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Abstract. To ensure large basins of attraction in spin-glass-like neural networks of two-state 
elements 67 = * I ,  we propose to study learning rules with optimal stability A, where A is 
the largest number satisfying A S  (2, J , , [ , ” ) ( ? ;  p = 1, .  . . , p; i = 1,. . . , N (where N is the 
number of neurons and p is the number of patterns). We motivate this proposal and 
provide optimal stability learning rules for two different choices of normalisation for the 
synaptic matrix ( J , , ) .  In addition, numerical work is presented which gives the value of 
the optimal stability for random uncorrelated patterns. 

In the last few years, spin-glass models of neural networks have evolved into an active 
field of research. Much effort has been invested towards the understanding of the 
Hopfield model (Hopfield 1982) and its generalisations (see recent reviews such as 
those by Amit and Sompolinsky cited by van Hemmen and Morgenstern (1987)). 

These models consist of a network of N neurons (taken to be two-state elements 
Si = * l )  connected to each other through a synaptic matrix (Ji , . ) .  The network evolves 
in time according to a given dynamical rule, often taken to be a zero-temperature 
Monte Carlo process: 

Si( t + 1 )  = sgn (1 JijSj ( t 1) . 
\ i  1 

This is the rule we will adopt in the following. 
So far the interest in neural networks has been mainly focused on their properties 

of associative memories. This works as follows: in a so-called ‘learning phase’, the 
network is taught a number p of ‘patterns’ &”, p = 1,. . . , p (each pattern being a 
configuration of the network 5” = ,$, ,$‘, . . . , 6%; ,$? = k l ) ,  i.e. the corresponding 
information is encoded into the matrix ( J U )  by means of a given learning algorithm. 

In the retrieval phase, the network is started in a certain initial configuration S 
( t  = 0). If this configuration is not too different from one of the patterns, say S”, it 
should evolve under the dynamic rule (1) towards a fixed point, which is the pattern 
itself S (  t = 00) = 5”. We will say then that S (  t = 0) lies in the basin of attraction of 
5”. A necessary condition for associative memory in this (rather strict) sense is that 
the patterns be fixed points of (1) (which implies that the system is at least able to 
recognise the learned patterns). This can be written as 

g = sgn ( J u g  p = l ,  ..., p ; i = l ,  ..., N 
j 
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or, equivalently, as 

o < a s ( x J v g ) g  w - 1 ,  ..., p ;  i-1, . . . ,  N. ( 2 b )  
j 

An important problem in the context of associative memory is to devise learning 
rules which lead to large memory capacities, i.e. models whose basins of attraction 
are as large as possible. This is a difficult problem of ‘phase-space gardening’ which 
is the inverse problem of the spin-glass one. So far the only proposed rules (Gardner 
et a1 1987, Poeppel and Krey 1987) are iterative improvement methods on the matrix 
( Ju) :  if a given configuration does not converge towards the pattern, one tries to modify 
( J v )  in order to ensure this convergence. Obviously, in order to dig a basin, one must 
scan a large part of the configurations of the basin and this is very time consuming 
(the number of configurations which differ in k bits from a pattern grows like N k / k ! ) .  

In view of this difficulty, we propose in the present letter to study instead a ‘poor 
man’s version’ of this problem: the network should have optimal stability A. As we 
shall see, this enables one to guarantee at least a certain minimal size of the basins of 
attraction; in addition, we will be able to solve this simplified problem, i.e. to provide 
learning algorithms which compute synaptic couplings resulting in optimal stability 
of the network. 

A network with the dynamical rule (1)  is invariant under a rescaling of the Jl,, and 
our criterion makes sense only if one has chosen a certain scale for these quantities. 
Let us assume, therefore, that the synaptic connections satisfy 

l J u l s  l/m i , j = l ,  ..., N ( 3 )  

and, further, that one starts from an initial configuration S(  t = 0) which coincides in 
all but a number 6 of bits (components) with a pattern 5”. Conditions (1)-(3)  then 
ensure that 

provided 

S s Am/2. 

The inequality ( 5 )  motivates our strategy: the better the stability A of the network, 
the larger is the size of the region which can be recognised by the network in one time 
step. We will proceed on the assumption that the size of the whole basins of attraction 
of the network will then also be larger. In the absence of analytical methods to calculate 
basins of attraction, a detailed study of this assumption will require extensive numerical 
simulations, which we leave for future work. It is to be noted that our criterion is too 
crude to distinguish the details of the dynamical rules (parallel and sequential updating 
processes lead to the same result ( 5 ) )  while it is sensitive to different choices of the 
normalisation on the synaptic matrix, which will be discussed later. 

In the following we will not assume that the matrix (J , , )  is symmetric. The 
inequalities (2) then decouple into N systems, each of which states the constraints on 
one row vector of (J, ,) .  On row i, the stability condition can therefore be written as 

( 6 )  
where J, is the ith row vector of ( J , , ) ,  and where the qf” are defined by qf” = 5f”g” if 
self-interactions (4, Z 0) are allowed and qf = 57(5t, . . . , . . . ,[&) otherwise. 

I*. = 1 , .  . . , p  0 < A I J, * q 7 
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We will not distinguish the two possibilities in the following and will treat qr as a 
vector with N components which will also be called a ‘pattern’ and whose row index 
i will generally be dropped. 

We now treat the problem of computing the synaptic strengths of a network with 
optimal stability A, given the normalisation (3). This can easily be formulated as a 
linear program in the sense of optimisation theory (cf Papadimitriou and Steiglitz 
1982). There are N + 1 variables (J,, J 2 , .  . . , JN, A )  which must satisfy the set of linear 
inequalities 

C Jiqi ’ - A 2 0  

-1,IJXS Jj S 1IJW i = l ,  ..., N (7)  

p = 1 , .  . . , p  
I 

A s 0  

and the objective function one wants to maximise is just A. A feasible solution of (7) 
is J = 0, A = 0. Therefore, an optimal solution exists; it can be computed using, e.g., 
the simplex algorithm (cf Papadimitriou and Steiglitz 1982). If the optimal solution 
is stable ( A  > 0), it will satisfy maxjlJjl = 1/m. 

For an actual computation, it is advantageous to start from a dual formulation of 
(7) (cf Papadimitriou and Steiglitz 1982), in which the special form of the inequalities 
(7) can be used to obtain an initial basic feasible solution. It seems possible, in 
addition, that more sophisticated methods of combinatorial optimisation can be brought 
to bear on this problem to increase the speed of the learning procedure and to make 
efficient use of the correlations between the qi in different rows of the matrix (Iij). 

Normalisations different from (3) may be of importance, in particular those which 
allow Jij to take on discrete values only such as Jij = *l,  0. Finding optimal stability 
networks with these normalisations seems, however, to be a more complicated problem. 
We have rather, in addition to (3) ,  treated the case where the Euclidean norm is fixed: 
( J I  = 1 .  This problem has an interesting geometrical interpretation, in the light of which 
other, widely used, learning rules can be understood. The problem: 

maximise A > 0, such that 1 J iq?  - S 2 0 p = 1 , .  . . , p  

IJI= 1 

corresponds, in a geometrical picture, to finding the symmetry axis J of the most 
pointed cone enclosing all the vectors 1” (note that (q’l = m, p = 1 , .  . . , p). The 
patterns for which the inequalities (8) are tight come to lie on the border of the cone. 
This is a simple geometrical problem but it transpires that finding an algorithm which 
solves it in a space of large dimension is not completely trivial. As a first algorithm 
one might choose for J the unit vector in the direction of the weighted centre of the 
1’. This, precisely, is Hebb’s learning rule which is used in the Hopfield model. 
Clearly it has no reason to be optimal and should perform badly when some of the 
patterns J” are correlated, explaining a well known phenomenon. A different 
algorithm, the pseudoinverse method, has been proposed by Personnaz et a1 (1985) 
(cf also Kanter and Sompolinsky (1987)). In this case a vector J is sought, such that 
J .  q” = 1 ,  p = 1,  . . . , p. J is thus the symmetry axis of the cone, on whose border all 
the patterns are situated. Such a cone exists if the patterns are linearly independent 
(so that p c  N is a necessary condition). The pseudoinverse method does not result 
in an optimal stability A although it gives good results for a small number of uncorrelated 
patterns. 



L748 letter to the Editor 

To determine a synaptic matrix with optimal stability, we present now an iterative 
method which is based on the perceptron-type algorithm proposed recently by 
Diederich and Opper (1987). Consider the following minimum-overlap learning rule, 
which proceeds in a finite number of time steps t = 0, .  . . , M, provided a solution of 
(8) (with A > O )  exists. 

At time t = 0, set J'O' = 0 (tabula rasa). 
At t = 0, 1,  . . . , determine a pattern q@'" that has minimum overlap with J"):  

min {J'" q '} (9) J ( t )  . $ ' t )  = 

J ( ' )  . q F ( ' ) c  c 

u = l ,  . . . .p 

and if 

( c  is a fixed positive number) (10) 

use it to update J") by 
J ( t + l )  = J ( t )  + ( 1 / N ) q F ( ' )  

or if 

~ ( 1 )  . q r ( t J  > ( t = M )  

renormalise J'" to unity 
then stop. 

The stability Ac determined by this algorithm is 

Ac = min {f'' * qY}/ IJ 'M' /  2 c/IJ'~'( .  
"= 1, . . . , p  

This algorithm differs from that of Diederich and Opper in two points. We allow 
c to vary instead of taking c = l  (in fact we shall see that the optimal solution is 
obtained for c >> 1 )  and among the patterns which satisfy (10) we choose the one which 
has the minimal overlap (9) instead of updating sequentially. 

We now present three results, as follows. 
(i)  The minimal-overlap algorithm stops after a finite number M of time steps 

provided a stable optimal solution of (8) exists. 
(ii) If Aopt is the stability of the optimal solution of (8) then A, satisfies 

Ac c Aopt s AA, (13) 

A = / J ' ' ' / 2 N / ~ M  (14) 

1 4 A s 2 + l /c.  ( 1 5 )  
These first two results are simple consequences of a perceptron-type convergence 

theorem which we shall sketch in appendix 1. They also apply to the algorithm of 
Diederich and Opper (DO) for which we have thus obtained the performance guarantee 

where A is a performance guarantee factor which can be measured: 

and which satisfies 

ADO 2 SAop,. 
(iii) For the minimum-overlap algorithm we have the much stronger result: 

for c+oo A + l  so tha? Ac + A o p t ( C  + a). (16) 

The proof of (16) is somewhat more complicated; it may be found in appendix 2. 
The two algorithms we have presented in this letter clearly work whatever the 

correlations between patterns. In order to test them and to provide a convenient 
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reference to other learning rules, we have performed simulations on random patterns 
for which each of the vy is *l with equal probability. (With respect to the original 
network this means that we have taken the diagonal of the synaptic matrix (JG) equal 
to 0. Nevertheless we keep on denoting by N the total number of components of each 
9.) In our simulations we recorded the obtained stabilities A for both algorithms 
according to each normalisation: A, rescaled with maxj lAlm and A2 rescaled with 
( J ( .  The results are presented in figure 1 for a storage ratio a = p /  N = 0.5. The results 
for N = 80, p = 40, show, e.g., that after termination there can typically be at least 3.3 
wrong bits in an initial state S(  t = 0) to guarantee convergence to a pattern in one 
time step using the linear program algorithm, while the corresponding number for the 
minimum-overlap algorithm with c = 10 is 1.7 wrong bits. 

1 : 
1/40 1/20 

1IN 

Figure 1. Stabilities A ,  and A2 found by the two algorithms in the storage of p =  N I 2  
uncorrelated random patterns, with N between 20 and 80. The triangles are the results of 
the simplex and the squares are the results of the minimal-overlap algorithm with c = 1.  
The upper points give A, .  Typical averages over 100 samples have been taken for each 
value of N. Lines are guides for the eye; error bars are of the size of the symbols. 

For random patterns, the optimal value Aopt as a function of a for N + c o  has 
recently been calculated (Gardner 1987). It is the solution of 

l/a = - exp( - i t 2 ) (  t + A0,J2. 

Using the formulae (13) and (14), we calculated (with c =  10) upper and lower 
bounds on the value of Aopt which, after statistical averaging, could be extrapolated 
to N + 00. The results confirm Gardner’s replica calculations, as shown in figure 2. 
In the large N limit one can store up to 2N random uncorrelated patterns (Venkatesh 
1986, Gardner 1987). 

Finally, we want to mention a possible extension of our second algorithm and we 
explain it in analogy to the Hopfield model for which it has been shown that only a 
number of N / 2  log N random patterns can be stored if one requires stability A > 0 
(Weisbuch and Fogelman-Soulie 1985), while if one allows a small fraction of wrong 
bits in the retrieved state then the capacity is p = 0.14 N (Amit et a1 1985). A similar 
situation could occur here: it might be sensible to allow a small number of wrong bits 
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Figure 2. Asymptotic value of the optimal stability A2 for the storage of uncorrelated 
random patterns in the large-N limit as a function of a = p /  N.  The numerical results have 
been obtained with the minimal-overlap algorithm with c = 10. The error bars take into 
account the uncertainty on the value of Aop, due to the fact that c is not infinite (using the 
bounds (13)), the statistical errors found in averaging over about 100 samples for each size 
N, and a subjective estimate of the uncertainty of the extrapolation to N + CO. The curve 
is the prediction (17). 

in order to enlarge the size of the basins of attraction (cf Gardner and Derrida (1987) 
for an analytical approach to this problem). Preliminary work indicates that quite 
successful methods might be conceived, using a combination of the minimal-overlap 
method and a simulated annealing method (Kirkpatrick er a1 1983) with an energy 
function of the type E = -X,@(J-  qp -A) .  In this case the elementary moves can be 
those of (9)-( 11) but a move is accepted only with a certain probability which depends 
on the change in this energy for the proposed move. It will certainly be interesting to 
understand how the storage capacities of uncorrelated patterns can be improved with 
such a method allowing a small number of errors. 

It is a pleasure to thank B Demda, E Gardner, N Sourlas and G Toulouse for stimulating 
discussions. 

Appendix 1 

We prove the convergence of the perceptron-type algorithms and provide bounds on 
their performance, provided there exists one stable solution. The idea of the proof 
follows Diederich and Opper (1987). 

We assume that there exists an optimal vector J* such that 
J * . q p a c  

IJ*l = c/Aopt * 

p = 1, .  . . , p 
(Al . l )  

After M updates with the algorithm (9)-(l l) ,  assuming that the pattern q’” has been 
used m’” times for updating (Ewm” = M), one has 

( M / N ) C  s ( I / N )  m,J* qw = J* J ( ~ ) <  - ( c/Aopt)lJ(M)l. (A1.2) 
’” 
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On the other hand an upper bound on JJ(')I is easily provided by 
1J('+1)12-)J")12=(2/N)J'') * qr ( ' )+  l / N S  ( 1 / N ) ( 2 ~ + 1 )  (A1.3) 

which gives 
1J'M'1~[M/N(2c+1)]1'2. (A1.4) 

Therefore the algorithm converges after a bounded number of steps M 
M 6 (2c+ l )N/Aip,  (A1.5) 

A s  c / \ J ( ~ ) I  3 A , , , ( M / N ) c / ( J ' ~ ' ~ *  = A,,,/A 
and gives a stability 

(A1.6) 

where A is defined in (14). Furthermore A can be bounded; from (A1.4) and (A1.5) 
we obtain 

(A1.7) A = IJ'M'12N/~M < (2c+ l ) / c  = 2 +  l/c.  

Appendix 2 

To prove (16) we assume again that there exists an optimal solution J* which satisfies 
(Al.1). We decompose J"': 

and reason as in appendix 1, but separately on K ( ' )  and a (  t) .  
In the minimal-overlap algorithm, q r ( ' )  always has a negative projection on K ( ' ) :  

(A2.2) K ( ' )  . q r ( t )  - -=O 

since otherwise the condition 
min{ (J* + uK( t ) )  * q '(')/ I J *  + uK( t)l) hop, 

r 
(A2.3) 

for all U would be violated. As in (A1.3), we can use (A2.2) to show 
IK(')I 6 m. (A2.4) 

If learning stops after M time steps, a ( M  - 1)  can be bounded as follows: 

< C  (A2.5) p - 1 )  . q r ( M - l )  = a ( M -  1)J*. qP(M-l)+K(M-l). q P ( M - l )  

which yields 
a(  M - 1) < 1 + m/ c. 

The learning rule (11 )  ensures that a ( M )  differs little from a ( M  - 1) .  In fact 
(A2.7) 

Equations (A2.4) and (A2.7) can now be combined to bound IJ(''I and using (A1.5) 
( M  grows at most linearly with c) we obtain 

(A2.8) 
which implies the result (16). 

Precise bounds and finite c corrections can be obtained using the strategy of 
appendix 1. They show that the relative precision on A is at least of the order of l /& 
for c large. In our numerical simulations we have found a precision which improved 
rather like l /c.  

a(  M )  < 1 +m/c + A o p , / m c .  

c/A = lJ(')\ -* c/A,,,( c + a) 
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