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Abstract. — We introduce a new method, which does not use replicas, from which we recover all
the results of the replica symmetry-breaking solution of the Sherrington-Kirkpatrick model.

Since its introduction in the context of spin glasses by EDWARDS and ANDERSON [1], the
replica method has been carried to a high degree of sophistication. A solution of the mean-
field theory (the SK model [2]) with replica symmetry breaking (RSB) has been
proposed [8], and its physical meaning has been fully elucidated recently [4-7]. Although this
replica solution builds up a coherent picture and provides us with a powerful method for
analysing the equilibrium properties, it is difficult to put it on precise mathematical grounds.

In this paper we introduce an alternative method which does not rely on the repliea trick,
but leads to the same solution. It can be viewed as an analytic ansatz to solve the mean-field
equation of TAP [8]

The basic idea is to go from a SK model with N spins, Xy, to one with N + 1 spins, Xy ..
We shall make some physical assumptions on the organization of the configurations of Xy,
inspired from recent results on the meaning of the RSB Ansatz of ref. [3]: the ultrametric
organization of the states[6] and the independent exponential distribution of their free
energies [7]. Assuming these properties for Xy, we shall show that they hold for Y., and
deduce all the other results of the replica treatment: value of the free energy, distribution of
the local magnetizations in each state, and shape of the order parameter function.

For completeness, we first briefly review these physical properties.

The spin glass phase is charcterized by an infinite number of equilibrium states « with
corresponding free energies F', and local magnetizations m? [4, 5]. A natural measure of the
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distance between two states « and 8 is their overlap

and the order parameter function is the probability distribution of these overlaps [4].

The space of equilibrium states is ultrametric [6]. This essentially means that the states
are grouped into clusters: by choosing any scale of overlap ¢ (<gqu), the space can be
partitioned into nonoverlapping clusters such that two states in the same cluster have an
overlap larger than g, while states in different clusters have an overlap smaller than g. The
clusters at a scale ¢’ > ¢ are subclusters of those at the scale g.

All the states have the same free energy per spin F,/N = F, to leading order in N, but the
O(1/N) corrections f,vary from state to state and determine their probabilities

-1
Pa: = exp[_fgfa] |:2 exp[_ﬁfy]]
T
(where f is the inverse temperature). The number of states at fixed free energy f is

"'jp(f_fs) ~exp [P(f_fs)] 5 (1)

where f, is a free-energy scale. Taking into account the fact that the states are grouped into
clusters at the scale ¢, one finds that the distribution of the states inside the same cluster I is
still given by (1), but the free-energy scale fi depends on the cluster. The distribution of
these f1 is the same as (1) but with a parameter ¢’ < (*). This structre is reminiscent of the
generalized random energy model [9].

We can now proceed to analyse what happens when one adds a new spin g, to the system
Xx of N spins {ay, ..., on}. For simplicity, we shall keep to the case where there is no
external magnetic field. The spin g, interacts with the N other ones through a set of
couplings K; which are independent random variables with K;=0and K;K;=1/N¢;. As we
do not change the coupling of Xy, they verify J2=1/N instead of J2=1/(N + 1). The correct
rescaling of JZ can be absorbed into a resealing of the temperature, and the change of free
energy AF we find is related to the free-energy density f and the energy density e through

AF =el2+f. 2)
Let us consider the first stage of symmetry breaking. We suppose that there exist M
equilibrium states a=1, ..., M of Xy, with
o=t S mim, atf G=— S P 3)
N : (3 13 ¥ N ; (] )

and their free-energy distribution is the .7, (f) of (1). The local field on site 0 in the state «,
h*= Y k;mZ, is a random variable which depends on the sample and on the state. The

i

(") The alert reader might be worried about the compatibility of these formulae with formula (14) of
ref. [7]. He should notice that all fomulae in [7] can be multiplied by an arbitrary function of
v=M exp[— gf.] without affecting their validity: this is a global change of energy scale which does not
affect the distribution of probabilities. Furthermore formula (14) was at fixed probability of the cluster,
while in the present work we fix its energy scale f;. At f; fixed, the probability still fluctuates. Taking
into account these fluctuations, a detailed computation shows that both formulations are valid.
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probability that, choosing a sample, the h* take values h!, ..., A¥ is

N N o ~
Py, ..., hM)=J I1 (dKi SoexP [— o KQD [T o= - X Kim2); )
i o a=1 i

introducing integral representations of the J-functions, one gets

(5)

M _ AR ey B
Pl ..., hag) = J H( exp[— (h* — M)12(q: — go)] )

ol ]t
V2rgo 2¢o | «=1 2r(g1 — Qo)

Thus there is a common piece H = (1/M) >, * which depends on the sample (its distribution
is a Gaussian of width f*= q), around this the A* are uncorrelated Gaussian variables of
width (h* — H)® = q; — q,.
Each state « of X'y generates a state of ¥, ; where the magnetization on the new site is
m§ = tgh (Bk*), and the corresponding change of free energy Af, is the sum of three pieces:
— the energy of the spin 0 in its local cavity field:

AF; = — mih* = — h* tgh8h* , ©6)

— the entropy of the new spin:

AFy=— % [In (2 cosh 8h*) — 8h* tgh Bh*], o

— the change of free energy AF'; due to the rearrangement of the N spins in the
presence of spin 0. We shall prove, later on, that

AF3=—§(1—QM), @

where gy is the self-overlap of a state.
For a fixed sample the new distribution of free energies is still the exponential (1), but its
scale has been shifted by a factor ¢(H, ¢, — qo, o) — (8/2)1 — q;), Where

&, g 2ol [ 2 [ hz} [2 cosh BhF” ©
e 2y Rl == eXplT —— COSs i
¢ Vang 2q
performing the quenched averaged over H gives the average change of free energy:
1 i dH 7 B
AF = exp|— — | ok, g1 —qo, ) ——(1 — : 10
Vo P [ 2%] o 1~ g0, )= q1) (10)

The distribution of local field in the states at a fixed new free energy, normalized and
averaged over the samples, is

(11)

P(h) = f Hz] expl— (b ~ H)¥/2(g: ~ go)l2 cosh Y

exp [— —
2mqq 24, o(H, g1 — qo, p)
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Finally, in order for the overlaps not to change at order 1/N when one adds 5y, one must
impose the consistency equations

= j dh P(R)[tgh BhTE ,
dH H?
4 notar e 12
o j i [ zqo] (12)
: [( [ahAB=G = q0) expl— (h— HY22(g1 — go)1[2 cosh BhF* tgh Bh ]2
y CF(H! 41— qo, P)

Using the expression (2) of AF, one can check that (10)-(12) are exactly the results of the
replica method with one level of RSB [3, 10, 11].

Let us sketch the essential points of the computation at the second level of symmetry
breaking. The states are grouped into clusters. The energy scales of the clusters have the
distribution . Ivl(fé —f), and the distribution of the free energies of the states ingide the
same cluster Lis ./ (f — f1). The self-overlap of a state is gz, the overlap of two states in the
same cluster is q,, and the overlap of states in different clusters is go. The local fields ~2* on
the site 0 are found to depend on three pieces. A field H which depends only on the sample
and is a Gaussian variable with zero average and variance go. A field H' which depends on
the cluster. For fixed H, the H' are independent Gaussian variables with average H and
variance ¢, — go. A field #* which depends on the state. For fixed H and H', the h* of the
various states which belong to the same cluster I are independent Gaussian variables with
average H' and variance ¢z — ¢.

Adding the new site, one finds the same structure of independent free-energy scales, and
independent free energies of the states inside the clusters. The free-energy scale of each
cluster is changed as in (10) by a factor o(H 1 ga— qu, p2) — (B/2)(1 — g»), and the experimental
distribution of the free-energy scales is shifted of a factor (for fixed H)

1 dH"
A s(H) Ca __1 e
- e1 y J V2r(qy — qo)

(H'— HY I B
exp |- ————|exp|—p1 |[pH, g2 = g1, 020~ TA—) || (13)
2(g1 — q0) 2
Averaging finally over the sample-dependent common drift H gives
\F’ i e [ HZ] Af(H) (14)
= xp | — — | Af(H) .
VZango 290

This is exactly the result for AF in the replica method with two RBS [3, 10, 11]. One can
check again that the distribution of the local field and the coherence equations determining
the ¢’s are the same as those obtained with replicas. This discussion can be extended in a
straightforward way to an arbitrary number of cluster hierarchies.

We still have to demonstrate formula (8) for the change of free energy due to the
rearrangement of the N spins. An instructive proof follows from the generalization of our
arguments at the level of the configurations.

In a given state «, at a given temperature, the set of relevant configurations has the
following properties: the number of configurations of energy E + E (F is supposed to be of
order N and E of order 1) is

N (E +E)~expls(&) +BE] (15)
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and the mutual overlap of these configurations is the self-overlap of the state,¢g™ = qas.

Let us consider a set of M (>> 1) such configurations. Each configuration # creates a local

field 2“ on the site 0. Following the same argument as in (5), one finds that, for fixed

A= (1/M) 2, h%, the h” are independent Gaussian random variables of width 1— g, and
7~

average #. One has
1
h=2k; [—ch ]Emm%, (16)
i M = i

hence % is the average magnetic field 2% on site 0 in state .

Adding the new spin, each configuration gives rise to two configurations with 9= *1
and energies E“Fh”. We can safely assume that the distribution of energies and
magnetic field in Xy are uncorrelated (in the expressions of the magnetic field on site 0 and
of the energies the values of the spins are multiplied, respectively, by K; and J; which are
statistically independent). Then the distribution of energies (15) in X, is multiplied by a
factor

dh - (h—- WP
C= j o [— —} [exp [8h]+ exp[— BRI] . (17)
V2r(l—qu) 2(1 —qu)
This change of normalization of the exponential has a double origin: a shift of entropy AS
(shift of the vertical scale), and a shift of £ into ¥ + AE, which shifts the horizontal scale.
The net change is C = exp[AS — 8AE], which proves that the change of free energy is

1 1 B
AF=——InC=—- —In[2 cosh(Bh,)] — =1 — . 18
7 n 7 n[2 cosh (8h,)] 2( qm) (18)

We have recovered all the results of the replica method on purely physical grounds. In
fact we start from the same hypotheses as in the replica method (but instead of being hidden
in the form of the RSB ansatz they are explicit), and obtain the same results. These results
are thus clarified and can be written very easily. For instance the existence of a dip at the
origin in the distribution of local fields at low temperature follows from the following fact: in
Xy there is an exponentially large number of states at a distance & above the ground state,
and hence a nonvanishing probahility that one of them will be the ground state of Xy, with
a large local field.

The resulting picture possesses remarkable properties. The distribution of relevant
states inside a cluster is very similar to the distribution of relevant configurations inside one
pure state (exponential increase of the number of states with the free energy, and
uncorrelated local fields around the average one [11]).
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