again, the numerical results compare favorably with the outcome of

the cavity calculation.

VI. RANDOM MARKOVIAN COPOLYMERS

One can show using the formula (23) that the local instability appears the earlier, the stronger

the tendency of monomers to be annealed along the sequence, that is, the more A’s and B’s tend

to alternate in an ampholyte, or to form blocks in an HP model. In both cases the autocorrela-

tion function qi is large and its sign oscillates (alternating sequence) or remain positive (‘blocky’
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sequence).

To be more quantitative, let us consider a random copolymer chain in the limit L → ∞ char-

acterized by the probability π ∈ [0, 1] of two neighboring monomers to be of the same type. The

autocorrelation function of such a chain is (in the L→ ∞ limit) qi = (2π − 1)i.

In Figs. 13 and 14 we plot the inverse temperature βi at the local instability as a function of

the parameter π for the ampholyte and symmetrized-HP models.

This instability is certainly irrelevant when βi is larger than the inverse temperature of the

entropy crisis of the liquid, βcris = 1.4525. This situation occurs for π > 0.4480 in ampholytes, and

proves the existence of a discontinuous transition. But already when βi is smaller than, but close

to, βcris, one should expect a discontinuous 1RSB transition to take place at a β < βi.

In order to complete the diagram, we have numerically solved the cavity recursion by population

dynamics for neutral sequences of period L = 20, but otherwise random composition. From the

experience gained for the extreme case of the alternating HP-model (see below), we expected a

kind of frozen solution with rather strong local conformational preferences to dominate the low

temperature phase. Such a solution is rather non-trivial to find in a huge functional space, in

particular since it has to be expected that it occurs in a discontinuous manner and cannot in

general be found by randomly perturbing the liquid solution.

We therefore proceeded by initializing the population in a highly polarized state that we will

discuss in more detail in the next Section. This state actually corresponds to an unstable fixed

point, but it turns out that at low temperatures, it is usually quite close to a stable non-trivial

solution of the 1RSB cavity equations. At each temperature, we iterated the cavity recursion for

about 100 sweeps of the population dynamics, cf. App. G, fixing the chemical potential to its

liquid critical value, since this value describes correctly the thermodynamic equilibrium up to the

static phase transition. The Parisi reweighting parameter was set to m = 1 in order to detect

the dynamic transition, i.e., the local instability of the frozen solution. For reasons of numerical

stability, we restricted ourselves to sequences with an anti-palindromic structure, i.e., sequences

invariant under inversion and subsequent exchange of A’s and B’s. The field distributions ρ(p)

inherit this invariance, and thus in each update of a new cavity field we can decide at random to

apply a symmetry operation to the new fields first. This stabilizes the iteration since it counteracts

the numerical tendency to spontaneously break the balance between ↑- and ↓-states. Indeed, there

is a gauge degree of freedom associated to the relative weight of the two orientations of the chain,

and in general it is difficult to maintain them balanced, while it can be enforced in sequences with

a palindromic symmetry. The reason to choose antipalindromic rather than palindromic ones is
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FIG. 13: Phase diagram for ampholytes as a function of sequence correlations and inverse temperature. The

continuous line indicates the local instability βi of the liquid as a function of the Markov chain parameter

π. The points with error bars indicate the dynamic phase transitions βd found numerically for several

sequences of period L = 20 whereby we associated an effective parameter πeff to each chain such that

the local instability predicted from πeff coincides with the actual one. Almost independently of the chain

composition we find a highly frozen phase beyond βd ≈ 1.23 that is reached via a discontinuous glass

transition well before the liquid would undergo an entropy crisis at βcris. For π ≤ 0.50, this freezing is

preceded by a continuous glass transition, as predicted from the local stability analysis of the liquid. The

actual thermodynamic freezing transition occurs at a lower temperature βs > βd. The horizontal lines for

the static and dynamic transitions are an educated guess for the location of these transitions in the limit

L→ ∞.

to avoid at the same time an asymmetry between A- and B-states which likely occurs in small

populations, in particular in the case of attractive interactions among equal monomers.

Our findings for the sequences of period L = 20 are summarized in the plots 13, 14 and 15.

Figure 15 shows the variance (square of the standard deviation) of the local field for ↑ (a = 1) over

the distribution ρ(p) for several sequences as a function of inverse temperature. This is a measure

for the degree of the local bias away from the liquid. Almost independently of the particular

sequence statistics we find that for β > βd ≈ 1.23 a strongly frozen phase (with very low internal

entropy) exists with an associated dynamic transition at βd. Depending on the sequence statistics,

the regime of higher temperatures is either entirely liquid (e.g., for π ≤ 0.50 in the ampholytes),

or exhibits a weaker form of frustration in a phase of presumably fully broken replica symmetry.

The latter continuously joins the liquid solution at the local instability predicted by (23). For the

phase diagram in the β − µ-plane for either of the two scenarios we refer to Figs. 3.
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for a variety of anti-palindromic sequences of period L = 20. In general, there is a very distinct discontinuous

transition around βd ≈ 1.23, that is preceded by a glassy regime with smaller fluctuations in the local fields

if the sequence has a tendency for anticorrelation in ampholytes (main frame) or correlation in symmetrized

HP-like chains (inset). The sequences are characterized by their effective Markov chain parameter πeff as in

Figs. 13 and 14.

The generic picture of a quench in temperature is thus the following: For ampholyte sequences

with some tendency to alternation or HP-like-sequences with a preference for block formation,

there is a continuous glass transition whose location depends strongly on the composition of the

sequence. The corresponding glass phase is characterized by a relatively weak frustration and a
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rather small number of states that comprise many microconfigurations with some weak local pref-

erences for certain conformations. This preliminary glass phase undergoes a further discontinuous

phase transition at a lower temperature βd ≈ 1.23 that is almost independent of the sequence

structure and might be called the effective freezing transition. For sequences with correlations of

the opposite kind, the freezing transition is the only phase transition and occurs directly from the

liquid. It is interesting to note that in numerical simulations of the folding dynamics of neutral

HP-type copolymers, the dynamical glass transition was also found to be essentially independent

of the sequence [9].

It is intriguing that the critical parameter of π separating the FRSB from the 1RSB freezing

scenario is very close to π = 1/2 which corresponds to sequences without correlations. This is

particularly interesting from the point of view of protein folding. The nature of correlations present

in the amino acid sequences of natural proteins is still a matter of intensive debate. The analysis

of Pande et al. [51] argues in favor of a tendency for sequences to be annealed, i.e., to exhibit

positive correlations in the hydrophilicity and anticorrelations in the charge of amino acids, which

would suggest a bias towards the FRSB freezing scenario for proteins. However, the studies by

Irbäck et al. [28, 29, 30] rather point towards anticorrelations in the HP-type degrees of freedom

which would favor a scenario with a direct transition from the liquid to the frozen glass. The

discrepancies of these studies mainly concern the nature of long range correlations while on the

level of nearest neighbor correlations, the protein sequences appear to be rather random, having

π ≈ 1/2 with respect to both charge and hydrophobic/hydrophilic degrees of freedom. It would be

very interesting to understand whether the folding of natural proteins takes advantage from their

sequences being very close to the critical border between the two scenarios. On the other hand,

as mentioned earlier, most protein sequence design schemes tend to result in (partially) annealed

monomer chains which are therefore likely to exhibit the intermediate soft glass phase.

VII. THE CLOSE-PACKED LIMIT

In this section we provide a detailed analysis of the frozen phase in the limit of high density.

We first show the existence of a special ‘REM-like’ fully polarized solution of the 1RSB cavity

equations at temperatures below the liquid’s entropy crisis. Then we show that this solution is

stable in the close-packed limit of high densities.
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A. A fully polarized solution

There always exists a ‘fully polarized’ solution to the cavity equation (24) which describes pure

states consisting of essentially one unique frozen polymer configuration. In each such state, a given

site only admits one specific local conformation. On averaging over the different pure states, the

given site will be found in conformation α with frequency wα. The local field distributions then

take the form

ρpol(p) =
∑

α

wα(β,m)δ(p − e(α)), (31)

where the fields e(α) are defined by e
(α)
α′ = δαα′ . This distribution solves the cavity equations

when the frequencies wα(β,m) coincide with the local fields of a liquid at the renormalized inverse

temperature β′ = mβ, i.e., wα(β,m) = p∗α(β′ = mβ). The replicated free energy of this fully

polarized solution is φ1(β,m) = φliq(mβ). The internal free energy of the corresponding frozen

states is related to the liquid quantities via fpol(β,m) = d(mφ1(β,m))/dm = uliq(mβ)−µρliq(mβ),

and the complexity of states is found from Σpol(β,m) = sliq(mβ). As is evident from the nature

of the pure states, their internal entropy vanishes.

Let us for a moment postpone the discussion of the relevance of this solution, and first discuss

its physical interpretation. At each value of β we have to maximize φ1 over 0 ≤ m ≤ 1, under the

condition Σ ≥ 0. For temperatures above the liquid’s entropy crisis, β < βcris, the maximum is

attained at m = 1 and we have ωg = ωliq. When β > βcris, the static glass transition takes place

and the free energy freezes to ωg = ωliq(βcris), the Parisi parameter taking the value ms = βcris/β.

So this solution describes a full freezing of the polymer in some isolated specific configurations,

taking place at β = βcris. Notice that this scenario exactly parallels the one found in the REM.

Our numerical study of the AB-copolymers in their highly frozen phase (beyond βd ≈ 1.23)

finds a solution ρ(p) which is close to the form (31), although small deviations persist, and the po-

larization is not complete. In the particular case of the alternating chain we numerically confirmed

that the optimal Parisi parameter is well fitted by ms = T/Ts on the coexistence line.

B. Stability analysis and the limit of maximal density

Up to this point we have not discussed the range of validity of the polarized solution (31), and in

particular, its stability. Unfortunately, this is a difficult problem, and we only can provide partial

answers.
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The basic idea consists in perturbing the Ansatz (31) and checking whether the perturbation

grows under the cavity iteration (24). A simple perturbation consists in adding to (31) some

‘almost polarized’ fields with a small total weight. Namely we take a field distribution of the form

ρ(p) = (1 − aε)ρpol(p) + ε
∑

α

wαρα(p) , (32)

where ρα(p) is concentrated on fields p close to e(α). In fact, it is more convenient to think of it

as a distribution over the ‘small’ fields ~p ≡ {pα′}α′ 6=α. Hereafter, we shall use the notation ρα(~p)

instead of ρα(p). Finally notice that the ρα(~p)’s need not to be normalized. Normalization is

enforced by the constant a in Eq. (32).

Plugging the nsatz (32) into Eq. (24) we get to linear order in ǫ:

ρ′α0
(~p) = k

∑

α1...αk

P (α1 . . . αk|α0)

∫
dρα1(~q) δ

(
~p− ~I[~q;α2 . . . αk]

)
. (33)

Here we distinguished the distribution on the right-hand side, ρα(·) from the one on the left-hand

side ρ′α(·). In fact we are interested in the stability of the iteration (24) and not just in its fixed

point. Here P (α1 . . . αk|α0) is the probability of finding conformations α1 . . . αk on the k leaves of

the branch in Fig. 1, constrained to the root being in conformation α0. This must be computed

within the solution described by Eq. (31) and can explicitly be written in terms of the weights

wα(β,m). Finally ~I[~q;α2 . . . αk] denotes the ‘small’ components of the cavity iteration:

(~I[~q;α2 . . . αk])α = Iα[q, e(α2) . . . e(αk)] for α 6= α0.

Instead of continuing in full generality, let us consider the example of an alternating F-model in

the closed-packed limit with EAA = EBB = −EAB = −1 (remember that in this case we found a

discontinuous phase transition with a highly polarized low temperature phase, cf. Sec. VC). Eqs.

(33) reduce to

ρ′1A(~p) =

k−1∑

n=0

fn δ(p2A, p2B)

∫
dρ1B(~q) δ

(
p1B − e−2β(k−1−2n)q1A

)
+ (34)

+gAδ(p1B , p2B)

∫
dρ2A(~q) δ(p2A − e−βq1B) + gBδ(p1B , p2B)

∫
dρ2B(~q) δ(p2A − eβq1B) ,

ρ′2A(~p) = 2δ(p1B , p2B)

∫
dρ1B(~q) δ

(
p1A − eβq2A − e−βq2B

)
, (35)

plus two equations obtained by interchanging A and B. Here we used the shorthand δ(x, y) =

δ(x)δ(y) and expanded ~I[~q;α2 . . . αk] in the delta functions to linear order in qα for α 6= α1. The

weights {fn} and gA/B are given by

fn =
1

(2 cosh βm)k−1

(
k − 1

n

)
e−βm(k−1−2n) , gA/B =

k − 1

1 + e±2βm
. (36)
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FIG. 16: Instability of the completely frozen solution due to rearrangements of the backbone.

A little thought shows that, after one iteration of Eqs. (34), (35) we can set

ρ1A(~p) = δ(p2A, p2B) ρ1A→1B(p1B) + δ(p1B , p2B) ρ1A→2A(p2A) , (37)

ρ2A(~p) = δ(p1B , p2B) ρ2A→1A(p1A) . (38)

and that the linearized recursions decouple in the three ‘sectors’ {1A → 1B, 1B → 1A}, {1A →
2A, 2B → 1B}, {1B → 2B, 2A → 1A}. The first sector corresponds to shifts of the chain and

turns out to be marginally stable (the function ~I[~q;α2 . . . αk] has to be developed to second order

in ~q).

The other two sectors correspond to structural rearrangements of the backbone and become

unstable when mβ < (mβ)c ≡ yc = 1/2 · log(2k − 3). This instability has a simple physical

interpretation. The pure states described by (mβ)c have a free energy density fc = 1/2. This

means that on average, a randomly chosen site has one violated neighboring bond, i.e., one neighbor

occupied by a monomer of the opposite type. It is thus possible to rearrange the backbone of the

alternating chain without paying energy by opening the chain at the given site and redirecting it

in the direction of the violated bond, and propagating the rearrangement through the lattice, see

Fig. 16.

For k ≤ 6 the instability appears at a smaller value than the liquid entropy crisis, yc < βcris(µ →
∞). Thus, at low temperatures, β > yc, the thermodynamically relevant close packed states

are correctly described by the stable polarized solution with ms = βcris/β. In particular, we

can immediately deduce the ground state energy of Hamiltonian walks of an alternating HP-

chain on a fixed connectivity random graph from the value of φliq(βcris;µ → ∞): This yields

0.083686, 0.120619, 0.172602, 0.236348 violated bonds per site for k = 3, 4, 5 and 6, respectively.

A numerical study of the cavity recursion equations at maximal density actually finds, for k ≤ 6,

a coexistence of the polarized solution with another solution in some intermediate range [yc, yt].

This is a peculiarity of the infinite µ regime, the numerics at finite but large µ suggesting that
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the polarized solution is unphysical below yt. However, since yt < βcris, the polarized Ansatz still

correctly describes the low temperature regime.

What happens away from the µ→ ∞ limit? The possibility of voids allows for new terms in the

sum over conformations, cf. Eq. (33). It turns out that the iterations become unstable in the new

sectors {0 →↑ a, ↑ a→ 0} and {0 →↓ a, ↓ a→ 0}. Physically, this means that the presence of voids

in the lattice always allows for a rearrangement of the polymer configuration in some (perhaps very

rare) regions, preventing a complete freezing in a single state. Still, at y ≥ yt a stable fixed point

close to the polarized solution (31) exists.

Let us finally notice that the stability of the polarized solution can be studied within a larger

2RSB Ansatz [45]. The results coincide with the simplified treatment presented here. These results

are further confirmed if one studies the behavior of field distributions in the T → 0 limit following

Ref. [44].

C. Exact enumerations on a cube

In an attempt to verify the 1RSB or even REM-like nature of heteropolymers, Shakhnovich and

Gutin have exactly enumerated all conformations of fully compact random 27-mers on a 3× 3 × 3

cube and calculated the overlap distribution function P (q) as a function of temperature [26, 61].

They interpreted their results in favor of a REM-like scenario where only a small number of states

dominated the low temperature regime and P (q) exhibited typical features of a discontinuous glass

phase. In view of our mean field predictions, one would expect to find a different scenario when

repeating this analysis for copolymers (with a certain amount of sequence correlations) in their

soft glass phase.

We first repeated this enumeration study for random ampholytes, and found a P (q) order

parameter very similar to the random bond case studied originally [61], in agreement with the

results of [26]. However the same analysis done for correlated ampholytic sequences with various

values of π did not show any clear dependence on π. This absence of evidence can have two

origins. On the one hand it might be due to the extreme restrictions that full packing imposes on

the conformations. We have seen above that the fully dense limit is very subtle since physically

important degrees of freedom, which are found in a system with voids, are artificially suppressed,

as has been put forward by many authors [50, 56, 68]. On the other hand it seems that these sizes

are too small to study the true phase space structure of the glass phase.
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VIII. DISCUSSION AND CONCLUSION

The cavity method approaches the lattice heteropolymer problem from a new point of view

in that it analyzes the conformational degrees of freedom of chains with quenched-in sequences.

Furthermore, this method allows to study the whole temperature range and describes the Θ −
collapse and the low temperature physics within the same formalism. In this sense we believe it

provides an interesting new perspective in the analytic studies of heteropolymer folding.

With this local approach we have studied the frustration effects on a given site of the lattice.

We find that the decisive features determining the nature of the low temperature physics are the

short-range correlations in the monomer sequence. Polymers whose monomer distribution along

the chain tends to be annealed have a proclivity to undergo a continuous glass transition to a soft

glass phase before the strong freezing transition takes place. In oppositely correlated sequences the

freezing occurs directly from the liquid phase. A weakly polarized phase with broken ergodicity

and a high sensitivity to the specific sequence, has also been observed in the extensive numerical

analysis of the phase diagram for specific hydrophilic/hydrophobic chains [68], and the qualitative

differences found between selected sequences indeed reflect the general tendencies that we predict

from the cavity analysis of the slightly different but closely related HP-like model.

The temperature of the dynamic transition at which highly frozen pure states appear is almost

independent of the correlations in the sequence as we found from the numerical solution of the

1RSB cavity equations. For the time being we do not have a deeper understanding of this finding,

which is in accordance with numerical observations in the dynamics of copolymer folding. We

hope to obtain better analytical insight into this phenomenon from a thorough analysis of the

stability of the highly polarized low temperature states. This would probably also explain why the

border between the 2RSB freezing scenario with an intermediate soft glass and the scenario of a

direct transition liquid-frozen glass is so close to the Markov parameter π = 1/2, corresponding to

uncorrelated chains.

It would be interesting to verify the predictions for Markovian chains experimentally (preferably

with ampholytes where the pair interactions are rather strong). In fact it is possible to fabricate

Markovian copolymers from a random polymerization process, where π can be controlled by chang-

ing the chemical parameters of the solution. Furthermore, it will be very interesting to review the

studies of sequence correlations in natural proteins in the light of our findings.

The results of the cavity method are expected to be exact for polymers on random (Bethe)

lattices, as is indeed corroborated by numerical simulations. However, on real space lattices the
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Bethe approximation neglects the correlations arising from small loops.

It would thus be very important to check the effect of sequence correlations through numerical

simulations of polymers on a cubic lattice, using our mean field predictions as a guideline. One

regime in which the small loops of the cubic lattice can yield a behavior which is qualitatively

different from the present mean field analysis is the case where the polymer has a strong tendency

to form local crumples, as it happens in block copolymers which undergo a microphase separation.

In order to study such problems analytically, it would be interesting to improve the Bethe approx-

imation by considering enlarged cavities that contain not only a single site but a small cluster of

nearby sites. This actually amounts to a further step in the framework of the cluster variational

method. For the homopolymeric case a first step in this direction has been carried out in [55].

Already on the level of the simplest copolymer model we found a surprisingly rich phase diagram

as a function of temperature and sequence correlations. But clearly, the cavity method is amenable

to a number of generalizations that allow to study more sophisticated models of biopolymers,

including for instance backbone stiffness, orientational degrees of freedom, or additional structural

constraints such as the saturation of monomer-monomer interactions, which are crucial, e.g., for

the folding of RNA.

APPENDIX A: FINDING THE LIQUID SOLUTION

In this Appendix we show how the translation invariant liquid solution can be found by solving

a set of |A| + 2 equations (instead of 3L+ 1 equations as it may appear from Eqs. (4)-(7)). First

of all it is convenient to make a change of variables defining

w
(i)
0 ≡

L∑

a=1

p
(i)
2a

p
(i)
0

, z
(i)
↑a ≡

p
(i)
↑a

p
(i)
0

, z
(i)
↓a ≡

p
(i)
↓a

p
(i)
0

w(i)
σ ≡

L∑

a=1

p
(i)
2a

p
(i)
0

exp(−βEσ,σa) . (A1)

It is easy to see that the cavity equations (4)-(7)), the free energy (13) and all the others observables,

can be rewritten in terms of these 2L + |A| + 1 variables. In using the new variables, when not

specified, we shall assume that the index σ belongs to the enlarged space {0} ∪ A. We will set

E0,σ = Eσ,0 = 0.

The liquid fixed point has the translation invariant form w
(i)
σ = wσ, z

(i)
↑a = z↑a, z

(i)
↓a = z↓a. The

corresponding equations are easily written:

z↑a = keβµ z↑,a+1

1 + w0

(
1 + wσa

1 + w0

)k−1

, (A2)

z↓a = keβµ z↓,a−1

1 + w0

(
1 + wσa

1 + w0

)k−1

, (A3)
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wσ = k(k − 1)eβµ
L∑

a=1

e−βEσ,σa
z↑,a+1

1 + w0

z↓,a−1

1 + w0

(
1 + wσa

1 + w0

)k−2

. (A4)

It is important to notice that the above equations are invariant under the transformation z↑a →
γ · z↑a, z↓a → γ−1 · z↓a for any positive γ: we shall fix this freedom below. The reader can easily

check that any physical observable (such as the free energy, the local energy or the local density) is

also invariant under such a transformation. This happens because, when following the chain along

its conventional direction, each time we arrive at a site i, we are obliged to leave the site as well.

The above equations admit of course the trivial coil solution z↑a = z↓a = 0. Moreover, if one has

z↑a0 = 0 (z↓a0 = 0) for a particular a0, this implies z↑a = 0 (z↓a = 0) for any a. Therefore, we shall

hereafter assume that z↑a, z↓a 6= 0 for any a. In this case Eqs. (A2)-(A3) imply the consistency

condition

1 =

(
keβµ

1 + w0

)L ∏

σ∈A

(
1 + wσ

1 + w0

)(k−1)Lνσ

(A5)

Equations (A2) and (A3) are easily solved:

z↑a =

L∏

b=a

keβµ

1 + w0

(
1 + wσb

1 + w0

)k−1

z↑ , (A6)

z↓a =

a∏

b=1

keβµ

1 + w0

(
1 + wσb

1 + w0

)k−1

z↓ , (A7)

where z↑, z↓ are two integration constants. We can exploit the invariance mentioned above in order

to fix z↑ = z↓ = z.

Plugging the expressions (A6), (A7) into Eq. (A4), and using Eq. (A5), we get

wσ = (k − 1)Lz2
∑

τ∈A

ντe
−βEστ

1 + wτ
. (A8)

We are therefore left with a set of |A|+ 2 equations (Eq. (A5) plus the |A|+ 1 equations in (A8))

for |A| + 2 real variables (z and the |A| + 1 variables wσ). As anticipated these equations depend

on the sequence just through the frequencies νσ, σ ∈ A. The reader will easily check that the same

is true for any physical observable.

Near the Θ point all wσ are small, and (A8) shows that to lowest order they satisfy wσ ≈
w0
∑

τ∈A ντe
−βEστ . By imposing that a non-trivial solution of (A5) should exist one immediately

obtains the equation (14) for the location of the Θ point.
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APPENDIX B: NEUTRAL AB-COPOLYMERS: LOCAL STABILITY ANALYSIS

Here we outline the computation of the local stability condition for an AB copolymer having a

generic period-L sequence. We shall use, depending on the context, the two notations σa ∈ {A,B},
or σa ∈ {+,−} for the sequence.

As already mentioned in Sec. IVA, we consider the case of an interaction matrix symmetric

under A↔ B interchange. Without loss of generality, we can restrict ourselves to the cases of the

AF- and F-models defined in Sec. II A. Moreover we shall assume that the sequence is neutral,

i.e. νA = νB = 1/2. Under these hypothesis, Eqs. (A2)-(A4) admit the symmetric solution

z↑a = z↓a = z/
√
L, w0 = w, wa = w cosh β, where z and w are determined by solving the equations

z = keβµ

(
z

1 + w

)(
1 + w cosh β

1 + w

)k−1

, (B1)

w = k(k − 1)eβµ

(
z

1 + w

)2(1 + w cosh β

1 + w

)k−2

. (B2)

We want to compute the local stability of the cavity recursions (4)-(7) around the above solution.

We therefore imagine that the cavity fields for one of the sites 1, . . . k (let us say the site 1) have

been slightly perturbed and compute the effect of such a perturbation on the site 0. To linear order

we get:

δz
(0)
↑a = Aδz

(1)
↑,a+1 −B δw

(1)
0 + C δw(1)

σa
, (B3)

δz
(0)
↓a = Aδz

(1)
↓,a−1 −B δw

(1)
0 + C δw(1)

σa
, (B4)

δw
(0)
0 = D

L∑

a=1

(δz
(1)
↑a + δz

(1)
↓a ) − E δw

(1)
0 + F

∑

σ∈{A,B}

δw(1)
σ , (B5)

δw(0)
σ = G

L∑

a=1

(e−βEσσ(a−1)δz
(1)
↑,a + e−βEσσ(a+1)δz

(1)
↓,a) −H δw

(1)
0 + F

∑

τ∈{A,B}

e−βEστ δw(1)
τ . (B6)

The constants A–H are all positive, and can be expressed in terms of the solution of Eqs. (B1)-(B2).

In the following we will just need the combinations below:

A =
1

k
, CG =

k − 1

k2L

w

1 + cw
, F =

k − 2

2k

w

1 + cw
, (B7)

where we used the shorthand c ≡ cosh β.

We must now identify the most relevant perturbation, i.e., the largest eigenvalue of the linear

transformation (B3)-(B6). It is simple to show that the subspace



δw0 = 0;
L∑

a=1

δz↑a = 0;
L∑

a=1

δz↓a = 0;
∑

σ∈{A,B}

δwσ = 0




 (B8)
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is preserved by the iteration (B3)-(B6). It can be shown that the most relevant eigenvector lies

indeed within this subspace. We restrict to it by defining the variables

δw ≡ δwA − δwB , δ↑b ≡
L∑

a=1

δz↑a σa−b δ↓b ≡
L∑

a=1

δz↓a σa+b , (B9)

where we used σa ∈ {+,−} for the polymer sequence. Using the new variables we can rewrite the

iteration (B3)-(B6) as follows:

δ
(0)
↑a = Aδ

(1)
↑,a+1 +

L

2
Cq−a δw

(1) , (B10)

δ
(0)
↓a = Aδ

(1)
↓,a+1 +

L

2
Cqa δw

(1) , (B11)

δw(0) = 2Gs (δ
(1)
↑1 + δ

(1)
↓1 ) + 2Fs δw(1) , (B12)

where we introduced the notation s ≡ sinhβ (for the F-model) or s ≡ − sinhβ (for the AF-model),

and the sequence correlation function

qb =
1

L

L∑

a=1

σaσa+b . (B13)

Notice that qb = q−b. This remark allows us to sum Eqs. (B10) and (B11) and to introduce the

Fourier transform (for p = 2πn/L, n ∈ {1, . . . , L− 1}):

δ(p) =
L∑

a=1

(δ↑,a + δ↓,a) e
−ipa . (B14)

We obtain therefore

δ(0)(p) = Aeip δ(1)(p) + LCq(p) δw(1) , (B15)

δw(0) = 2Gs
1

L

∑

p

δ(1)(p) eip + 2Fs δw(1) . (B16)

We can now set δ(0)(p) = λδ(1)(p), δw(0) = λδw(1), and solve for λ, thus recovering Eq. (23).

APPENDIX C: COEXISTENCE CONDITION FOR A MANY STATES MOLECULE

It may be interesting to explicitly treat the case of an isolated molecule in equilibrium with

the solvent and determine the coexistence condition in the glass phase. The result is not obvious

since the system can exist in many different states γ ∈ {1, . . .N} with (extensive) grand potential

{Ω1, . . . ,ΩN }. Each one of these states describes a molecule confined to a volume V .
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Let us suppose that each state can be traced as the volume V of the system is changed. This gives

us the volume-dependent potentials Ωγ(V ). If the state γ is to describe a molecule in equilibrium

with the solvent it should exert no pressure on the walls of the container:

dΩγ

dV
= 0 . (C1)

We want to compute the typical value of the above quantity for states having a certain free-

energy density: Ωγ ≈ V ω. Let us step back for a moment and consider the extensive complexity

Σ̂(Ω;V, µ), where we made explicit the dependence upon the volume V and the chemical potential

µ. If we assume that states do not bifurcate and do not die (or come into existence) as the volume

is changed, it is easy to show that [37], for almost any state γ:

Σ̂(Ωγ + dΩγ ;V + dV, µ) = Σ̂(Ωγ ;V, µ) . (C2)

Using the asymptotic behavior Σ̂(Ω;V, µ) ≈ V Σ(ω, µ), and the general relations from Sec. IIIA

we can establish the coexistence condition either in the (m,µ) or in the (ω, µ) plane (we always

assume β and the energy parameters to be fixed). From (C2), we immediately obtain the condition

in the (µ, ω) plane:

ω
∂Σ

∂ω
(ω, µ) = Σ(ω, µ) . (C3)

This is suggestive of a balance between an “internal” osmotic pressure, ω, and an “interstate”

pressure (Σ/∂ωΣ). In the (m,µ) plane, the condition assumes a more compact form φ1(m,µ) = 0.

If we consider the lowest lying states, their free energy density ωs(µ) is determined by the vanishing

of the complexity: Σ(ωs(µ), µ) = 0. Therefore Eq. (C3) is satisfied for µ = µs, with ωs(µs) = 0.

This coincides with the condition for a unique pure state. If metastable states are considered,

Eq. (C3) receives a non-vanishing contribution from the complexity: in particular, one obtains

ω > 0. This is quite striking since we did not assume the system to equilibrate among states of

a given free-energy (which indeed does not happen on the short time scales that are relevant to

determine the boundary conditions with the solvent).

In Fig. 17 we represent the condition (C3) in the (ω, µ) plane. Notice that in general metastable

states (with Σ > 0) on the coexistence line correspond to lower chemical potential than that of

thermodynamically relevant states.

Let us finally consider the coexistence line at thermodynamic equilibrium. Dominant states

are obtained by minimizing the free energy ω − β−1Σ(ω, µ) with respect to ω. The coexistence

chemical potential µ∗ is then obtained from Eq. (C3). In a more compact (but formal) way, it is
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µ

ω

µ µd s

0

FIG. 17: A schematic view of the coexistence between a multi-state molecule and the solvent. Each line

represents the evolution of the internal free energy of a state as the volume is changed (Σ(ω, µ) = const.).

The thick line shows the states which are in equilibrium with the solvent. In particular, we signal the

coexistence chemical potentials for static and dynamic states.

determined from the condition

max{φ1(m,µ∗)|m ∈ [0, 1]} = 0 . (C4)

In the main body of the paper we focus on the behavior of the polymer on this line. Generally

speaking, at high temperature the maximum in Eq. (C4) is attained at m = 1. Since φ1(m =

1, µ) = φliq(µ), in this region the coexistence line is the same as for the liquid phase. At lower

temperatures the maximum is attained for 0 < m∗ < 1 and the thermodynamic coexistence line

lies above the liquid one. We refer to Fig. 3 for a summary of this behavior.

APPENDIX D: EXPANSION OF MOMENTS AT THE CONTINUOUS GLASS

TRANSITION

Here we analyze the solution of the cavity recursion near the continuous transition to first

non-trivial order in an expansion of its moments.

Using both sides of the cavity recursion equation on the 1RSB level (24) in order to calculate

the moments of the cavity fields, one obtains a set of coupled non-linear equations for the moments

of the fields pα over the distribution ρ(p). It is convenient to change coordinates and define the

fields ∆µ =
∑

αA
α
µ (pα − p∗α) in such a way as to diagonalize the matrix (22). Hereafter we shall

denote by µ = 1 the most instable (‘replicon’) direction in this matrix, and by λ the corresponding

eigenvalue.
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A careful analysis allows to establish the scaling of the moments with respect to the small

parameter kλ2 − 1 ∼ Ti − T close to the instability (21). The leading moment is given by the

second moment of the replicon mode. One finds
〈
∆2

1

〉
∼ (Ti − T ) (the brackets 〈〉 denote the

average with respect to ρ), while all other moments of deviations from the liquid fixed point p∗

are at least of second order in Ti − T . The only moments of order (Ti − T )2 are the first order

moments of 〈∆µ〉, the remaining second moments 〈∆1∆a〉, 〈∆µ∆ν〉, with µ, ν > 1 and the higher

moments
〈
∆3

1

〉
,
〈
∆2

1∆µ

〉
and

〈
∆4

1

〉
.

We will exploit the knowledge about this scaling in order to expand the 1RSB free energy (25)

in powers of Ti − T around the liquid solution.

The site term gives rise to a series

log




(
wliq

s

)m



1 +



 m

1




〈

k+1∑

i=1

ws,µ∆(i)
µ +

1

2

k+1∑

i6=j

ws,µν∆
(i)
µ ∆(j)

ν +
1

6

k+1∑

i6=j 6=l

ws,µνρ∆
(i)
µ ∆(j)

ν ∆(l)
ρ . . .

〉

+



 m

2




〈


k+1∑

i=1

ws,µ∆(i)
µ +

1

2

k+1∑

i6=j

ws,µν∆
(i)
µ ∆(j)

ν +
1

6

k+1∑

i6=j 6=l

ws,µνρ∆
(i)
µ ∆(j)

ν ∆(l)
ρ . . .




2〉

+ . . .







 ,

(D1)

where summation over direction indices µ, ν, ρ = 1, . . . , 3L is tacitly understood and we used

the shorthand notation

ws,µ =

[
1

ws

∂ws

∂∆
(1)
µ

]

liq

, (D2)

ws,µν =

[
1

ws

∂2ws

∂∆
(1)
µ ∂∆

(2)
ν

]

liq

, (D3)

ws,µνρ =

[
1

ws

∂3ws

∂∆
(1)
µ ∂∆

(2)
ν ∂∆

(3)
ρ

]

liq

. (D4)

Note that we have made use of the fact that ws is a multi-linear function of the fields p(i) so that

higher derivatives have to occur with respect to variables on different sites. The average 〈〉 is with

respect to the distributions ρ(p(1)), . . . , ρ(p(k+1)) on all sites. The link term has an analogous

expansion as (D1), but the triple sum vanishes since there are only two different field variables.

To proceed, we note the identity

ws(p
(1), . . . ,p(k+1)) = C[p(2), . . . ,p(k+1)]wl(p

(1), I[p(2), . . . ,p(k+1)]), (D5)

from which one immediately deduces

ws,µ = wl,µ (D6)
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for all directions µ. Using that ∂C/∂∆
(2)
1 |liq = 0, as follows from the properties of the subspace

(B8) which the replicon belongs to, one further finds

ws,1 = wl,1 = 0 (D7)

and

ws,1ν = λwl,1ν . (D8)

Let us now discuss the terms that appear to increasing order in Ti − T in the expansion of the

free energy. There is no first order term proportional to
〈
∆2

1

〉
, because of (D7). The second order

terms 〈∆µ〉, 〈∆µ∆ν〉,
〈
∆3

1

〉
, and

〈
∆2

1∆µ

〉
come with products of factors ws/l,µ and cancel exactly

between the site and link contributions, due to (D6). The only remaining term to second order is

βmφ(2) =



 m

2




[
−(k + 1)k

2
(ws,11)

2 +
k + 1

2
(wl,11)

2

] 〈
∆2

1

〉2
. (D9)

However, using (D8), the coefficient in brackets is seen to be of order kλ2 − 1 ∼ Ti − T .

The same mechanism suppresses the a priori third order terms
〈
∆2

1

〉
〈∆µ∆ν〉 and

〈
∆2

1

〉 〈
∆2

1∆ν

〉

by an additional factor kλ2 − 1 while the terms
〈
∆2

1

〉
〈∆µ〉,

〈
∆3

1

〉 〈
∆2

1

〉
and

〈
∆4

1

〉 〈
∆2

1

〉
do not

appear, again because of (D7). The only surviving third order contributions are the site terms

proportional to
〈
∆2

1

〉3
,

βmφ(3) = −(k + 1)k(k − 1)

[
1

6

(
m

2

)
w2

s,111 +

(
m

3

)
w3

s,11

] 〈
∆2

1

〉3
. (D10)

To first non trivial order we finally have

φ1 = φliq + φ(2) + φ(3) +O((kλ2 − 1)4) (D11)

= φliq +
1 −m

4β
(k + 1)k w2

s,11(kλ
2 − 1)

〈
∆2

1

〉2

+
1 −m

2β
(k + 1)k(k − 1)

(
1

6
w2

s,111 −
2 −m

3
w3

s,11

)〈
∆2

1

〉3
+O((kλ2 − 1)4).

Since the form (25) of the free energy is variational, we may obtain the leading moment to first

order in Ti − T from the condition ∂φ1/∂
〈
∆2

1

〉
= 0,

〈
∆2

1

〉
=

1

(k − 1)

w2
s,11[

(2 −m)w3
s,11 − w2

s,111/2
] (kλ2 − 1) +O

(
(kλ2 − 1)2

)
. (D12)

Plugging this result in Eq. (D11) we get

φ1 = φliq +
(1 −m)

12β

k(k + 1)

(k − 1)2
w6

s,11[
(2 −m)w3

s,11 − w2
s,111/2

]2 (kλ2 − 1)3 +O((kλ2 − 1)4) .(D13)
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Note that the prefactor of (kλ2 − 1) in Eq. (D12) has to be positive for consistency. A negative

value indicates that there is no stable solution close to the liquid fixed point and the glass transition

would be discontinuous. By explicit calculation of this coefficient at the instability point we found

this to happen only in very atypical sequences with highly non-symmetric interactions.

Evaluating the coefficients ws,11 and ws,111 requires the knowledge of the replicon eigenvector.

This can be derived for the case of copolymers with symmetric interaction matrix EAA = EBB =

−EAB, and equally frequent monomer species, νA = νB = 1/2, extending the arguments of App. B.

In particular we obtain (using the variables defined in Apps. A and B):

δw0 = 0 , δz↑a =
Cδw

2λ

∞∑

n=0

σa+n(kλ)−n , δz↓a =
Cδw

2λ

∞∑

n=0

σa−n(kλ)−n , δwσ = σδw . (D14)

Things simplify considerably in several important cases: (i) alternating copolymers; (ii) anti-

palindromic sequences; (iii) Markov sequences in the L → ∞ limit. In all this cases the ratio

w2
s,111/w

3
s,11 vanishes. The basic reason is that, because of Eq. (D14), ws,111 turns out to be an

odd function of {σa}. In these cases the free energy φ1(m) takes the simpler form, cf. (26),

φ1 − φliq =
(k + 1)k2

12(k − 1)2β

1 −m

(2 −m)2
(kλ2 − 1)3 +O

(
(kλ2 − 1)4

)
. (D15)

At the glass transition the maximum of φ1 is attained at ms = 0. The fourth order term will

shift its position to ms ∝ kλ2 − 1 ∼ Ti − T , as we have explicitly checked in the alternating

AB-ampholyte.

APPENDIX E: COMPUTING THE ORDER PARAMETER IN THE CAVITY METHOD

We show here how to compute the local structural order parameters (17) using the cavity

method.

In the spirit of the Bethe-Peierls approximation we treat the self-avoidance of the polymer chain

just on a local level, forbidding it to leave a site on the edge on which it arrived, but neglecting

further constraints that arise on a real space lattice. In the following, we call “non reversal random

walks” (NRRW) this restricted class of walks on the cubic lattice.

Let us rewrite the distance vector between monomers i and i + d as ~R
(1)
i+d − ~R

(1)
i =

∑d
n=1 ~r

(1)
n

with ~r
(1)
n = ~R

(1)
i+n − ~R

(1)
i+n−1. If the positions along the chain are statistically equivalent, the overlap

〈Fd〉state can be written as

〈
F

(1,2)
d

〉

state
=

〈
d∑

l=0

(
l∑

n=1

~rn +

d∑

n=l+1

~r(1)n

)

·
(

l∑

n=1

~rn +

d∑

n=l+1

~r(2)n

)〉

state

(E1)
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where we split the sum according to the length l over which the replicas stay together and put

~r
(1)
n = ~r

(2)
n = ~rn for n ≤ l. Note that once l is fixed the common part of the path and the two

legs of length d− l can be considered as non reversal random walks, only subject to the constraint

that the legs leave in different directions at the bifurcation. These random walks have all the same

weight when averaging over pure states. Hence, in order to evaluate (E1) it is sufficient to calculate

the probability 〈P (l)〉state for two replicas in the same state to follow the same path over a distance

l, from which we obtain

〈
F

(1,2)
d

〉

state
=

d∑

l=0

〈P (l)〉state f(l; d) (E2)

where

f(l; d) =

〈(
l∑

n=1

~rn +
d∑

n=l+1

~r(1)n

)
·
(

l∑

n=1

~rn +
d∑

n=l+1

~r(2)n

)〉

NRRW (l)

, (E3)

the average being taken over the uniform distribution of two NRRW’s after l common links.

Using that in a NRRW one has 〈~rn1 · ~rn2〉NRRW = 1/k|n1−n2|, and distinguishing the different

possible conformations at the bifurcation, one easily finds

f(l; d) = l + 2

l−1∑

j=1

l − j

kj
+

2

k

l∑

n1=1

d−l∑

n2=1

1

kn1+n2−2
− 1

k

d−l∑

n1=1

d−l∑

n2=1

1

kn1+n2−2
. (E4)

(The first two terms stem from the self overlap of the common part, the term in the middle is the

cross term between the common part and a leg that continues straight with respect to the common

part, and the last term is a negative contribution due to two legs leaving in opposite directions.)

In the liquid state, 〈P (l)〉liq is just given by the probability that two NRRW’s stay together

over a distance l,

Pliq(l = 0) =
k

k + 1
, (E5)

Pliq(l > 0) =
k − 1

k + 1

1

kl
. (E6)

Upon injecting (E4), (E5), and (E6) in (E2) one may verify that 〈Fd〉liq = 0.

In the glass phase, 〈P (l)〉state is most easily evaluated as N(l)
〈
P̃ (l)

〉

state
, where N(l) is the

number of rooted NRRW’s of length l and P̃ (l) is the probability for two replicas to stay on a

specific path of length l.

In the Bethe-Peierls approximation the latter can be computed within an enlarged cavity con-

taining all sites of the path. The average over the states is done by averaging independently over
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the local field distributions on all neighboring sites, taking into account proper weighting factors:

〈
P̃ (l)

〉

state
=

1

L

L∑

a=1

∫∏
ι∈Il

dρ
(
p(ι)
)
Pl;aWl;tot({pι}ι∈Il

)m
∫∏

ι∈Il
dρ
(
p(ι)
)
Wl;tot({pι}ι∈Il

)m
, (E7)

where we have introduced the set of indices Il labeling the neighbors of the l+ 1 sites on the path:

Il = ∪k
i0=1{(0, i0)} ∪l−1

l′=1

(
∪k−1

il′=1{(l′, il′)}
)
∪k

il=1 {(l, il)} . (E8)

Pl;a denotes the probability, given the local field configuration, for two replicas to both stay on the

given path up to site l and to separate afterwards, under the condition to start off at site 0 with

monomer a,

Pl;a =

∑k
j2 6=j1

W
(j1)
l;a+W

(j2)
l;a+

Wl;a({pι}ι∈Il
)2

. (E9)

The weights W
(j)
l;a± are the Boltzmann factors associated with a polymer starting with monomer

a on site 0, staying on the path, and leaving it at the site l via neighbor (l, j),

W
(j)
l;a± = eβµ(l+1)




k∑

j′=1

p
(0,j′)
↓(a−1)

ψ
(0,j′)
a

k∏

i=1

ψ(0,i)
a




l−1∏

l′=1

(
k−1∏

i=1

ψ
(l′,i)
a±l′

)


p
(l,j)
↑a±(l+1)

ψ
(l,j)
a±l

k∏

i=1

ψ
(l,i)
a±l



 , (E10)

the sign ± indicating that monomer indices increase/decrease along the path. Notice that in Eq.

(E9) we selected arbitrarily one of the two equivalent directions. In the above formulæ, Wl;tot and

Wl;a are the Boltzmann factors associated with the ensemble of all possible configurations on the

path, and of the configurations restricted to have a monomer a on site 0, respectively. They are

conveniently calculated recursively via

Wl;a/tot({pι}ι∈Il
) = C

(
p(l,1), . . . ,p(l,k)

)
Wl−1;a/tot

(
{pι}ι∈Il−1

|p(l−1,k) = I
(
p(l,1), . . . ,p(l,k)

))
,

(E11)

where I denotes the cavity iteration functional as defined by (4-7), and C is the corresponding

normalization constant. The initial conditions for (E11) are simply

W0;a

(
p(0,1), . . . ,p(0,k+1)

)
= eβµ

k+1∑

i1 6=i2

p
(0,i1)
1a−1↓p

(0,i2)
1a+1↑

k+1∏

j 6=i1,i2

ψ(0,j)
σa

(E12)

and

W0;tot

(
p(0,1), . . . ,p(0,k)

)
= ws

(
p(0,1), . . . ,p(0,k)

)
. (E13)
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APPENDIX F: MONTE CARLO SIMULATIONS ON THE BETHE LATTICE

In this Appendix we describe our approach to numerical simulations of heteropolymers on the

Bethe lattice. In the first part we define a model for finite length polymers. In the second one we

present our Monte Carlo algorithm.

1. Finite length polymers

We consider a modified ensemble for a varying number of finite length random walks. More

precisely, a configuration is defined by n mutually-avoiding SAW’s. The chain i shall contain

Ni monomers, with N1 + . . . + Nn = N . The Hamiltonian (1) receives contributions both from

self-contacts within a single chain and from mutual contacts between different chains. The grand-

canonical free energy is

− β ωL(β, µ, µend) = lim
V →∞

1

V
EG log




∑

n≥0

eβµendn
∑

N≥0

eβµN
∑

ω

e−βHN (ω)



 . (F1)

We introduced the chemical potential µend which couples to the number of chain ends in the

solution (or, equivalently, to the number of polymers). The single-polymer ensemble is recovered

in the µend → −∞ limit.

Extending the cavity formalism to the finite-µend case is quite straightforward. As an illustra-

tion, we can easily write down the generalization of Eqs. (4)-(7):

p
(0)
0 = C−1

k∏

i=1

ψ
(i)
0 , (F2)

p
(0)
↑a = C−1eβµ

k∏

j=1

ψ(j)
a

{
eβµend +

k∑

i=1

p̂
(i)
↑a+1

}
, (F3)

p
(0)
↓a = C−1eβµ

k∏

i=1

ψ(i)
a

{
eβµend +

k∑

i=1

p̂
(i)
↓a−1

}
, (F4)

p
(0)
2a = C−1eβµ

k∏

i=1

ψ(i)
a




e
2βµend + eβµend

k∑

i=1

(p̂
(i1)
↓a−1 + p̂

(i2)
↑a+1) +

k∑

i1 6=i2

p̂
(i1)
↓a−1p̂

(i2)
↑a+1




 , (F5)

where we used the shorthands p̂
(i)
↓a−1 ≡ p

(i)
↓a−1/ψ

(i)
a , p̂

(i)
↑a+1 ≡ p

(i)
↑a+1/ψ

(i)
a .

2. The Monte Carlo algorithm

As already mentioned in Sec. V D, numerical simulations of long fixed-length polymers are

quite difficult on the Bethe lattice. We thus resort to simulating the variable-length ensemble
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(a) (b) (c)

FIG. 18: The three moves used in our Monte Carlo simulations on the Bethe lattice. The monomers (chain

links) which change because of the move are represented with hatched circles (wiggly lines).

corresponding to the free-energy (F1). The algorithm includes three types of moves illustrated

graphically in Fig. 18: (a) monomer insertion/deletion; (b) chain extension/reduction; (c) two

chain junction/disjunction. It is straightforward to show that these three moves ensure ergodicity.

At each step of the algorithm the type of move and the location in the graph are chosen

randomly. The move is then accepted according to the Metropolis rule in such a way as to satisfy

detailed balance with respect to the variable length ensemble (F1). Evidently the algorithm is

more efficient for moderate lengths of the polymers, i.e., not too large values of |µend|. It can be

therefore convenient, for producing equilibrated configurations, to gradually decrease |µend| to the

desired value.

APPENDIX G: NUMERICAL SOLUTION OF THE 1RSB CAVITY EQUATIONS WITH

POPULATION DYNAMICS

The cavity recursion equation in the form (24) suggests a numerical solution by an iterative

population dynamics [39]: The distribution of local fields ρ(p) is represented by a (finite) population

of fields. An iteration step in the dynamics consists in choosing at random k “parent” members

p(i) of the population and calculating the corresponding cavity field p(0) = I({p(i)}) from (4)-
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(7). This new field is then exchanged against an old field in the population with probability

C[{p(i)}]m/Cm
max, proportional to the reweighting C[{p(i)}]m (normalized so as to make sure that

the probability never exceeds 1). If the dynamics converges to a stationary distribution, its density

satisfies the recursion equation (24).

In the soft glass phase, the iteration converges rapidly since the distribution of fields remains

centered around the unstable liquid fixed point. However, the algorithm considerably slows down

in the frozen phase where the fields have strong biases towards given conformations. Since the

biases of the k parent members are only rarely compatible with each other, the reweighting is

usually very small. The population dynamics is then dominated by rare events with a low degree

of frustration. Obviously, the probability of frustrated events rapidly increases with the number

of different local conformations and thus with the length of the period L. For this reason we have

limited our numerical simulations in the frozen glass phase to populations of 4000 fields for chains

with L = 20.
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