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We derive the predictions of perturbative QCD together with non-perturbative corrections 
for a set of inclusive observables connected with the angular distribution of light-cone energy in 
deep inelastic neutrino scattering. Our particular choice of observables has been made in order to 
meet important physical requirements besides the necessary condition of infrared regularity. Our 
inclusive observables receive their dominant contribution from the quark fragmentation region. 
The non-perturbative contribution is calculable in a rather model-independent way and stays at 
an acceptable level in realistic experimental conditions. The QCD perturbative contribution, 
which takes the simple form of a convolution product, exhibits a strongly decreasing behaviour 
as a function of the Bjorken scaling variable x, superimposed on a constant background 
associated with the non-perturbative terms, allowing a rather clean separation of the two effects. 
The perturbative term being dominated by the process of hard-gluon emission, an experimental 
investigation of the observables discussed here may be a good way to detect the effect of gluon 
emission in deep inelastic neutrino scattering. 

1. Introduction 

There is a widespread belief that quantum chromodynamics (QCD) is the field 
theoretical description of strong interactions. At the present stage of the develop- 
ment of the theory clear predictions are possible only within the context of the 
so-called "improved perturbation theory". The gap between perturbative QCD and 
observable physical processes is then bridged with the help of certain plausible 
assumptions concerning the long-distance behaviour of the theory, which is in- 
volved whenever real hadrons enter the picture. On this basis the "jet" structure of 
e+e  collisions and deep inelastic scattering of leptons has been extensively 
studied [1]. In this general context we have derived the predictions of perturbative 
QCD together with non-perturbative corrections for a set of inclusive observables 
which are connected to the angular distribution of the "light-cone" final hadronic 
energy in deep inelastic neutrino scattering [2]. The definition of our observables 
involves the choice of a jet axis. Unlike the case of thrust, spherocity [3], etc., where 
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the jet  axis is reconstructed f rom the observed data, our axis is taken once and for 
all to be the direction of the virtual intermediate boson. 

In sect. 2 we define and partly justify our choice of inclusive observables. Besides 
the necessary condition of infrared regularity we have t r i e d - - a n d  we believe with 
some success - - to  meet other important  physical requirements. Our inclusive ob- 
servables should receive their main contribution from the fragmentation of the 
quark having interacted directly with the virtual intermediate boson; the non- 
perturbative contribution associated with low transverse momentum processes 
should be kept at an acceptable level, computable in a model-independent way and 
be easily separable from the QCD contribution. In sect. 4 we show that the 

non-perturbative effects are completely described by a single physical parameter  
and can be written in such a way that they do not depend on the x Bjorken scaling 

variable. 
The QCD perturbative computat ions are presented in sect. 3. For  simplicity we 

consider only the parity-violating part  of the neutrino cross section where the 
t-channel singlet contribution is absent. The results of the complete QCD calcula- 

tion are given in sect. 5 and computat ional  details can be found in the appendix. 
The renormalization group equations can be used to justify the " improved 

perturbation" theory only if the infrared and mass singularities which one meets in 
the calculation have been eliminated. In sect. 3 we show explicitly, to order a s, first 
that our observables are free of infrared singularities and secondly that the mass 
singularities can be factorized and reabsorbed in the experimental structure func- 
tions. Relying on the heuristic proofs of "factorization" we shall conjecture that 
these properties are valid to all orders in a s [4]. With our particular choice of 
observables the QCD results can be written as a convolution product very similar 
in its mathematical  form to the right-hand side of the Altarelli-Parisi equation [5]. 
As a consequence, consideration of the moments  in the x Bjorken scaling variable 
gives QCD predictions which are normalized in the sense that the initial quark 
momentum distributions no longer appear  in the result. However, since the whole 
range of x is difficult to explore experimentally, we have given, in sect. 5, a set of 
curves which allow the computat ion of our set of observables for any value of x. 
Some parametrization of the structure functions has to be chosen but the results, as 
they are given, are not very sensitive to small modifications of the parameters.  We 
conclude the paper by comparing the perturbative and non-perturbative results 
under realistic experimental conditions. The discrimination between the two effects 
is easily done by looking at the x dependence. The QCD contribution will appear 
as a strongly decreasing function of x superimposed on a constant background of 
comparable  magnitude associated with the non-perturbative effects. The QCD 
result being dominated by the process of hard gluon emission, an experimental 
study of the inclusive observables discussed in this paper may lead to a rather good 
identification of the gluon effects in neutrino-nucleon inelastic scattering. 
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2. The choice of observables 

In order to use a QCD improved perturbation theory in the running coupling 
constant a (Q2)  we must deal with quantities which are free of infrared divergences 
[6]. Infrared free inclusive observables can be obtained by taking polynomials of 
quantities X having the general form [7] 

N 

g = ~ ,  I p i l f ( l ~ i ) ,  (1) 
i = O  

where/3 i is the unit vector along the momentum pi of the ith particle (here assumed 
to be massless) in the final state. There is obviously a great arbitrariness in the 
definition of X, especially in the case of lepton-hadron inelastic scattering where 

there is no obvious choice for the reference frame in which the Pi are measured. 
A very convenient variable to characterize the direction of the emission of a 

particle is the transverse light-cone velocity v defined by 

v = p + / p + ,  (2) 

where PT is the transverse momentum with respect to the direction of the virtual 
boson momentum q (the x 3 axis is taken along q) and p+ is the usual light-cone 

variable, p+ =Po -+ P3. 
The transformation properties of v with respect to Lorentz boosts are particularly 

simple: for boosts along any direction in the x l - x  2 plane v = (v l ,  v2) transforms 
like a galilean velocity ( v - ~ v '  = v + a) ;  whereas boosts along the x 3 axis reduce to 
a scale transformation ( v - - ~ v ' =  ~v) .  

In the case of zero mass (or in the high-energy limit) the two-vector v has a 
specially simple expression: 

V 1 = cosq~tan½O, 

I v z = sing~tan/O, 

(3) 

where 0 and ~0 are the polar and azimuthal angles respectively of the momentum p. 
This leads to a simple geometrical interpretation of the two-vector v" the point of 
coordinates (vi ,v2,0)  is nothing but the stereographic projection on the x 3 = 0 
plane of the point M of the unit sphere such that O M  =ft .  

We shall choose, as reference frame where the observable X is defined, the 
so-called "Breit f rame" of the lepton-nucleon system, i.e., the frame in which the 
momentum of the virtual vector boson has no time component:  q = (0, 0, 0, Q). In 
particular, the transverse velocity v defined above is assumed throughout the paper  
to be measured in the Breit frame. This frame is one of the favourite ones for 
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parton model calculations but, as we shall see later, we have further arguments for 

such a choice. 

In the case of lepton-hadron inelastic scattering the inclusive observable X 
should meet another important  physical requirement: it should receive its dominant  
contribution from particles produced by the fragmentation of the struck quark. In 
the Breit frame the final momentum of the struck quark (in the parton model) has 

) the components (!2 Q,0,0, ~ Q while those of the total momentum of the spectator 
quarks are ( Q ( 1 -  x ) / 2 x , O , O , - Q ( 1 - x ) / 2 x )  with x the usual scaling variable. 
The particles associated with the fragments of the struck quark (the target) have 
longitudinal momenta  large and positive (negative). A convenient choice for the 

energy variable entering into X appears to be the light-cone variable z defined by 

z, = p + J @ + ,  (4) 

where 6) is the total energy-momentum of the final hadron system. In the Breit 
frame 6)+ = Q~p'+,  where p '  is the final momentum of the struck quark. For a 

particle coming from the fragmentation of the struck quark with P3,i-~li5 Q 
( 0 < , / / <  1) we have z~'-~g (1 +O(m2/Q2) )  (where we have introduced the 
transverse square mass m 2 = p 2  + m2). On the other hand the variable z i asso- 

ciated with a target fragment of P3j = - ~jQ(I - x ) / 2 x  (0 < ~'j < 1) is of the order 
of (x/[~j(1 - x ) ] ) m 2 / Q  2. It is then clear that an inclusive observable of the form 

N 

X = ~ z; f (v , )  (5) 
i = l  

should receive its main contribution from the fragmentation of the struck quark. A 
further enhancement  of this effect will be obtained by requiring that the transverse 
velocities v i measured in the Breit frame should lie inside the unit circle 0 < I v, I < 1. 
In the zero-mass limit this cut simply means that we restrict ourselves to particles 

emitted in the forward hemisphere of the Breit frame: 0 < 0 n < ½ ~r. We are then 
led to consider the infinite set of inclusive observables 

N 

Sn = E zilv,[  ~ , (6) 
i = 1  

where n is a positive integer and 0 ~< ]vii < 1. As we shall see later this last 
condition on I vii ensures that the average value ( A n )  exists for all n >/ 1, which 
would not be the case if no cut-off were imposed on the Iv, I, 

As an intermediate step in the evaluation of (X~)  it is convenient to introduce a 
quantity E, similar to the antenna pattern, which is the angular distribution of 
hadronic energy (more precisely of the light-cone energy 6)÷). Focussing now on 
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neutrino (antineutrino) reactions, we define: 

193 

d~V'~ =[ d°V'P I/ ~ zi~(#)-l)i)) v'~ 
dx dy d2v ~ d - - ~ y  1 \  i = ,  

= {~h) I I  d2pT, dPi + - -  - -- v,), (7) 
i=~ dx  dy d2PTi dpT ~ . . .  

where Y'{h} is extended over all possible final hadronic states, and do  ~' ; / d x  dy  is 
the total neutrino (antineutrino) cross section, x and y have their usual definitions 
x = Q2/(2P" q); y = (P" q ) / (P"  l). Once the antenna pattern 5: is calculated it is 
an easy matter to get the "average" of the X. defined in (6): 

d°V' ; fl,, d x d y ( X , , > ~ , ;  = dE~'~ 
I < l d x d y  d2v 

Iv[" d2v.  (8) 

In this paper we are not interested in the energy distribution in the azimuthal 
variable 99 so it will be sufficient to calculate the angular distribution (7) averaged 
over cp. Using rotational invariance around the direction of the virtual intermediate 
boson (here the x 3 axis) it can be shown that the angular distribution of hadronic 
energy averaged over ¢p has the same tensorial decomposition and hence the same 
kinematic factors as the total cross section. To be specific we can write 

d E  ~" ; ME~ [ 
d x d y 2 r r v d v = G ~ . _  7 -  x y 2 ~ , ~ ( x ,  Q2, v ) + ( 1 - y ) ° ~ f ' ; ( x ,  Q2, v)  

o v)], (9) 

where the generalized structure functions ~ depend only on v = [vl and are related 
to the ordinary structure functions by 

dZv%(x, Q:, v), (lO) 

Obviously the same tensorial properties are relevant in the computation of ( X . )  
and one can write, from eqs. (8) and (9), 

d o "  ~ = G2 ME,  2--, ~i - y ) E , ~ ' ~ ( x ,  Q2) 
d x d y ( X , ) " ~  F - - - ~ [ x Y  Li,:I(X,  Q2) + (1  . 

± x y ( l _ i y ) E ~ , 3 ( x ,  Q 2 ) ] ,  (11) 
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"'~ 0 2 - / '  - E,,.i (x ,  ) = 27rv dv  ~3, ~' "(x,  Q2, v ) v " .  
"!o 

(12) 

3. Perturbative QCD calculations of the generalized structure functions 

As a first step in the perturbative calculation of the generalized form factors 
6~3/(x, Q E, v) we shall consider the problem of the scattering of a virtual vector 
boson of momentum q on a single quark of momentum p. In order to regularize the 
mass divergences the quark will be assumed to be slightly off-mass-shell with 
p2 = p02 _ p2 < 0. It is convenient to introduce the quark Bjorken scaling variable xp 
given by 

0 2 
O < x p <  1. (13) x p = 2 p ,  q , 

The transverse momentum of the initial quark with respect to the direction of the 
virtual momentum is assumed to be zero. The effects of the transverse momentum 
distribution of the quark parton inside the nucleon, which are ignored here will be 
discussed later. 

We shall here present the calculation for the parity-violating quark form factor 
O~q3(X, O2,t~ ). The results relative to the other form factors are given in the 
appendix. 

Let us begin with the lowest-order contribution to the generalized quark structure 
function. A straightforward calculation gives 

~(O)[x ,q2 v l=28(xp_  1)82(v) q,3~, p ~  , ) (14) 

The details of the computation of the second-order inelastic contribution asso- 
ciated with the gluon emission are given in the appendix. One arrives at the 
relatively simple expression (in the Breit frame) 

4 as[ l + x 2  
6~iqt~(xp, 02,  v) = ~- V xp(v 2 + (1 -- Xp)/Xp)[ v 2 + xp(1 -- xp) ( - -p2 /02)]  

1 - x e 1 - 2xp + 4x 2 ].  

2 ( v 2 + ( l _ x p ) / x , ) 3  Xp 
(15) 

If instead of the Breit frame one chooses another frame like the virtual boson- 
nucleon target center of mass, a more complicated expression is obtained, involving 
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an explicit x = Q2/(2P. q) dependence. If one goes to the limitp2/Q2--~O in the 
above expression ~-q~n¢ acquires a non-integrable singularity of  1//t~ 2 type in the 
neighbourhood of v = O. 

In order to isolate the singularity we rewrite ~-q~n~ for a finite value of p2/Q 2 as 
follows: 

6Vine 2 ne e 

2 6~'ine , 19), + 82( ) f d v)q3(x p Q2, (16) 

where the ~ operation associates, to a given function f (v ) ,  the distribution f(v)~ 
defined by 

f d2v = f f(v)[ - d2v. (17) 

It is now easy to verify that ~-q~ne(Xp, Q2, v)~ has a limit as a distribution in both 
variables v and xp when p 2/Q 2 goes to zero. More precisely, the singularities which 

6~ ine/,~ occur in -q3 ~ p ,  Q2, v)~ at v = 0 and xp + l are integrable. In this way the 
mass singularities have been transferred to the term proportional to 82(v): 

O~ ine /v  t~) = 6~" ine/,r 2, q3 ~p,  0 2, - q3 ~p,  O v) e 

4 a s I 1 - - 2 X p + 4 X 2 1 + X 2  Q2 ] 

+ 3 - - ~ - -  2 ( 1 - x p )  + 1 - - i - ~ p l ° g x 2 ( - p 2 ) 8 2 ( v ) "  

(18) 

Beside the mass singularity log Q2/(_p2) which is associated to the emission of 
gluons with momentum collinear to the initial quark momentum, there is also an 
infrared singularity at xp = 1. A simple way to regularize this singularity is to give a 
small massp '2 > 0 to the final quark. The pole term 1/(1 - x p )  is then replaced by 
1/(1 - xp)+ + ~(1 - Xp) log(Q2/p'2), where the distribution 1/(1 - x)+ is defined 
by 

l 1 

f0 ( l - x ) .  
q~(x) dx  = f0  n 1 1-i--~ [ cp(x) - ¢p(1) ] d x .  

The radiative corrections to the lowest-order elastic contribution contain terms 
of the form log(Q2/p '2)8 2(v) which, as expected, cancel exactly those occurring in 
%.o. 



196 C. Bouchiat et al. / Neutrino deep inelastic scattering 

One finally arrives at the second-order perturbative expression of the generalized 

quark form factor 

,6~q3(Xp,Q2,1) ) =82(19 )Fq3(Xp ,p  2) d- ~6-Sq3(Xp,O2,1))q), (19) 

Fq3(xp,Q2)=2 8(1-Xp)+-~---~Pqq(xp)log , 

2 
1+% + 3 8 (  1 - % ) ;  

Pqq(Xp) = (l -- Xp)+ (20) 

3 v 2 (1 • 

(1 -  
~x 2 

× - . (21) 
(v 2 +¢1 

In the expression for Fq3 we have only kept the log dominant  terms. In order to 
obtain the generalized form factor °~3(x, QZ, v) relative to a nucleon target we 
have to introduce a quark (antiquark) momentum distribution q(q)  inside the 
nucleon 

q(~ ,PT)?  d2pT, 

where ~ = p + / 6 ) + .  (In the Breit frame ~ can be identified to P3/~3 up to a 
correction of the order of I/Q2). If we neglect the transverse momentum 
distribution of the quark par ton inside the nucleon, we may write 

q ( ~ , P T ) = q ( ~ ) 8 2 ( P T ) "  

Using the relation x e = x/ f  and remembering that a 1/~ factor has to be introduced 
in order to account for the different flux factors for a quark and nucleon target, we 

get 

~3(x ' Q2, v) = ½ f '  - ~/(~)]~q3 Q2, v , (22) JX 
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where ~ 3 (x ,  Q2, v) is given by (19)-(21). Note that, as in the case of the ordinary 
inelastic form factors F~(x, Q2), we have a simple convolution product. The above 
formula is meant to give the average between neutrino and antineutrino for a target 
of arbitrary isospin with q( x ) = u( x ) + d( x ) + s( x ) + c( x ) and a corresponding 
expression for ~/(x). 

Let us assume that the strong coupling constant a s appearing in (20) has been 
- -  2 - -  2 defined at some value Q02 such that as = as(Qo)(as(Q ) is the "running" coupling 

constant of the renormalization group equation). We now introduce a new quark 
distribution function: 

4 %  Qo 2 f ,  d4 '  , ( 4 "  1 
0(4)  = q(4)  + 5 ~ log _ p 2  j~ s-zT-q(4 )Pqq~ ]~7 • (23) 

To the leading log approximation, the renormalization group equations for 
F3(x ,Q2) can be written as the following integral equation [5]: 

F3(x 'Q2)=F3(x 'Q2)+fQ~ 24 ffs(t) 3 2"rr d t f  x 4 (4)'x-- (24) 

The first-order expansion in a s reads: 

4 as - -  4 ( 4 ) + O ( a 2 ) .  (25) F~(x,Q2)= F~(x,Q{,) +S T_;log 20 ~ d4F3(4,Qo~)eqq 5_ 

This expression coincides with the coefficient of the term proportional to d2(v) in 
(23) provided F3(x, Q~) is defined as 

xe (x, eo ) = 0 ( x ) -  q(x) 

We have just verified at the one-loop level that the mass singularities which are 
present in the generalized form factor ~3(x, Q2, v) can be eliminated by a proper 
redefinition of the quark distribution function. We have here an example of the 
factorization properties of the mass singularities: heuristic arguments in favour of 
the validity of this result to all orders in a s have been given by several authors [4] 
for very general situations which include the one considered in this paper. The final 
answer within the leading log approximation can be written as follows: 

e2, v) --  2(v)e3(x, e2) L - e3(4, t z  J q3t 4 '  Q2, v ) . ,  (26) 

In this expression ~-q3(X/4, Q2, v)~ is given by formula (21) with ct s replaced by 
the running coupling constant %(Q2).  In (26) the first term is the "one-jet" 
contribution, the second one is the "two-jet" contribution which has been sep- 
arated by the G operation. Note that the choice of the Breit frame for the 
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measurement of the transverse velocity v was essential in order to arrive at a final 
answer having the form of a convolution product. 

As explained in sect. 1 the average value of the inclusive observable X~ is given 
in terms of the truncated moments of the generalized form factors E~, i(x, Q2): 

fo 
E,, ~= 2~rv dvv"~.(x, Q2, v).  (27) 

Let us give here the explicit expression of En, 3: 

4 as(Q 2) ,dUF,[X'~[(1 1 ] En'3=3 2~r L - u  -~- 3~,u)[ + u Z ) I " ( u ) - u  u(1-2u+4u2)J ' (u)"  

(28) 

The functions I,,(u) and J,,(u) are given by the integrals 

=/-1  2v n-1 dv 
I . ( u )  J0 v 2 + ( 1 - u ) / u  ' 

J . (u )  =f01 2v "+1 dv 
[v2+(1-u)/u]  3 

(29) 

In the appendix simple recurrence laws are derived which allow a complete 
determination of In(u) and Jn(u) in terms of simple functions. We quote the results 
here for n = 2: 

l 1 U 3 
, S 2 ( u )  = . (30) 12(u )=log 1 - u  2 l - u  

The complete expressions of the v moments E,, i(x) are given in the appendix in 
terms of the quark and gluon distribution functions. 

4. Non-perturbative effects 

In sect. 3 the generalized moments ~/(x, Q2, v) were computed as if the quarks 
and gluons, and not the real hadrons, were the observed particles in the final state. 
In particular, even if the transverse momentum of the initial quark is neglected, the 
actual ~/(x, Q2, v) should not contain a term proportional to ~2(v). In order to 
make contact with the true hadronic world the high-pT cross sections involving 
quarks and gluons obtained by the perturbative QCD calculations have to be 
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folded with the corresponding fragmentation functions. More precisely, let 

doq = R q  x ,  y ,  Q2 ,  P T  
dx dy d2pT dp  +/p+ o~ + ' 

be the differential cross section for producing a quark having a given value of p+ 
and PT and Rg be the similar quantity for a gluon. The cross section for producing 
a hadron of given p+ and PT can be written as 

d x d  y d 2 p T d p  +/p + =- Rh x , Y , Q  2, -'@--~+ ,PT 

f d ~ I  ( P~" ' )  = d2P'.r Rq x ,Y ,O2 , -~" - ,pT  

XFq_~h(p÷ ' • ], (31) ' ,Px,P+ ,PT) + q--~g 

where Fq~ h and Fe__,h are the fragmentation functions of the quarks and the gluons 
respectively. Using the invariance under longitudinal and transverse Lorentz boosts 
they can be written in the following reduced forms: 

Fq-~h ( p ; ,  p~; p÷, p,)=fq-.~ , p , - T p ~  , (32) 
(g--~h) (g---~h) \ Z 

where z =p÷/@+ and z'  = p ~ / P +  . 
The light-cone antenna pattern d Y / d x  dy dEe defined in eq. (7) is given by: 

dY ( ) 
d x d y d Z v = ~ f R h ( X , y ,  Q2, z, PT)6  V PT ---~+ dz  d2p-r. 

Using (31) and (32) and performing a change of variables one gets the following 
expression: 

dE 
dxdyd2v=~ f d%rdnfq_,h(n,~T) 

× f d2p'~dz',~(v PtTb(1/~)q'gT)Rq(X,y 

+ q--~ g. (33) 
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In the above expression the fragmentation function is supposed to describe, in a 
light-cone quantized version of QCD, all "soft" processes where a quark is 
converted into a given hadron h plus an arbitrary number of hadrons. In a typical 
"hard" process described by Rq, the transverse momentum I #rl is of the order Q 
while I cra-I is of the order of the transverse momentum pNP characteristic of 
non-perturbative "soft" processes. In the 6 function we can set ~r T = 0 except for 
the small values of ~/ such that 0 < ~<pNe/Q. With our normalization the 
functions fq__,h(*l,~rT) are well behaved near 7/= 0 and obey the p÷ momentum 
conservation sum rule: 

f E fq_h(,,=T)d,d2=T---- i. (34) 
h 

If in the quark production cross section Rq we subtract the naive quark model 
contribution [first term in the right-hand side of (26)], dropping the Ctx/r/term will 
introduce an error of the order of Ots(QE)pNTP/Q. To ots(Q 2) order, expression (33) 
then reduces to 

dE  
= f d 2 p ' v d z ' 8  v -  Rq(x,y,Q2,z',p'T)+q--+g, (35) 

dxdyd2v 

which is nothing but the light-cone antenna pattern for quark and gluon final 
states. The dominant non-perturbative cont r ibut ion--of  the order of pNP/Q--will 
be obtained when Rq is taken to be given by the naive parton model; if for a 
moment we ignore the transverse momentum of the initial quark, Rq is proportional 
to 8(z '  - 1)82(p:r). The dominant non-perturbative contribution to the generalized 
form factor ~NP(x, Q2,v) is then given by 

= -- ~0 dzd2pT (36) 

We recall that v has to be measured in the Breit frame wherep~_ = z'°~+ = P+ = Q. 
The non-perturbative contribution to the mean value of the inclusive observable 

X n [see formula (11)] can be expressed in terms of the truncated v-moments 
E~(x): 

ENS = fo ~ 2~rv"+~dv~rqe(x'Q2'v) 
F,( x ) F,( x ) 

= f d2Pr( P~ ~" c~ - --~] Jp~/QZ "f(z,pT)dz. (37) 
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We have introduced the total quark fragmentation function f (z ,  P T) defined by 

f ( z ,  P T ) =  '~, fq--,h( z, PT)"  (38) 
h 

It is important to notice that without the condition Iv[ ~< 1, the lower limit of the z 
integration would have been zero instead of PT/Q, leading to a badly divergent 
expression. 

It is convenient to introduce the average transverse momentum distribution at a 
given z 

f f ( z ,  PT)Pv d2p'r 
( p T ( Z ) )  = (39) 

f f ( z ,  PT) d2PT 

Experiments seem to indicate that ( p T ( z ) )  is a slowly varying function of z. As a 
definition of p~ P we shall take 

p~C =ff(z, PT)PT d2pT d z .  (40) 

(Remember the sum rule: i f (z ,  PT) d2pa - dz  = 1.) 
Performing integration by parts in the right-hand side of (37) one easily gets the 

following asymptotic formulas valid in the limit Q ~ oo: 

e£~ l I /P~P P~P)] n>2: ~(~)=(n_l)Q~im(<p~(~);~Dq(~)) l+O~_clog_ o- , (41) 

{( ) ) _ 1 , i  1 . Q n = l: Z(x) = ~ ~ log <pT(~)S ~p~(z)~Dq(z) 

× 1 + 0 I°g(P~P/Q) . (42) 

In the above expression Dq(z) is the pv-integrated total fragmentation function: 

ZDq( Z ) ~- E ZDhq ( Z ) = f f( z,pT)d~pT. 
h 

An evaluation of zDq(z)[z= o has been obtained in two ways. 
(a) We have used the new quark-jet parametrization of Field and Feynman [8] 

which is adjusted to fit the experimental results on the total charged hadron 
fragmentation function: Yh_+ZDhq(Z). 
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(b) The charged hadron part  of zOq(z)[ z = 0 is taken directly from experiment [9]. 
The neutral contribution is deduced from the charged one using the z = 0 limit of 
the K -+/~r -+ ratio together with the "plateau universality" hypothesis: 

lim I D~÷ ( z ) =  D~°(z)  1 
] = I .  

By these methods o n e  gets values for zDq(z)lz= o, which are equal for u and d 
quarks and scatter around 3 with a dispersion of 10% depending on the adopted 
values of the K -+/~r ± ratio. 

The Field and Feynman model p red ic t s - - in  agreement with experimental 
observation [ 10]--  that ( p v ( z ) ) is a decreasing function of z with ( p  X ( Z ) )  I ~ - 0 ~ 
0.3 G e V / c .  

We finally arrive at the following numerical results for the non-perturbative 
contribution to the truncated v-moments  E~P(x) :  

n /> 2: E"N'~(X)~ 1 0.9 
Fi(x ) --n-- i Q(GeV/c) ' 

EINP(x) 0.9 Q(GeV/c) 
n -- 1 : ' - -  log F,.(x) Q(GeV/c) 0.3 

(43) 

Let us mention that it can be easily proved that for n ~ 2 the above asymptotic 

limits are reached f rom below. 
We would now like to discuss the effect of the transverse momentum distribution 

of the initial quark. Let P'ro be the transverse momentum of the initial quark, the 
invariance under transverse Lorentz boosts [see eq. (32)] implies that in formula 

(37) f(z,p.r) has to be replaced by f(z, I pT--Zp.ro[). From the fact that 
E,Nf(x)/Fi(x) is of the order of [1 / (n  - 1)](p.r)/Q for any n ) 2, one deduces 
that the dominant  contribution is coming from values of z of the order of pNxp/Q. 
Since I PT--ZPToI and [Pv01 are both of the order of pNP, the correction to 
E,NS(x) associated with the initial quark transverse momentum is at most of the 
order of (p~P/Q)2 and can then be neglected. 

To end up this section we would like to point out a possible source of ambiguity 
connected with finite mass effects. In the QCD perturbative computat ion the 
masses of all the final-state particles are taken to be zero. The cut-off condition 

~0BI < 1. For Ivl < 1 is equivalent in the Breit frame to the angular condition Itan 
~0BI < massive particles the two conditions are not equivalent. The condition Itan 1 

1 implies that the lower limit on the z integration in formula (37) is replaced by 
mT/Q with 2 _ _  2 m 2 m 2 mT -- PT + where is the hadronic mass. In formulae (41) and (42) 
(pT(Z)) has to be replaced by: (m.r(PT/mT)n), the variation with n is no 
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longer given by 1/(n  - l) and depends on the shape of the P T (or roT) distribution 
near z =0 .  Assuming a distribution of the form e x p ( - b m r ) ,  we find that the 
correction factor 

K.  = ( P T )  mT --my ' 

which is always smaller than one, does not deviate from unity by more than 15%. 

5. Results and conclusions 

In this section we shall give the results of the improved perturbative QCD 
calculation of the quantities ~'~ E~,~ (x, Q2) which allow the computation of the 
average values of the inclusive observables (X n) defined by formulae (7) and (8). 
In sect. 2 only the parity-violating generalized structure function 6~3(x, 0 2, V) was 
considered; the calculation of the other two (i = 1, 2) is sketched in the appendix. 

Although the explicit result for i = 3 can be found in sect. 2, we give here, for 
completeness, the final expressions of ~' ~ E,~,i(x ) for i =  1, 2, 3. 

Let 

E,~,, = 2xE,~,'~(x), 

= E,~:2 (x)  En, 2 

Then 

for i = 1, 2, 

E,~,3̂ ~'; = xE~'~(x  ) .  

At.,, 
E L , ( x )  = - -  

as( Q z) 1 x ,  Q2 _ x 
2,n" fx ( [ q ( u  ) + q ( u '  Q2) l Qn ' i ( u )  

( x 
+ g u  (44) 

os(Q2 f?{[ (x ) (x Q2)]Qn3(u,)du (45, E ~ ' 3 ( x ) =  27r q u '  Q2 _ ~  u '  

q(~, Q2), ~(~, Q2), g(~, Q2) are respectively the total quark, antiquark, and 
gluon momentum distributions inside the nucleon. 
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The functions Qn.i(x) and G. , i (x )  are simple linear combinations of the 
integrals I(x) and J.(x) defined by formula (29): 

From (48) one readily gets 

6~. ,3(  N,  Q2 ) = 

(1 - x)(1 - 2x - 2x 2) J.(x)] (46) 
X 2 J 

(1 - x) ( l  + 2 x -  6x 2) 1 x2 d.(x) , (47) 

(1 - x ) ( l  - 2 x  + 4 x  2) ] 
x2 J.(x) ], (48) 

G"'z(x)=21-Xx { [ x 2 + ( 1 - x ) 2 ] l " ( x )  -2 1-xx ( l - 6 x + 6 x 2 ) J . ( x ) ) .  

(50) 
Explicit expressions of the integral I.(x) and J.(x) in terms of elementary func- 
tions are given in the appendix. 

Formulas (44) and (45) clearly show that the v moments  are convolution 
products involving quark and gluon momen tum distributions. By considering 
double moments  both in v and x variables it is possible to factorize the quark and 
gluon distributions. The most interesting case is the parity-violating term (i = 3). 
We define the double x-v moments  °3"~L., 3(N, Q2) as follows: 

fo1XN-IEn,3(X,  Q2) dx  

~31Ln, 3(N ' Qz)= 
foZX•-,F3(x, Qz) dx 

ots(Q 2) 
- 2rr f'xN-,Q.,3(x, Q2) d x .  (51) 

.t o 

43 as(QZ)2rr fo ldxxN-I 

[ l + x  ~ . . ( l - x ) ( l - 2 x + 4 x  ~ )  
x [ - - - - U - I . ( x )  x 2 J.(x)]. (52) 

4 [  l + x  2 

Q",2(x) = 4 [ l + x-----~"(x) ~ x  

4[ l+x2 
O.,3(x)  = ~ l . ( x )  
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Using the explicit expressions of In (x  ) and Jn(x )  given in 
straightforward calculation leads to the formulas 
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the appendix, a 

I q ~?+ 1 ~LQCD[ N , Q 2  ) _ 4 o~s(Q 2) 1 q = N - i  1 1 1 
2,3 ~ 3 2~r N - -  1 ~" q + -  -- 

q=l N +  1 =1 q 

2 N +  1 N + 2  t- , (53) 

N > I ,  

o31LQCDt N ,  Q2 ) _ 4 % ( Q 2 )  
4,3 , 3 2~" 

2 5 1  11 1 1 2 + 
N - I  2 N 2 N + I  N + 2  N + 3  

q=N--1 2 q=N-2  1 4 1 
u - 2  E q + - - q X  - 

q= l  N -  1 =1 q 

N q + N +~---i- ~] " (54) q=l 

The N = 1 moments also exist and can be computed directly. Similar expressions 
could be obtained for n --- 1 and n = 3. From the results of sect. 3 one immediately 

deduces that the non-perturbative contributions to the double x-v  moments are 
independent of N: 

~jlLNp[N 1 0.9 
, , ,3 ,  , Q 2 ) ~  n -  1 Q ( G e V / c )  ' (55) 

n >/2, although the double x-v  moments ~ , , ,  i (N ,  Q2)  are quite interesting from a 
theoretical point of view since the QCD predictions are "normalized" in the sense 

that they do not depend on the initial quark and gluon distributions, their practical 
interest is limited by the difficulty of exploring the whole range of x experimen- 
tally. 

The contact with experiment will be easier if we give the numerical values of the I,,.ff 
v-moments E,~,i ( x )  as a function of x. In order to do so we have to choose some 
analytic forms for the quark and gluon distribution functions. We shall limit 
ourselves to the case of an isoscalar target. Furthermore we shall neglect the effect 
of scaling violations on the structure functions F,(x) and use the CDHS [11] parton 
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distributions which are averaged over the neutrino energy range: 
200 GeV: 

q(x )  - el(x) ~ X/xx (1 - x )  3"5 , 

30 < E~ < 

~(x)  o~ (1 - x )  65 , 

g (x )  ~ (1  - x ) ' .  

We have fixed the normalization of the three distributions by  the conditions 

f0 1g/(x) d x  

= 0 .16 ,  (56) 
f o i [ q ( x ) + # ( x ) ]  d x  

fo' [ q(x)+ 0 (x ) ]  d x =  1-folg(x)dx = 0.48. (57) 

A convenient way to present the results is to write, for n >t 1, 

EQ?D(x) 
= as(Q2)f,,, , ( x )  (58) 

Fi(x) 2,, " 

We have verified that the functions fn, i (x)  are not very sensitive to the choice of 
the parameters used in the C D H S  fit. For instance, changing the exponent of 

(1 - x )  in q ( x ) -  71(x) from the value 3.5 to 3 modifies the fn, i (x)  by less than 
10%. 

The three functions f2,i(x),f3.i(x),f4,i(x) are plotted together in figs. 1, 2, 3 for 
i = 1,2,3 respectively. It is interesting to note that the functions (n - l )fmi(x),  for a 
given i and n -- 2, 3,4, look very much alike. This suggests that for n ~ 2 everything 
happens as if the v probabili ty distribution were of the form dEv/v 3. For a given n 
the functions fn,i(x ) almost coincide in the large x region where the antiquark and 
gluon distributions are negligible. A very important  feature of all the functions 
fn,i(x) is their rapid decrease with x; they vanish in the limit x--~ 1 where there is 
no phase space left for "hard"  gluon emission. The values taken by the functions 
f~,i(x) for n t> 2 look "normal"  in the sense that they are of the order of unity. The 
cage n = 1 which is displayed in fig. 4 looks more peculiar specially in the small x 
region where the f l . i (x)  reach values of the order of ten. This suggests that, 
although no divergences are present, higher-order contributions in Cts(Q 2) are 
probably not negligible. 

In order to get a feeling about  what is to be expected in actual experimental 
conditions we have plotted, in fig. 5, the quantities 

NP 
g., i(x,  O 2) = E~?D(x' & )  + E., i(x,  Q2) 

Fi(x ' Q2) ' 
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'I 
r2: (x) 

4 
--- f3,1 (x) 

r~: (x) 

o ' ' ' ' ~ ' " ~  i - ~ ~ r ~ - ~ .  
.1 .2 .3 .L. .5 .6 ,7 .8 ,9 

Fig. 1. QCD predictions for the n = 2, 3, 4 v moments of the generalized form factors ~ ( x ,  Q2, v)  

16~ 
fo ~i(x ' Q2, v ) 2 , n . v , + l  dv  {~s(~ 2 ) 

~(x,  (2 ~) 2~. f , , (x) .  

for n = 2 and i -- 1, 2, 3. The value chosen for Q 2 is 30 (GeV/c )  2. The energy scale 
parameter A which appears in the running coupling c o n s t a n t  Ots(O 2) = 

12~r/25 log(Q2/A 2) has been taken equal to 0.5 GeV/c .  As already noted, the 
QCD effects, which are dominated by the gluon emission, exhibit a strong x- 
dependence in striking contrast with the constant background associated with the 
non-perturbative effects. 

An experimental determination of the average values (X, > looks feasible using 
neutrino events produced in a bubble chamber filled with neon or equipped with a 
track sensitive target (hydrogen target immersed in a neon bath allowing an 
identification of neutral particles). If a reasonable accuracy can be achieved, the 
x-dependence of the v moments will constitute a good signature for the production 
of gluons in neutrino-hadron inelastic scattering. 

Appendix 

We describe, here, the important steps in the derivation of the perturbative QCD 
results given in sect. 4. As explained before, we first calculate the antenna pattern 



f2.2 ( x )  

- - -  r3,2 (×)  

3 

2 

i 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

Fig. 2. See caption to fig. 1. 

f 2 ,3 (x )  
. . . .  r3 ,3 (x )  
- - ' -  r~,3(x) 

2 

0 I i I i I t I " ' - 7 -  " ' ~ - - ~ -  > 
.1 .2 .3 .4 .5 .6 .7 .8 .9 

Fig. 3, See caption to fig. i. 
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I 
10 

f1,1 (x )  
rl,2 (x) 
fi,3 (x) 

0 l  I I I I I I I t I >  

.1 .2 3 .4 5 .6 .7 .8 .9 

Fig. 4. First v moment  (n = 1) of the three generalized form factors ~ ( x ,  Q2, v). 

O 2 : 3 0  Gev 2 
C2 E2,1OCD NP + E2,1 

F~ F~ 
NP E2,2QCO E 2,2 

. . . .  F2 + F2 
,~\ ~ QCD NP 
\ \ \ \  '-2,3 + E 2,._~3._3 
- '~\\ F3 F 3 

E!i  NP 

, i' I I I I I I I I ~ _  
0 ,I .2 .3 .~ .5 .6 ,7 .8 

Fig. 5. QCD and non-perturbative results for the n = 2 v moments when Q2 = 30(GeV/c)2 and A = 0.5 
GeV/c .  

2O9 
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d~'~/dxdyd2v defined in (7) and, more precisely, its different tensorial 
components  63/r'~(x, QE,v), 1 < i < 3. 

We first consider the scattering of a virtual vector boson on a single parton. To 
zeroth order in as, the gluons are not coupled to the vector boson, and the 
scattering on a quark is described by a simple Born-type Feynman diagram; 
averaging over the initial quark color and spin, one immediately finds 

~-q(l°I(Xp, O 2, v)=d(1--Xp)82(V), 
(A.I )  

~°,(z,,, Q~, v)= 2x~(1-~,)8~(v). 

The first-order contribution in a s to the scattering on a quark comes from gluon 
emission; we calculate separately the inelastic term due to the emission of a real 
gluon, ~i~¢, and the radiative corrections to the lowest-order process, ~q). 

We shall study the scattering on a gluon target later on. 

The inelastic gluon emission is calculated most easily in the quark-virtual boson 
c.m. frame, in terms of the polar angles 0", cp* defining the direction of the struck 
quark. One then goes to the Breit f rame with a Lorentz boost along the x 3 axis. The 
last step of the derivation is the change of variables from the polar angles 0 b, rpb in 
the Breit frame to the transverse speed v :  

V~ = tan ½0 b cos q3 b , 

V 2 = tan l0  b sin ~b • 

The results are 

4 a s l + x 2  1 6~ine _~. 

ql -~2~r 2 Xp (v2+(l_xp)/Xp)[V2+xp(l_xp)(_p2/Q2)] 

4 ( :  + (1- x,)/x,) 3 J 
(A.2) 

1 +  2 
6~ine 4 as 2x xp 
~ q 2  = "3 2,n. 2 Xp ( :  + (1 - x , ) / ~ , ) [ :  + x , ( 1 - x , ) ( - p V e ~ ) ]  

+ (1 ~x__p)31+2Xp~6X2p__) l .  

4 ( :  +(1-x,) /x,) '  J 
~ p e  is given in (15). 
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We have calculated the radiative corrections due to virtual gluon emission using 
dimensional regularization and the minimal subtraction scheme. We regularize the 
infrared singularities by keeping the incoming and outgoing quarks off shell, 
space-iike (p2 < 0) and time-like (p,2 > 0), respectively. We find 

~ t  =Ar(1 - xp )32 (v ) ,  

~ 2  = 2xA6(1 - x . ) 8 : ( v ) ,  (A.3) 

where A is given by 

2a s 2 z 3 QZ 3 log . (A.4) 
A = -  3---~-- 2log l o g p , - ~ l o g  _p2 2 

We have kept in A only the terms that are singular when p2 orp,2 go to zero, the 
other terms would appear as corrections in the coefficient of 3Z(v) for the ~ ,  so 
they are irrelevant for the computation of the moments in v of the ~ .  

Adding (A.1), (A.2) and (A.3), one gets the total up-to-first order contribution to 
the scattering on a quark target. The singularities in v--* 0 and xp ~ 1 are regularized 
using the method explained in sect. 2, and one gets for ~ql and ~-qz the analogue of 
formula (19) for .6~q3 : 

= + (a.s) 

4 as Q2 
Fq,(x. ,Q2) = 6(1 - x , )  + -~ ~--~ Pqq(xp) log (-p~)' 

(A.6) 

~ql(Xp Q2,v)~ 4 a, I I + x ~ [  l ] 
' = 3  2~ L ~x~t vZ(~z+(1---x,,)/x,,) ,~ 

+ G7 (v2+ l x . ) / x , )  ' 

' x  ~2 , 4 a s f l + x ~ [ "  1 ] 

(A.7) 

(l-xp)(l+2xe-6x~)[ 1 ] } 
~x~ (v 2+0 x,)/x,) 3 ~ 
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Let us now turn to the quark pair production process on a gluon target. The 
calculation of this contribution is done in exactly the same way as that of ~q~ and 
leads to the following results: 

~gl(Xp,Q2,v)= { as r 2 (l Xp)]log Q2 } t x p +  - 8~ (v )  (-p~) 

~ , ( 0  2) 1 - x~ x~ + (1 - x , )  2 
rr 2~rxp [v2(v2+(l_xp)/Xp)]~ 

/ 

~g2(xp,Q2,v) =2x ~[x~ +(1-Xp)2]log (-p2) 8Z(v) 

! - xp z + (1 - xp )2 
~ s ( g 2 t 2 x  x~ 

2 x, [ ,4v2 + (l 

-( i;; } 
In order to obtain the form factors ~1,2(X,02,13) for the scattering on a real 
nucleon, we have now to do the convolution of the functions °~qi and °~g i with the 
quark and gluon distributions inside the nucleon. Following the discussion of sect. 
2, one can factorize the mass singularities in these distributions in order to obtain: 

l d ~  2 ~ x v) <',~(x,O~,v)=£ gi{~[q(e,o~)+o(e,o )3,,,,(~, e =, 

Q,o)} (,,.9, + g(,~, O )°°kgi\ 4' 

i - -  1,2. Here q, # and g are the total quark, antiquark and gluon momentum 
distributions. 

There is at this stage an ambiguity we would like to point out: concerning the 
scattering on a gluon we have to sum over the flavours of the quark-antiquark pair 
produced by the gluon. For  instance, for an incoming neutrino the W + can scatter 
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either on a d (or ~), or on an s (or E) quark, so one should multiply the contribution 
of the gluons in the above formula by a factor 2, in a world of four flavors. This is 
true asymptotically, but at the present available QZ our computation does not 
apply to the process where the scattering of the virtual vector boson W ± on a gluon 
produces a sE or ~c pair since the charm quark mass cannot be neglected. So we do 
not consider this process here, and our results are valid only for non-charmed final 
states. Well above the charm threshold the gluon target contribution (which is 
rather small except in the low x region) should be multiplied by 2. 

0~-~ v,~ ^ We then calculate the moments in v of ~; , i.e., the functions ~'~ E,,; (x )  defined in 
(44) [ E ~  has been given in formula (28)]. Due to the contribution of the gluons, 
the expressions of E,,l  and /~n.2 look slightly more complicated; they are given in 
(45) in terms of the following functions: 

4 [  l + x ~  I (x" ( 1 - x ) ( l - 2 x - 2 x  z )J . ( x ) ]  
O°,(x)  = 5 - - T - - .  ) + x ~ ' 

(A.10) 

4 [  l + x  2 ( l - x ) ( l + 2 x - 6 x  2) jn(x) l  
O"2(x)---5 ~ - ~ - - I , ( x )  + x 2 , 

(A.11) 

+ 

The integrals In(x ) and Jn(x) defined in (29) satisfy the following recurrence laws: 

2 1 - x i , _ 2 ( x ) ;  (A.12) f ° r n > > ' 3 : l " ( X ) = n - 2  x 

l [ 1 - x n j . _ 2 ( x ) - 2 x 2  ] f°rn4~4:J"(x)=-4L-n-n x (A.13) 

I 0, I~, 12, J0, J~ and J4 can easily be calculated directly, and one finds, for the first 
terms: 

x 

l l (x  ) = 2  l - x  1 - x  ' 

1 
12(x) = log 1 - x (A.14) 
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l - - x  1 
1 4 ( x )  = 1 - - - - l o g  

x l - - x  

J l ( x )  = 4 1 - - x  1 - - x  x 

1 X 3 

J 2 ( x )  = 2 1 - x '  (A .15 )  

,/x ] 
J ~ ( x ~ = .  3 - -  t a n  -1  2 x 2 -  3 x  
- J~ ,  I 4 X 1 - - X  ' 

1 1 2 
x -  A(x) =log 1 - x  ~x  . 

W e  h a v e  used  a s imp le  p a r a m e t r i z a t i o n  g iven  in sect.  4 for  q(x ,  Q 2), ~ ( x ,  Q 2 )  a n d  

g ( x ,  O2)  to c o m p u t e  the  f u n c t i o n s  P'~ En, i ( x )  g iven  by  the r e l a t ions  (45) a n d  (A.10)  to 

(AAS). 
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