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1. Introduction

Constraint satisfaction networks (CSN) are problems involving many discrete variables,
with values in a finite alphabet, related by low density constraints: each constraint involves
a finite number of variables. Such problems arise in many branches of science, from
statistical physics (spin or structural glasses [1]) to information theory (low density parity
check (LDPC) codes [2, 3]) and combinatorial optimization (satisfiability, colouring [4]).
The ‘thermodynamic limit’ of such problems is obtained when the number of variables
and the number of constraints go to infinity, keeping their ratio, the density of constraints
α, fixed. A lot of attention has been focused in recent years on the study of random
CSN, both because of their practical interest in coding, and also as a means to study
‘typical case’ complexity (as opposed to the traditional worst case complexity analysis).
Many CSN are known to undergo a SAT–UNSAT phase transition when the density
of constraints increases: there is a sharp threshold separating a SAT phase where all
constraints can be satisfied with probability 1 in the thermodynamic limit from an UNSAT
phase where, with probability 1, there is no configuration of the variables satisfying all
the constraints. While the existence of a sharp threshold has been proved by Friedgut [5]
for satisfiability and colouring, there is not yet any rigorous proof of the widely accepted
conjecture according to which the threshold density of constraints converges to a fixed
value αc in the thermodynamic limit.

Recent years have seen an upsurge of statistical physics methods in the study of
CSN. In particular, the replica method and the cavity method have been used to study
the phase diagram [6]–[8]. Their most spectacular results are some arguably exact (but
not yet rigorously proved) expressions for αc and the existence of an intermediate SAT
phase, in a region of constraint density ]αd, αc[, where the space of solutions is split into
many clusters, far away from each other. This clustering is an important building block
of the theory: it is at the origin of the necessity to use the cavity method at the so-called
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one-step replica symmetry breaking (1RSB) level; this method can be seen as a message-
passing procedure and used as an algorithm for finding a SAT assignment of the variables.
This algorithm, called survey propagation, turns out to be very powerful in satisfiability
and colouring, and its effectiveness can be seen as one indirect piece of evidence in favour
of clustering. On intuitive grounds, clustering is often held responsible for blocking many
local search algorithms [9]. Although there does not exist any general discussion of this
statement, this phenomenon was thoroughly investigated in the case of XORSAT [23].

The clustering effect can be studied in a more formal way by introducing the notion
of x-satisfiability [10, 11]. A CSN with N variables is said x-satisfiable (x-SAT) if there
exists a pair of SAT assignments of the variables which differ in a number of variables,
∈ [Nx − ε(N), Nx + ε(N)]. Here x is the reduced distance, which we keep fixed as N
goes to infinity. The resolution ε(N) has to be sublinear in N : limN→∞ ε(N)/N = 0,
but its precise form is unimportant for our large N analysis. For example we can choose
ε(N) =

√
N . For many random CSN, it is reasonable to conjecture, in parallel with the

existence of a satisfiability threshold, that x-satisfiability has a sharp threshold αc(x) such
that:

• if α < αc(x), a random formula is x-SAT almost surely;

• if α > αc(x), a random formula is x-UNSAT almost surely.

This conjecture has been proposed for k-satisfiability of random Boolean formulae where
each clause involves exactly k variables with k ≥ 3. So far only a weaker conjecture,
analogous to Friedgut’s theorem [5], has been established [11]. It states the existence of

a non-uniform threshold α
(N)
c (x). Rigorous bounds on αc(x) have been found in [11] for

the k-satisfiability problem with k ≥ 8, using moment methods developed in [12], but so
far this x-satisfiability threshold has not been computed.

In this paper we compute the x-satisfiability threshold αc(x) in the random XORSAT
problem using the cavity method. This is a problem of random linear equations with
Boolean algebra. It is important because many efficient error correcting codes are based
on low density parity checks, the decoding of which involves precisely such linear systems.
It is also one of the best understood cases of CSN. In particular, efforts to extend the
replica method [13] and the cavity method [14] to deal with models defined on finite-
connectivity lattices have resulted in the first exact (but non-rigorous) derivation of its
phase diagram [15]. Later, a clear characterization of these clusters, combined with simple
combinatoric arguments, gave a rigorous basis to these predictions [16]–[18]. These works
have computed the phase diagram in detail and provide expressions for the two thresholds
αd < αc < 1.

Our computation of αc(x) confirms this known structure, and it also provides insight
into the geometrical structure of clusters. We find that αc(x) is non-monotonic (see
figure 5), which confirms the existence of gaps in distances where there do not exist any
pairs of solutions.

The method used in our computation is in itself interesting. It turns out that it is not
possible to compute αc(x) directly, by fixing x and varying α. Instead, we work at a fixed
value of α and introduce a probability distribution for pairs of SAT assignments, where
the distance between the solutions plays the role of the energy. The computation of the
entropy as a function of the energy, and more precisely the computation of the energies
where it vanishes, then allows one to reconstruct αc(x). Our computation thus involves a
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mixture of hard constraints (the fact that the two assignments must satisfy the XORSAT
formula) and soft constraints (the Boltzmann weight which depends on their distance).
This is reflected in the structure of the cavity fields that solve this problem.

The remainder of this paper is organized as follows. The next section introduces some
notation. In section 3, we analyse classical survey propagation on XORSAT and show
its equivalence with the ‘leaf removal’ [18] or ‘decimation’ [16] algorithm. This analysis
allows one to re-derive the phase diagram of XORSAT and sets up useful notation and
concepts for later computations. In section 4 we perform a statistical mechanics analysis
of weight properties in a single cluster using the cavity method. Section 5 applies this
formalism to the computation of the cluster diameter, while section 6 is devoted to the
evaluation of inter-cluster distances. In section 7 we sum up and discuss our results.

2. Notation and definitions

An XORSAT formula is defined on a string of N variables x1, x2, . . . , xN ∈ {0, 1} by a set
of M parity checks of the form∑

i∈V (a)

xi = ya (mod 2), for all a = 1, . . . , M (1)

where ya ∈ {0, 1}. Here V (a) ⊂ {1, . . . , N} is the subset of variables involved in parity
check a. Later on i ∈ a will be used as shorthand for i ∈ V (a).

Equation (1) can be rewritten in the matrix form

Ax = y (mod 2), A = {Aia}i∈[N ], a∈[M ] (2)

where Aia = 1 if i ∈ a and Aia = 0 otherwise. The pair F = (A,y) defines the formula.
Such a linear system can be solved in polynomial time by Gaussian elimination. If a
formula has solutions, it is SAT; otherwise, it is UNSAT. The thermodynamics limit is
N → ∞, M → ∞ with a fixed density of constraints α = M/N .

In this paper we specialize to random k-XORSAT formulae, where each equation
involves a subset of k variables, chosen independently with uniform probability among
the

(
N
k

)
possible ones, and each ya independently takes value 0 or 1 with probability

1/2. One important characterization of a XORSAT formula F = (A,y) is the number
NN(F ) of assignments of the Boolean variables x which satisfy all the equations, and the
corresponding entropy density

sN(F ) =
1

N
logNN(F ) (3)

The logarithm is base 2 throughout the paper. Using a spin representation σi = (−1)xi,
the k-XORSAT problem can also be mapped onto a spin glass model where interactions
involve products of k spins (the variables (−1)ya then play the role of quenched random
exchange couplings) [15], and the question of whether a formula is SAT is equivalent to
asking whether the corresponding spin glass instance is frustrated.

Previous work [15]–[18] has shown that:

• For α < αd(k), the formula is SAT, almost surely (i.e. with probability →1 as
N → ∞). The solution set forms one big connected component, and the entropy
density concentrates at large N to (N − M)/N = 1 − α; this phase is called the
EASY-SAT phase.
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• For αd(k) < α < αc(k), the formula is still SAT almost surely, but the solution set
is made of an exponentially large (in N) number of components far away from each
other (in the following we shall give a precise definition of these clusters); the entropy
density also concentrates at large N to (N −M)/N = 1−α. This is the HARD-SAT
phase.

• For α > αc(k) (with αc(k) < 1), the formula is UNSAT almost surely. The entropy
is −∞. This second transition is the usual SAT–UNSAT transition.

The fact that, throughout the SAT phase (α < αc(k)), the entropy density
concentrates to 1 − α is not surprising: it can be understood as the fact that matrix
A has rank M almost surely in the SAT phase. The intuitive reason is that, each time
there exists a linearly dependent set of checks, the choice of ya has probability 1/2 of
leading to a contradiction. So the rank of A cannot differ much from M in the SAT
phase. From the point of view of linear algebra, the existence of the clustered phase, i.e.
the fact that the vector subspace of SAT assignments breaks into disconnected pieces, is
more surprising, as is the discontinuity of sN(F ) at the transition αc. These two aspects
are in fact related: the quantity which vanishes at the SAT–UNSAT transition is actually
the log of the number of clusters of solutions, while each cluster keeps a finite volume.

We will study the geometric properties of the space of solutions for random
k-XORSAT in the HARD-SAT phase using the notion of x-satisfiability. In terms
of solutions of linear equations, we want to know whether there exist two Boolean
vectors x and x′ which both satisfy Ax = Ax′ = y, where the Hamming distance
dx,x′ ≡ (x−x′)2 = Nx. Clearly, if such a pair exists, x−x′ is a solution to the homogeneous
(‘ferromagnetic’) problem where y = 0:

A(x − x′) = 0. (4)

Therefore, a formula F = (A,y) is x-SAT if and only if F is SAT and if there exists a
solution x to the homogeneous system Ax = 0 of weight dx,0 ≈ Nx (the weight is by
definition the distance to 0). Note that for x = 0, this second condition is automatically
fulfilled and x-satisfiability is equivalent to satisfiability. This linear space structure also
implies that the set of solutions looks the same seen from any solution in the SAT phase:
the number of solutions at distance d of any given solution x0 is independent from x0.

Distance properties can also be investigated directly by evaluating extremal distances
between solutions. To that end we define three distances: (a) the cluster diameter d1,
i.e. the largest Hamming distance between solutions belonging to the same cluster; this
diameter is independent of the cluster; (b) the minimal and maximal inter-cluster distances
d2 and d3, i.e. the smallest and largest, respectively, Hamming distance between solutions
belonging to distinct clusters. All three distances are assumed to be self-averaging in
the thermodynamic limit of the random problem: x1(α) = d1/N , x2(α) = d2/N and
x3(α) = d3/N will denote the corresponding limits. In the particular case where k is even,
the formula is invariant under the transformation x ↔ x + 1 (mod 2), which is reflected
in terms of distances by a symmetry with respect to x = 1/2: x ↔ 1 − x. A direct
consequence is that x3(α) = 1−x2(α), and that a fourth weight, defined as 1−x1(α), will
also come into play. These distance functions are related to the x-satisfiability threshold
as follows: at fixed α, a formula is x-SAT almost surely iff

• x ∈ [0, x1(α)] ∪ [x2(α), x3(α)] when k is odd;
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• x ∈ [0, x1(α)] ∪ [x2(α), 1 − x2(α)] ∪ [1 − x1(α), 1] when k is even.

We will now compute x1, x2, x3 with the cavity method.

3. Leaf removal as an instance of survey propagation

XORSAT formulae are conveniently represented by factor graphs, called Tanner graphs,
in which variables and checks form two distinct types of node, with the simple rule that
the edge (i, a) between i and a is present if i ∈ a.

An example of a Tanner graph and its associated linear system is shown below:

(a) x1 + x2 + x3 = 0 (mod 2)
(b) x2 + x3 = 1 (mod 2)
(c) x2 + x3 + x4 = 1 (mod 2).

2

1

3

4 c

b

a

The number of variables involved in a check a, denoted by |V (a)|, is the degree of a
in the factor graph. Here we study k-XORSAT where this degree is fixed at k. Similarly,
if V (i) denotes the set of parity checks in which i is represented, |V (i)| is the degree of i
in the factor graph. The degrees of checks are commonly referred to as right-degrees and
those of variables as left-degrees. The infinite-length (thermodynamic) limit is obtained
by sending N and M to infinity while keeping the ratio α = M/N fixed. In this limit, the
distribution of left-degrees is a Poisson law of parameter kα: the probability of a variable
having degree � is πkα(�), where πx(�) = exp(−x)x�/�!.

Here we use the leaf removal algorithm (LR) in order to obtain a precise definition
of the notion of ‘cluster’ or ‘component’ of solutions, one which is valid also for finite N .
The algorithm proceeds as follows: pick a variable of degree 1 (called a leaf ), remove it as
well as the only check it is connected to. Continue the process until there remains no leaf.
The interest of this algorithm is easily seen: a variable on a leaf can always be assigned
in such a way that the (unique) check to which it is connected is satisfied.

The linear system remaining after leaf removal is independent of the order in which
leaves are removed. It is called the core. A ‘core check’ is a check which only involves core
variables. If the core is empty, the problem is trivially SAT. In general, given a solution
of the core, one can easily reconstruct a solution of the complete formula by running leaf
removal in the reverse direction, in a scheme which we refer to as leaf reconstruction. In
this procedure, checks are added one by one along with their leaves, starting from the core.
If an added check involves only one leaf, the value of that variable is determined uniquely
so that the check is satisfied. If the number of leaves k′ is greater that 1, one can choose
the joint value of those leaves among 2k′−1 possibilities. The process is iterated until the
complete factor graph has been rebuilt. Given a core solution, one can construct many
solutions to the complete formula. Variables which are uniquely determined by the core
solution are called frozen, and variables that can fluctuate are called floppy. Of course,
by definition, the frozen part includes the core itself. A core solution defines a cluster.
All solutions built from the same core solution belong to the same cluster. We shall see
later how this definition fits in the intuitive picture that we sketched previously in terms
of connectedness.
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We propose here an alternative to the leaf removal algorithm, which also builds the
core, but keeps actually more information. The approach is inspired by the cavity method,
and is a special instance of survey propagation (SP) [7]. To each edge (i, a) one assigns
two numbers m̂t

a→i and mt
i→a belonging to {0, 1}, updated as follows:

• At t = 0, m̂0
a→i = 1, m0

i→a = 1 for all edges (i, a).

• mt+1
i→a = 1 −

∏
b∈i−a(1 − m̂t

b→i).

• m̂t
a→i =

∏
j∈a−i m

t
j→a.

• Stop when m̂t+1
a→i = m̂t

a→i for all (i, a).

Here a ∈ i is a shorthand for a ∈ V (i).
The interpretation of mt

i→a = 1 is: ‘variable i is constrained at time t in the absence
of check a’, and m̂t

a→i = 1: ‘check a constrains variable i at time t’. One also defines
M t

i = 1 −
∏

a∈i(1 − m̂t
a→i) ∈ {0, 1}. This number indicates whether node i is constrained

at time t (M t
i = 1) or not (M t

i = 0).
At t = 0, all variables are constrained. The algorithm consists in detecting the

underconstrained variables and propagating the information through the graph to simplify
the formula. At the first step, only variables of degree 1 are affected: if i is of degree 1
and is connected to a, m1

i→a = 1 −
∏

∅ = 0. This, in turn, gives freedom to a, which no
longer constrains its other variables: m̂1

a→j = 0, for j ∈ a − i. This effectively removes a
and i from the formula, just as in the leaf removal algorithm. In the subsequent steps of
the iteration, there will be considered as a leaf (in the LR sense) a variable i such that
there exists exactly one a ∈ i such that m̂t

a→i = 1. In that case we have mt+1
i→a = 0, thus

implementing a step of LR.
Let us add a word about the term ‘survey propagation’ we have used so far. Analysis of

the 1RSB cavity equations at zero temperature [18] (see [7] for a more complete discussion
in the case of k-SAT) shows that cavity biases fall into two categories, depending on
the edge we consider: either a warning is sent (compelling taking the value 0 or 1
depending on the cluster, with probability a half for each), or no warning is sent. (In
more technical terms, the survey propagation reduces to warning propagation.) The first
situation corresponds in our language to m̂a→i = 1 and the second to m̂a→i = 0. Similarly,
we have mi→a = 1 if the cavity field is non-zero and mi→a = 0 otherwise. Therefore our
algorithm carries the same information as survey propagation.

The interest of SP over leaf removal is that it keeps track of the leaves which are
uniquely determined by their check. For example, if two or more leaves are connected
to the same check a at time t, at time t + 1 one has m̂t+1

a→i = 0 for all i ∈ a, reflecting
the fact that a cannot uniquely determine the value of several leaves. Conversely, if a is
connected to a unique leaf i and if one has mt

j→a = 1 for all j ∈ a − i, then one gets
m̂t

a→i = 1, reflecting the fact that, the variables {xj}j∈a−i being fixed in the absence of a,
i is determined uniquely.

A little reasoning shows that when the algorithm stops (t = tf), i is frozen iff
M tf

i = 1, and i belongs to the core iff there exist at least two checks a, b ∈ i such
that m̂tf

a→i = m̂tf
b→i = 1. In the final state, we say that the directed edge i → a is frozen

if mi→a ≡ mtf
i→a = 1 and that a → i is frozen if m̂a→i ≡ m̂tf

a→i = 1. In the opposite
case, edges are called floppy (see figure 1). This version of SP is strictly equivalent to
the belief propagation algorithm used for decoding low density parity check codes on the
binary erasure channel, also called the ‘peeling decoder’ in that context.
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Figure 1. An example of a fixed point of SP. Circles represent variable nodes,
and squares check nodes. An arrow means that message m or m̂ has value 1,
that is, that the directed edge is frozen when SP stops. Leaf removal propagates
null messages from the outer leaves down to the core, while ‘leaf reconstruction’
propagates non-null messages from the core up the frozen part.

SP can be studied by density evolution in order to derive the phase diagram, as in [18].
Let us briefly survey this study for completeness. The statistics of messages at time t is
described by two numbers:

vt =
1

Mk

∑

(i,a)

δ(mt
i→a, 0), wt =

1

Mk

∑

(i,a)

δ(m̂t
a→i, 0), (5)

where the sums run over all edges of the Tanner graph. When N → ∞, these densities
are governed by evolution equations:

vt+1 =
∑

�

πkα(�)(wt)� = exp
[
−kα(1 − wt)

]

wt = 1 −
[
1 − vt

]k−1
,

(6)

which are initialized with v0 = w0 = 0. These equations are exact if the Tanner graph
is a tree. In our case the graph is locally tree-like (it is a tree up to finite distance when
seen from a generic point) and one could set up a rigorous proof of (6) using the methods
developed in [19].

The fixed point of these equations is given by the cavity equation:

w = 1 −
{
1 − e−kα(1−w)

}k−1
. (7)

Setting λ = kα(1 − w), equation (7) can be rewritten as

λ = kα(1 − e−λ)k−1 (8)
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When α < αd, the unique fixed point is λ = 0 (i.e. w = 1). This means that the core
is empty. For α > αd however, there remains an extensive core of size

Nc = N

[
∑

�≥2

πkα(�)(1 − w� − �w�−1)

]
= N

[
1 − (1 + λ)e−λ

]
(9)

while the number of frozen variables is

Nf = N

[
∑

�≥2

πkα(�)(1 − w�)

]
= N

[
1 − e−λ

]
. (10)

The number of core checks is

Mc = M(1 − v)k = αN
[
1 − e−λ

]k
. (11)

The left-degree distribution (with respect to core checks) inside the core is given by
a truncated Poissonnian:

Pc(�) =
1

eλ − 1 − λ

λ�

�!
I(� ≥ 2), (12)

where I is the indicator function.
One can show that the leaf removal algorithm conserves the uniformity of the

ensemble. Therefore, the core formula is a random XORSAT formula with right-degree
k and left-degree distribution Pc(�) given by (12). The number of solutions to such a
formula is known to concentrate to its mean value when the size goes to infinity [17, 18].
In the case of the core formula, this number is simply 2Nc−Mc if Nc ≥ Mc and 0 otherwise.
Recalling that the complete formula has solutions if and only if the core formula does, we
find that the SAT–UNSAT threshold αc is given by the equation

1 − (1 + λ)e−λ = α
[
1 − e−λ

]k
. (13)

The number of clusters is characterized by the complexity or configurational entropy, that
is the logarithm of the number of core solutions:

Σ(α) =
1

N
log(#clusters) =

Nc − Mc

N
= 1 − (1 + λ)e−λ − α

[
1 − e−λ

]k
. (14)

We recall that the group structure of the solution set implies that all clusters have the
same internal structure. Their common internal entropy is therefore given by

sinter = 1 − α − Σ(α) (15)

where we have used the fact that the total entropy is 1 − α.
Let us comment on the relationship between our definition of clusters and the more

traditional one. Usually, clusters are defined as the ‘connected’ components of the solution
set, where connectedness is to be understood in the following way: two solutions are
connected if one can go from one to the other by a sequence of solutions separated by
a finite Hamming distance (when N → ∞). To make contact with our own definition
of clusters, one needs to prove two things. First, that two solutions built from the same
core solution are connected. Second, that two core solutions are necessarily separated by
an extensive Hamming distance (≥cN , with c constant), which implies that two solutions
built from two distinct core solutions are not connected. Both proofs can be found in [18].
This reconciles our definition (which holds for any single instance of XORSAT) with the
usual one (which only makes sense for infinite-length ensembles).
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4. Distance landscape: thermodynamical approach

As we have already observed, studying pairs of solutions is equivalent to studying solutions
to the ferromagnetic problem. Indeed, if S denotes the affine subspace of solutions to
Ax = y, and S0 the vector subspace of solutions to Ax = 0, we have

S × S = {(x′,x′ + x), (x′,x) ∈ S × S0}. (16)

In particular, distances in S are reflected by weights in S0. Therefore, in order to study
the range of attainable distances between solutions, one just needs to study the range of
possible weights in S0. To that end we set a thermodynamical framework in which the
weight plays the role of an energy:

E(x) ≡ |x| =
∑

i

δxi,1. (17)

The Boltzmann measure at temperature β−1 is thus defined by

P(x, β) =
1

Z(β)

∏

a

δF2

(
∑

i∈a

xi, 0

)
2−β|x| (18)

where the normalization constant Z(β) is the partition function. The Dirac delta function,
here defined on the two-element field F2, enforces that only configurations of S0 are
considered. Remarkably, this measure is formally similar to the one used to infer the
most probable codeword under maximum-likelihood decoding in low density parity check
(LDPC) codes on the binary symmetric channel [20]. In fact, as we shall see soon, some
of the methods used to solve both problems share common aspects.

A very useful scheme for estimating marginal probabilities in models defined on sparse
graphs is the cavity method [14], which we have already mentioned in the previous section.
Let px

i→a be the probability that xi = x under the measure defined by (18), where the link
(i, a) has been removed. The replica symmetric (RS) cavity method consists in computing
the cavity marginals px

i→a (viewed as variable-to-check messages) using a closed set of
equations where check-to-variable messages are also introduced as intermediate quantities.
These second-kind messages are denoted by qx

a→i and are proportional to the probability
that xi = x when i is connected to a only. Messages are updated until convergence occurs
with the following rules:

pxi
i→a =

1

Zi→a

∏

b∈i−a

qxi
b→i2

−βδxi,1 (19)

qxi
a→i =

∑

{xj}j∈a−i

∏

j∈a−i

p
xj

j→a δF2

(
∑

j∈a

xj , 0

)
(20)

where Zi→a is a normalization constant. When convergence is reached, marginal
probabilities are obtained as

pxi
i ≡

∑

{xj}j �=i

P(x, β) =
1

Zi+a∈i

∏

a∈i

qxi
a→i2

−βδxi,1 (21)

where Zi+a∈i is also a normalization constant. Continuing the analogy with codes, it is
interesting to note that these cavity equations are identical [21] to the belief propagation
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(BP) equations [22] used to decode messages with LDPC codes on the binary symmetric
channel.

It turns out that cavity equations (19), (20) do not admit a unique solution, as one
would expect if the system were replica symmetric. Instead, let us show that they admit
exactly one solution for each cluster. In a given cluster denoted by c, let us denote by
ci the value of a frozen variable i. There exists a solution to (19), (20), where, for every
frozen variable i,

px
i→a = δx,ci

if i → a frozen,

qx
a→i = δx,ci

if a → i frozen.
(22)

In order to show that this is a solution, let us use the SP messages, which provide
information on how the fixing of the core solution forces the values of frozen variables. For
example mi→a = 1 indicates that xi is entirely determined by the core solution, supposing
that the edge (i, a) has been removed. Consider the SP fixed point relations

m̂a→i =
∏

j∈a−i

mj→a,

mi→a = 1 −
∏

b∈i−a

(1 − m̂b→i).
(23)

They are in fact contained in the cavity equations (19), (20). In fact, the iteration of
cavity equations allows one to identify the frozen edges, irrespectively of the cluster the
system falls into.

But the cavity equations also contain ‘fluctuating’ messages, where px and qx are in
]0, 1[, which are de facto restricted to the floppy part. We parametrize them by the cavity
fields and biases:

βhc
i→a = log

p0
i→a

p1
i→a

, βuc
a→i = log

q0
a→i

q1
a→i

(24)

which satisfy the equations

hc
i→a =

∑

b∈i−a

uc
b→i + 1 with i → a floppy, (25)

βuc
a→i = 2 arctanh

⎡

⎣
∏

j∈anf−i

tanh(βhc
j→a/2)

∏

j∈af−i

(−1)cj

⎤

⎦ with a → i floppy, (26)

where af (resp. anf) is the set of neighbours i of a such that i → a is frozen (resp. floppy).
Note that cavity messages hc

i→a and uc
a→i now depend explicitly on the cluster considered,

and are uniquely determined by it.
The multiplicity of solutions to RS cavity equations is a clear sign that the replica

symmetry is broken. The main lesson from this discussion is that solutions can fluctuate
according to two hierarchical levels of statistics: the first level deals with fluctuations
inside a single cluster, i.e. fluctuations on the floppy part, while the second level deals
with the choice of the cluster. The reduced cavity equations (25), (26) correctly describe
the first level1, when the system is forced to live in cluster c. This leads to defining a

1 Although the RS ansatz is unable to describe the whole system, it can reasonably be assumed to be valid on a
single cluster.
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new probability measure and partition function, restricted to c:

Zc(β) =
∑

x∈c

2−β
∑N

i=1 δxi,1. (27)

By construction, this system is characterized by the fixing of the frozen edges (22) and by
the reduced cavity equations (25), (26). The second level of statistics, i.e. the statistics
over the clusters, is appropriately handled by a 1RSB calculation and will be the subject
of section 6. We first focus on the properties of single clusters under the measure defined
by (27).

The cavity method comes with a technique for estimating the log of the partition
functions, also called the potential in our case:

φ(β) = − 1

N
log Z(β). (28)

(Note that this quantity differs from the usual free energy by a factor β.) It can be
computed within the RS ansatz using the Bethe formula [21]:

Nφ(β) =
∑

i

Δφi+a∈i − (k − 1)
∑

a

Δφa (29)

where

Δφi+a∈i = −logZi+a∈i = −log
∑

xi

∏

a∈i

qx
a→i2

−βδxi,1

Δφa = −log
∑

{xi}i∈a

∏

i∈a

pxi
i→a δF2

(
∑

i∈a

xj , 0

)
.

(30)

This formula has a rather simple interpretation: Δφi+a∈i is the contribution of i and its
adjacent checks to the potential. When these contributions are summed, each check is
counted k times, whence the need to subtract k − 1 times the contribution of each check
Δφa. Also note that this expression is variational: it is stationary in the messages {pi→a}
as soon as the cavity equations (19), (20) are satisfied.

The RS ansatz is valid in a single cluster. The single cluster potential φc(β) =
−(1/N) log Zc(β) can therefore be computed by plugging equations (22), (25) and (26)
into the Bethe formula (30), provided one uses the messages corresponding to one given
cluster c. When one is restricted to a single cluster c, the range of possible weights is
[xc, Xc]. The minimal and maximal weights can be obtained by sending β → ±∞. For
β → ∞, the second cavity equation (26) simplifies to

uc
a→i = S

⎛

⎝
∏

j∈anf−i

hc
j→a

∏

j∈af−i

(−1)cj

⎞

⎠ min
j∈anf−i

|hc
j→a| with a → i floppy (31)

where S(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0.
The ‘ground state energy’, i.e. the minimal weight in c, is obtained as

xc = lim
β→∞

∂βφc(β) =
1

N

N∑

i floppy

1 − S
(∑

a∈i u
c
a→i + 1

)

2
+

1

N

∑

i frozen

δci,1. (32)
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The β → −∞ limit yields very similar equations. These equations will be analysed in the
next section.

Let us also write down the equations giving the potential, which will be used in
section 6:

Nφc(β) =
∑

i

Δφc
i+a∈i − (k − 1)

∑

a

Δφc
a (33)

lim
β→∞

1

β
Δφc

i+a∈i ≡ Δxc
i+a∈i, lim

β→∞

1

β
Δφc

a ≡ Δxc
a with (34)

Δxc
i+a∈i = 1

2

(
∑

a∈i

|uc
a→i| + 1 −

∣∣∣
∑

a∈i

uc
a→i + 1

∣∣∣

)
if i is floppy (35)

Δxc
i+a∈i =

∑

a∈inf

|uc
a→i|ϑ(−uc

a→i) if i is frozen and ci = 0 (36)

Δxc
i+a∈i = 1 +

∑

a∈inf

|uc
a→i|ϑ(uc

a→i) if i is frozen and ci = 1 (37)

Δxc
a = ϑ

(
−

∏

i∈anf

hc
i→a

∏

i∈af

(−1)ci

)
min
i∈anf

|hc
i→a|, (38)

where if and inf are defined in a similar fashion to af and anf .

5. Diameter

With our formalism, computing the cluster diameter boils down to computing the maximal
weight in cluster 0 (the cluster containing 0). The relevant partition function for this task
is

Z0(β) = 2−Nφ0(β) =
∑

x∈0

δF2

(
∑

i∈a

xi, 0

)
2−β

∑N
i=1 δxi,1 . (39)

When β → −∞, the solution of the cavity equations corresponding to cluster 0 is
characterized by

px
i→a = δx,0 if i → a frozen,

qx
a→i = δx,0 if a → i frozen,

hi→a =
∑

b∈i−a

ub→i + 1 if i → a floppy,

ua→i = −S

⎡

⎣
∏

j∈anf−i

(−hj→a)

⎤

⎦ min
j∈anf−i

|hj→a| if a → i floppy

(40)

and the maximum weight d1 is given by

d1 = lim
β→−∞

∂βφ0(β) =
N∑

i floppy

1 + S
(∑

a∈i ua→i + 1
)

2
. (41)

These equations are presented for single XORSAT formulae, and can be solved by
simple iteration of the corresponding message-passing rules. In practice however, in the
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Figure 2. Diameter of a cluster of solutions. When one decreases α below αd all
clusters aggregate into one big cluster, thus explaining the discontinuity.

regime where α is near (but smaller than) αd, one does not always reach convergence. This
is arguably due to the hard nature of XORSAT constraints, as was pointed out in [23]:
as one nears the dynamical transition, hopping from one solution to the other requires
an increasing (yet sub-extensive) number of changes, making the sampling of solutions
difficult. To circumvent this problem, we can work directly in the infinite-length limit by
considering the probability distribution functions (pdfs) of each kind of message:

P (h) =
1

Mk

∑

(i,a)

δh,hi→a

Q(u) =
1

Mk

∑

(i,a)

δu,ua→i
.

(42)

When N → ∞, self-consistency equations for these distributions read

P (h) =
∑

�

πkαw(�)

∫ �∏

a=1

dua Q(ua)δ

(
h −

�∑

a=1

ua − 1

)

Q(u) =
1

w

k−1∑

i=1

(
k − 1

i

)
vi(1 − v)k−1−i

∫ i∏

j=1

dhj P (hj)δ

[
u + S

(
i∏

j=1

(−hj)

)
min

j
|hj|

] (43)

and one has

x1(α) = lim
N→∞

d1

N
= e−λ

∫
dh P (h)

1 + S(h)

2
. (44)

These equations can be solved with a population dynamics algorithm [14]. In figure 2, we
represent the maximal diameter x1 as a function of α.
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6. Minimal and maximal distances between clusters

In section 4 we have set up the formalism for computing the minimal and the maximal
weights in a given cluster c using the cavity method. In order to evaluate the minimal and
maximal weights in all clusters expect 0, we resort to a statistical treatment of the cavity
equations. This scheme is known as the 1RSB cavity method in the replica language. We
first specialize to the case of minimal weights, the other case being formally equivalent.
We already know that the number of clusters grows exponentially with N . Here we further
assume that the number of clusters with a given minimal weight xc is exponential in N ,
and we define the complexity

∑

c�=0

δ(x, xc) = 2NΣm(x). (45)

With this quantity we associate the 1RSB potential

2Nψm(y) =
∑

c�=0

2−Nyxc =

∫
dx 2N(Σm(x)−yx). (46)

When N is large, a saddle-point evaluation of this quantity yields

ψm(y) = min
x

[yx− Σm(x)] = yx∗ − Σm(x∗) with y = ∂xΣm(x∗) (47)

and ψm(y) is thus related to Σm(x) by a Legendre transformation. In terms of statistical
mechanics, m is an inverse temperature coupled to the ‘energy’ xc; the complexity plays
the role of a microcanonical entropy, and the potential is equivalent to a free energy, up
to a factor m. The minimal weight in all clusters (expect 0) is given by the smallest x
such that Σm(x) ≥ 0. Our goal is now to compute ψm(y) and to infer Σm(x) by inverse
Legendre transformation.

We proceed to the statistical analysis of the cavity equations under Boltzmann
measure 2−Nyxc . This amounts to writing 1RSB cavity equations, where messages are
distributions of RS messages over all clusters. The distribution of messages on floppy
edges is described by the two pdfs:

P i→a(h) = 〈δ(h, hc
i→a)〉 (48)

Qa→i(u) = 〈δ(u, uc
a→i)〉 . (49)

The average 〈·〉 is performed with the aforementioned measure on clusters, with the
implicit assumption that the edge (i, a) has been removed. On frozen edges, messages are
trivial, but their values depend on the cluster considered. We thus define for frozen edges

P i→a
0 =

〈
δ(p0

i→a, 1)
〉

P i→a
1 = 1 − P i→a

0 (50)

Qa→i
0 =

〈
δ(q0

a→i, 1)
〉

Qa→i
1 = 1 − Qa→i

0 . (51)

In order to write a closed set of equations for these probability distributions, we need
to know how the Boltzmann weight 2−Nyxc biases the message-passing procedure: when
a field hi→a is estimated as a function of its ‘grandparents’ ({hj→b}, j ∈ b− i, b ∈ i− a),
a reweighting term 2−yΔxi→a is associated with it [7, 14], where Δxi→a is the contribution
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of i and its adjacent checks (except a) to the total weight. This contribution is obtained
as Δxi+a∈i in equations (35)–(37), but with a removed.

The 1RSB cavity equations read

• i → a frozen:

P i→a
0 =

1

Zi→a

∏

b∈if−a

Qb→i
0

∫ ∏

b∈inf−a

dub→iQ
b→i(ub→i)2

−y
∑

b∈inf −a
|ub→i|ϑ(−ub→i)

P i→a
1 =

1

Zi→a

∏

b∈if−a

Qb→i
1

∫ ∏

b∈inf−a

dub→iQ
b→i(ub→i)2

−y(1+
∑

b∈inf−a
|ub→i|ϑ(ub→i)),

(52)

• i → a floppy:

P i→a(h) =
1

Zi→a

∫ ∏

b∈i−a

dub→iQ
b→i(ub→i)2

−y/2(
∑

b∈i−a |ub→i|+1−|
∑

b∈i−a ub→i+1|)

× δ

(
h − 1 −

∑

b∈i−a

ub→i

)
(53)

(here and in the previous equations Zi→a is a normalization constant),

• a → i frozen:

Qa→i
0 =

1 +
∏

j∈a−i(2P
j→a
0 − 1)

2
, (54)

• a → i floppy:

Qa→i(u) =
∑

{cj=0,1}
j∈af−i

∏

j∈af−i

P j→a
cj

∫ ∏

j∈anf−i

dhj→aP
j→a(hj→a)

× δ

⎡

⎣u − S

⎛

⎝
∏

j∈anf−i

hj→a

∏

j∈af−i

(−1)cj

⎞

⎠ min
j∈anf−i

|hj→a|

⎤

⎦ . (55)

The potential ψm(y) is obtained by a Bethe-like formula [7]:

Nψm(y) =
∑

i

Δψi+a∈i − (k − 1)
∑

a

Δψa (56)

with

Δψi+a∈i = −log
〈
2−yΔxi+a∈i

〉
= −logZi+a∈i

Δψa = −log
〈
2−yΔxa

〉

= −log
1 +

∏
i∈a(2P

i→a
0 − 1)

2
if a ∈ core

= −log
∑

{ci=0,1}
i∈af

∏

j∈af

P i→a
ci

∫ ∏

i∈anf

dhi→aP
i→a(hi→a)

× exp

[
−y log(2)ϑ

(
−

∏

i∈anf

hi→a

∏

i∈af

(−1)ci

)
min
i∈anf

|hi→a|
]

otherwise (57)

where Zi+a∈i is defined as Zi→a but in the presence of a.
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c

0
X c

x c

Figure 3. Pictorial representation of the clustered space of solutions around 0
in the N -dimensional hypercube. For a cluster c, the minimal and maximal
distances xc and Xc are depicted.

Like in the diameter calculation, 1RSB cavity equations can be interpreted as message-
passing update rules, with the difference that messages are now surveys over all clusters.
The output of that procedure is the minimal distance complexity Σm(x), obtained as the
inverse Legendre transform of ψm(y). We refer to the corresponding algorithm as ‘distance
survey propagation’. The same procedure can be implemented in the β → −∞ limit and
yields the maximal distance complexity:

ΣM (x) =
1

N
log

∑

c�=0

δ(x, Xc), (58)

where Xc is the maximal weight in cluster c (see figure 3). Note that in the particular
case where y = 0, which corresponds to a uniform measure over the clusters, classical SP
is recovered for both versions of the algorithm (minimal and maximal distance): in that
limit we have Qa→i

0 = P i→a
0 = 1/2 and the calculation of ψm(0) and ψM (0) gives back

−Σ(α), the total complexity (14), as expected.
The practical implementation of distance-SP demands particular care when small

distances are considered: it turns out that distance complexities Σm(x) and ΣM(x) are
not concave, which entails that the functions ψm(y) and ψM(y) are multivalued in a certain
range of y. A way to circumvent this problem (already used in [24]) is to keep the weight
x = ∂yψm(y) fixed after each iteration and to deduce y accordingly. Here is how the
algorithm proceeds for a given reduced weight x:

(1) Run classical SP.

(2) Initialize all floppy and frozen messages {Pi→a}, {Qa→i} to random values. Choose a
(reasonable) value for y.

(3) Until convergence is reached, do:

• Update all a → i messages {Qa→i} and then all i → a messages {Pi→a} at inverse
temperature y.

• Find y such that x = ∂yψm(y, {Pi→a}, {Qa→i}) by the secant method, {Pi→a} and
{Qa→i} being fixed.

(4) Compute ψm(y, {Pi→a}, {Qa→i}) as well as its derivative and deduce Σm(x) =
yx − ψm(y).

Note that since the messages are pdfs themselves, the update of each of them in step 3 is
performed by a population dynamics subroutine.
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Figure 4. Minimal and maximal distance complexities as a function of the
reduced distance x, for k = 3, N = 10000 and M = 8600.
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Figure 5. Phase diagram of the 3-XORSAT problem in the (x, α) plane. The
cluster diameter (�), as well as minimal (+) and maximal (×) distances between
solutions of distinct clusters, are represented. The thick line is the x-satisfiability
threshold.

Figure 4 shows the minimal and maximal weight complexities Σm(x) and ΣM (x) for
a random 3-XORSAT formula with N = 10 000 and M = 8600. These complexities can
be regarded as kinds of weight enumerator functions for clusters. Their fluctuations from
formula to formula can be significant (15%), even for large system sizes (N = 10 000).

An average version (density evolution) of distance-SP can also be implemented for
random k-XORSAT, in the same spirit as equation (43). Such a computation involves
distributions (on edges) of distributions (on clusters) and can be solved by population

dynamics, where each element of the population is itself a population. The zeros of Σm(x)

and ΣM (x) thus obtained yield the minimal and maximal inter-cluster distances x2(α)
and x3(α), respectively, as shown in figure 5. Together with the cluster diameter x1(α)
computed in section 5, these values are used to construct the x-satisfiability threshold.
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Our algorithm can in principle be run on any system of Boolean linear equations and
is expected to give reasonable results provided that the loops of the underlying Tanner
graph are large. The case of LDPC codes is of particular interest because it allows several
simplifications and has been extensively studied from both the combinatorial [25] and
statistical physics [24, 26] point of view. LDPC codes are homogeneous Boolean linear
systems where parity checks and variables may have arbitrary degree distributions, with
the restriction that variables should always have degrees no less than 2. This implies that
the leaf removal algorithm is inefficient on such linear systems: all variables belong to
the core, and are frozen. In particular, each cluster is made of one unique solution: the
cluster diameter is 0, and the minimal and maximal inter-cluster distances coincide. Their
common complexity Σm(x) = ΣM(x) is often called the ‘weight enumerator exponent’ and
is an important property of ensembles of codes. Translated into our formalism, this means
that all messages are frozen and the distance-SP algorithm simplifies dramatically:

P i→a
0 =

1

Zi→a

∏

b∈if−a

Qb→i
0 , P i→a

1 =
1

Zi→a

∏

b∈if−a

Qb→i
1 2−y (59)

Qa→i
0 =

1 +
∏

j∈a−i(2P
j→a
0 − 1)

2
. (60)

Not surprisingly, the density evolution analysis of this simplified algorithm yields the
same equations as those obtained with the replica method in [24, 26].

7. Conclusion and discussion

We have applied the cavity method to estimate extremal distances between solutions of
random linear systems with large girth in the clustered phase. Our results are used to
compute the x-satisfiability threshold of the random k-XORSAT problem. The notion
of x-satisfiability, which tells us whether one can find a pair of solutions separated by
a Hamming distance x, was introduced in the context of another constraint satisfaction
problem, k-SAT, where it was used to give rigorous evidence in favour of the clustering
phenomenon [10].

Although k-XORSAT is a rather simple problem, it displays a very similar phase
diagram to harder problems such as k-SAT and q-colourability. In particular, its clustered
phase is well defined and understood. That said, finding extremal distances in the solution
space of linear Boolean equations is a hard task in general: for instance, the decision
problem associated with finding the minimal weight of LDPC codes is NP-complete [27].

We were able to compute three quantities: the cluster diameter, as well as the minimal
and maximal inter-cluster distances. We believe our method to give a good approximation
for systems with large girth and to be exact in the thermodynamic limit for random
XORSAT. In the line of survey propagation, we devised a series of algorithms for these
tasks, which explicitly exploit the clustered structure of the solution space. More precisely,
the space of solutions is characterized by two hierarchical levels of fluctuations: inside
and between clusters. In k-XORSAT, these two kinds of fluctuations are carried by two
disjoint sets of variables, and our algorithms explicitly distinguish between these two kinds
of variables. In the special case of LDPC codes, the point-like nature of clusters much
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simplifies the equations, and previous expressions for the weight enumerator exponent
obtained by the replica method are recovered.

The method presented here offers a number of generalizations. In particular, it
could be used at finite temperature to yield the full weight enumerator function. More
interestingly, it could be adapted to deal with other CSN, such as k-SAT, for which only
bounds are known; unfortunately, numerical computations are in that case much heavier,
albeit formally similar. Let us mention that a similar approach was followed in [28] in the
case of q-colourability, with the difference that distances were estimated from a reference
configuration (which is not a solution) instead of considering distances between solutions.

Our work studies the geometrical properties of the solution space by taking explicitly
into account fluctuations inside clusters, captured by the ‘evanescent fields’. This very
general approach, already explored in [28], allows one to gain a better understanding of
the fine structure of the clustered phase and seems to us a promising direction for future
work. Also, with similar tools, decimation schemes such as the one introduced in [7] could
be used to select solutions or clusters with particular properties.
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[7] Mézard M and Zecchina R, Random k-satisfiability problem: from an analytic solution to an efficient

algorithm, 2002 Phys. Rev. E 66 056126
[8] Mulet R, Pagnani A, Weigt M and Zecchina R, Coloring random graphs, 2002 Phys. Rev. Lett. 89 268701
[9] Semerjian G and Monasson R, A study of pure random walk on random satisfiability problems with

‘physical’ methods, 2004 Proc. SAT 2003 Conf. (Lecture Notes in Computer Science vol 120) ed
E Giunchiglia and A Tachella (Berlin: Springer) p 2919

[10] Mézard M, Mora T and Zecchina R, Clustering of solutions in the random satisfiability problem, 2005 Phys.
Rev. Lett. 94 197205
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