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Optimization and Physi
s: On the satis�ability of random Boolean formulaeMar
 MézardLPTMS, Université de Paris Sud, Orsay, Fran
e(Dated: 24th O
tober 2008)LECTURE GIVEN AT TH2002: Given a set of Boolean variables, and some 
onstraints betweenthem, is it possible to �nd a 
on�guration of the variables whi
h satis�es all 
onstraints? Thisproblem, whi
h is at the heart of 
ombinatorial optimization and 
omputational 
omplexity theory, isused as a guide to show the 
onvergen
e between these �elds and the statisti
al physi
s of disorderedsystems. New results on satis�ability, both on the theoreti
al and pra
ti
al side, 
an be obtainedthanks to the use of physi
s 
on
epts and methods.Combinatorial optimization aims at �nding, in a �nite set of possible 
on�gurations, the one whi
h minimizes a
ertain 
ost fun
tion. The famous example of the traveling salesman problem (TSP) 
an serve as an illustration: Asalesman must make a tour through N 
ities, visiting ea
h 
ity only on
e, and 
oming ba
k at its starting point. The
ost fun
tion is a symmetri
 matrix cij , where cij is the 
ost for the travel between 
ities i and j. A permutation πof the N 
ities gives a tour π(1) → π(2) → π(3) → .... Taking into a

ount the equivalen
e between various startingpoints and the dire
tion of the tour, one sees that the number of distin
t tour is (N − 1)!/2. For ea
h tour π, thetotal 
ost is C = cπ(N)π(1) +
∑N−1

r=1 cπ(r)π(r+1), whi
h 
an be 
omputed in N operations. The problem is to �nd thetour π with lowest 
ost.As 
an be seen on this example, the basi
 ingredients of the optimization problems whi
h will interest us are thefollowing:
• An integer N giving the size of the problem (in the TSP, it is the number of 
ities).
• A set of 
on�gurations, whi
h typi
ally s
ales like exp(Nα).
• A 
ost fun
tion, whi
h one 
an 
ompute in polynomial time O(Nγ).Let me mention a few examples, beside the TSP [1℄.In the assignment problem, one is given a set of N persons i = 1, ..., N , a set of N tasks a = 1, ..., N , a N × N
ost matrix c where cia is the 
ost for having task a performed by person i. An assignment is a permutation π ∈ SNassigning task a = π(i) to person i, and the problem is to �nd the lowest 
ost assignment, i.e. the permutation whi
hminimizes C =

∑N

i=1 ciπ(i).In the spin glass problem[2℄, one is given a set of N spins, whi
h 
ould be for instan
e Ising variables σi ∈ {±1},the total energy of the 
on�guration is a sum of ex
hange intera
tion energies between all pairs of spins, E({σ}) =
−

∑

1≤i<j≤N Jijσiσj , and one seeks the ground state of the problem, i.e. the 
on�guration (among the 2N possibleones) whi
h minimizes the energy.In physi
al terms, optimization problems 
onsist in �nding ground states. This task 
an be non trivial if a systemis frustrated, whi
h means that one 
annot get the ground state simply by minimizing the energy lo
ally. This istypi
ally what happens in a spin glass. In some sense, statisti
al physi
s addresses a more general question. Assumingthat the system is at thermal equilibrium at temperature T , every 
on�guration C is assigned a Boltzmann probability,
P (C) = 1

Z
e−βE(C). Beside �nding the ground state, one 
an ask also interesting questions about whi
h are the typi
al
on�gurations at a given temperature, like 
ounting them (whi
h leads to the introdu
tion of entropy), or trying toknow if they are lo
ated in one single region of phase spa
e, or if they build up well separated 
lusters, as oftenhappens in situation where ergodi
ity is broken. The generalization introdu
ed by using a �nite temperature, besideleading to interesting questions, 
an also be useful for optimization, both from the algorithmi
 point of view (forinstan
e this is the essen
e of the simulated annealing algorithm[3℄, whi
h is a general purpose heuristi
 algorithmthat 
an be used in many optimization problems), but also from an analyti
 point of view [2℄. Conversely, smartoptimization algorithms turn out to be very useful in the study of frustrated physi
al systems like spin glasses orrandom �eld models, and the 
ross-fertilization between these two �elds (and also with the related domain of error
orre
ting 
odes for information transmission [4℄) has been very fruitful in the re
ent years [5℄.Before pro
eeding with one su
h example, let us brie�y mention a few important results in optimization whi
h willprovide the ne
essary ba
kground and motivation. One of the great a
hievements of 
omputer s
ien
e is the theoryof 
omputational 
omplexity. It is impossible to present it in any details here and I will just sket
h a few main ideas,the interested reader 
an study it for instan
e in [6℄.Within the general framework explained above, we 
an de�ne three types of optimization problems: the optimizationproblem in whi
h one wants to �nd the optimal 
on�guration, the evaluation problem in whi
h one wants to 
ompute

http://fr.arXiv.org/abs/cond-mat/0212448v2


2the optimal 
ost (i.e. the ground state energy), the de
ision problem in whi
h one wants to know, given a threshold
ost C0, if there exists a 
on�guration of 
ost less than C0.One 
lassi�
ation of de
ision problems is based on the s
aling with N of the 
omputer time required to solve themin the worst 
ase. There are two main 
omplexity 
lasses:
• Class P = polynomial problems: they 
an be solved in a time t < Nα. The assignment is an example of apolynomial problem, as is the spin glass problem in 2 dimensions.
• Class NP = non-deterministi
 polynomial: Given a 'yes' solution to a NP problem, it 
an be 
he
ked inpolynomial time. Roughly speaking this means that the energy is 
omputable in polynomial time, so this 
lass
ontains a wide variety of problems, in
luding most of the ones of interest in physi
s. All problems mentionedabove are in NP.One ni
e aspe
t of fo
using on polynomiality is that it allows to forget about the details of the de�nition of N , theimplementation, language, ma
hine, et
...: any 'reasonable' su
h 
hange (for instan
e one 
ould have used the numberof possible links in the assignment) will 
hange the exponent of N appearing in the 
omputer time of a problem in P,but not transform it into an exponential behavior. A problem A is said to be at least as hard as a problem B if thereexists a polynomial algorithm whi
h transforms any instan
e of B into an instan
e of A.This allows to de�ne the very important 
lass:
• NP-
omplete A problem is NP 
omplete if it is at least as hard as any problem in NP.So the NP-
omplete are the hardest problems in NP. If one su
h problem 
an be solved in polynomial time, then allthe problems in NP are solved in polynomial time. Clearly P is 
ontained in NP, but it is not yet known whether P= NP , and this is 
onsidered as a major 
hallenge.A great result was obtained in this �eld by Cook in 1971 [7℄: The satis�ability problem, whi
h we shall des
ribebelow, is NP-
omplete. Sin
e then hundreds of problems have been shown to belong to this 
lass, among whi
h thede
ision TSP or the spin glass in dimension larger or equal to 3.The fa
t that 3-d spin glass is NP-
omplete while 2-d spin glass is P might indu
e one to infer that NP-
ompletenessis equivalent with the existen
e of a glass transition. This reasoning is too naive and wrong; the reason is that the
omplexity 
lassi�
ation relies on a worth-
ase analysis, while physi
ists study the behavior of a typi
al sample. Thedevelopment of a typi
al 
ase 
omplexity theory has be
ome a major goal [8℄, also motivated by the experimentalobservations that many instan
es of NP-
omplete problems are easy to solve[5℄.One way of addressing this issue of a typi
al 
ase 
omplexity is to de�ne a probability measure on the instan
es (=the 'samples') of the optimization problem whi
h one is 
onsidering. Typi
al examples are:
• TSP with independent random points uniformly distributed in the unit square
• assignment with independent a�nities uniformly distributed on [0, 1]

• CuMn spin glass at one per
ent MnOn
e this measure has been de�ned, one is interested in the properties of the generi
 sample in the N → ∞ limit. Inmost 
ases, global properties (e.g. extensive thermodynami
 quantities, among whi
h the ground state energy), turnout to be self averaging. This means for instan
e that the distribution of the ground state energy density be
omesmore and more peaked around an asymptoti
 value in the large N limit: almost all samples have the same ground stateenergy density. In this situation, a statisti
al physi
s analysis is appropriate. Early examples of the use of statisti
alphysi
s in su
h a 
ontext are the derivation of bounds for the optimal length of a TSP[9℄, the exa
t predi
tion of theground state energy in the random assignment problem de�ned above, where the result E0 = π2

6 , derived in 1985through a repli
a analysis[10℄, was re
ently 
on�rmed rigorously by Aldous [11℄, or the link between spin glasses andgraph partitioning [12℄.As statisti
al physi
s 
an be quite powerful at understanding the generi
 stru
ture of an optimization problem, onemay also hope that it 
an help �nding better optimization algorithms. A su

essful example whi
h was developedre
ently is the satis�ability problem, to whi
h we now turn.As we have seen, satis�ability is a 
ore problem in optimization and 
omplexity theory. It is de�ned as follows[13℄: A 
on�guration is a set of N Boolean variables xi ∈ {0, 1} i = 1, . . . , N . One is given M 
onstraints whi
hare 
lauses, meaning that they are in the form of an OR fun
tion of some variables or their negations. For instan
e:
x1 ∨ x27 ∨ x̄3, x̄11 ∨ x2, are 
lauses (notation: x̄3 is the negation of x3). So the 
lause x1 ∨ x27 ∨ x̄3 is satis�ed ifeither x1 = 1, or x27 = 1, or x3 = 0 (these events do not ex
lude ea
h other). The satis�ability problem is a de
isionproblem. It asks whether there exists a 
hoi
e of the Boolean variables su
h that all 
onstraints are satis�ed (wewill 
all it a SAT 
on�guration). This is a very generi
 problem, be
ause one 
an see it as �nding a 
on�guration of



3the N Boolean variables whi
h satis�es the logi
al proposition built from the AND of all the 
lauses (in our example
(x1 ∨ x27 ∨ x̄3) ∧ (x̄11 ∨ x2) ∧ . . .), and any logi
al proposition 
an be written in su
h a '
onjun
tive normal form' .Satis�ability is known to be NP 
omplete if it 
ontains 
lauses of length ≥ 3, but 
ommon sense and experien
eshow that the problem 
an often be easy; for instan
e if the number of 
onstraints per variable α = M

N
is small, theproblem is often SAT, if it is large, the problem is often UNSAT.This behavior 
an be 
hara
terized quantitatively by looking at the typi
al 
omplexity of the random 3-SATproblem, de�ned as follows. Ea
h 
lause involves exa
tly three variables, 
hosen randomly in {x1, .., xN}; a variableappearing in the 
lause is negated randomly with probability 1/2. This de�nes the probability measure on instan
esfor the random 3-SAT problem. The 
ontrol parameter is the ratio Constraints/Variables α = M

N
.The properties of random 3-SAT have been �rst investigated numeri
ally [14, 15℄, and exhibit a very interestingthreshold phenomenon at αc ∼ 4.26: a randomly 
hosen sample is generi
ally SAT for α < αc (meaning that it is SATwith probability 1 when N → ∞), generi
ally UNSAT for α > αc. The time used by the best available algorithms(whi
h have an exponential 
omplexity) to study the problem also displays an interesting behavior: For α well below

αc, it is easy to �nd a SAT 
on�guration; for α well above αc, it is relatively easy to �nd a 
ontradi
tion in the
onstraints, showing that the problem is UNSAT. The really di�
ult region is the intermediate one where α ∼ αc,where the 
omputer time requested to solve the problem is mu
h larger and in
reases very fast with system size. A lotof important work has been done on this problem, to establish the existen
e of a threshold phenomenon, give upperand lower bounds on αc, show the existen
e of �nite size e�e
ts around α ∼ αc with s
aling exponents. We referthe reader to the literature [14, 15, 16, 17, 18, 19, 20℄, and just here extra
t a few 
ru
ial aspe
ts for our dis
ussion.The threshold phenomenon is a phase transition, and the neighborhood of the transition is the region where thealgorithmi
 problem be
omes really hard.This relationship between phase transition and 
omplexity makes a statisti
al physi
s analysis of this problemparti
ularly interesting. Monasson and Ze

hina have been the �rst ones to re
ognize this importan
e and to usestatisti
al physi
s methods for an analyti
 study of the random 3-SAT problem [21, 22℄. Basi
ally this problem fallsinto the broad 
ategory of spin glass physi
s. This is immediately seen through the following formulation. To makethings look more familiar, physi
ists like to introdu
e for ea
h Boolean variable xi ∈ {0, 1} an Ising spin σi ∈ {−1, 1}through xi = 1+σi

2 . A satis�ability problem like
(x1 ∨ x27 ∨ x̄3)∧(x̄11 ∨ x3 ∨ x2)∧. . . (1)
an be written in terms of an energy fun
tion, where the energy is equal to one for ea
h violated 
lause. Expli
itly,in the above example, one would have

E =
1 + σ1

2

1 + σ27

2

1 − σ3

2
+

1 − σ11

2

1 + σ3

2

1 + σ2

2
+ . . . (2)This is 
learly a problem of intera
ting spins, with 1,2, and 3 spin intera
tions, disorder (in the 
hoi
e of whi
h variableintera
ts with whi
h), and frustration (be
ause some 
onstraints are antagonist). More te
hni
ally, the problem hasa spe
ial type of three-spin intera
tions on a random hyper-graph.Using the repli
a method, Monasson and Ze

hina �rst showed the existen
e of a phase transition within the repli
asymmetri
 approximation, at αc = 5.18, then showed that repli
a symmetry must be broken in this problem. Somevariational approximation to des
ribe the repli
a symmetry breaking e�e
ts were developed in parti
ular in [23, 24℄.Re
ently, in a 
ollaboration with G.Parisi and R. Ze

hina [25, 26℄, we have developed a new approa
h to thestatisti
al physi
s of the random 3-SAT problem using the 
avity method. While the 
avity method had beenoriginally invented to deal with the SK model where the intera
tions are of in�nite range [2℄, it was later adapted toproblems with '�nite 
onne
tivity', in whi
h a given variable intera
ts with a �nite set of other variables. While thisis easily done for systems whi
h are repli
a symmetri
 (like the assignment, or the random TSP with independentlinks), it turned out to be 
onsiderably more di�
ult to develop the 
orresponding formalism and turn it into apra
ti
al method, in the 
ase where repli
a symmetry is broken. This has been done in the last two years in jointworks with G.Parisi [28℄, and has opened the road to the study of �nite 
onne
tivity optimization problems withrepli
a symmetry breaking like random K-sat. Curiously, while the 
avity method is in prin
iple equivalent to therepli
a method (although it pro
eeds through dire
t probabilisti
 analysis instead of using an analyti
 
ontinuationin the number of repli
as), it turns out that it is easier to solve this problem with the 
avity method.The analyti
 study of [25, 26℄ for the random 3-SAT problem at zero temperature shows the following phase diagram(see �g.1):

• For α < αd = 3.921, the problem is generi
ally SAT; the solution 
an be found relatively easily, be
ause thespa
e of SAT 
on�gurations builds up a single big 
onne
ted 
luster. A T = 0 Metropolis algorithm, in whi
hone proposes to �ip a randomly 
hosen variable, and a

epts the 
hange i� the number of violated 
onstraintsin the new 
on�guration is less or equal to the old one, is able to �nd a SAT 
on�guration. We 
all this theEASY-SAT phase
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SAT (E = 0 ) UNSAT (E   >0)

0 0

1 state

E=0 E>0

Many states Many states

E>0

αα  =4.267α  =3.921d c
=M/NFigure 1: A pi
torial des
ription of the phase diagram for random 3-SAT obtained in the 
avity method: 
lusters of SAT (ingreen/light gray) or UNSAT (in red/dark grey) 
on�gurations. One �nds three qualitatively di�erent phases, the EASY-SATphase for α < αd, the HARD-SAT phase for αd < α < αc, the UNSAT phase obtained for αc < α (see text)

• For αd < α < αc = 4.267, the problem is still generi
ally SAT, but now it be
omes very di�
ult to �nd asolution (we 
all this the HARD-SAT phase). The reason is that the 
on�gurations of variables whi
h satisfy all
onstraints build up some 
lusters. Ea
h su
h 
luster, whi
h we 
all a 'state', is well separated from the other
lusters (passing from one to the other requires �ipping an extensive number of variables). But there also existmany �metastable states�: starting from a random 
on�guration, a lo
al des
ent algorithm will get trapped insome 
luster of 
on�gurations with a given �nite energy (they all have the same number of violated 
lauses, andit is impossible to get out of this 
luster towards lower energy 
on�gurations through any des
ending sequen
e ofone spin �ip moves). The number of SAT 
lustersN is exponentially large in N , it behaves asN ∼ exp(NΣ); butthe number of metastable 
lusters is also exponentially large with a larger growth rate, behaving like exp(NΣms)with Σms > Σ. The most numerous metastable 
lusters, whi
h have an energy density eth, will trap all lo
aldes
ent algorithms (zero temperature Metropolis of 
ourse, but also simulated annealing, unless it is run for anexponential time).
• For α > αc, the problem is typi
ally UNSAT. The ground state energy density e0 is positive. Finding a
on�guration with lowest energy is also very di�
ult be
ause of the proliferation of metastable states.A more quantitative des
ription of the thermodynami
 quantities in the various phases is shown in �g.2. The moststriking result is the existen
e of an intermediate SAT phase where 
lustering o

urs. A hint of su
h a behavior hadbeen �rst found in a sophisti
ated variational one step repli
a symmetry breaking approximation developed in [23℄;however this approximation predi
ted a se
ond order phase transition (
lusters separating 
ontinuously), while wenow think that the transition is dis
ontinuous: an exponentially large number of ma
ros
opi
ally separated 
lustersappears dis
ontinuously at α = αd. Another point whi
h should be noti
ed is the fa
t that the 
omplexity, and theenergy eth in the HARD-SAT phase are rather small: around eth ∼ 3 10−3 violated 
lause per variable for α = 4.2.This shows that until one rea
hes problems with at least a few thousands variables, one 
annot feel the true 
omplexityof the problem. This 
an explain why the existen
e of the intermediate phase went unnoti
ed in previous simulations.The se
ond type of results found in [25, 26, 27℄ is a new 
lass of algorithms dealing with the many states stru
ture.Basi
ally this algorithm amounts to using the 
avity equations on one given sample. Originally the 
avity method wasdeveloped to handle a statisti
al distribution of samples. For instan
e in the random 3-SAT 
ase its basi
 strategyis to add one extra variable and 
onne
t it randomly to a number of new 
lauses whi
h has the 
orre
t statisti
aldistribution. In the large N limit, the statisti
s of the lo
al �eld on the new variable should be identi
al to thestatisti
s of the lo
al �elds on any other variable in the absen
e of the new one. It turns out that this strategy 
an beadapted to study a single sample: one 
onsiders a given 
lause a, whi
h involves three variables σ1, σ2, σ3. The 
avity�eld on σ1 is the �eld felt by σ1 in the absen
e of a. In the 
ase where there exist many states, there is one su
h �eldfor ea
h possible state of the system, and the order parameter is the survey of these �elds, in all the states of �xedenergy density e:

P e
0 (h) = Ct

∑

α

δ (hα
0 − h) δ

(

Eα

N
− e

) (3)One 
an then write a re
ursion re
ursion between these surveys. Looking for instan
e at the stru
ture of �g.3, onegets the following iteration equation:
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 quantities for the random 3-SAT problem: e0 is the ground state energy density (minimal numberof violated 
lauses per variable); eth is the energy density of the most numerous metastable states,whi
h trap the lo
al des
entalgorithms; Σ is the 
omplexity of SAT states with E = 0

σ
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h hgg
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Figure 3: The basi
 iterative stru
ture of survey propagation. This subgraph is a part of a 3-SAT problem, in whi
h thevariable σ0 belongs to three 3-
lauses, involving respe
tively the variables {σ1, τ1}, {σ2, τ2}, {σ3, τ3}. When the 
lause 3 isswit
hed o�, the lo
al 
avity �eld survey P e

0 (h) on spin σ0 
an be 
omputed in terms of the 
avity �eld surveys on ea
h of thespins σ1, τ1, σ2, τ2.
P e

0 (h) = Ct

∫

P e
σ1

(g1)dg1 P e
τ1

(h1)dh1 P e
σ2

(g2)dg2 P e
τ2

(h2)dh2

δ(h − f(g1, h1, g2, h2)) exp

(

−
dΣ

de
w(g1, h1, g2, h2)

) (4)The fun
tion f just 
omputes the value of the new 
avity �eld on σ0 in terms of the four 
avity �elds g1, h1, g2, h2.It is easily 
omputed by 
onsidering the statisti
al me
hani
s problem of the �ve-spin system {σ0, σ1, τ1, σ2, τ2} andsumming over the 16 possible states of the spins σ1, τ1, σ2, τ2. The fun
tion w 
omputes the free energy shift indu
edby the addition of σ0 to the system with the four spins σ1, τ1, σ2, τ2. The exponential reweighting term in (4) is the
ru
ial pie
e of survey propagation: it appears be
ause one 
onsiders the survey at a �xed energy density e. As thenumber of states at energy E = Ne + δE in
reases in exp(yδE), where y = dΣ
de
, this favors the states with a largenegative energy shift.The usual 
avity method for the random 3-SAT problem determines the probability, when a new variable is addedat random, that its survey P e

0 (h) is a given fun
tion P (h): the order parameter is thus a fun
tional, the probability
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Figure 4: The total 
omplexity (= the ln of the number of states) as a fun
tion of the total energy (= the number of violated
lauses) for one given sample with N = 104 variables and M = 4.2 104 
onstraints. The top 
urve is the original 
omplexity.The next 
urves are the various 
omplexities obtained for the de
imated samples, plotted here every 200 de
imations. Onesees a global de
rease of the number of metastable states, and also a global de
rease of the threshold energy. In the end theproblem has no more metastable states and 
an be solved by simple algorithms.of a probability. Be
ause the �elds are distributed on integers, this obje
t is not as terrible as it may look and it ispossible to solve the equation and 
ompute the '
omplexity 
urve' Σ(E), giving the phase diagram des
ribed above.The algorithm for one given sample basi
ally iterates the survey propagation equation on one given graph. It isa message passing algorithm whi
h 
an be seen as a generalization of the belief propagation algorithm familiar to
omputer s
ientists[29℄. The belief propagation is a propagation of lo
al magneti
 �elds, whi
h is equivalent to usinga Bethe approximation [30℄. Unfortunately, it does not 
onverge in the hard-SAT region be
ause various subparts ofthe graph tend to settle in distin
t states, and there is no way to globally 
hoose a state. In this region, the surveypropagation, whi
h propagates the information on the whole set of states (in the form of a histogram), does 
onverge.Based on the surveys, one 
an dete
t some strongly biased spins, whi
h are �xed to one in almost all SAT 
on-�gurations. The �Survey Inspired De
imation� (SID) algorithm �xes the spin whi
h is most biased, then it re-runsthe survey propagation on the smaller sample so obtained, and then iterates... An example of the evolution of the
omplexity as a fun
tion of the de
imation is shown in 4. This algorithm has been tested in the hard SAT phase. Iteasily solves the 'large' ben
hmarks of random 3sat at α = 4.2 with N = 1000, 2000 available at [31℄. It turns outto be able to solve typi
al random 3-SAT problems with up to N = 107 at α = 4.2 in a few hours on a PC, whi
hmakes it mu
h better than available algorithms. The main point is that the set of surveys 
ontains a lot of detailedinformation on a given sample and 
an probably be used to �nd many new algorithms, of whi
h SID is one example.To summarize, the re
ent statisti
al physi
s approa
hes to the random 3-SAT problem give the following results:
• An analyti
 result for the phase diagram of the generi
 samples
• An explanation for the slowdown of algorithms near αc = 4.267: this is due to the existen
e of a HARD-SATphase at α ∈ [3.921, 4.267], with exponentially many metastable states.
• An algorithm for single sample analysis[39℄: Survey propagation 
onverges and yields very non trivial informationon the sample. It 
an be used for instan
e to de
imate the problem and get an e�
ient SAT-solver in the hard-SAT region.This whole set of results 
alls for a lot of developments in many dire
tions.On the analyti
al side, the 
avity method results quoted above are believed to be 
orre
t, but they are not provenrigorously. It would be very interesting to turn these 
omputations into a rigorous proof. A very interesting stepin this dire
tion was taken re
ently by Franz and Leone who showed that the result for the 
riti
al threshold αcobtained by the 
avity method on random K-SAT with K even a
tually give a rigorous upper bound to the 
riti
al

αc [32℄. The whole 
onstru
tion of the 
avity method with the 
lustering stru
ture, the many states and the resultingreweighting, has a
tually been 
he
ked versus rigorous 
omputations on a variant of the SAT problem, the randomXORSAT problem, where rigorous 
omputations [33℄ have 
on�rmed the validity of the approa
h.On the numeri
al side, one needs to develop 
onvergen
e proofs for survey propagation, and to derive the general-ization of the algorithm for the 
ase in whi
h there exists lo
al stru
tures in the intera
tion graphs. This will amountto generalizing from a Bethe like approximation (with many states) to a 
luster variational method with larger 
lusters(and with many states).



7The te
hniques 
an also be extended to other optimization problems like 
oloring [34℄. Beside the problems men-tioned here, there exist many other fas
inating problems of joint interests to physi
ists and 
omputer s
ientists, likee.g the dynami
al behavior of algorithms in optimization or error 
orre
ting 
odes, whi
h I 
annot survey here. Letme just quote a few re
ent referen
es to help the readers through the 
orresponding bibliography [35, 36, 37, 38℄.A
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