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Optimization and Physis: On the satis�ability of random Boolean formulaeMar MézardLPTMS, Université de Paris Sud, Orsay, Frane(Dated: 24th Otober 2008)LECTURE GIVEN AT TH2002: Given a set of Boolean variables, and some onstraints betweenthem, is it possible to �nd a on�guration of the variables whih satis�es all onstraints? Thisproblem, whih is at the heart of ombinatorial optimization and omputational omplexity theory, isused as a guide to show the onvergene between these �elds and the statistial physis of disorderedsystems. New results on satis�ability, both on the theoretial and pratial side, an be obtainedthanks to the use of physis onepts and methods.Combinatorial optimization aims at �nding, in a �nite set of possible on�gurations, the one whih minimizes aertain ost funtion. The famous example of the traveling salesman problem (TSP) an serve as an illustration: Asalesman must make a tour through N ities, visiting eah ity only one, and oming bak at its starting point. Theost funtion is a symmetri matrix cij , where cij is the ost for the travel between ities i and j. A permutation πof the N ities gives a tour π(1) → π(2) → π(3) → .... Taking into aount the equivalene between various startingpoints and the diretion of the tour, one sees that the number of distint tour is (N − 1)!/2. For eah tour π, thetotal ost is C = cπ(N)π(1) +
∑N−1

r=1 cπ(r)π(r+1), whih an be omputed in N operations. The problem is to �nd thetour π with lowest ost.As an be seen on this example, the basi ingredients of the optimization problems whih will interest us are thefollowing:
• An integer N giving the size of the problem (in the TSP, it is the number of ities).
• A set of on�gurations, whih typially sales like exp(Nα).
• A ost funtion, whih one an ompute in polynomial time O(Nγ).Let me mention a few examples, beside the TSP [1℄.In the assignment problem, one is given a set of N persons i = 1, ..., N , a set of N tasks a = 1, ..., N , a N × Nost matrix c where cia is the ost for having task a performed by person i. An assignment is a permutation π ∈ SNassigning task a = π(i) to person i, and the problem is to �nd the lowest ost assignment, i.e. the permutation whihminimizes C =

∑N

i=1 ciπ(i).In the spin glass problem[2℄, one is given a set of N spins, whih ould be for instane Ising variables σi ∈ {±1},the total energy of the on�guration is a sum of exhange interation energies between all pairs of spins, E({σ}) =
−

∑

1≤i<j≤N Jijσiσj , and one seeks the ground state of the problem, i.e. the on�guration (among the 2N possibleones) whih minimizes the energy.In physial terms, optimization problems onsist in �nding ground states. This task an be non trivial if a systemis frustrated, whih means that one annot get the ground state simply by minimizing the energy loally. This istypially what happens in a spin glass. In some sense, statistial physis addresses a more general question. Assumingthat the system is at thermal equilibrium at temperature T , every on�guration C is assigned a Boltzmann probability,
P (C) = 1

Z
e−βE(C). Beside �nding the ground state, one an ask also interesting questions about whih are the typialon�gurations at a given temperature, like ounting them (whih leads to the introdution of entropy), or trying toknow if they are loated in one single region of phase spae, or if they build up well separated lusters, as oftenhappens in situation where ergodiity is broken. The generalization introdued by using a �nite temperature, besideleading to interesting questions, an also be useful for optimization, both from the algorithmi point of view (forinstane this is the essene of the simulated annealing algorithm[3℄, whih is a general purpose heuristi algorithmthat an be used in many optimization problems), but also from an analyti point of view [2℄. Conversely, smartoptimization algorithms turn out to be very useful in the study of frustrated physial systems like spin glasses orrandom �eld models, and the ross-fertilization between these two �elds (and also with the related domain of errororreting odes for information transmission [4℄) has been very fruitful in the reent years [5℄.Before proeeding with one suh example, let us brie�y mention a few important results in optimization whih willprovide the neessary bakground and motivation. One of the great ahievements of omputer siene is the theoryof omputational omplexity. It is impossible to present it in any details here and I will just sketh a few main ideas,the interested reader an study it for instane in [6℄.Within the general framework explained above, we an de�ne three types of optimization problems: the optimizationproblem in whih one wants to �nd the optimal on�guration, the evaluation problem in whih one wants to ompute
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2the optimal ost (i.e. the ground state energy), the deision problem in whih one wants to know, given a thresholdost C0, if there exists a on�guration of ost less than C0.One lassi�ation of deision problems is based on the saling with N of the omputer time required to solve themin the worst ase. There are two main omplexity lasses:
• Class P = polynomial problems: they an be solved in a time t < Nα. The assignment is an example of apolynomial problem, as is the spin glass problem in 2 dimensions.
• Class NP = non-deterministi polynomial: Given a 'yes' solution to a NP problem, it an be heked inpolynomial time. Roughly speaking this means that the energy is omputable in polynomial time, so this lassontains a wide variety of problems, inluding most of the ones of interest in physis. All problems mentionedabove are in NP.One nie aspet of fousing on polynomiality is that it allows to forget about the details of the de�nition of N , theimplementation, language, mahine, et...: any 'reasonable' suh hange (for instane one ould have used the numberof possible links in the assignment) will hange the exponent of N appearing in the omputer time of a problem in P,but not transform it into an exponential behavior. A problem A is said to be at least as hard as a problem B if thereexists a polynomial algorithm whih transforms any instane of B into an instane of A.This allows to de�ne the very important lass:
• NP-omplete A problem is NP omplete if it is at least as hard as any problem in NP.So the NP-omplete are the hardest problems in NP. If one suh problem an be solved in polynomial time, then allthe problems in NP are solved in polynomial time. Clearly P is ontained in NP, but it is not yet known whether P= NP , and this is onsidered as a major hallenge.A great result was obtained in this �eld by Cook in 1971 [7℄: The satis�ability problem, whih we shall desribebelow, is NP-omplete. Sine then hundreds of problems have been shown to belong to this lass, among whih thedeision TSP or the spin glass in dimension larger or equal to 3.The fat that 3-d spin glass is NP-omplete while 2-d spin glass is P might indue one to infer that NP-ompletenessis equivalent with the existene of a glass transition. This reasoning is too naive and wrong; the reason is that theomplexity lassi�ation relies on a worth-ase analysis, while physiists study the behavior of a typial sample. Thedevelopment of a typial ase omplexity theory has beome a major goal [8℄, also motivated by the experimentalobservations that many instanes of NP-omplete problems are easy to solve[5℄.One way of addressing this issue of a typial ase omplexity is to de�ne a probability measure on the instanes (=the 'samples') of the optimization problem whih one is onsidering. Typial examples are:
• TSP with independent random points uniformly distributed in the unit square
• assignment with independent a�nities uniformly distributed on [0, 1]

• CuMn spin glass at one perent MnOne this measure has been de�ned, one is interested in the properties of the generi sample in the N → ∞ limit. Inmost ases, global properties (e.g. extensive thermodynami quantities, among whih the ground state energy), turnout to be self averaging. This means for instane that the distribution of the ground state energy density beomesmore and more peaked around an asymptoti value in the large N limit: almost all samples have the same ground stateenergy density. In this situation, a statistial physis analysis is appropriate. Early examples of the use of statistialphysis in suh a ontext are the derivation of bounds for the optimal length of a TSP[9℄, the exat predition of theground state energy in the random assignment problem de�ned above, where the result E0 = π2

6 , derived in 1985through a replia analysis[10℄, was reently on�rmed rigorously by Aldous [11℄, or the link between spin glasses andgraph partitioning [12℄.As statistial physis an be quite powerful at understanding the generi struture of an optimization problem, onemay also hope that it an help �nding better optimization algorithms. A suessful example whih was developedreently is the satis�ability problem, to whih we now turn.As we have seen, satis�ability is a ore problem in optimization and omplexity theory. It is de�ned as follows[13℄: A on�guration is a set of N Boolean variables xi ∈ {0, 1} i = 1, . . . , N . One is given M onstraints whihare lauses, meaning that they are in the form of an OR funtion of some variables or their negations. For instane:
x1 ∨ x27 ∨ x̄3, x̄11 ∨ x2, are lauses (notation: x̄3 is the negation of x3). So the lause x1 ∨ x27 ∨ x̄3 is satis�ed ifeither x1 = 1, or x27 = 1, or x3 = 0 (these events do not exlude eah other). The satis�ability problem is a deisionproblem. It asks whether there exists a hoie of the Boolean variables suh that all onstraints are satis�ed (wewill all it a SAT on�guration). This is a very generi problem, beause one an see it as �nding a on�guration of



3the N Boolean variables whih satis�es the logial proposition built from the AND of all the lauses (in our example
(x1 ∨ x27 ∨ x̄3) ∧ (x̄11 ∨ x2) ∧ . . .), and any logial proposition an be written in suh a 'onjuntive normal form' .Satis�ability is known to be NP omplete if it ontains lauses of length ≥ 3, but ommon sense and experieneshow that the problem an often be easy; for instane if the number of onstraints per variable α = M

N
is small, theproblem is often SAT, if it is large, the problem is often UNSAT.This behavior an be haraterized quantitatively by looking at the typial omplexity of the random 3-SATproblem, de�ned as follows. Eah lause involves exatly three variables, hosen randomly in {x1, .., xN}; a variableappearing in the lause is negated randomly with probability 1/2. This de�nes the probability measure on instanesfor the random 3-SAT problem. The ontrol parameter is the ratio Constraints/Variables α = M

N
.The properties of random 3-SAT have been �rst investigated numerially [14, 15℄, and exhibit a very interestingthreshold phenomenon at αc ∼ 4.26: a randomly hosen sample is generially SAT for α < αc (meaning that it is SATwith probability 1 when N → ∞), generially UNSAT for α > αc. The time used by the best available algorithms(whih have an exponential omplexity) to study the problem also displays an interesting behavior: For α well below

αc, it is easy to �nd a SAT on�guration; for α well above αc, it is relatively easy to �nd a ontradition in theonstraints, showing that the problem is UNSAT. The really di�ult region is the intermediate one where α ∼ αc,where the omputer time requested to solve the problem is muh larger and inreases very fast with system size. A lotof important work has been done on this problem, to establish the existene of a threshold phenomenon, give upperand lower bounds on αc, show the existene of �nite size e�ets around α ∼ αc with saling exponents. We referthe reader to the literature [14, 15, 16, 17, 18, 19, 20℄, and just here extrat a few ruial aspets for our disussion.The threshold phenomenon is a phase transition, and the neighborhood of the transition is the region where thealgorithmi problem beomes really hard.This relationship between phase transition and omplexity makes a statistial physis analysis of this problempartiularly interesting. Monasson and Zehina have been the �rst ones to reognize this importane and to usestatistial physis methods for an analyti study of the random 3-SAT problem [21, 22℄. Basially this problem fallsinto the broad ategory of spin glass physis. This is immediately seen through the following formulation. To makethings look more familiar, physiists like to introdue for eah Boolean variable xi ∈ {0, 1} an Ising spin σi ∈ {−1, 1}through xi = 1+σi

2 . A satis�ability problem like
(x1 ∨ x27 ∨ x̄3)∧(x̄11 ∨ x3 ∨ x2)∧. . . (1)an be written in terms of an energy funtion, where the energy is equal to one for eah violated lause. Expliitly,in the above example, one would have

E =
1 + σ1

2

1 + σ27

2

1 − σ3

2
+

1 − σ11

2

1 + σ3

2

1 + σ2

2
+ . . . (2)This is learly a problem of interating spins, with 1,2, and 3 spin interations, disorder (in the hoie of whih variableinterats with whih), and frustration (beause some onstraints are antagonist). More tehnially, the problem hasa speial type of three-spin interations on a random hyper-graph.Using the replia method, Monasson and Zehina �rst showed the existene of a phase transition within the repliasymmetri approximation, at αc = 5.18, then showed that replia symmetry must be broken in this problem. Somevariational approximation to desribe the replia symmetry breaking e�ets were developed in partiular in [23, 24℄.Reently, in a ollaboration with G.Parisi and R. Zehina [25, 26℄, we have developed a new approah to thestatistial physis of the random 3-SAT problem using the avity method. While the avity method had beenoriginally invented to deal with the SK model where the interations are of in�nite range [2℄, it was later adapted toproblems with '�nite onnetivity', in whih a given variable interats with a �nite set of other variables. While thisis easily done for systems whih are replia symmetri (like the assignment, or the random TSP with independentlinks), it turned out to be onsiderably more di�ult to develop the orresponding formalism and turn it into apratial method, in the ase where replia symmetry is broken. This has been done in the last two years in jointworks with G.Parisi [28℄, and has opened the road to the study of �nite onnetivity optimization problems withreplia symmetry breaking like random K-sat. Curiously, while the avity method is in priniple equivalent to thereplia method (although it proeeds through diret probabilisti analysis instead of using an analyti ontinuationin the number of replias), it turns out that it is easier to solve this problem with the avity method.The analyti study of [25, 26℄ for the random 3-SAT problem at zero temperature shows the following phase diagram(see �g.1):

• For α < αd = 3.921, the problem is generially SAT; the solution an be found relatively easily, beause thespae of SAT on�gurations builds up a single big onneted luster. A T = 0 Metropolis algorithm, in whihone proposes to �ip a randomly hosen variable, and aepts the hange i� the number of violated onstraintsin the new on�guration is less or equal to the old one, is able to �nd a SAT on�guration. We all this theEASY-SAT phase
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SAT (E = 0 ) UNSAT (E   >0)

0 0

1 state

E=0 E>0

Many states Many states

E>0

αα  =4.267α  =3.921d c
=M/NFigure 1: A pitorial desription of the phase diagram for random 3-SAT obtained in the avity method: lusters of SAT (ingreen/light gray) or UNSAT (in red/dark grey) on�gurations. One �nds three qualitatively di�erent phases, the EASY-SATphase for α < αd, the HARD-SAT phase for αd < α < αc, the UNSAT phase obtained for αc < α (see text)

• For αd < α < αc = 4.267, the problem is still generially SAT, but now it beomes very di�ult to �nd asolution (we all this the HARD-SAT phase). The reason is that the on�gurations of variables whih satisfy allonstraints build up some lusters. Eah suh luster, whih we all a 'state', is well separated from the otherlusters (passing from one to the other requires �ipping an extensive number of variables). But there also existmany �metastable states�: starting from a random on�guration, a loal desent algorithm will get trapped insome luster of on�gurations with a given �nite energy (they all have the same number of violated lauses, andit is impossible to get out of this luster towards lower energy on�gurations through any desending sequene ofone spin �ip moves). The number of SAT lustersN is exponentially large in N , it behaves asN ∼ exp(NΣ); butthe number of metastable lusters is also exponentially large with a larger growth rate, behaving like exp(NΣms)with Σms > Σ. The most numerous metastable lusters, whih have an energy density eth, will trap all loaldesent algorithms (zero temperature Metropolis of ourse, but also simulated annealing, unless it is run for anexponential time).
• For α > αc, the problem is typially UNSAT. The ground state energy density e0 is positive. Finding aon�guration with lowest energy is also very di�ult beause of the proliferation of metastable states.A more quantitative desription of the thermodynami quantities in the various phases is shown in �g.2. The moststriking result is the existene of an intermediate SAT phase where lustering ours. A hint of suh a behavior hadbeen �rst found in a sophistiated variational one step replia symmetry breaking approximation developed in [23℄;however this approximation predited a seond order phase transition (lusters separating ontinuously), while wenow think that the transition is disontinuous: an exponentially large number of marosopially separated lustersappears disontinuously at α = αd. Another point whih should be notied is the fat that the omplexity, and theenergy eth in the HARD-SAT phase are rather small: around eth ∼ 3 10−3 violated lause per variable for α = 4.2.This shows that until one reahes problems with at least a few thousands variables, one annot feel the true omplexityof the problem. This an explain why the existene of the intermediate phase went unnotied in previous simulations.The seond type of results found in [25, 26, 27℄ is a new lass of algorithms dealing with the many states struture.Basially this algorithm amounts to using the avity equations on one given sample. Originally the avity method wasdeveloped to handle a statistial distribution of samples. For instane in the random 3-SAT ase its basi strategyis to add one extra variable and onnet it randomly to a number of new lauses whih has the orret statistialdistribution. In the large N limit, the statistis of the loal �eld on the new variable should be idential to thestatistis of the loal �elds on any other variable in the absene of the new one. It turns out that this strategy an beadapted to study a single sample: one onsiders a given lause a, whih involves three variables σ1, σ2, σ3. The avity�eld on σ1 is the �eld felt by σ1 in the absene of a. In the ase where there exist many states, there is one suh �eldfor eah possible state of the system, and the order parameter is the survey of these �elds, in all the states of �xedenergy density e:

P e
0 (h) = Ct

∑

α

δ (hα
0 − h) δ

(

Eα

N
− e

) (3)One an then write a reursion reursion between these surveys. Looking for instane at the struture of �g.3, onegets the following iteration equation:
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Figure 3: The basi iterative struture of survey propagation. This subgraph is a part of a 3-SAT problem, in whih thevariable σ0 belongs to three 3-lauses, involving respetively the variables {σ1, τ1}, {σ2, τ2}, {σ3, τ3}. When the lause 3 isswithed o�, the loal avity �eld survey P e

0 (h) on spin σ0 an be omputed in terms of the avity �eld surveys on eah of thespins σ1, τ1, σ2, τ2.
P e

0 (h) = Ct

∫

P e
σ1

(g1)dg1 P e
τ1

(h1)dh1 P e
σ2

(g2)dg2 P e
τ2

(h2)dh2

δ(h − f(g1, h1, g2, h2)) exp

(

−
dΣ

de
w(g1, h1, g2, h2)

) (4)The funtion f just omputes the value of the new avity �eld on σ0 in terms of the four avity �elds g1, h1, g2, h2.It is easily omputed by onsidering the statistial mehanis problem of the �ve-spin system {σ0, σ1, τ1, σ2, τ2} andsumming over the 16 possible states of the spins σ1, τ1, σ2, τ2. The funtion w omputes the free energy shift induedby the addition of σ0 to the system with the four spins σ1, τ1, σ2, τ2. The exponential reweighting term in (4) is theruial piee of survey propagation: it appears beause one onsiders the survey at a �xed energy density e. As thenumber of states at energy E = Ne + δE inreases in exp(yδE), where y = dΣ
de
, this favors the states with a largenegative energy shift.The usual avity method for the random 3-SAT problem determines the probability, when a new variable is addedat random, that its survey P e

0 (h) is a given funtion P (h): the order parameter is thus a funtional, the probability
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Figure 4: The total omplexity (= the ln of the number of states) as a funtion of the total energy (= the number of violatedlauses) for one given sample with N = 104 variables and M = 4.2 104 onstraints. The top urve is the original omplexity.The next urves are the various omplexities obtained for the deimated samples, plotted here every 200 deimations. Onesees a global derease of the number of metastable states, and also a global derease of the threshold energy. In the end theproblem has no more metastable states and an be solved by simple algorithms.of a probability. Beause the �elds are distributed on integers, this objet is not as terrible as it may look and it ispossible to solve the equation and ompute the 'omplexity urve' Σ(E), giving the phase diagram desribed above.The algorithm for one given sample basially iterates the survey propagation equation on one given graph. It isa message passing algorithm whih an be seen as a generalization of the belief propagation algorithm familiar toomputer sientists[29℄. The belief propagation is a propagation of loal magneti �elds, whih is equivalent to usinga Bethe approximation [30℄. Unfortunately, it does not onverge in the hard-SAT region beause various subparts ofthe graph tend to settle in distint states, and there is no way to globally hoose a state. In this region, the surveypropagation, whih propagates the information on the whole set of states (in the form of a histogram), does onverge.Based on the surveys, one an detet some strongly biased spins, whih are �xed to one in almost all SAT on-�gurations. The �Survey Inspired Deimation� (SID) algorithm �xes the spin whih is most biased, then it re-runsthe survey propagation on the smaller sample so obtained, and then iterates... An example of the evolution of theomplexity as a funtion of the deimation is shown in 4. This algorithm has been tested in the hard SAT phase. Iteasily solves the 'large' benhmarks of random 3sat at α = 4.2 with N = 1000, 2000 available at [31℄. It turns outto be able to solve typial random 3-SAT problems with up to N = 107 at α = 4.2 in a few hours on a PC, whihmakes it muh better than available algorithms. The main point is that the set of surveys ontains a lot of detailedinformation on a given sample and an probably be used to �nd many new algorithms, of whih SID is one example.To summarize, the reent statistial physis approahes to the random 3-SAT problem give the following results:
• An analyti result for the phase diagram of the generi samples
• An explanation for the slowdown of algorithms near αc = 4.267: this is due to the existene of a HARD-SATphase at α ∈ [3.921, 4.267], with exponentially many metastable states.
• An algorithm for single sample analysis[39℄: Survey propagation onverges and yields very non trivial informationon the sample. It an be used for instane to deimate the problem and get an e�ient SAT-solver in the hard-SAT region.This whole set of results alls for a lot of developments in many diretions.On the analytial side, the avity method results quoted above are believed to be orret, but they are not provenrigorously. It would be very interesting to turn these omputations into a rigorous proof. A very interesting stepin this diretion was taken reently by Franz and Leone who showed that the result for the ritial threshold αcobtained by the avity method on random K-SAT with K even atually give a rigorous upper bound to the ritial

αc [32℄. The whole onstrution of the avity method with the lustering struture, the many states and the resultingreweighting, has atually been heked versus rigorous omputations on a variant of the SAT problem, the randomXORSAT problem, where rigorous omputations [33℄ have on�rmed the validity of the approah.On the numerial side, one needs to develop onvergene proofs for survey propagation, and to derive the general-ization of the algorithm for the ase in whih there exists loal strutures in the interation graphs. This will amountto generalizing from a Bethe like approximation (with many states) to a luster variational method with larger lusters(and with many states).
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