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1. Introduction

The Parity Source Coder (PSC) is a new scheme for lossy data compression, which uses
a kind of dual approach [1] to the LDPC codes used in channel coding [2]. It has been
introduced in [3], and discussed recently in [4] and [5]. We discuss here its theoretical
performances.

The idea of the PSC is to use the M bits xM ≡ {x1, . . . xM} that we want to
compress to build M parity checks on a low-density graph involving N(<M) Boolean
variables yN ≡ {y1, . . . yN}. From the theoretical point of view we will be interested in
the ‘thermodynamic’ limit where N and M go to infinity while the rate R ≡ N/M is
kept fixed. The topology is defined as follows: each constraint is connected to exactly K
variables chosen at random. This implies that the probability distribution of the variable
connectivity is Poissonian (as in Erdös–Renyi random graphs) with mean Kα. This is
the general setting for a number of constraint satisfaction problems [6]. In our case such
a graph (cf figure 1) defines a set of M linear equations for the N variables:

yia1
+ yia2

+ · · · + yiaK
= xa mod 2, a = 1, . . .M, (1)

where xi, yi ∈ {0, 1}, and the indices ia1, i
a
2, . . . , i

a
K are chosen in {1, . . . , N} with uniform

distribution (the repetition of two indices in the same constraint can be forbidden, but
this is irrelevant in the large N limit which interests us here). This problem is called K-
XORSAT [7] and it has been recently studied in [8] and [9]. It is also a diluted version of
the p-spin model used in spin glass theory [10]. Here we use it to set up a data compressor,
following [4]. The encoded word corresponds to the solution of the linear system (1) which
minimizes the number of errors. In the thermodynamic limit, it has been shown that the
critical value αc that signals the K-XORSAT problem has a phase transition at a critical
value αc of the ratio α = M/N . For α < αc a random instance is satisfiable (in the
sense that there exists an assignment of the N variables satisfying all M equations) with
probability one. This is the SAT phase. For α > αc a random instance is unsatisfiable with
probability one: there is no assignment satisfying all constraints. The critical density of
constraints αc increases with K and goes exponentially fast to 1 as K increases (figure 2),
as can be computed using the formalism introduced in [8, 9]. The K-XORSAT can be
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Figure 1. A Tanner graph for a PSC with M = 7 checks and N = 4 variables. In
this example the string to be compressed is {x1, x2, . . . x7} ≡ 1001101. The
constraints x1, x4, x5, x7 impose the sum of the variables yi involved in each
constraint to be 1 mod 2, while x2, x3, x6 require that the variables add up to 0
mod 2.
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Figure 2. The critical value of the control parameter marking the transition
between SAT/UNSAT is plotted versus K. Following [8], one can show that the
leading behaviour at large K is αc(K) = 1−e−K−(K2−K/2)e−2K +O(K5e−3K).

used for data compression by working in the UNSAT phase with α > 1. As the encoding
step xM → yN consists in finding the string yN which violates the smallest number of
constraints in (1), the compression rate is R = 1/α. Once we have the encoded word, the
decompression step yN → x∗

M is done by setting x∗
a = 0 or 1 according to equation (1).

The distortion is defined as the number of bits which are not properly recovered, divided
by the total number of bits M . We can look at the problem in terms of a ‘cost’ function
εa(yia1

. . . yiaK
|xa) which is 0 if equation (1) is verified and 2 otherwise. The total cost E

of the compression process is then twice the total number of unsatisfied equations in the
linear system (1). The distortion is related to it by

D =
E

2M
=

E

2Nα
. (2)
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We consider here the simplest version of the lossy compression problem: we deal
with uncorrelated unbiased binary sources, i.e. prob(x1, . . . xM ) =

∏
a=1,M prob(xa) and

prob(xa = 0) = prob(xa = 1) = 1/2. The rate distortion theorem [11] states that a
distortion D can be achieved if and only if the rate is large enough, R ≥ R∗, where the
Shannon bound R∗ is given by

R∗ = 1 − H2(D),

and H2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy. Basically the proof
of achievability in this theorem relies on a choice of codewords (the set of all possible
encoded words) which is a random set. This is intimately related to the random energy
model (REM) [12]. On the other hand, our PSC can be argued to become a random energy
model in the large K limit, in the same way as the p-spin model becomes a REM in the
large p limit1 [12]. Seen from this point of view, it is not surprising that the performances
of the PSC converge to the Shannon bound in the limit of large K, as we shall prove here.
In fact the same optimal performance has been found in a recent work [14] using a non-
monotonic perceptron. Again in such a device each bit of the decoded word is chosen
to be a function of the complete encoded word, which is the same as letting K = N ,
i.e. infinity in the thermodynamic limit, in our language.

However all these ‘optimal’ source coding devices, based either on a random codebook
like in the REM, on a fully connected perceptron, or on the PSC at K → ∞, have a serious
drawback: there is no known fast algorithm for performing the encoding. Physically, the
encoding step is a search of the ground state, the one which minimizes the number of
violated constraints. This has to take place in the UNSAT phase α > 1 where these
systems are frustrated. Finding the exact ground state is an NP-complete problem, but it
turns out that we do not even have good heuristics for finding approximate ground states.
Such a heuristic of course cannot exist for the REM, but one could hope to find one for
the PSC with finite K. For instance in the related problem of K-satisfiability [15], or
source coding devices based on random nodes [4], there exist good heuristics based on the
message passing ‘survey propagation’ (SP) algorithm which can be seen as a generalization
of the celebrated ‘belief propagation’ algorithm [16]–[18]. While this algorithm, as such,
does not work for the PSC, it seems possible that one could develop powerful algorithms
for the finite K PSC in the future. Actually, a very recent work [5] proposes a message
passing algorithm, inspired by SP, which seems to show very good performance. This
motivates the present study of the theoretical capacity of the PSC at finite K.

In this work we compute explicitly the distortion of the PSC in the limit where the
clause connectivity K becomes large. We first show that for K → ∞ the distortion
becomes optimal (it saturates the Shannon bound). As for the finite K corrections, we
find that, for a given value of the rate R = 1/α, the distortion is

D = DSh + a
√

Ke−K∆(1 + O(1/K)), (3)

where DSh satisfies 1 − H2(DSh) = 1/α and the coefficients a and ∆ depend on α. In
particular, the actual ∆ lies in [log 2, 1], and goes to log 2 in the large α limit. The fact
that the first finite K corrections are exponentially small must be stressed: this means
also that a PSC with K = 5 or 6 is in practice nearly optimal. A good encoding algorithm

1 This point, along with the ‘hardening’ of the constraints at large K, is discussed in some detail in [13].
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Figure 3. The iterative idea behind the cavity equations is illustrated here for
K = 5.

for this case could thus turn this PSC into a very good compressor. We stress that the
range of validity of the result of this paper is limited to the case of uncorrelated sources.
This is confirmed by the statistical description of a family of code ensembles presented
in [19]. On the other hand, the hypothesis of a non-biased input message does not seem
to play a role.

As we mentioned previously, a protocol very similar to this PSC (the only difference
being the underlying graph topology) has been introduced in [3], and Murayama [20]
has shown that some belief propagation based algorithm can be used for encoding in the
K = 2 case. Our result shows that the optimal capacity (i.e. Shannon’s bound) can be
obtained only in the limit of large K, at variance with some of the statements in [3]. It
gives the analogue, for source coding, to the result of Kabashima and Saad [21] on channel
capacity of error-correcting codes at large K.

2. Cavity equations

In order to deal with the K-XORSAT problem we take advantage of the cavity method
as explained in [15]. This method is heuristic (the main assumptions can be checked self-
consistently) but it is believed to be exact. As for the K-XORSAT problem, its range of
validity has been rigorously established in [8] and [22]. In particular, the cavity result for
the critical threshold αc is exact. For α > αc (the regime where we use it) this method
finds the correct ground state energy up to a threshold value αG, which is �3.07 for
K = 3 [22] and increases with K as one can see from numerics.

For the sake of simplicity, we pass from Boolean variables to Ising spins, thus taking
values in {−1, +1}. The general idea behind the cavity approach is summarized in figure 3.
Since the local structure of the random graph is tree-like, we focus on a single clause and
look at the variables connected to it. We introduce two types of message, cavity biases
ua→i going from clause a to variable i, and cavity fields hi→a going from variable i to
clause a. A cavity bias can be 0 (which means that, as for the clause a, variable i is free
to assume any value), or ±1 (meaning that this is the value that i should take in order
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to satisfy clause a). The message sent from clause a must take into account all the other
variables connected to it; each of these sends to a a cavity field which is nothing but the
sum of all the other incoming cavity biases: hj→a =

∑
b∈j−a ub→j. In the most general

case, the space of low-energy configurations is broken into many disconnected components
(clustering). The general object we need to deal with this is then a functional distribution
Q[q(u)] giving the probability that, if one link a → i is chosen at random, the probability
(with respect to the choice of the cluster) of observing a bias ua→i is qa→i(ua→i). The same
holds for the distribution of cavity fields, P[p(h)]. We thus suppose we have a population
of q(u) s and p(h) s. In order to simplify the notation, we shall simply call u0 the bias on
variable 0, with no regard for the clause it is coming from. According to [8], we iterate
the following self-consistent equations:

q0(u0) =
∑

h1,...h(K−1)

p
(p1)
1 (h1) · · ·p(pK−1)

(K−1) (h(K−1))δ(u, S(Jh1 · · ·h(K−1))),

with prob.

K−1∏

i=1

fKα(pi) (4)

p(p)(h) =
1

A(p)(y)

∑

u1,...up

q1(u1) · · · qp(up)δ

(

h,

p∑

a=1

ua

)

exp

{

y

∣
∣
∣
∣
∣

p∑

a=1

ua

∣
∣
∣
∣
∣
− y

p∑

a=1

|ua|
}

, (5)

A(p)(y) =
∑

u1,...up

q1(u1) · · · qp(up) exp

{

y

∣
∣
∣
∣
∣

p∑

a=1

ua

∣
∣
∣
∣
∣
− y

p∑

a=1

|ua|
}

. (6)

Here S(x) ≡ sgn(x) for x �= 0, S(0) ≡ 0, and fKα(·) is the Poisson distribution with mean
Kα. The first of these equations is the direct implementation of the recursion illustrated
in figure 3: the delta function ensures that clause a sends the proper value to variable 0. In
the second equation, a reweighting term is present [15]. This is due to the fact that if we
add one variable and want to compute the new probability distributions at a given value of
the energy E, then we need all the contributions from the states at energy E−∆E, where
∆E is the energy shift caused by the addition of one variable. If the number of clusters
at energy E is exp(NΣ(E/N)), then the expansion Σ(E) � Σ(E −∆E)− y∆E leads to a
reweighting exp(−y∆E), with y = ∂Σ/∂E. The knowledge of these distributions allows
one to compute the free energy Φ(y):

Φ(y) = Φ1(y) − (K − 1)αΦ2(y), (7)

Φ1(y) = −1

y
log A(p)(y), (8)

Φ2(y) = −1

y
log

∑

u

q(u; {pi})
∑

h

p(p)(h)ey(|u+h|−|u|−|h|), (9)

where the average is taken over the random graph ensemble and over the population
of the distributions q(u)s and p(h)s. The free energy in (7) is obtained by adding one
variable (and a certain number of clauses) to a system with N variables and computing the
contribution arising from the corresponding shift in energy, exp(−yΦ1) = 〈exp(−y∆E)〉.
The correction term is due to the fact that in the (N +1)-variable system the probability
of generating the clauses is slightly lower; thus we have to cancel a fraction of them at
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random (see [15] for a detailed derivation). The ground state energy is then evaluated as
the miny Φ(y).

Actually, the nature of messages allows for a simplification of the cavity equations:
we write

q(u) = ηδu,0 +
1 − η

2
[δu,−1 + δu,+1]. (10)

Also, it should be clear that, as for the p(h), what matters is only the sign of the field h;
then,

p(p)(h) =
1

A(p)
(w

(p)
0 δS(h),0 + w

(p)
+ δS(h),+1 + w

(p)
− δS(h),−1), (11)

with A = w0 +w+ +w− and w+ = w− because of the up–down symmetry of the problem.
In practice, one needs to work with a single population of real numbers ηi, that leads to a
stationary distribution ρ(η). For any fixed value of y, the self-consistent equations (4)–(6)
are solved as follows.

(1) Consider a population of ηi randomly distributed in [0, 1].

(2) Do K − 1 times:

• Pick a random integer p with probability fKα(p).

• Choose p values η1, . . . ηp and compute a probability distribution p(h) according to (5).
Given (11), this amounts to computing two real numbers: w0 and the normalization
A.

• Compute Φ1 as in (8) through this A.

(1) Using these K − 1 distributions p(h) s, compute a new q(u) according to (4).
Given (10) this is the same as computing a new value η0.

(2) Use this new q(u) and a new extracted p(h) to compute Φ2 as in (9). The total free
energy can now be evaluated via (7).

(3) Replace an η value randomly chosen in the distribution with the new value η0.

(4) Go to step 2 until a stationary distribution ρ(η) is reached. (The free energy then
attains a stationary value.)

We are now going to discuss the cavity equations for large K and we will use the
algorithm that we have just described to check our asymptotic results numerically.

3. The Shannon bound

The cavity equations (4)–(6) have been discussed in [8] mainly as regards the value of
αc(K) and the behaviour of the ground state energy E0(K) close to αc(K). We want to
compute E0(K) at any α in the large K limit.

For large K, there is a self-consistent solution of the cavity equations such that all the
w0 are very small, in fact exponentially small. We just need to assume that the typical
value of a w0 is much smaller than 1/K. This condition on w0s shows that η is zero to

doi:10.1088/1742-5468/2005/10/P10003 7

http://dx.doi.org/10.1088/1742-5468/2005/10/P10003


J.S
tat.M

ech.
(2005)

P
10003

The theoretical capacity of the Parity Source Coder

leading order, because from equation (4) one finds that

η = 1 −
K−1∏

i=1

(1 − w
(pi)
0 ). (12)

We shall be more precise below as we verify self-consistently the assumption on w0 and
will be able to compute the first non-zero term. Here we work directly with η = 0. We
need to compute the new value of w0 and w+ using equation (5). If K is large, p is
generically large (it is Poisson distributed with mean Kα). If p is even (the case of p odd
is an immediate generalization) one finds

w
(p)
0 =

(
p

p/2

)
e−py

2p
� 2e−py

√
2πp

, (13)

w
(p)
+ =

1

2p

(p/2)−1∑

q=0

(
p

q

)

e−qy � p

2p

∫ 1/2

0

dx
√

2πpx(1 − x)

× exp{p(−x log x − (1 − x) log(1 − x) − xy)}, (14)

w
(p)
− = w

(p)
+ . (15)

The integral can be evaluated for p large by the saddle point method (the saddle point
being x∗ = −y + log(1 + ey)) and we have

w
(p)
+ =

(
1 + e−2y

2

)p

.

Since for any finite y this is exponentially larger than w0, the leading term in the
normalization constant is just

A(p)(y) = 2w
(p)
+ = 2

(
1 + e−2y

2

)p

. (16)

Now, it is not difficult to show that equation (9) can be rewritten as

Φ2(y) = −1

y
log

(
A(p+1)(y)

A(p)(y)

)

, (17)

and thus the free energy can be computed from the normalization (16) alone. We find
that

Φ(y) = −1

y

(

log A(p)(y) − (K − 1)α log

(
A(p+1)(y)

A(p)(y)

))

= −1

y

[

log 2 + α log

(
1 + e−2y

2

)]

≡ Φ∞(y). (18)

The ground state energy is the maximum of Φ(y) [15] and, according to equation (2), this
gives a distortion D for the PSC at large K:

D =
1

2α
max

y
Φ∞(y). (19)

The Shannon bound says that the minimum distortion satisfies 1 − H2(DSh) = 1/α. A
few lines of computation show that the distortion in (19) actually saturates the Shannon
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bound. Let us call z the value of y where Φ∞(y) is maximal. It satisfies

log 2 = α(z tanh z − log cosh z). (20)

Then one gets

Φ∞(z)

2α
=

1

e2z + 1
⇒ H2

(
Φ∞(z)

2α

)

=
1

log 2

(

− log
1

e2z + 1
− 2z

e2z

e2z + 1

)

. (21)

After some algebra one can derive from this the result sought:

H2

(
Φ∞(z)

2α

)

= 1 − 1

α
. (22)

This shows that at very large K the XORSAT problem gives exactly the Shannon limit.
We now look at finite K corrections in order to see how this asymptotic performance is
reached.

4. Corrections

In order to compute the first-order corrections to the leading behaviour we compute the
normalization constant in (6) under the hypothesis of small (but finite) η:

A(p)(y) =

p∏

a=1

(
1 − ηa

2

)

e−py

p∑

q=0

(
p

q

)

ey|p−2q| + pη1

p∏

a=2

(
1 − ηa

2

)

× e−(p−1)y

p−1∑

q=0

(
p − 1

q

)

ey|p−1−2q| + · · ·

=
e−py

2p
gp(y)

(

1 −
p∑

a=1

ηa + O(pη)2

)

+ pη
e−(p−1)y

2p−1
gp−1(y)(1 + O(pη))

+
e−(p−2)y

2p−2
gp−2(y)O(pη)2 + · · · , (23)

gp(y) ≡
p∑

q=0

(
p

q

)

ey|p−2q|. (24)

As we have shown above, the whole free energy can be computed from the knowledge of
A(p)(y). In order to calculate it, we compute the function gp(y) in the large p limit. We
first notice that it can be written as

gp(y) =
∑

σ1,...σp

exp

[

y

∣
∣
∣
∣
∣

p∑

i=1

σi

∣
∣
∣
∣
∣

]

, (25)

where σi are Ising spins. Thus,

gp(y) + gp(−y) =
∑

{σi}

[ey|
∑

i σi| + e−y|
∑

i σi|] =
∑

{σi}

[ey
∑

i σi + e−y
∑

i σi ] = 2(2 cosh y)p. (26)
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We use a Fourier transformation to express gp(−y):

gp(−y) =
y

π

∫
dk

k2 + y2
eikp

p∑

q=0

(
p

q

)

e−i2qk =
y

π
2p

∫
dk(cos k)p

k2 + y2

=
y

π
2p

√
2π

p

(

1 − 1

4p
+ O

(
1

p2

)) +∞∑

n=−∞

(−1)np

(πn)2 + y2
.

The sum can be done exactly and we have

gp even(−y) =
2p+1

√
2πp

1

tanh y
(1 − 1/4p + O(1/p2)),

gp odd(−y) =
2p+1

√
2πp

1

sinh(y)
(1 − 1/4p + O(1/p2)). (27)

Using (26), we get for p even

gp(y) = 2p+1(cosh y)p

[

1 − (cosh y)−p

√
2πp(tanh y)

(

1 − 1

4p
+ O

(
1

p2

))]

, (28)

with the replacement tanh y → sinh y if p is odd. To the leading order we have thus

A(p)(y) = 2

(
1 + e−2y

2

)p

(1 + O(pγe−p)), (29)

with some exponent γ which depends on the actual order of magnitude of η. To compute
it we first need to know the weight for h = 0. If p is even we use equation (5) and we note
that the main contribution (in the same hypothesis of η small) is given by

w
(p even)
0 =

1

A(p)(y)
e−py

(
p

p/2

)
1

2p

p∏

a=1

(1 − ηa) + O(pη)

=
1

2

(
1+e−2y

2

)−p

(1 + O(pγe−p))e−py 2p+1

√
2πp

(

1− 1

4p
+ O

(
1

p2

))
1

2p
(1 + O(pη))

=
(cosh y)−p

√
2πp

(1 − 1/4p + O(1/p2) + O(pη)). (30)

(Here we have also assumed that p > 0, since w0 = 1 if p = 0.) On the other hand, if p is
odd we have

w
(p odd)
0 = η

1

A(p)(y)
e−(p−1)yp

(
p − 1

(p − 1)/2

)
1

2p−1

p−1∏

a=1

(1 − ηa) + O(pη)2

=

√
p

2π
ηey(cosh y)−p(1 + O(1/p)).

To the leading order, η does not fluctuate and takes the value

η � − log(1 − η) �
K−1∑

i=1

w
(pi)
0 = (K − 1)

[

e−Kα + e−Kα(cosh(Kα) − 1)w
(p even)
0 |p>0

+ e−Kα sinh(Kα)w
(p odd)
0

]

� K − 1

2

[
(cosh y)−p

√
2πp

(

1 − 1

4p
+ O

(
1

p2

))]

p even>0

+ O(Ke−Kα) + O(η2),
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since the two other terms (p = 0 and p odd) are exponentially subleading. In order to
perform this average we use

1

pz
=

1

Γ(z)

∫

dt tz−1e−pt (31)

to express the denominator. This allows us to perform the average over p even. We then
have

η =
Ke−Kα

4π
√

2

(

1 − 1

K

){

2

∫

dt t−1/2(cosh(βe−t) − 1)

−
∫

dt t1/2(cosh(βe−t) − 1) + O(β−5/2)

}

+ O(Ke−Kα)

=
Ke−Kα

4π
√

2
4β

∫

dt t1/2e−t sinh(βe−t)

(

1 − t

6
+ O(t2)

)(

1 − 1

K

)

+ O(Ke−Kα)

where β ≡ Kα/ cosh y. We then set t = τ/β and expand in 1/β. This gives

η =

√
cosh y

2
√

2πα
K1/2e−Kα(1−1/ cosh y)

[

1 +
1

K

(
cosh y

8α
− 1

)

+ O
(

cosh y

Kα

)2]

+ O(Ke−Kα),

(32)

which shows a posteriori that the small η hypothesis is consistent. We now go back to (23)
and get

A(p)(y) = 2

(
1 + e−2y

2

)p

[1 + pη tanh y + O(pη)2]

= 2

(
1 + e−2y

2

)p[

1 +
p tanh y

√
cosh y

2
√

2πα
K1/2e−Kα(1−1/ cosh y)

×
(

1 +
1

K

(
cosh y

8α
− 1

)

+ O
(

cosh y

Kα

)2)

+ O(pKe−Kα)

]

. (33)

From this result and from equation (9) one finds that

Φ2(y) = −1

y

(

log

(
1 + e−2y

2

)

− η tanh y + O(Kη)2

)

. (34)

Moreover,

Φ1(y) = −1

y

(

log 2 + Kα log

(
1 + e−2y

2

)

+ Kαη tanh y + O(Kη)2

)

. (35)

We can now compute the total free energy (7). One can check directly that the leading
corrections to the infinite K limit, of order O[K3/2 exp(−Kα(1− 1/ cosh y))], vanish. We
are then left with

Φ(y) = −1

y

[

log 2 + α log

(
1 + e−2y

2

)]

+

√
cosh y tanh y

2y
√

2π
(αK)1/2e−Kα(1−1/ cosh y)

×
(

1 +
1

K

(
cosh y

8α
− 1

)

+ O
(

1

K2

))

= Φ∞(y) + ∆ΦK(y), (36)
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Figure 4. Theoretical capacity of the PSC, α = 1.3.

where limK→∞ ∆ΦK = 0. We assume that the maximum of the Φ(y) in (36) is at y = z+ε,
where ε is exponentially small at large K (we shall verify this hypothesis self-consistently)
and z is the solution of equation (20). The condition Φ′(y) = 0 then results in

ε = −∆Φ′
K(z)

Φ′′
∞(z)

= O(K−1/2e−Kα(1−1/ cosh z)), (37)

where the dependence of z on α is extracted from (20). One finds that z is a monotonic

decreasing function. In particular, z ∼
√

2 log 2/α at large α while z diverges as
(−1/2) log(α − 1) as α → 1: it follows that ε is exponentially small in any case. Coming
back to equation (19), it is then easy to see that to the leading order

D =
1

2α
(Φ∞(z) + ∆ΦK(z)) = DSh + CK(α), (38)

where the corrections CK(α) are finally

CK(α) =

√
cosh z tanh z

4z
√

2πα
K1/2e−Kα(1−1/ cosh z)

(

1 +
1

K

(
cosh z

8α
− 1

)

+ O
(

1

K2

))

(1 + O(K1/2 e−Kα)), (39)

z being the solution of equation (20).
We now look at numerical data in order to verify our analytical prediction. In figure 4

we plot the difference between the actual distortion of the PSC as obtained from the
numerical solution of the cavity equations at α = 1.3 and the corresponding Shannon
value. The curve is the theoretical prediction in (39), where we neglected the 1/K2

corrections. The same plot but for α = 2 is shown in figure 5. In both cases there is a
very good agreement with the analytical prediction.
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Figure 5. Theoretical capacity of the PSC, α = 2.0.
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z

α

Figure 6. The value of ∆ ≡ α(1−1/ cosh z), z being the solution of equation (20),
is plotted versus α. One finds that ∆ = log 2 + O(1/α) at large α, while
∆ = 1 − 2

√
α − 1 + O(α − 1) as α → 1+. Inset: the actual value of z as a

function of α, as given by equation (20). It diverges as − log(α − 1) as α → 1+.

5. Conclusions

We have shown that the theoretical capacity of the Parity Source Coder is optimal at large
K and that the corrections to the leading behaviour are exponentially small. Nevertheless,
due to the smallness of ∆ (cf figure 6), the exponential decreases quite slowly, and 1/K
corrections are needed to take into account the deviations from the leading behaviour at
relatively small values of K.
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