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Résumé. 2014 Dans le modèle des verres de spin où les interactions ont une portée infinie, nous consi-
dérons le spin alterné 03C303BB associé à un vecteur propre donné de la matrice des couplages. Nous montrons
que la moyenne thermique de 03C3203BB est une grandeur qui ne fluctue pas avec les couplages, et nous la
calculons.

Abstract. 2014 In the infinite range spin glass model, we consider the staggered spin 03C303BB associated with
a given eigenvector of the interaction matrix. We show that the thermal average of 03C3203BB is a self-averaging
quantity and we compute it.
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The low temperature behaviour of spin glasses is a long-standing problem which still remains
a source of surprises. One of the recent discoveries in the theory of spin glasses is the lack of self-
averageness [1, 2]. Certain quantities, like the weights and overlaps between equilibrium states
or the magnetic susceptibility, fluctuate with the realizations of the random couplings, even in the
thermodynamic limit. On the other hand, some physical quantities like the free energy, the internal
energy and the magnetization are self-averaging.

These results have been obtained in the mean field theory, that is in the infinite range model
of Sherrington and Kirkpatrick (S.K.) [3] where the N Ising spins ai interact with one another
through couplings Jij. The Jij are independent random variables with Gaussian distribution of
zero mean and variance 11ft. In this approach, the average over the couplings is calculated
with the replica method [5], and the non-self-averageness is closely related to the replica sym-
metry breaking (RSB). Hence the breaking of ergodicity and the fluctuations relative to the
realizations of the couplings are tightly mixed and it is highly desirable to disentangle these two
kinds of effects.
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In this paper, we attempt a first step in this direction. We introduce the set of gauge invariant
extensive two-point functions :

(( ) denotes the thermal average while we shall use the notation ( ) for the averages over the
couplings). We shall show that these functions Ep are self-averaging, and we shall compute them
explicitly, within the RSB scheme of reference [4], in terms of the average order parameter function
6~).

This result is most easily described in terms of the staggered spin states : let 1 l ) be the eigen-
states of the random N x N matrix J, with eigenvalues ~, and let 1 (J ) denote the N-dimensional
vector of the spins (with 7, ==  i 1 (J ~). The staggered spin states are 6~ = ( II 6 ~. From the
definition (1) of Ep, we have :

where p(À) is the density of eigenvalues around which is given for large N by [9] :

and g(A) is the staggered correlation function :

From the results on the Ep, we shall deduce that ~(A) are self-averaging, and we shall give their
expressions in terms of land Q(x) (we shall always use the RSB scheme of [4]).
We now turn to the computation of the average values Ep. E, is equal to minus twice the internal

energy. There are two basic steps in its computation :
- by introducing n replicas of the system and letting n -+ 0, one can get rid of the partition

function Z in the denominator of (1);
- the average over the couplings can then be done. One takes care of the explicit Jij factor

in (1) through an integration by parts, using :

This gives

where Qu6 is the n x n order parameter matrix, taken here with Qaa = 1, and ~(y,.) is the S.K.
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Hamiltonian for replica c. For n going to zero, one finds the standard result :

The strategy to compute the other Ep’s is the same. One transforms the string Jili2 ... ~ ~ ~ 1PP + I
in (1) into a sum ~ ... ~ (cr~, 6 i ) ... ( o~ p ~ p + 1) through an integration by parts, using the iden-

Oi ap

tity (5). One must, however, be slightly more careful since this identity does not hold if a given
link (i, j) appears several times in the sequence (i1, i2) ... (ip, ip+1). For instance, for a double
link l one should use :

Then one can perform a simple power-counting of the N factors to see what kind of diagrams
dominates :
- a diagram where all the p links are distinct is of order N~; there are p + 1 summations

on the sites giving a N P + 1, p links giving a 1/ N P from (5), and a global 1 /N factor in the definition
(1) of Ep. Its precise contribution is

- a diagram with one double link has p - 2 ordinary links giving a I/Np-2, one double
link with an « anomalous » contribution from (8) going as 1 jN, and in general it has (p + 1) - 2
summations on sites, so it gives a total contribution of order 1 /N. The only case when such a
diagram contributes is when the double link introduces only one constraint on the sites, in which
case there are (p + 1) - I summations on sites only. This happens when the two identical links
are neighbours in the sequence (i,, i2) ... (ip, ip+1). Such a diagram gives a contribution Xp - 2 to
Ep.
The same power-counting argument shows that diagrams with links of order three or more are

always negligible. So, the general formula for Ep is :

where cp.q is the number of distinct diagrams with p - q neighbouring double links. One finds,
in this way : ,

These formulae can be inverted and give

Using the diagrammatic arguments of [6], we find that the SP,q are well known coefficients :
P 

’

Sp(jc) = ~ Sp,q xq are Chebyshev polynomials of the second kind, a set of polynomials ortho-
q=0 

’

gonal on [- 2, 2] with the measure ~1 - x j4 [7].
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From (12) one implicitly knows the E-P’s as functions of the Z~s defined in (9), that is as functions
of the eigenvalue spectrum of the 0 x 0 Q,,b matrix. It turns out that this spectrum can also’be

computed. We introduce the generating function K(u) = 
J 

I 
. This is nothing but

. ~/det(l + uQ)
the partition function for n scalar fields q5,, interacting through the Hamiltonian

This partition function can be computed to all orders in the RSB, using the methods of refe-
rences [4, 8]. Taking the Hmit ~ -~ 0 and expanding in powers of u, we find :

where

The values of the averages Ep are known from formulae (12) and (14).
The self-averageness of Ep can bip demonstrated through an explicit computation of the fluc-

tuations ; with the replica trick one must average over the couplings a product of two strings :

The simplest term appears when all the links are distinct. Using (5), one gets for this term :

As before, the corrections come from the multiple links. The power counting of N shows that the
double links involving one link of each chain are always non-leading. The only terms which
contribute for N -~ oo are the double links in each individual chain. This gives, precisely :

We can state these results in terms of the staggered correlation functions g(À.) defined in (4) :
obviously, these functions are self-averaging, and we know all their moments. These can be
inverted; from (2) and (12) we have :

So the Xp’s are nothing but the coefficients in the expansion of g(A) on the Chebyshev polynomials.
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The final result for g(A) is deduced from the explicit expressions (14) of Xp. For simplicity we
quote the result in zero magnetic field (using q(O) = 0 and ~(1 2013 1) = 1) :

The function p(/)) g(~,) is plotted in figure 1, using for Q(x) the ansatz of reference [10] and the
T z T 3

approximate expression QE.A.(T) = 1 - 2 T + T 3B c/ B~c/
It has been already mentioned several times [11-13] that the spin glass transition is associated

with the appearance of a non-zero staggered magnetization, although it is debated whether the
mode 2 = 2 is macroscopically populated. It appears now that the staggered magnetization
is less interesting than the staggered function g(A), since it is not self-averaging. (This can be seen

from its first moment T71~ ~ ~ Jij  aj &#x3E; which fluctuates with the couplings). However,
___ 

~ tj

/!(/t) = (~ can be computed in the same way as g. The only difference is that Xp should be
replaced by :

This gives in zero field :

From (20) and (22), we find that both g(A) and A(/L) diverge at ~ -~ 2 as (2 - ~,)- 5~4. Such a
behaviour for the staggered magnetization h(À.) has already been found in a different approach [13].
However, the products p(A) g(À.) and p(/L) A(/L) exhibit integrable divergencies. There is no macro-
scopic condensation in any of the eigenmodes.
To conclude, we have obtained general expressions for the staggered spin correlation function

and the staggered magnetization. It is surprising that ( U2 &#x3E; turns out to be self-averaging :
this might give some new kind of information on random matrices. Indeed, there is some combi-
nation of the components of the eigenvectors of a large random matrix which tends towards a

Fig. 1. - Plot of the staggered correlation function ( 6~ ~ times the density of eigenvalues ~2013~/4 2013 ~2 ~c

v~~M~ ~ for the temperatures T = 0.3 and T = 0.7.
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well defined limit when N ~ oo. We must recognize however, that this information is still very
indirect since it involves the correlation function (for instance at T = 0) in the S.K. model having
this matrix of couplings.
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