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Abstract. The multi-index matching problem generalizes the well known
matching problem by going from pairs to d-uplets. We use the cavity method
from statistical physics to analyse its properties when the costs of the d-uplets
are random. At low temperatures we find for d > 3 a frozen glassy phase
with vanishing entropy. We also investigate some properties of small samples
by enumerating the lowest cost matchings to compare with our theoretical
predictions.
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1. Introduction

The statistical properties of random combinatorial optimization problems can be studied
from a number of angles, with tools depending on the discipline. Recent years
have however witnessed a convergence of interests and techniques across mathematics,
computer science and statistical physics. An archetypal example is the matching problem
with random edge weights, defined as follows: suppose one has M different jobs and M
people to perform them, one person per job, and let ¢;; be the cost when job ¢ is executed
by person j; the 2-index matching problem consists in assigning jobs to people in such a
way as to minimize the total cost. The statistical properties of the optimal matching when
the costs ¢;; are drawn independently from a common distribution were found two decades
ago using the replica [1] and the cavity [2] methods. These two non-rigorous statistical
physics approaches have recently been used to tackle a number of computationally more
difficult problems such as satisfiability and graph colouring, but the 2-index matching
problem is set apart by being one of the very few problems for which such predictions
have been rigorously confirmed [3].

In this work, we take the statistical physics approach and study the properties of
a generalization of the 2-index to multi-index matching problems (MIMPs) where the
elementary costs are now associated with d-uplets, representing for example persons, jobs
and machines when d = 3. Unlike the 2-index matching, d-index matching problems
with d > 3 are NP-hard. We show here that their low lying configurations also have
a different, glassy, structure whose description requires replica symmetry to be broken.
Remarkably, the replica symmetry breaking scheme differs from the common picture that
has emerged from the study of other optimization problems such as the colouring [4]
and satisfiability problems [5]. In particular, a naive application of the 1-RSB cavity
method at zero temperature [6], which successfully solves these two problems, is here
doomed to fail. The reason for this will be traced back to the presence of ‘hard
constraints’. By unravelling this specificity, we put forward arguments whose relevance
goes beyond matching problems; they indicate when a similar scenario can be expected
for other constrained systems. The particularly simple glassy structure that we find is
also of interest from the interdisciplinary point of view: in conjunction with the rigorous
formalism available for the 2-index case, it places MIMPs in an excellent position for
providing the highly desirable mathematical understanding of replica symmetry breaking.

The present paper provides an extensive account of our results on the MIMPs, some
of which have already been mentioned in [7]. The paper is organized as follows. We first
define precisely multi-index matching problems, and briefly review the past approaches
from physics, mathematics and computer science that were developed mainly to address
the 2-index case. Then we start our statistical study by establishing the scaling of the
minimal cost as a function of the number of variables and by providing a lower bound
from an annealed calculation. A large part of the paper is then devoted to presenting
our implementation of the cavity method for matching problems, including a detailed
discussion of its relations with the rigorous formalism proposed by Aldous; we explain
why and how replica symmetry must be broken when d > 3, in order to account for the
presence of a frozen glassy phase. Finally, the last section is dedicated to a numerical
analysis of small samples that provides support to the proposed scenario.
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Figure 1. Tripartite matching problem. Factor graph representation: the
hyperedges, or factor nodes, are represented with squares.

2. Multi-index matchings

2.1. Definitions

Two classes of MIMPs can be distinguished, d-partite matching problems and simple d-
matching problems, whose asymptotic properties will be shown to be related. We first
start with the d-partite matching problem that corresponds to the version alluded to in
the introduction. An instance consists of d sets, Ay,..., Ay, of M nodes each, and a
cost ¢, is associated with every d-uplet a = {iy,...,iq} € Ay X --- X Ay. Graphically,
it is represented by a factor graph as shown in figure 1 with hyperedges (factor nodes)
joining exactly one node from each ensemble. A matching M is a maximal set of disjoint
hyperedges, such that each node is associated with one and only one hyperedge of the
matching; it can be described by introducing an occupation number n, € {0,1} on each
hyperedge a, with the correspondence

acMeSn, =1 (1)
The condition for a set of hyperedges to be a matching can then be written as
Vr=1,...,d, Vi, € A,, > na=1. (2)
a: ir€a

The d-partite matching problem consists in finding the matching with minimal total
cost,

O = min CaNa, 3
i =pm D )

with the {n,} subject to the constraints (2). We consider here the random version of
the problem, where the costs ¢, are independent identically distributed random variables
taken from a distribution p(c), and we are interested in the typical value of an optimal
matching in the M — oo limit. For definiteness, we take for p the uniform distribution
in [0, 1], but the asymptotic properties of d-matchings depend only on the behaviour of p
close to ¢ = 0, and are identical for all distributions p with p(c) ~ 1 as ¢ — 0, such as the
exponential distribution, p(c) = e~¢. The case p(c) ~ ¢", r > 0, can be treated along the
same lines, but gives different quantitative results.

A variant of this set-up is the simple d-matching problem, where a unique set of N
nodes, with N being a multiple of d, is considered and a cost is associated with each
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Figure 2. Simple 3-index matching problem. The factor graph representation is
similar to the tripartite case.

d-uplet of nodes (see figure 2). The d-partite case can be seen as a particular instance of
a simple d-matching problem where the hyperedges joining more than one node of any A;
are given an infinite cost. Simple d-matchings problems are formulated as finding

Lg\‘?) = I{HII]} Cala (4)

under the constraints

Vi=1,...,N, > ong=1. (5)

a :1€ea

Before presenting our analysis of random matching problems by means of an
adaptation of the cavity method for finite connectivity statistical physics models, we
briefly review past approaches to the subject, with an emphasis on open questions that
motivated the present study.

2.2. Physical approach

The 2-index matching problem was the first combinatorial optimization problem to be
tackled with the replica method, an analytical method initially developed in the context
of spin glasses [8]. In the paper [1], Mézard and Parisi analysed both the simple and
bipartite matching problems for cost distributions p with p(c) ~ ¢" as ¢ — 0. Using replica
theory within a replica symmetric ansatz, they derived the minimal total cost; thus, for
the bipartite matching with » = 0, they predicted limp; .. C](\? = 72/6; moreover, they
obtained the distribution of cost in the optimal matching. Support in favour of their
prediction first came from numerical results and from an analytical study of the stability
of the replica symmetric solution [9,10]. This last analysis further yields the leading
corrections of order 1/N for the value of the minimum matching.

Interestingly, the same results can be reobtained using a variant of the cavity method
based on a representation of self-avoiding walks using m-component spins [2]. This
alternative formulation, avoiding the bold prescriptions of replica theory, furthermore
suggests that, if the costs of the hyperedges connected to a given node are ordered from
the lowest to the highest, the probability for the kth hyperedge to be included in the
optimal matching is 27% [11], as first conjectured from a numerical study [12].

doi:10.1088,/1742-5468 /2005 /09 /P09006 5
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2.3. Mathematical approach

Replica theory, while a powerful tool for obtaining analytical formulae, is not a rigorously
controlled method, and its predictions have only the status of conjectures within
the usual mathematical standards. For the 2-index matching problem with » = 0
however, the results mentioned above (value of the optimal matching, distribution of
costs and probability of inclusion of the kth hyperedge) have all been confirmed by
a rigorous derivation, due to Aldous [3]. His contribution also includes the proof an
asymptotic essential uniqueness property that mathematically expresses the fact that
replica symmetry indeed holds for this problem. The weak convergence approach [13] on
which the proof is built is closely related to the cavity method that we will employ, and
the relations between the two formalisms will be discussed in section 4.4. Confirmation
of the ((2) = 7%/6 value for the bipartite assignment problem also comes from the recent
proofs [14, 15] of a more general conjecture formulated by Parisi [16]; this conjecture states
that, for the bipartite matching with exponential distribution of the costs, p(c) = e~¢, the
mean optimal matching for finite M is 224:1 -2,

These mathematical contributions are part of a more ambitious programme aiming
at developing rigorous proofs and possibly a rigorous framework for the replica and cavity
methods. Interestingly, Talagrand, one prominent advocate of this programme, devotes
the last chapter of his book on the subject [17] to the 2-index matching problem, stressing
that, in spite of the major advances mentioned, it remains a particularly challenging issue.
Indeed, finite temperature properties have so far resisted mathematical investigations,
even in the limit of high temperature, which has been successfully addressed in other
spin-glass-like models [17]. We shall comment on the peculiarities of matchings with
respect to other constrained systems in section 5.2. It is our hope that our work not only
provides new challenging conjectures, but also suggests some hints for solving unanswered
pre-existing mathematical questions.

2.4. Computer science approach

If analytical studies of random d-matchings by statistical physicists and mathematicians
have been restricted up to now to the d = 2 case, d-index matching problems with d > 2
have a longer history in the computer science community. d-partite extensions of the
bipartite matching problem were introduced in 1968 under the name of multidimensional
assignment problems [18]; they are also referred to in the literature as multi-index
assignment problems and, more specifically, as multi-index azial assignment problems
(to distinguish them from the so-called planar versions [19,20]). MIMPs, as we call them
(for multi-index matching problems), have a number of practical applications. The most
commonly cited one is for data association in connection with multi-target tracking [21].
Besides major interest as regards real-time air traffic control, such approaches are for
instance helpful for tracking elementary particles in high energy physics experiments [22].

From the algorithmic complexity point of view, matching problems also have a
pioneering role since the 3-index matching problem was among the first 21 problems
to be proved NP-complete [23]. In contrast, polynomial algorithms are known that solve
2-index matching problems [24]. Note that being based on a worst case analysis, NP-
hardness is however only a necessary condition for hard typical complexity, which is the
issue which interests us here. Due to their intrinsic algorithmic difficulty and to the broad
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range of their applications, generalized assignment problems are the subject of numerous
studies in the computer science community; we refer the reader to the reviews [19,20] for
additional information and references.

3. Scaling and a lower bound

The first task in studying random optimization problems is to determine the scaling of
the optimal cost with the number of variables [25]. Here, we address this issue for the two
variants of MIMPs, the multi-partite and simple multi-index matching problems. The
scaling is inferred from a heuristic argument, and confirmed by an annealed calculation
(first-moment method) yielding a lower bound. This leads us to a statistical physics
formulation that encompasses the two versions of MIMPs.

3.1. Scaling

The statistical physics approach of combinatorial optimization problems consists in
defining the energy F(M) of each admissible solution, here a d-matching M, as its total
cost, E(M) = > .\, Car and in determining the minimal total cost, identified with the
ground state energy, by looking at the zero temperature properties of the system. For
d-matchings, the corresponding Hamiltonian

H[{n}] = Z Calla (6)

defines a lattice gas model, where the particles are occupying the hyperedges. The
constraints (2) or (5) implement a hard-core interaction between the particles: two
‘neighbouring’ hyperedges are not allowed to be occupied simultaneously. To have a
sensible statistical physics model, the ground state has to be extensive, i.e., proportional
to M in the d-partite case and to N in the simple case. We propose here a heuristic
argument for determining how E[CJ(\Z)] and E[Lgff)] scale with M and N respectively, where
E[-] represents the average over the different realizations of the costs. The central (local)
quantity that monitors the scaling behaviour is the number of hyperedges to which a given
node belongs, denoted as W/(\d) (A= M or N). Indeed, with the costs uniformly distributed
in [0, 1], the lowest costs with which a node can be associated are of order 1/ W/(\d) and

the optimal matching is expected to scale like A/ W/(\d). Thus, for d-partite matchings,
W = Mt and E[CY] ~ M2, while for simple d-matchings, W(" = (Nfl) and

E[L%)] ~ (d—1)!N?*74. We will therefore be interested in computing the (finite) quantities

c@ = lim M ?E[C\Y],

M—o0
Nd=2 (7)
d _ 1 (d)
ET = gl

The factor (d — 1)! in the second definition is meant to reflect the different number of
hyperedges to which a given node can connect, in the d-partite and simple versions
(this difference is absent when d = 2). With this convention we will find the equality
C@ = dL@ where the remaining d factor merely comes from the fact that the total
number of nodes is N for simple d-matchings, but is dM for d-partite matchings.
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3.2. Annealed approximation

When energies are extensive in the size N of the system, the equilibrium properties
of a statistical physics model are entirely encoded in the partition function, Zy(3) =
S e PEM or, equivalently, in its logarithm, the free energy Fiy(8) = —log[Zn(3)]/5.
The free energy depends on the realization of the elementary costs, but it is expected to be
a self-averaging quantity, i.e., such that the free-energy density f(5) = limy_., Fn(5)/N
exists and is independent of the sample. The self-averaging property is proved for
d = 2 [26], and we assume here that it holds for d > 3 as well. The value of the optimal
matching is given by the ground state energy, obtained as limg_., f(3), where the free
energy is calculated by performing a quenched average of the partition function, E[ln Z],
with E[-] referring to the average with respect to the realization of the elementary costs.

A much simpler calculation is the annealed average, In[E[Z]. Due to the concavity
of the logarithm, it yields a lower bound on the correct quenched free energy, fu.(3) =
—InE[Z]/(NB) < —E[In Z]/(NB) = f(3). In fact, since the entropy s(3) = 3205f(5) is
necessarily positive for a system with discrete degrees of freedom, the free energy f(3)
must be an increasing function, and a tighter lower bound can be inferred for the ground
state energy [25],

lim f(5) = sup fan(0). (8)

p—o0 5>0
These considerations are made under the hypothesis that the energies, or equivalently
the temperature 3, are correctly scaled with N, so that limg .., f(5) is indeed finite.
Reciprocally, requiring the annealed free energy to be extensive provides us with the
appropriate scaling of 5. For d-index matching problems, we have

BZ] =E |3 exp (‘5 Zn> — (FM)Efe e HecM )
{na} a

where #M denotes the total number of possible matchings and #{a € M} the number
of hyperedges contained in a given matching. For d-partite matchings, #M = (M!)4-1
and #{a € M} = M. To enforce the correct scaling of the free energy, we anticipate a
rescaling in temperature of the form § = M*(3, yielding

mE[Z]=[d—1—aMInM —[In +d— 1]M + o(M). (10)
An extensive annealed free energy is therefore obtained by taking o = d — 1, in which
case X

. 1 d—1

paen(py = AL (1)
The scaling 1/(M ) ~ M2~ that we obtain corresponds to one introduced in equation (7).
For simple d-index matchings, #M = N!/[(N/d)!(d')V/9] and #{a € M} = N/d.
Rescaling the temperature as 8 = N9713, we get

mE[Z] = -[Inf+d—1—1n(d — 1)]N/d+ o(N). (12)
To make contact with the d-partite case however, we adopt a slightly different scaling,
B =N¥13/(d—1)!, so that
o mpB+d—1 1 .,

(simple) - AN
Figm ) = B = L 3= ) (13)
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This annealed calculation illustrates the correspondence between the d-partite and simple
d-matchings stated in the previous section. Apart for the trivial factor d, corresponding to
the relation N = dM, the equality is obtained by normalizing 3 and [ differently, thereby
accounting for the difference in the number of hyperedges a given node locally sees (extra
factor (d — 1)! in equation (7)). The annealed free energy is a concave function with a
maximum for B; = 7% 50 we get lower bounds Cl) > =2 gnd L@ > ed—2 /d.

3.3. Statistical physics reformulation

From now on, we will cease distinguishing between d-partite and simple d-matchings, and
consider a unique statistical physics model that describes the two problems in a common
framework. Our approach is indeed based on the cavity method [27] for which only the
local properties at the level of each node are relevant, and we have seen that by making
the appropriate scalings of 3, we can match the local properties of both models. The
Hamiltonian that we consider is

H{na}] = &ana, (14)

with the &, = M9 ¢, uniformly distributed in [0, M?"!] for the d-partite case and
o= N%1c,/(d—1)'in [0, N9t /(d —1)!] for the simple case. The (inverse) temperature,
denoted by [ for simplicity, will correspond to 3 for the d-partite case and 3 for the simple
case. The only remaining difference kept is the factor d between the two free energies,
accounting for the relation N = dM. Unless explicitly stated, the formulae to be given
hold for the simple version; to get the d-partite counterparts, one has consequently to
multiply the intensive quantities by d.

4. Replica symmetric solution

The approach we adopt to treat the d-matching problems is the cavity method recently de-
veloped to solve statistical physics models defined on finite connectivity graphs [27]. This
section explains the formalism of the replica symmetric solution for general d. While the
correctness of the replica symmetric approach is a mathematical fact when d = 2, we show
that it leads to some inconsistency when d = 3, requiring replica symmetry to be broken.

4.1. From complete to dilute graphs

The hypergraph on which an instance of the simple d-matching problem is defined is
complete, in the sense that every possible hyperedge arises once and is given a random
cost. However, the factor nodes with the smallest elementary costs are more likely to
belong to the optimal matching; for instance the probability that the kth most costly
hyperedge originating from a given node will be included in the optimal 2-matching is
27% [3]. This suggests that hyperedges with large costs can be ignored while retaining
most of the structure relevant to the determination of the optimal matching. Eliminating
hyperedges results in a diluted hypergraph, where each node is connected to only a
restricted number of hyperedges. From this point of view, in spite of being defined on
a complete graph, random matchings are effectively closer to statistical physics models
defined on finite connectivity random graphs. In fact, such a feature already transpired
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from the initial replica treatment [1] of 2-index matchings where all the multi-overlaps
Qa,...a, Were required, and not only the two-replica overlaps (q,q,, like in usual Curie—
Weiss mean field models of disordered systems [8].

To exploit the underlying diluted structure, one possible method is to introduce a cut-
off €, suppress all nodes with rescaled cost &, > C, solve the matching problem on the
diluted hypergraph and finally send C' — oco. The hypergraph obtained by this procedure
is Poissonian: if &;,&,, ... are the costs ordered in increasing sequence of the hyperedges
connected to a given node, the probability for the connectivity to be k is

pr =Prob[§ < - <& < C < &1 < -]

k Wik
_(w C - C B C_’“e_c (15)
k W/(\d) W(d) k! !

with W[(xd) giving the number of hyperedges to which a node is connected, as in section 3.2.
Diluting the complete graph has a major drawback however: the diluted hypergraph
typically does not allow any matching at all, since for instance there is always a finite
probability e~¢ that a given node is isolated.

To circumvent this problem, we come back to the model on the complete graph and
start by weakening the constraints, allowing a node not to belong to a matching, at the
expense of paying an extra cost. In more physical terms, we view a matching as the close-
packing limit of a lattice gas model whose particles are subject to hard-core interactions:
particles can occupy the hyperedges but two hyperedges connected through a node cannot
both admit a particle. We introduce a grand-canonical Hamiltonian

Hu{n.}] = Zfana duZna = Z —du)n, (16)

a

where dy is a chemical potential per hyperedge (u per node). In the limit g — oo, the
maximum number of hyperedges is occupied by a particle and we recover the matching
problem. For finite p however, the constraints reflecting the hard-core repulsion are

Vi, Z ng <1, (17)

to be compared with the hard constraints of equation (5), recovered only in the p — oo
limit. Each value of p defines an optimization problem whose minimum energy £,
corresponds to a zero-temperature limit 3 — oo. The solution of the matching problem
thus appears as the result of a double limit, 3 — oo and g — oo. The point is that a
diluted structure is now naturally associated with the system at finite . Indeed since
H,, is minimized by taking n, = 0 whenever &, > du, the ground state is unaffected if all
hyperedges a with &, > du are suppressed, yielding the Poissonian hypergraph considered
above with C' = dpu. This construction allows us to formulate the initial MIMP as the
limit ;1 — oo of optimization problems defined on Poissonian graphs with increasing mean
connectivity du. We will give in section 4.4 an alternative construction based on regular
graphs.

doi:10.1088/1742-5468 /2005,/09 /P09006 10
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Oi

Figure 3. Local structure of a Poissonian hypergraph. When the node i is
removed, it leaves a rooted tree with root a.

4.2. Cavity method

The problem at finite u defined on a Poissonian hypergraph can be studied by means of the
cavity method as developed for finite connectivity graphs [27]; one of the main advantages
of this method over the replica method [1] or previous versions of the cavity method [2] is
that it allows a practical investigation of replica symmetry breaking (RSB). Since we are
interested in the ground state properties, the cavity method directly at zero temperature
seems particularly well suited [28]. However, it will turn out to be necessary to get the
finite temperature equations as well, and we therefore work at finite (3, postponing the
discussion of the § — oo limit to the next section.

In strong analogy with Aldous’s framework (see section 4.4), the RS cavity method
associates the diluted hypergraph with an infinite tree or, stated differently, a tree with
self-consistent boundary conditions. The starting point is however finite rooted trees, that
is trees with a singularized node ¢ called the root. Consider for instance the part of a tree
represented in figure 3: given a hyperedge a and one of its connected nodes i (relation
noted i € a), we call Z(e~9 the partition function of the system defined on the rooted
tree with root a resulting from the removal of 7. To express it in terms of the partition
functions Z(*=7) where j refers to the nodes, connected to a, but distinct from i (noted
j € a—1), we decompose Z(@) as 7470 = Zéa_’i) + Zfa_’i), where Zéa_’i) and Zfa_") are
the conditional partition functions where the root a is either constrained to be empty or
occupied by a particle. As an intermediate stage in the recursion, we also introduce YO(] —)

and Yl(j _’a), which are defined similarly to Zéa_’i) and Zfa_’i), but for rooted trees whose
root is the node j, in the absence of the hyperedge a: the index 1 means that j is already
matched and the index 0 that it is not. With the notation of figure 3, we have the relation

Zéa—’i) — H (}/O(j—"l) +}/1(j—>a))’

j€a—1i
2007 = B TT v,
j€a—1i
| | (18)
YO(J—>a) _ H Zéb—v)’
bej—a
—a b—j c—jJ
}/1(1 ) _ Z Zf ) H Zé 7).
bej—a cej—{a,b}

doi:10.1088/1742-5468 /2005,/09 /P09006 11
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These formulae have simple interpretations: for instance, the first line means that when a
is empty, the neighbouring nodes 57 € a — ¢ can be equally matched or not with upstream
hyperedges, while the second line means that when a is occupied, it generates a cost
&, — dp and requires the nodes 7 € a — ¢ to not be matched. From the conditional
partition functions, we define the cavity fields

(j—a)
T = o (jj)O G—a)’
Yot vy 19
(a—1) ( )
Hue= _ e A1
- (a—1) "
ZO

These definitions are made to ensure a proper scaling when p — oo and recover quantities
used in previous studies for d = 2. Note however that for finite 3, it is more natural to
introduce 9U~% = exp[3(xU~% — u)] interpreted as the probability that node j is not
matched in the absence of a (or equivalently that j is associated with @ in a matching);
this alternative notation will turn out to be particularly convenient when discussing the
freezing phenomenon, in section 5.2. On a given rooted tree, it follows from equation (18)
that the fields attached to the different oriented edges are related by the following message
passing rules:

o) = 37 i),

anli (20)
07 = 5 (ﬂ + 3 en(-A —“(bﬁj)))> |
bEj—a

The limit of infinite rooted trees is taken implicitly by considering the stationary
distribution P(z) that is assumed to result from the repeated iteration of the message
passing relations. By definition P(z) is a distribution of cavity fields over the different
oriented edges that satisfies the following self-consistent equation, called the RS cavity
equation:

kod—1

P(a) = Bug [ [ TT datP(a)5 (o = 549 (a0} 2

a=1 j,=1

where the function %4 is defined according to equation (20) as

FFO{gla)}] = —% In <e‘ﬁ“ +) exp (—ﬁ (5 - 2 xW))) ’ (22)

jazl

and the expectation [E; ¢ expresses the average over the disorder, which includes both an
average over the connectivity k£ and over the rescaled costs &:

k e (dp)Fedn : 1 [ k
Ere[F® ({€.})] :;%T[[l(@/o d§a> F®@E,. .. &).  (23)

The RS cavity equation (21) can be solved by a population dynamics algorithm,
whose principle is presented in appendix A; the resulting distribution P(z) for d = 3 and
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Figure 4. Distribution P(z) of cavity fields for 3-index matchings at different
temperatures 3 in the replica symmetric approximation. These distributions are
obtained by population dynamics, using algorithm P described in appendix A,
with parameters C' = 60, Niter = 1 and Myop = 200 000.

different 3 is shown in figure 4. P(z) contains all the information on the equilibrium
properties and, in particular, allows one to compute the free-energy density. It can be
derived from the Bethe approximation which produces on a given hypergraph the formula

£(9) = 7 | S AFE(5) = 3 (6 — DAF () )

a

where ¢, is the degree of hyperedge a, which here is ¢, = d independently of a. The shifts
AF€)(3) and AF@ () correspond respectively to the free-energy shift induced by the
addition of a node 7 together with its connected hyperedges a € i, and to the free-energy
shift induced by the addition of hyperedge a. They are given by

' A Y(i) Y(i)
exp (—ﬁAF(“ﬂl@)(g)) — o T (1A) 5
Haei Han—i (1/0] + }/1] )

— e B 4 Zexp <_5 <§a — Z x(j—w))) ’ (25)

act jc€a—1

29 4 79 |
exp (—ﬁAF(a) (ﬁ)) — H (Y(j) Y(])) =1+ exp —ﬁ Sa _ Zl‘(]—ﬂl) ’
o + .
Jjea—1 0 1 j€a
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where we introduced the analogues of the partition functions for rooted trees, but for the
complete trees:

Zéa) _ H (Y'O(J'Ha) + Yl(]'ﬂa)> 7

Jj€a
210 = Pl T v,
Jj€a
| | (26)
bs
Yb(]) _ HZO( J),
bej
) b o
Y'l(J) _ sz 7) H Zé J).
bej cej—b

Physically, Z\"/ (Zéa) + 7\ gives the probability for the hyperedge a to be included in
the matching. By averaging over the realizations of the disorder, since the mean number
of hyperedges per nodes is p, we get

frs(8) = E[AFTHSY(8)] — (d — DUE[AF® (3)] (27)
with explicitly
ko d-1
E[AF(Z’Jraez (8)] = __EM/H H dpUa) Ja )
a= 1]a—1

‘< n ( + ;exp (_5 (ga . z <>>)> , )
E[AF® () :—_ER/ILM (1+wp< G;—ﬁé@>>>.

Jj=1

4.3. Integral relations

The p — oo limit can be taken explicitly. The corresponding equations generalize the
formulae established by Mézard and Parisi in their first treatment of the 2-index matching
problem [1]. For general d, they are

Joo d—1 d—1
/ T awerem (1+5)

Z p 1 d 26pm (29)
Given G(¥), the energy ¢(f3) and entropy s((3) are
400
(9) =5 | aGwe,
R - (30)
s(f) = / dl [e*el —e*G@] - diGee,
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and the free energy is obtained as f((3) = €(3)—s(83)/3. The relation between the function
G(l) and the order parameter P(z) is, up to a change of variable, a Laplace transform:

+o0 s
e ¢l = / dzP(z)e® . (31)

—0o0
From the practical point of view of numerically solving the cavity equations, the finite u
cavity equations are however easier to handle than these compact formulae.

4.4. Zero-temperature limit

With a view to an extension of the mathematical approach from 2-index to d-index
matchings with d > 2, it is interesting to discuss in some detail the relations between
our equations and those used by Aldous in his rigorous study of the 2-index matching
problem [3]. Aldous’s formalism is obtained from our RS cavity equations by taking the
zero-temperature, § — oo limit. When § — oo, equations (20) become

@) — Z gli=a),
| jea—i A (32)
2U=9) — min (& — u(b—>J))_
bej—a

Taking = oo and d = 2 leads to the recursive distributional equation [29],
2@ = mbin (& — 2®) (33)

on which Aldous’s work is based [3]. A difference is however that its costs , derive from a
Poisson point process (the uniform distribution does not make sense when p = 0o). This
Poisson process can nonetheless be related to our formalism by implementing a variant
of the cut-off procedure. Consider selecting at each step of the cavity recursion the k
parents of smallest costs, k being now fixed. Then the successive k costs are distributed
according to a Poisson process with rate one. Nonetheless, while the cavity recursion is
perfectly well defined, the corresponding system on a given hypergraph does not make
sense: a hyperedge may belong to the list of the hyperedges with the kth smallest costs for
one of its nodes but not for another one. This is why we introduced the version with a cut-
off on the costs, which constitutes for finite i a perfectly sensible statistical physics model.
From a purely formal point of view the version with cut-off on the number of connected
clauses works as well, and provides an alternative formulation for numerically solving the
cavity equations (see appendix A for the details and figure 9 for an illustration).

The cavity fields at zero temperature have an interpretation in terms of differences in
ground state energies. The cavity field zU~% corresponds to the extra cost of a particle
on node j with respect to no particle, in the absence of hyperedge a, and the cavity
bias u(*~? to the cost of connecting the node i to the hyperedge a. Note that these
quantities are actually well defined only if i is kept finite; otherwise a particle cannot be
removed or added without destroying the perfect matching, i.e., without leaving the space
of admissible configurations. Similarly, the total fields on the complete graph are

U@ =3 460,
e ' (34)
X = min(& — u®Y).

bei
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From the interpretation given, it appears that the hyperedges which indeed participate
in the optimal matching are those which achieve the minima, i.e., the solution is given by

Ng = Ogar, a* = argmin(§, — u(“ﬂi)). (35)

Since this has to hold for all @ € a, the question arises of whether this prescription
effectively defines a matching, i.e., whether arg min, (¢, — u(®~?) = arg min, (£, — u(®=7))
for all 7,7 € a. A positive answer is obtained by generalizing to d > 2 the inclusion
criterion invoked by Aldous when d = 2, which states

a* = argmin(¢, —ul""Y) =1 = &, <ul*) 4 27, (36)

The independence on 4 is then a consequence of the identity u(®~? 4 2(—% = U@,
The proof of the inclusion criterion itself is straightforward with the present notation: if
a* = argming (€, — ul*=9),
ga* _ u(a*—»i) — lelln(gb o u(b—n)) S min (gb o u(b—»z)) — x(i—uz*)' (37)
(S

bei—a*

Reciprocally, if a # arg min, (&, — u®=9),

§o — ul™) 2 min(§, — u"Y) = min (§ — u7Y) =27, (38)
€ ci1—a
As an alternative to the Bethe formula, the value of the optimal matching can be

obtained by inferring (£,+) from the distribution of the fields P(x). Thanks to the inclusion
criterion, we have

L@ _
Lps =

&IH

(&) =3 | dasePron( > ¢

_ %/OOO dg/lj d; P(z;) €6 (ix] - 5) (39)

where the factor d corresponds to the number of nodes per hyperedge and 6 represents
the Heaviside function, §(z) = 1 if x > 0 and 0 otherwise. The RS cavity equations at
zero temperature can also be written in terms of closed integral relations that generalize
known equalities for the d = 2 case:

dt; G/ (t;)e OW) <x+2t> (40)

d—1

cw=[, 1

J=1

d
1
() _ '
Lrg = Qd/jazj>0j| |dx]G x;)e (E ag) . (41)

The distribution G(z) is related to the RS distribution P of the cavity fields by

G(z) = —In / T ap), (42)
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Figure 5. Annealed and replica symmetric free energies for the simple 2-index
matching problem. While the annealed curve has a maximum at 1, the RS curve
is strictly monotone. Its § — oo limit corresponds to the exactly known value
72/12 ~ 0.82.

and can be obtained from the finite temperature order parameter G(l) = G3(l) given in
equation (29) via

Gla) = lim Gy(8"/ V). (43)

Comparing with the predictions of the cavity method, Egg = E[Ael+e€)] — (d —
1)uE[Ae®], we obtain a consistency condition that the RS distribution must satisfy:

Elz] = %iE <ij> 0 (Zx]> (44)

where the average E[-] is here taken with respect to P. This formula is indeed numerically
verified with a good precision, in agreement with the equivalence between the two
approaches. As a corollary, it shows that E[z] < 0 unless d = 2 where E[z] = 0 (we
recall that in this case one has in fact an explicit formula [1], P(z) = 1/[4 cosh?(z/2)]).
Finally, we note that for d > 2, the RS energy at zero temperature is only dependent
on the mean of P(x), Egg = —E[z]|/(d — 2). However as shown in the following, the RS
approach yields incorrect predictions when d > 3.

4.5. Entropy crisis

Using the population dynamics algorithm described in appendix A, we obtain for the RS
free energy frs(f) the curves displayed in figure 5 (d = 2) and 6 (d = 3). For d = 2,
the free energy is an increasing function of 3 with limit frg(3 = o0) = 72/12 ~ (.82
corresponding to the cost of a minimal 2-index matching. The free energy obtained
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Figure 6. Replica symmetric free energy frs(3) for the 3-index matching problem
with different cut-offs C' = dp = 30,45, 60 as a function of the inverse temperature
(. This curve has been obtained using algorithm P of appendix A with parameters
Npop = 20000 and Niter = 20 000; for comparison, the annealed free energy is also
represented with a dashed line. In the inset is a zoom of the data with C' = 60
more clearly displaying the non-physical decrease of frg(f3) for 5 > s ~ 0.41.

for d = 3 is qualitatively different, as it displays a maximum at a finite temperature
Bs == 0.41 (see figure 7). This entropy crisis reflects an inconsistency of the RS approach®.
If one assumes that the RS approximation holds at high temperature in some range of
temperature (a non-trivial statement), a phase transition must occur at some 3. < f3;.

4.6. Stability of the replica symmetric ansatz

Replica symmetry fails to correctly describe the low temperature properties of many
frustrated systems [8]. A necessary requirement for its validity is that it be stable. Here
we show that when d = 3 the RS solution is unstable below a strictly positive temperature,
that is for 8 > ;. Even if the breakdown of the RS hypothesis was already inferred above
from the negative value of the RS entropy, studying the stability is instructive since
the relative positions of ; and [, will establish the discontinuous nature of the phase
transition. In [9], Mézard and Parisi used the replica method to prove that the RS ansatz
is stable when d = 2 [1]; their approach is however quite complicated (see [11] for a
recent re-examination of their analysis), and to tackle the d = 3 case, we adopt a simpler
approach based on the cavity method [30]. Physically, it amounts to computing the non-
linear susceptibility yo and checking that it does not diverge [31]. Picking a hyperedge
labelled 0 at random, this susceptibility is written as

Xe =Y _(nona)s = Y _[C(d = D]"E[(non,)7] (45)

1 Additional evidence that the naive generalization of the formulae used when d = 2 fails for d > 3 is found when
d = 4 (extending presumably to all d > 4) where the RS prediction for ngs) violates the annealed bound.
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Figure 7. RS entropy of the 3-index matching problem. The data are from
population dynamics, using algorithm R presented in appendix A, with K = 50,
./\/pop = 50000 and Nt = 5000. The line is a linear regression. The RS entropy
is found to vanish at 5. = 0.412 + 0.001.

where () denotes the thermal average and E[-] the spatial average over the disorder. Using
the fluctuation-dissipation relation, the averaged squared correlation function E[(ngn,)?]

of two hyperedges separated by distance r can be expressed in terms of the cavity fields
as [31]

E[<n0nr>2] ~E

C

" 3:2’(1“5) ('rim ..
H aZL‘Z‘l

. ,:L’i(dl)k>> (7” N OO), (46)

i=1

where the averaging E[-] is performed with respect to the distribution of the disorder (k, &)
and to the distribution P(z) of the cavity fields, except for the z;, with ¢ > 1 which are
fixed by z(iy1), = 2% (z;,, .. ). To determine whether the series in equation (45)
converges or not, we compute

s i1y,

" 8“’“’5) i1y o9 Lj ?
g, = rnfC(d—1)] +mE | ] < G — ! <d‘”’“)> (47)
i=1 a

by using cavity fields from the population dynamics, and check whether lim, . (In u,.)/r <
0 or not. The numerical results are limited to small values of r, but as shown in figure 8
they are sufficient for us to conclude unambiguously that an instability shows up for
3-index matchings at §; ~ 0.6, thus confirming the incorrectness of the RS ansatz for
describing the § = oo limit (the same procedure with d = 2 consistently finds no
instability). In addition, since the instability takes place only after the entropy crisis,
0B; > (s, we conclude from this analysis that the phase transition, located at §. < (3, must
be discontinuous as a function of the order parameter.
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Figure 8. Stability analysis of the RS solution for the 3-index matching problem
at finite temperature. (Ilnp,.)/r is plotted versus r for different temperatures
[ (from algorithm P given in appendix A with C' = 36, Nyop, = 20000 and
Niter = 10%). The RS solution is stable if the slope of (In y,.)/r is negative (see
the text), which is found to be the case for 5 < ; ~ 0.6.

5. Replica symmetry breaking

The inconsistencies of the RS ansatz indicate that replica symmetry must be broken in
the low temperature phase. This feature is present in many other NP-hard combinatorial
optimization problems and is commonly overcome by adopting a one-step replica
symmetry breaking (1RSB), which, in most favourable cases, turns out to be exact.

5.1. General 1RSB ansatz

As formulated by Aldous with the essential uniqueness property [3], replica symmetry in
matching problems means that quasi-solutions, that is low energy configurations (LECs),
all share most of their hyperedges. In contrast, replica symmetry breaking (RSB) refers
to a situation where LECs arise, which, while being close in cost to the optimal solution,
are far apart in the configurational space (the measure of distances is the overlap between
two matchings, i.e., the fraction of common hyperedges; see section 5.3). One-step replica
symmetry breaking (1RSB) is a particular scheme of RSB where the structure of the set
of LECs can be described with only two characteristic distances, dy and d; < dy. For
it to be correct, two LECs taken at random (with the Gibbs probability measure when
working at finite ) must be typically found either at distance dy or dy. In the replica
jargon, close by LECs (at the short distance d;) are said to belong to the same state (or
cluster). At the level of 1RSB, it is assumed that the number Ny (f) of states with a
given free energy f grows exponentially with N and is characterized by a complexity Y(f)
defined by X(f) = limy_oo[In Ny (f)]/N.

The 1RSB cavity method derives this ‘entropy of states’ by a Legendre transformation
method mimicking the derivation of entropy from the free energy in canonical statistical

doi:10.1088/1742-5468 /2005,/09 /P09006 20


http://dx.doi.org/10.1088/1742-5468/2005/09/P09006

Random multi-index matching problems

mechanics [32]. The object generalizing the free energy is the replica potential ¢(3,m);
the parameter m is the Lagrange multiplier fixing the free energy of the relevant states,
in the same way that the temperature 3 selects the energy of equilibrium configurations
in the canonical ensemble. The replica potential is defined as

e~ NBmé(Bm) — Ze*Nﬁmfa7 (48)

where the sum is over the states «, and f, denotes the free energy of a system whose
configurations are restricted to «. To obtain the relevant states for the equilibrium
properties, replica theory prescribes choosing the m in [0, 1] that maximizes ¢(3,m) [8],
so that the equilibrium free energy is given by

firss(8) = max ¢(5,m). (49)

0<m<1

Calculating ¢(/3, m) requires introducing as order parameter a distribution Q[QU~%] over
the oriented edges (j — a) of distributions QU= (x) of the cavity fields, taken over the
different states o [27]. The 1RSB cavity equations for the order parameter read

k d—1
Q[Q(o)] - Ek&/H H DQ(ja)Q[Q(ja)]5 [Q(O) — Q"9 [{Q(J‘a)}]} 7
a=1ja=1
QRO [[QUY] (20)) = % / ﬁ ﬁ dali0) QU (0))5 (2 — 50 ({20})) (50)
a=1jo=1

< exp(—AmAEF ({at))),

where (¢ is given by equation (22) and the reweighting term is

exp (-mﬁﬁ»ﬂ({xﬁw})) = e Y exp (—ﬁ (ga - 2 x(ja)>> . (51)

Ja=1

The latter corresponds to the shift of free energy due to the addition of the new node. Its
presence ensures that the different states described by the QU= (z) do indeed all have
the same free energy, in spite of the fact that the addition of a node inevitably introduces
a free-energy shift. The distribution Q[Q] determines the replica potential ¢(3, m) whose
explicit expression is

(B,m) = E[@C)(3,m)] — (d — 1)uE[) (8, m)] (52)
with
o 1 ko d-1 ‘ ‘
B0 (3,m)] = ~ B [ I] [T P00
a=1jo,=1
kod-1
% In [/H H dzVe) QUe) (4:a)) exp (—mﬁAFék’g)({x(ja)}))] (53)
a=1 jo,=1
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and

1 d
E[®@ (8, m)] = ——Eg/HDQ(j)Q[Q(j)]

g
d d m
/de(j) QW (z) (1 + exp (_5 (5 _ Zﬂﬁ))) ] ' (54)

The 1RSB equations can in principle be numerically solved via a population dynamics
algorithm [27]. However, our efforts in this direction failed to yield a sensible order
parameter because the fields were found to diverge as y was increased: the reason for this
behaviour is elucidated below.

x In

5.2. Frozen 1RSB ansatz

Although rarely explicitly mentioned, there exists a replica symmetry breaking ansatz
somewhat intermediate between the RS and general 1RSB as just described. The frozen
1RSB ansatz, which will be argued to apply to matchings, is a particular realization of
the 1RSB scheme where states are made of single configurations (or, more generally, of
a non-exponential number of configurations). In such a case, all the information can
be extracted from the RS quantities, provided that they are adequately reinterpreted.
Consider for instance the definition given by equation (48) in the special case where
states a have no internal entropy, i.e., f, = €,. We thus have

e—Nﬁm(b(ﬁ,m) = Ze—Nﬁmfa _ Ze—Nﬁmea = e—NﬁmfRs(ﬁm) (55)

« o

where the last equality holds because of the very definition of a RS free energy. The
replica potential ¢ can therefore be expressed in terms of the RS free energy only,

¢(8,m) = frs(Bm). (56)

Following the prescriptions of replica theory, the quenched free energy is obtained by
maximizing ¢(5, m) over m € [0,1]. Being a concave function, the RS free energy can
have at most one maximum. If 3 denotes the location of this maximum (with perhaps
fs = oo, like for 2-index matchings), we obtain that firsg(8) = ¢(1,5) = frs(f) for
B < Bs and firsp(B) = &(5s/06,0) = frs(fs) for B > [;. In other words, starting from
the assumption that the content of states is trivial, the frozen ansatz predicts a complete
freezing of the system at the point [3; where the RS entropy becomes zero: for 5 > [, the
system is trapped in a single configuration and its free energy stays constant when the
temperature is further decreased (/3 increased).

This scenario is already known to apply to a few models of disordered systems,
including the random energy model (REM) [33], the directed polymer on disordered
trees [34], the binary perceptron [35], multi-layer neural networks with binary weights [36]
and the XOR-SAT problem on its core [37] (with a particular case being error-correcting
codes of the Gallager type [38]); it also applies to p-spin models, g-state Potts models
or K-SAT models in the limit where p,q or K — oo [33,39,40]. Our intention is here
both to add the matchings to this list, and to clarify the conditions under which such a
scenario may apply. At this stage, we can already state the following necessary conditions
(all satisfied by d-index matchings with d > 3):
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(i) the RS entropy must become negative at a finite f;
(ii) the RS solution must be stable up to (at least) fs;

(iii) no discontinuous 1RSB transition must be detected before [.

In addition to these properties, the consistency of the frozen ansatz requires the model
to have particular kinds of constraints, called hard constraints. Elucidating this point
requires a more refined description of the relation between the frozen 1RSB order
parameter and the RS order parameter. First remember that in the RS picture at finite
temperature 3, one has a spatial distribution P(z=%) of cavity fields, where, following
equation (19), 1({; 9 = exp[B(xU= — ;)] is interpreted as giving the probability under
the Boltzmann measure that node j is not matched given that the hyperedge a is absent.
For a general 1RSB problem, the order parameter is instead Q[QU™%(x0U~?)] where
YU~ = exp[B(xU~% — u)] is again a thermal probability, but now restricted to a
particular state taken from the distribution over states QU—®. In this context, a RS
system, characterized by a single state, has QU™ (U= = §(ypU—a) — wl({; ). For
a system in a frozen glassy phase instead, the thermal averages inside each state are
trivial since there is a single frozen configuration, ¥/~% = 0 or 1 meaning that a particle
is present or absent with probability one. Therefore, the relation with the RS order
parameter has the form

QU = 5O + (1 - vl NI 1) 67)

Plugging this expression into the general 1RSB cavity equation, it is found that such an
ansatz is consistent only if the system satisfies the condition that in the cavity recursion,
the variable on a node is completely determined by the values of the variables on the
neighbouring nodes. Such is the case with matchings when p = oo where a particle is to
be assigned to a hyperedge if and only if none of the neighbouring edges are occupied. This
is however not the case in all constraint problems. Consider for instance the 3-colouring
problem where each node is assigned one of three colours with the constraint that its
colour must differ from its neighbours: in the case where all the neighbours have the same
colour, the choice is left for the node between the two other colours. When a variable is
fixed by the value of its neighbours in the cavity recursion, we say that the system has
hard constraints; hard constraints can be shown [41] to indeed be present in the binary
perceptron and in the XOR-SAT model on its core, models where the frozen ansatz applies
too. Finally, we note that in the presence of hard constraints, the cavity fields V=% take
at the 1RSB level values 0 and 1 only, which are associated with 20~% = y and —oo.
This explains the divergences observed when trying to implement the 1RSB population
algorithm at zero temperature with y — oo.

5.3. Distances

As mentioned in section 5.1, a 1RSB glassy system is generally described by two distances,
dy, corresponding to the typical distance between two states, and d;, corresponding to the
typical distance between two configurations inside a common state. In the case of a frozen
1RSB glassy phase, one has however d; = 0 and the structure of low energy configurations
(LECs) is characterized by only one distance, dy. If (n,) denotes the mean occupancy of a
particular hyperedge a, with the average (-) taken over the LECs, the probability for a to
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Figure 9. RS free energies for d = 4 as obtained from the two versions of
the population dynamics algorithm described in appendix A (here with NMpop =
10000 and Njter = 1000). Note that the approximation based on Poissonian
graphs (mean connectivities C' = 100, 120, 160, 200) approaches the solution from
below, while the approximation based on regular graphs (fixed connectivities
K = 30,40, 50,60) approaches it from above. As expected, the two limits C' — oo
and K — oo are found to match.

belong to two different LECs is given by (n,)?. Averaging over the different hyperedges,
it defines the overlap

q = E[(n.)"], (58)

which is directly related to the typical distance between LECs through dy = 1 —¢q. As
argued before, for a system in a frozen glassy phase the distribution of energies of the
LECs is described by the thermal average at 3. in the RS approximation, so that

}/1(00 - 1
YO Y@ T exp(— el — S 2 ))
Averaging over the disorder therefore yields

P )
q = E[(na)3.] = Ee, /H dz? P(aV) <1 + exp (—ﬁc (é“a —~ Zaf(”> )) - (60)

i€a

(na) = (59)

The overlap ¢(/3) is represented for all values of 3 in figure 10 when d = 3; given the value
of 5. obtained before, we get ¢ = ¢(.) = 0.321 £ 0.002.

6. Numerical analysis of finite size systems

The theoretical analysis provided concerned the M — oo limit. How is that limit reached,
and in particular is the convergence exponentially fast in M or is it algebraic? To answer
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Figure 10. Overlap ¢(3) = E[(ny)?] in the 3-index matching as given by
equation (60). In particular ¢(f.) = 0.321 £ 0.002 describes the typical overlap
between two low energy matchings, that is the fraction of hyperedges generically
shared.

such questions, we consider in this section the properties of d-partite matchings when M
is finite; in the absence of other tools, we do this numerically. It should be clear that the
most challenging questions concern the low temperature phase of our system; because of
that, we will focus on the optimum matching and low lying excitations. Even though such
a numerical approach requires sampling the disorder (random instances) and extracting
for instance distributions with inevitable statistical uncertainties, it will give evidence
that our frozen 1RSB ansatz is correct; the comparison between the two approaches is
summarized in table 1. The numerical analysis will also provide some statistical properties
of finite size systems that are of interest on their own.

6.1. The branch and bound procedure

When M is very small, it is possible to enumerate all [M!]9~1 d-partite matchings of a
given sample. Not surprisingly, this becomes unwieldy even when M reaches 10, forcing
us to choose an alternative approach. Since it is the low energy matchings that are of
greatest interest, we have developed a branch and bound algorithm that computes the p
lowest energy matchings, for any given p. Some technical aspects of the algorithm are
presented in appendix B, but the essential elements are as follows.

We represent a matching via a list of M hyperedges, one for each of the M sites of the
first set (recall that there are d sets, each of M sites). Such a representation includes also
some non-legal matchings as some of the sites in the second or higher sets could belong to
more than one hyperedge; if a matching is not legal, it is discarded. This representation
can be mapped onto a rooted tree: each level of the tree is associated with one of the sites
of the first set, while a segment (branch) emerging from a node corresponds to a choice
of hyperedge that contains the site of that node’s level. The root node is associated with
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Table 1. This table sums up the different numerical values for the optimal cost
C@ | critical temperature G, and typical overlap g of d-partite matching problems
with d = 2, 3,4. Exact values are given for d = 2 while for d = 3,4 we confront the
predictions of the cavity method with the results obtained by analysing instances
of small size.

d=2 d=3 d=14

Exact Cav. Num. Cav. Num.
c(@ 72/6 3.126 £0.002 3.09 +0.03 7.703 £0.002 7.224+0.08
Oe 00 0.412 +0.001 0.40540.01 0.135+0.002 0.140 +0.01
q 1 0.321 £0.002 0.325+0.005 0.088£0.002 0.080 =+ 0.005

the first site, the nodes of the next level are associated with the second site etc. This tree
is regular, each node having M9~! outgoing segments as there are that many hyperedges
containing a given site of the first set. Furthermore, it has M + 1 levels: there is one level
for each site of the first set while the last level consists of leaves rather than of nodes;
each leaf corresponds to a candidate matching specified by the list of hyperedges obtained
when going from the tree’s root to that leaf. This list may correspond to a legal matching
or not, but each matching appears exactly once as a leaf. (In fact, there are MM(@-1)
leaves while there are only [M!]?~! legal matchings.)

The principle of the branch and bound algorithm is to find those leaves which satisfy
the desired criterion (the energy must be less than or equal to that of the pth-lowest
energy matching) by exploiting a pruning procedure, thereby avoiding having to explore
all leaves. To begin our pruned search, we produce p distinct legal matchings and put
them into a list £; the largest energy of the matchings in this list is an upper bound Eyg
on the pth energy level for our system. Then we start at the level of the tree’s root and
consider all of its segments; for each choice of segment, the search problem corresponds
to finding matchings on a smaller system with one less site in each of the d sets; the
search can thus be implemented recursively. Suppose we have done k recursions; the
sub-problem is associated with the node on our tree that is obtained by following the
choices of hyperedges in the recursive construction. This node corresponds to a partial
matching in which the first k sites of the first set have each been assigned a hyperedge. An
important property is that all hyperedges have positive energies; then we know that any
matching that is compatible with the current partial matching has an energy greater than
it, thereby providing a lower bound on all the leaf energies obtainable from the current
node. If that lower bound is greater than Fyg, then the sub-tree rooted on the current
node can be pruned (discarded from the search); otherwise, one iterates the recursion
(that is, one performs branching on the different choices of the hyperedge to include at
the present level) and k goes to k4 1. When this process leads to a leaf that corresponds to
a legal matching, we compute the energy E of this matching. If £ < Fyg, we insert that
matching into our list £ and remove its worst element so that it always has p elements;
we also update Fyp which by definition is the largest energy of the matchings in £; in
contrast, if £ > Eyg, we discard the matching (leaf). After a finite number of branchings
and prunings, the algorithm has explored all choices for the segments emerging from the
tree’s root and one is done. The best p matchings are then in the list L.
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Figure 11. Mean ground state energy density as a function of 1/M at d = 3. The
line is the quadratic fit using M > 10 data. Inset: the rescaled standard deviation
of the ground state energy, suggesting a central limit theorem behaviour.

The algorithm without pruning requires O(M*(@=1) operations; with pruning and the
different optimizations sketched in appendix B, the number of operations grows roughly
by a constant factor when M is increased by 1; in particular, for the random instances
studied here and d = 3, this factor is about 2.2.

6.2. Ground state energies

We generated a large number of random samples (disorder instances with the hyperedge
costs taken to be independent uniformly distributed random variables in [0, 1]) and for
each sample determined its ground state. We used several random number generators to
check that our results were robust. Because of the exponential growth of the computation
time with M, in practice we were limited to relatively modest values of M. For the
results presented here and involving only ground states, at d = 3 we used 10 000 samples
for M = 20 and M = 22, while for the smaller values of M we used 20 000 samples. We
also performed runs at d = 4 but with lower statistics because the algorithm becomes less
efficient as d increases; in fact, we were limited to M < 14 for that case and had only
5000 samples for each M.

Let us first focus on the behaviour of the ground state energy. For each sample,
we determine with our branch and bound algorithm the ground state energy density
ep=FEy/ M =M d*QC](\fl[) (cf equation (7)); then we can analyse its mean in our ensemble
or consider other properties of its distribution.

In figure 11 we show how the mean ground state energy density E[eg] changes as
one increases M. The behaviour is roughly linear in 1/M, but by eye one can definitely
see some curvature. Because of this, linear fits do not give good values of x? unless the
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M < 10 data are ignored; for instance, keeping only the M > 10 data, the linear fit gives
3.040(3) as the limiting value with x? = 3.6 for 9 degrees of freedom, while if we use
all the data we obtain 3.021(3) with x* = 32 for 14 degrees of freedom. We have also
tried corrections of the type In(M)/M but this did not work well. Thus we proceed by
considering quadratic fits. In that case, the resulting M = oo intercept does not depend
much on whether one uses all or just the highest values of M. In particular, for all the
data, we get the limiting value 3.046(5) with x? = 9.6 for 13 degrees of freedom, while
using the M > 10 data only one has 3.06(1) with y* = 2.3 for 8 degrees of freedom. (In all
these estimates, the error bars quoted are statistical only, as obtained from the statistical
fluctuations.) We have also considered power fits, namely E[eg] = a + b/M°€. Fitting all
the data gives the limiting value 3.08(1) with x? = 7.2 for 13 degrees of freedom while
keeping only the M > 10 data leads to 3.09(3) with x? = 2.3 for 8 degrees of freedom
(in both cases, the exponent c is close to 0.88). Since these x? are similar to those of
the quadratic fits, we see that the systematic errors are not negligible and are at least of
the same order as the statistical errors; because of these effects, the agreement with the
theoretical value of 3.126 can be considered rather good.

We studied similarly the case d = 4. The data again have positive curvature when
plotted as a function of 1/M, but since we have fewer statistics and a much smaller range
of M, much less precision can be obtained for the large M limit. For the linear fit (M > 9)
we get a limiting value of 6.75(3) with x? = 4.7 for 4 degrees of freedom. For the quadratic
fit (M > 9 again), we get 7.22(8) with x? = 0.37 for 3 degrees of freedom. Finally, for
the power fit we get 10.2(9) with x* = 1.0 for 5 degrees of freedom; the exponent is
¢ = 0.3 which is small and leads to a large upturn for M > 100; clearly that regime is far
beyond our reach and suggests that the power fit is probably inappropriate as non-robust
(note for instance that the uncertainty on the limiting value is far higher here than for
the other fits). The different estimates show that uncertainties arising from systematic
effects (M too small) are severe; instead of the 1% precision we had at d = 3, we have a
precision of at best 10% at d = 4 (compare to the theoretical prediction of 7.703). The
conclusion is that numerics do not teach us much for the case d = 4 and so hereafter we
shall concentrate on the different properties arising when d = 3.

One of the expectations for the d-index matching problem is that the free energy
is self-averaging. Although at present there is no proof of such a property, there is no
reason to expect otherwise; here we are limited by the numerical approach to ground
states, but in that framework we can determine empirically the distribution of energies
in the ensemble of random instances. Figure 12 displays the probability distribution of
the (extensive) ground state energy FEy for several values of M (d = 3). If as expected,
the ground state energy is self-averaging, the relative width of these distributions should
go to zero. We have thus measured the first few moments of these distributions. In the
inset of figure 11, we have plotted the standard deviation ¢ of the ground state energy
divided by /M as a function of 1 /M. Self-averaging corresponds to having o/M — 0;
from the inset we see that o/M?'? goes to a constant at large M so self-averaging holds
and the convergence of the distribution is compatible with a central limit theorem type
of behaviour; such a scaling arises from sums of not too dependent random variables and
leads to a Gaussian limiting shape. To confirm this, we have looked at higher moments:
we find that the skewness and kurtosis of the distributions do indeed decrease, in line with
a central limit theorem type of convergence.
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Figure 12. Distribution of the extensive ground state energy for increasing M
values (from left to right) at d = 3.

Having a limiting Gaussian distribution for Fj is not a consequence of the frozen 1RSB
pattern of replica symmetry breaking since in the random energy model the distribution of
Ey follows a Gumbel distribution; furthermore, in that case the fluctuations in Fy are O(1)
whereas in the matching problem they are O(\/M ). To see why such large fluctuations
are ‘natural’, consider instead of Fy the quantity &, obtained by adding the lengths ¢; of
the shortest hyperedges containing each site ¢ of the first set. This quantity arises in a
greedy algorithm (which does not necessarily generate a legal matching) and clearly one
has Fy < &. The central limit theorem applies to &, so it will have a standard deviation
that grows as v/M and its distribution will become Gaussian at large M. The actual
ground state energy Fj is obtained by allowing hyperedge lengths that are slightly larger
than the ¢;, but this should not suppress the large fluctuations nor prevent the central
limit theorem scaling.

6.3. Other ground state properties

As discussed at the beginning of this paper, one expects the hyperedge containing a given
site in the ground state matching to be one of the shortest possible ones. To investigate
this issue quantitatively, let us order all the hyperedges containing a given site, going from
the shortest to the longest hyperedge. The ‘order’ of a hyperedge is then 1 if it is the
shortest, 2 if it is the next shortest etc. The orders arising in the ground state should
be dominated by the lowest ones, 1, 2, 3,.... Consider thus the frequencies with which
these orders arise; in figure 13 we show the behaviour of these frequencies for increasing
M in the case d = 3. We see that there is a limiting histogram at large M, and that the
lowest orders do indeed dominate. Furthermore, we see that for large k the probability
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Figure 13. Histogram of the occupation probabilities in the ground state of the
hyperedges as a function of their order k (d = 3). (The order is 1 for the lowest
value among those hyperedges containing a given site, 2 for the next lowest value
etc.) At large k, these frequencies approach an exponential law.

of occupation of an edge tends to decrease exponentially with £ (the data are displayed
on a semi-log plot). Note that in the standard matching (d = 2) problem, the decrease
goes as 1/2% exactly, while for our d = 3 case, the exponential decay is only asymptotic;
furthermore, we have found no simple expression giving the decay rate of this exponential.

6.4. Excited states

Let us consider now states above the ground state. Define the excitation energy or ‘gap’
as F1 — Ey where Ej is the extensive ground state energy and E; that of the next lowest
energy state. In figure 14 we show that this random variable has a limiting distribution so
that £y — Ey = O(1) in the large M limit, just as happens in the random energy model.
Furthermore, the distribution is very well fitted by an exponential (cf the curve shown in
the figure).

Following our theoretical conclusions obtained earlier, consider now the overlap
between the ground state and the first excited state. In our frozen 1RSB picture, these
matchings are expected to have a fixed (self-averaging) overlap when M grows. In figure 15
we show the probability distribution of such overlaps for increasing M. We see that there
is a local peak at large overlap that shifts toward ¢ = 1 but which simultaneously decays.
The bulk of the overlaps however arise around ¢ = 0.3 and when M increases we see
that the corresponding peak gets both higher and more narrow. Overall, the behaviour is
compatible with a convergence toward a Dirac peak near ¢ = 0.32, to be compared with
the theoretical prediction ¢. = 0.321.
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Figure 14. Probability density of the gap, 4 — Ejy, that is the energy difference
between the first excited state and the ground state (extensive) energies in the
case d = 3. The curve is a pure exponential to guide the eye.

6.5. Low energy entropy

Finally, consider the density of energy levels. In the case of the random energy model, this
density becomes self-averaging when the excitation energy grows. We have thus computed
the disorder averaged density of levels as a function of the excitation energy, £ — Ey. This
is a measure of the exponential of the microcanonical entropy; within the frozen 1RSB
scenario, it gives the critical temperature via p(E — Eg) ~ exp|f.(F — Ep)]. In figure 16
we display our numerical estimate of p and see that it is very nearly a pure exponential.
From the slope on the semi-log plot we extract (. &~ 0.405; this value should be compared
to the theoretical prediction of 0.412; the agreement is reasonable but not perfect. To
get better agreement, we believe it would be necessary to go to larger M and also to go
further in the self-averaging regime, i.e., to consider larger F — E, which numerically is
an arduous task.

7. Conclusion

We presented an analysis of multi-index matching problems (MIMPs) based on an
adaptation of the cavity method for finite connectivity systems. For the well known
two-index matching problem, our approach provides an alternative derivation of results
previously obtained using the replica and cavity methods. With respect to these older
studies, the present one has the advantages of being closer to the mathematical framework
developed by Aldous, and of allowing replica symmetry breaking effects to be incorporated
in a tractable manner. FExploiting this latter possibility, we predict the value of the
asymptotic minimal cost to be given for d-index matching problems by £@ = egg(3)
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Figure 15. Probability density of the overlap ¢ between the ground state and the
first excited state for increasing M (d = 3).

with egg obtained from equations (29) and (30) and [ satisfying srs(/s) = 0. Formally,
this d > 3 conjecture differs from the case d = 2 (where it is a theorem) in that f; = oo
when d = 2, while G, < oo when d > 3. The distinction between 2-index and d-index
matching problems with d > 3 arises clearly from our analytical and numerical analysis:
in the first case all low cost matchings share most of their hyperedges, while in the second
case they differ from each other by a finite fraction of their hyperedges. In mathematical
terms, the essential uniqueness property does not hold when d > 3 or in physical terms
replica symmetry must be broken. Extending Aldous’s framework to rigorously account
for this fact and providing a proof of our conjecture for d > 3 seems to us a particularly
interesting mathematical challenge.

From a physical perspective, the qualitative difference between 2-index and d-index
matchings problems with d > 3 hinges on the presence at low temperature of a glassy
phase. This is similar to the difference that has been found between the 2-SAT and
2-colouring problems, which are polynomial, and the K-SAT and g¢-colouring problems
with K > 3 and ¢ > 3, which are NP-complete. At variance with SAT or colouring
problems, the nature of the glassy phase of MIMPs is however simpler, as it is made of
isolated configurations instead of separate clusters of many configurations. We termed
this phase a ‘frozen 1RSB glassy phase’ and attributed it to the nature of the constraints,
called hard constraints. As a technical consequence of this distinctive feature, a particular
frozen 1RSB ansatz has to be implemented. Such an ansatz has repeatedly been used in
the literature as a convenient (but rarely justified) substitute for the more complicated
general 1RSB ansatz; our discussion on the role of hard constraints provides a clarification
of its conditions of validity which we believe is of general interest for the investigation of
glassy phases in other systems. Finally, past studies of SAT and colouring problems have
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Figure 16. Density of energy levels, measured from the ground state energy. At
low energies (before finite size effects dominate), this density grows exponentially
as exp|f.(E — Ey)], thereby giving the model’s critical temperature. Shown is
the case d = 3 for M = 10.

shown how the cavity framework could serve as a basis for developing efficient algorithms
for analysing single instances and finding low energy configurations [4,5]: as matchings
present a number of differences from the problems studied so far, it would be particularly
interesting to investigate whether such an approach can also be successfully implemented
with MIMPs.
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Appendix A: Population dynamics algorithm

Here we give a short description of the population dynamics algorithm we used to solve
the RS cavity equations. We implemented two different versions, corresponding to the
two different cut-off procedures mentioned in the text, associated either with Poissonian
(algorithm P) or with regular graphs (algorithm R). In addition to the inputs d and f3, the
algorithm has essentially three parameters: the mean degree of the nodes, C' (algorithm
P) or K (algorithm R), the size of the population, N,op, and the number of iterations
Niter- The common structure of the two algorithms is the following:

e Initialize with random values a population of cavity fields z[i], i = 1,..., Npop.
e Do Npans = 100 times: Update().
e Do N times: Update() and Measure().
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The first loop allows the system to equilibrate toward the stationary distribution. The
subroutine Update() depends on the cut-off procedure and can be schematically described
as follows:

Do Npep times:

e Draw k either at random with a Poissonian distribution of mean C' (algorithm P), or
take k = K (algorithm R).

e Draw costs {&,}a=1,.  either independently with the uniform distribution in [0, C]
(algorithm P), or according to a Poisson process with rate 1 (algorithm R).

e Draw at random k(d — 1) members of the population and use them together with the
&, to compute a new field zy according to equation (22).

e Draw at random one member of the population and replace its cavity field value with
Zg.-

The subroutine Measure() is implemented similarly and computes the free energy
according to equations (27) and (28). The final output for the free energy is obtained by
averaging over the N, iterations, while the fluctuations across iterations are used to check
convergence. The algorithm must be run for increasing values of C' or K to extrapolate
the C' — oo (algorithm P) or K’ — oo (algorithm R) limit, requiring one to consider larger
and larger population sizes Ny, to obtain reliable results. Taking this limit is however
facilitated by the numerical observation that the Poissonian approximation (algorithm
P) approaches the solution from below while the regular approximation (algorithm R)
approaches it from above; this is illustrated in figure 9 with d = 4. We refer the reader
to the captions of the various figures for typical choices of the parameters C', N, and
Niter- The numerical results we obtained for d = 2 are consistent with the exact solution,
B = oo and frs(3.) = 72/12, and are the following for d = 3, 4:

d=3 B.=0412+0.001,  frs(3.) = 1.042 4 0.0003,

Al
d=4 B, =0135+0.002,  frs(B.) = 1.925 % 0.0006. (A1)

The free-energy densities are given here for simple matching problems and their
counterparts for d-partite matchings are obtained by multiplying the values by d.

We have also implemented the generalization of this algorithm to solve the 1RSB
cavity equations (50) and used it to check that no discontinuous transition occurs prior
to the entropy crisis (see [27] for algorithmic details).

Appendix B: Aspects of the branch and bound algorithm

Our objective is to solve d-partite matching problems at sufficiently large M so that an
extrapolation to the M — oo limit can be performed without too much uncertainty.
For many problems (satisfiability, colouring etc), one prefers an easily implementable
algorithm such as one in the class of ‘heuristic’ algorithms; in such approaches one
performs a fast search for the ground state but no guarantee is provided that the global
optimum will be found. Examples of these algorithms are simulated annealing and variable
depth local search. Heuristic algorithms typically attempt to move towards regions of
lower energy by searching in the neighbourhood of a current configuration. However,
since the search is local, such an approach is bound to break down for problems in
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which the frozen 1RSB scenario applies. This fact pushed us towards the development
of an ‘exact’ algorithm capable of delivering a certificate of optimality of the proposed
ground state. Amongst exact algorithms, enumeration can be discarded because it is
much too slow; ‘branch and bound’ gets around this problem through pruning of the
enumeration/search. There are also other possible methods such as ‘branch and cut’, but
these require an in depth understanding of polytopes and rely on separation procedures
which have not yet been developed for MIMP. Note that in all exact methods, the key to
efficiency is having good bounds; fortunately MIMPs are relatively well adapted to such
a strategy.

We already discussed in the main text our choice of representation of matchings and
partial matchings. Given a partial matching of the first k sites of the first set, we have
to solve a MIMP with M — k sites and so the algorithm can be implemented recursively.
Since at each node we need to consider all of its possible branchings (naively, there are
(M — k)41 of these), it is useful to order these branchings according to the length of
the corresponding hyperedges, going from short to long. Rather than recompute these
orderings dynamically every time the partial matching changes, we do it once and for all
at the initialization of the program. This allows for speed but it must be compensated
by a rapid determination of whether a given hyperedge is allowed; for that we use a data
structure which tells us for each site of each set whether it is matched (belongs to one
of the occupied hyperedges). This structure is updated whenever a partial matching is
extended or reduced.

The pruning of the search must be as stringent as possible, and this depends on the
quality of the bounds. Our simplest bound B is just the current partial matching’s energy
Ej: if that energy is higher than Eyg (the upper bound Eyp as defined in section 6.1),
then the whole sub-tree below the current node can be pruned. A better bound is B,
obtained by adding to E} the sum over each remaining unmatched site of the first set of
the shortest hyperedge containing that site. This sum can be precomputed and tabulated.
A still better bound is B3 obtained as By but where now one takes for each site the shortest
hyperedge that is compatible with the current partial matching. This bound cannot be
predefined once and for all and is slow to compute. Since we have found it to be useful
for pruning, we have optimized its determination by noticing that it can be tabulated
and modified incrementally: every time the partial matching is extended (a hyperedge
is added), we perform the search for the compatible hyperedges of each unmatched site
starting from the index (order) previously found to be compatible. When backtracking,
one has to remove a hyperedge and there we simply go back to the tables we had at that
level: in effect, we maintain efficiency if we assign tables at each level and follow their
updating one step at a time.

The rates of pruning are very different for the three bounds, and we found that a
good strategy (for balancing pruning rate and computation time) was to apply the three
bounds successively: if the first one does not prune, one goes on to the second one and
so forth. To speed up the computation further, we found it useful to implement the
recursivity of the program in a limited mode only: the data structures are set up once
and for all at initialization time, the hyperedges are ordered once and for all too and then
the recursion is used mainly to go through the branchings and to maintain the tables.
Efficiency is gained as no reorganization of the instance (hyperedge weights) is performed,
and in particular no ‘smaller matching problem’ is ever defined explicitly.
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