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Abstract. In this paper we study the retrieval phase of spin-glass-like neural networks. 
Considering that the dynamics should depend only on gauge-invariant quantities, we 
propose that two such parameters, characterising the symmetry of the neural net’s connec- 
tions and the stabilities of the patterns, are responsible for most of the dynamical effects. 
This is supported by a numerical study of the shape of the basins of attraction for a 
one-pattern neural network (OPN) model. The effects of stability and symmetry on  the 
short-time dynamics of this model are studied analytically, and the full dynamics for 
vanishing symmetry is shown to be exactly solvable. 

1. Introduction 

During the past few years there has been tremendous interest in the theory of neural 
networks. Outstanding popularity was gained by the Hopfield model (Hopfield 1982, 
Amit 1987) which, by the symmetry of its interactions and by its Monte Carlo dynamics, 
has had great appeal for physicists trained in statistical mechanics. Examples have 
shown, however, that similar behaviour may be reached with quite different architec- 
tures and philosophies, such as the asymmetric strict-stability models (Kohonen 1984, 
Personnaz er a1 1985, Kanter and Sompolinsky 1987). At present, many questions still 
appear to be open, concerning architectures, learning rules, storage prescriptions, etc. 

Despite the many open issues, all neural networks will, in the retrieval phase, 
function basically in the same way: started close to a memory state, a given initial 
configuration will flow towards it, and there will be interference effects due to other 
memory states which will slow down and  possibly inhibit convergence. 

In this paper we will exclusively be interested in this retrieval phase. We will 
present a particular model which allows us to study retrieval without having to specify 
the details of the learning phase of the system. More specifically, we propose that the 
symmetry of the net’s connections and the stabilities of the memories are responsible 
for most of the dynamical effects in spin-glass-like neural networks. Our one-pattern 
neural network (OPN) model highlights the aspects of the stability and  of the symmetry, 
quantities whose definition will be given in the next section. 

Working with the OPN model instead of with a complete neural network (with a 
given set of patterns and  a specified learning rule) allows us to make quite general 
statements, but it involves approximations. It is therefore a crucial step in our argument 
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that it is possible to step back from the complete network to the OPN model. We show 
in 0 3 that, at least for the two learning rules we checked, the O P N  approximation 
preserves the shape of the basins of attraction. 

In the large-N (number of neurons) limit, the OPN model becomes quite simple, 
and independent of many details of the underlying net. We will present analytical 
calculations ($  4)  which will allow us to gain further insight into the dynamics and, 
hopefully, into the workings of neural nets. Our conclusions will then be summarised 
in $ 5. 

2. Stability, symmetry and gauge transformations 

Let us first recall a number of well established facts and fix our notations. In all 
situations below we regard a network with spins S, = &l ( i  = 1, . . . , N )  and an ( N  x N )  
matrix (J, ,)  of synaptic couplings Jv with J,, = 0. For simplicity we restrict ourselves 
to parallel dynamics at zero temperature 

(2.1) 

We denote the patterns as 5” = (.$, (;, . . . , (G), p = 1, .  . . , p ,  and the storing ratio as 
a = P I N .  

The ‘stabilities’ A , ,  AY, are quantities defined on all rows of the matrix ( J v )  as 

A r  = min ” AY ‘7 = E  ‘$rJlJ‘$7( 7 Jt)-”2* (2.2) 

If A 7  > 0, i = 1, .  . . , N, the pattern 5” is a fixpoint of the dynamics (2.1). Many 
algorithms have been proposed to compute a matrix (JY) such that this condition is 
fulfilled (Minski and Papert 1969, Gardner er a1 1987b, Poppel and Krey 1987, Diederich 
and Opper 1987), and an optimal stability algorithm was published recently (Krauth 
and MCzard 1987). For random patterns ((7 = i l  with probability f) it is not possible 
to store more than 2 N  patterns with A, > 0, i = 1, .  . . , N (Venkatesh 1986, Gardner 
1987). For fixed a, A, will be constant as N -$ W. 

Recently Forrest has shown the importance of the stability for the dynamics of a 
symmetric neural network, obtained with the learning algorithm of Gardner et a1 
(1987b): the greater the stability, the larger the basin of attraction (Forrest 1987). We 
have shown in addition that, on an asymmetrically diluted network (in the limit of 
extreme dilution), the typical stability is the only dynamically relevant parameter if 
the elements of the matrix (J , )  are all of the same order (MCzard er a1 1988). 

We now define the ‘symmetry’ of the matrix ( J v )  as 
\ - 1  

(2.3) 

r] measures the relative weights of the symmetric (253, = J,J + J I )  and the antisymmetric 
(25; = Jv -3,) parts of ( J v ) :  

In particular, r ]  = 1 (respectively -1) for a fully symmetric (respectively fully antisym- 
metric) matrix. 7 = 0 means that symmetric and antisymmetric parts have the same 
weights, which is, for example, the case if, for i < j ,  J ;  and 5; are random variables 
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of the same distribution. The relevance of 77 to the dynamics of spin-glass-like systems 
has been noted by several authors (Toulouse 1988, Gutfreund et a1 1987, Rieger et a1 
1988). For convenience we mention the relation of 7 with the parameter k of Gutfreund 
er al (1987): 

1-k'  
77=3. 

Jij + JtjSS, 67 + 5f s,. ( 2 . 5 )  

We will several times consider gauge transformations about a state S, defined by 

The transformation (2.5) leaves the dynamics of the network unchanged. Conversely, 
only gauge-invariant quantities can be important for the dynamics of the neural network. 
The symmetry 7 and the stabilities A, are gauge invariant. As pointed out by Derrida 
(1988), other such quantities are, for example, the higher-order correlations 

J i J k . .  Jmt or 6 r J t J k .  * . Jrnr15; (2 .6)  

whose influence on the dynamics of the net cannot be excluded a priori. We excluded 
another such quantity, J I , ,  from our considerations by setting it equal to zero. On a 
fully connected network a diagonal term of order 1 (for non-diagonal terms of order 
1 / V " )  can be shown to influence the convergence properties favourably (Mizard er 
a1 1988). 

The gauge transformation (2.5) thus has a certain fundamental importance in our 
context. In addition, we will make use of the transformation ( 2 . 5 )  about pattern gp,  
whenever treating f" explicitly, as a simple change of coordinates. f" then conveniently 
transforms into 1 := (1 ,1, .  . . , 1) and the definitions of magnetisation q =X, S , / N  and 
overlap with pattern f p ( X l  S&'/ N )  become equivalent. 

1.k .m J , k .  ,m 

3. One-pattern model 

We define a one-pattern neural network (OPN) model to consist of a neural network 
with one single pattern, 5' = 1. The coupling matrix ( J , , )  does not result from a learning 
procedure; (J , , )  is a random matrix, with elements J,, taken from a given distribution 
(such as J,, = i l ) ,  which are subjected to two types of constraints. First, the pattern 
1 is to be stable with a fixed stability AI > 0, i = 1, . . . , N, so that 

(3.1) 

Second, the matrix ( J , )  is to have a certain degree of symmetry 7, as defined in equation 
(2.4). 

While 1 is thus the only pattern which is retained explicitly in the OPN model, the 
quantities 7 and A are meant to represent of the order of N other patterns, and the 
details of the learning algorithm. By taking the values of all the stabilities greater than 
zero, we mimicked a strict-stability learning algorithm. Had we allowed fluctuations 
of the stabilities of the same order as their mean value, for example by putting 

1 / 2  

c J,j = ( ~ + z ~ ) ( ?  J : )  i = 1 ,  . . . ,  N (3.2) 
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with z, a normalised random variable, a model closely related to the Hopfield model 
would have resulted. Note that a formula like equation (3.2) with A = l /&  holds in 
the Hopfield model. We will elaborate some differences between the strict-stability 
OPN model and the O P N  model with average stability in § 4.2. 

It is a key point in this paper that the dynamics of a neural network (with p = a N  
patterns, and a specific learning rule) close to a given pattern 5’ depends mainly on 
At” and on 7, i.e. is similar to the dynamics of the corresponding O P N  model (whose 
matrix ( J , )  has unchanged row sums (3.1), identical symmetry 7 and the same 
distribution function for the J,,). 

3.1. Numerical testing of the OPN model 

There are many aspects of the dynamics one could compare, among which we choose 
to restrict ourselves to a detailed study of the shape of the basins of attraction. Our 
numerical studies indicate, however, that this comparison may bear also on other 
points, such as convergence times or  short-time dynamics. 

We performed computer simulations, making use of two different learning 
algorithms (see below), and  of a randomising procedure which transformed a given 
matrix (-lo) into a corresponding OPN matrix: this procedure RANDOMISE, given in 
table 1, scrambles the matrix, keeping the stability of the chosen pattern and  establishing 
the symmetry at a prescribed value. 

A numerical simulation run would now proceed as follows. 
(i) For a certain number of random patterns, we compute a coupling matrix ( J , )  

using one specific learning algorithm (see later) and determine its symmetry 7. 
( i i )  We pick an index ,U with 1 s CL s p at random and transform 6” into 1 using 

equation ( 2 . 5 ) .  
(iii) For typically 200 arbitrary initial states per magnetisation qo we follow the 

dynamics (equation (2.1)) during 50 time steps, if the state does not get trapped into 

Table 1 .  Symbolic listing of subroutine R A N D O M I S E  (see, for example, Papadimitriou and 
Steiglitz 11982) for the symbolic programming language used). On output the ( N  x N )  
matrix ( J , , )  will be a scrambled version of the input matrix, with unchanged row sums and 
symmetry = q ’  (7 ’  may be positive or negative). The first row of (Jfj) remains unchanged 
in order to eliminate a permutative degree of freedom. 

procedure RANDOM I S  E 

for i := 2 ,  3 ,  . . . , N do (comment: random permutations) 
begin 

J ( i ,  i ) - J ( i ,  N )  
for k : =  N -  1 ,  N - 2 , .  . . , 2  do J ( i ,  k ) - J ( i ,  ran(k) )  
(comment: ran( k )  produces random integers between 1 and k )  
J ( i ,  i ) - J ( i ,  N )  

end 
compute 7 (comment: see equation (2 .3 ) )  and norm := I, J (  i, k)’ 
while lq/q‘l< 1 do (comment: Monte Carlo step) 
begin 

pick a triplet ( i ,  k, 1 )  of mutually different random integers with 2 s is N ,  
I s k s N ,  I s l s N  
del :=(J( i ,  / ) - J ( I ,  k ) ) J ( k ,  i)+(J1i,  k ) - J ( i ,  / ) ) J ( / ,  i )  
if del sgn(q’ )>O then J ( i ,  k ) - J ( i ,  I ) ,  q’:= q’+del /norm 

end 
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a fixed point or a cycle before this point. We record, among other quantities, the 
probability of perfect recall as a function of qo (this way of doing the simulations is 
due to Forrest (1987)). 

(iv) Using the procedure RANDOMISE (see table 1 )  we scramble the matrix (Jz,) 
and create random matrices with unchanged row sums and various values of the 
symmetry q’, in particular with the original degree of symmetry 77’ = q. 

(v) We repeat (iii) for each value of 7’. 

3.1.1. Optimal stability algorithm. The first algorithm we considered was the optimal 
stability learning rule (Krauth and Mizard 1987) which, for a given set of patterns, 
has been proven to find the matrix (J, ,)  with maximal values of the A ,  (see equation 
( 2 . 2 ) ;  in the present context this fact is, however, of no importance). We took values 
of N between 100 and 400, and varied a between a and i. Results of one such run 
with N = 100 and p = 50 are shown in figure 1, which shows the probability of perfect 
recall pperf as a function of the initial overlap qo. The data thus give the probability 
of flowing towards pattern 1 when starting with a random state of magnetisation qo. 
The two curves result from least-squares fits to functions 

Pperf = ${tanh[a( 40 - 4 1  + 11 (3.3) 
with qc the critical overlap. In this particular example 0 . 8 2 c A y ,  Z, A y /  N = 1.15; the 
matrix is almost symmetric: 7 = 0.97. We see in figure 1 that the OPN model is capable 
of reproducing qualitatively the dynamics of the optimal stability matrix. The values 
of a (in equation (3.3)) correspond closely, and the critical overlap qc differs slightly. 
OPN matrices with q’ = 0.5 and  q ’  = 0 give a poorer description of the original dynamical 
behaviour. 

Figure 1. Comparison of the basins of attraction between the optimal stability net ( x ,  
7 = 0.97, X , A , /  N = 1.15) and the corresponding OPN models (A, 7’ = I); E, 7’= 0.5, 0, 
7’ = 0 )  for N = 100 and p = 50 random patterns. Shown is the probability of perfect recall 
ppei, as a function of the initial overlap qo with pattern 1. The full curve is a least-squares 
fit with function equation (3.3) for the original dynamics and the broken curve corresponds 
to the OPN model dynamics with q‘= 7. 
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Figure 1 is typical of what we have found with the minimum overlap algorithm: 
there are finite differences between the original and the scrambled matrix dynamics 
with 7'= 7. qc is smaller for the original matrix than for the OPN matrix if a is large, 
and smaller if a is small, the two dynamics being identical for a of order These 
differences seem to remain finite as N + m ,  and do not vary much with N for the 
values of N we considered. Choosing values of 7' different from 7 tends to give larger 
variances with the original dynamical behaviour; the dependence on 7 is more 
pronounced for larger values of the stabilities. In any case, the slope a in equation 
(3.3) seems to go to infinity with N, indicating the convergence towards a step function 
( pperf = 0 for qo < q c ;  pperf = 1 for qo > qc) ,  in agreement with the results of Forrest (1987). 

3.1.2. Simplex-based algorithm. We repeated the same simulations as in Q 3.1 for the 
simplex-based learning rule (Krauth and Mkzard 1987). This rule differs from the 
preceding algorithm in that the quantities 

- 1  

A: =c 6 : J v g (  m y  I J J )  (3.4) 

are optimised. In view of the larger algorithmic complexity of the simplex-based 
algorithm we restricted ourselves to 20 s N S 80 and treated again cases with $ s a 6 4. 
Results of two runs are given in figure 2 .  Surprisingly, there is hardly any difference 
between the original matrix and the OPN model dynamics (with 7'= v), for any value 
of a. Again, the dynamical properties of the OPN system differ widely for large values 
of A 2 ,  less so for small stability. 

Figure 2. Comparison of neural network dynamics ( x, simplex net) for N = 80 with p = 20 
(left: 1) =0.78, I,A,/ N = 1.44) and p =40 (right: 9 = 0.76, X,A,/ N =0.90) random patterns 
with the corresponding OPN model dynamics (A ,  v'= 7 ;  E, ? ' = O S ;  0, ~ ' = 0 ) .  Shown 
is the probability of perfect recall ppcrf as a function of initial overlap qo. The full curve 
represents the full neural network and the broken curve corresponds to the OPN model 
dynamics with v'= 8. Note the excellent agreement of the two systems for T ' =  I) and the 
poor agreement for differing values of the symmetry. 
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3.2. Comments 

In the OPN model we search for a description of the dynamical behaviour close to 6’ 
nor as a function of all the input patterns and of the learning rule, but as a function 
of a few gauge-invariant combinations of 6” and of (Jlj). I t  seems plausible that not 
all of the higher-order correlations in equation (2.6) are relevant. The procedure 
RANDOMISE allows us to test the hypothesis that 7 and Ai  are the most important such 
quantities. 

With a judicious choice of parameters, qualitative agreement between the full matrix 
model and the OPN model was perhaps to be expected. We are surprised by the 
excellent agreement for the simplex-based rule, and we have not yet tried to trace the 
origins of the differences in the case of the minimum overlap algorithm. 

Note that the choice of uncorrelated patterns 6” and of the two algorithms is 
somewhat accidental and of no real significance in the context of this paper. 

4. OPN model in the large-N limit 

The results of 9 3 seem to us to justify an attempt to understand the OPN model in 
somewhat greater detail. We will present therefore our analytical calculations for a 
particular O P N  model for which we have calculated exactly the dynamics for short 
times. For the first time step t = 1, the dynamics depends solely on the stability since 
the sites are uncoupled. The effects of the symmetry are visible starting from t = 2 .  
For large t ,  we expect there to be a sharp transition between a region of strong recall 
and a region of weak recall. Our calculation up to r = 4 provides already a good 
indication of this transition. 

The precise OPN model we consider consists of a matrix (J, ,)  with J,, = 31 (J ,[  = 0), 
for which there is the same (‘typical’) stability on all rows: 

(4.1) 

As before, we impose a certain symmetry 7. Beyond these conditions (Jv) is random. 
This model differs only slightly from the one considered in § 3: the choice of integer 
values for J,, will be seen to be of no significance in the limit N + CO (only the second 
moment of the J,, distribution enters the calculation), and equation (4.1) differs from 
equation (3.1) only in that the stabilities A ,  are replaced by a typical stability A. 

The symmetry 7 can be imposed on the matrix (J,,) by splitting Jv into symmetric 
and antisymmetric parts (see above equation (2.4)) and by choosing independently 

J,, = Am i = 1, . . . , N. 
I 

(-cJ, .q = (*I,  0) 

(C,, J ; )  = (0, * I )  

with probability f ( l  + 7) each 

with probability f (  1 - 7) each 
(4.2) 

while at the same time keeping the constraints (4.1) enforced by a product of 6 functions. 
In the limit N + 00 we determined the dynamics of this model for four time steps, 

i.e. we calculated the expectation values 

(4.3) 

(4.4) 
The mean ( ) denotes the trace taken over the couplings (4.2) and over initial states 
with qo= q ‘ = O  fixed. 

q, = (sf=’), . , . , q4= (s‘=4) 

qo2 = (s‘=os‘=’). 
and correlation functions such as 
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4.1. Principle of the calculation, t = 1 

Our calculations are quite similar to those on the spin-glass model by Gardner et a1 
(1987a). They are as cumbersome as well. We choose to sketch only the calculation 
of q1 in the main text (using the systematic way that works also for q‘, t > 1) in order 
to make plausible where the problem resides, and we relegate the more involved 
calculations for t > 1 to the appendix. As a matter of fact, the calculation at t = 1 can 
be phrased much more simply, but without any possibility of generalising it (MCzard 
et a1 1988). 

To determine q1 we calculate the averaged ‘partition function’ 

2 = Tr, Trsi 6( 2 J;, -Am n Sf 1 J,,Sp 
J ) I (  I ) (4.5) 

where Tr, goes over the four cases in formula (4.2). Introducing integral representations 
for the Kronecker 6 

(4.6) 

and for the Heaviside function 0 

we arrive at 

In  order to calculate any useful macroscopic variables (such as si), one will have to 
introduce a n  additional ad hoc source term (e.g. exp(h I, U : ) ;  q1 will then be given 
by a log Z( h ) / a h  at h = 0). 

Taking the trace over Jf and JG turns the term inside large round brackets in 
equation (4.8) into 

1 + 77 yI + yJ + XIS; + XIS: 

( i- log[Tcos( m )  
YI - Y, +XIS,” - x,sP 

+!%os( 2 m 11 
which after expanding the trigonometric functions gives 

(4.9) 

(4.10) 

All the tediousness of the calculation now stems from the term in 77 which forces 
us to introduce Gaussian integrations in order to decouple sites 1, . . . , N, and afterwards 
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to use saddle-point integrations to eliminate the extra variables (order parameters). 
The results for t = 1 are 

(4.11) 

401 = 4091 * (4.12) 

As expected (Mezard et a1 1988), q1 does not depend on the symmetry at all, but only 
on A. There are two cases. For  AS^ the function q1 is partly below and partly 
above the diagonal, while for A 2 &$? the mean magnetisation at t = 1 is larger than 
the magnetisation at t = 0 for all qo > 0. The connected correlation function (SOS') ,  := 
qO1 - qOql is always zero. It is for this reason that simpler derivations of equation (4.1 1) 
are possible. 

4.2. Solution for 7 = 0, all times 

For t > 1 the calculation shown in § 4.1 has to be generalised. The changes consist in 
additional @ functions and in traces over spin configurations at later times. Gaussian 
integrations now become inevitable; they serve to decouple a growing number of terms 
in 7 (cf equation (4.10)) and, physically, to fix a growing number of order parameters, 
the connected correlation functions (see the appendix). 

There is, however, the special case 7 = 0, in which the troublesome term in equation 
(4.10) is multiplied by 0. In this case of 'zero symmetry', it may be shown by recursion 
that we can solve the dynamics explicitly for all times: q"' is an  iteration graph and 
q ( r + l l  = q ( l l ( q ( r ) ) :  

(4.13) 

(cf equation (4.11)). Thus, the case 7 = 0 is equivalent to the dynamics on the 
asymmetrically diluted lattice, which was introduced by Derrida et al (1987). The fact 
that simplifications arise for vanishing symmetry in spin-glass models has been noted 
by several authors (Gutfreund et a1 1987, Toulouse 1988, Rieger et a1 1988, Crisanti 
and Sompolinsky 1988). 

For zero symmetry all the connected correlation functions are zero; the system has 
no dynamical memory: S'I and SI2 have just the same overlap as two randomly chosen 
states with magnetisation 4'' and 4'2. In this case we are able to exactly calculate the 
critical overlap q c ,  which corresponds to the unstable fixpoint of the iteration graph. 
For A < m, 0 < qc < 1 ( q  = 0, q = 1 are stable fixpoints) and for A > m, qc = 0 
(the two smaller fixpoints have merged). There remains a single stable fixpoint of the 
iteration (4.13), the pattern 1. 

It is worth mentioning here that, if the stabilities A i  fluctuate, with for example 

P({A,}, i = 1,. . . , N )  = n P(A,) 

which leads to equation (3.2), the dynamics is again solvable at 7 = 0. By a similar 
calculation, one gets that, for 77 = 0 and t 3 1, 

(4.14) 
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A Hopfield-type case would correspond to a Gaussian distribution: 

P ( A l )  = ( 2 ~ ) - ” ~  exp[-t(A-A*)’] (4.15) 

with 

A* = l l &  (4.16) 

and this gives 

qr+l  = erf(A*q,/fi). (4.17) 

As expected, qoi. < 1. Interestingly, not all connected correlations vanish. We do have, 
for any t > 0, qro= q,qo, but for O <  t ’ <  t ,  q,., is different from q,q,. and is a function of 
{ q r , - l . r - l ,  qr-1, S,,-l>. 

4.3. Results for 2 s t s 4, q # 0 

In the case of non-zero symmetry we are not allowed to iterate 9’: the correlations 
between .Ii, and induce non-trivial correlations between S (  t l )  and S (  t z ) ;  however, 
all connected correlation functions between times differing by an odd number of steps 
remain zero (as in equation (4.11)). This fact is what makes our calculation up to 
t = 4 feasible. Details of the calculation may be found in the appendix and some 
results are shown in figures 3-6. 

For t = 2 we find in particular 

(4.18) 

0 0.2 0 . 4  0.6 0.8 1 .o 
SO 

Figure 3. One-step overlap q r  (-) and two-step overlaps q2 as a function of initial 
overlap qo for stability A = and symmetry q = -1 (- - -), 0 ( -  - -), 1 (- - - -) 
in the OPN model (q l  is independent of 7). 
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'Or----- 

0 0 2  0 4  0.6 o e  1 0  
40 

Figure 4. Connected correlation function ( S O S 2 ) ,  = qo2 - qoq2 for stability A = J.72 as a 
function of initial overlap qo for symmetry 7 = -1 (---), 0 (- - -), 1 (-- - - )  in the 
OPN model. 

qo 

Figure 5. 1,. . . ,4-step overlap 9 , ,  , . . , q4 as a function of initial overlap 9,, for stability 
A =  1.2 and symmetry 7 =0.75. -, 4,; ---, q 2 ,  - - -, 4,. - .- . ,  q4.  
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where 

(4.19) 

The only difference with q l ,  equation (4.1 l ) ,  is a term which depends on 7. It introduces 
correlations between the inital state and  the one at t =2 .  Figure 3 illustrates the 
influence of the symmetry 7 at t = 2 for A = (cf preceding section), and figure 
4 gives the connected correlation functions for the same values of A and 7. The high 
degree of correlation (anticorrelation) for large positive (negative) symmetry translates 
into a large probability to end up in a cycle of length 2 (of length 4 with inverted 
second and  fourth step), as we have been able to observe numerically. 

Our formulae, given in the appendix u p  to t = 4, are shown in figure 5 for symmetry 
7 = 0.75 and  A = 1.2. There we see in fact a step function forming, indicating a critical 
overlap qc = 0.7. For a more concise representation of our formulae see figure 6. There 
we plotted the values of qo, for which q ,  = qo,  . . . , q4= qo, for 7 = 0.5, as a function 
of A. In addition, we included the numerically determined critical overlaps (at time 
t = 50, using procedure RANDOMISE).  

Figure 6 demonstrates that our calculation u p  to t = 4 already provides a fair 
approximation for the critical overlap and allows at least a qualitative discussion of 
the OPN model also for large times. There is little influence of the symmetry for small 
stability, as has already been noted in § 3, and  important influence for larger values 
of the stability. At A =  1.6, the critical value of the magnetisation qc becomes zero. 
This, however, has not to be taken to mean that half of the phase space flows towards 
1. It should be realised that in a space of high dimensionality ( N )  almost all configur- 
ations have overlap with 1 which is of the order of 1 / m .  For qo = 0, the OPN model 

1.0 

0. a 

0.6 

s’ 

0.4 

0.2 

b 

Figure 6.  The curves give, from left to right, the analytical 1, 2 , .  . . ,4-step approximations 
at 11 = 0.5 for the critical overlap qc (values of qo for which q ,  = qo, , . . , q4 = qo) as a 
function of qo.  The points with error bars are numerical values of qc determined using 
procedure RANDOMISE.  The values of qc obtained here have to be compared with those 
at q ’ = O . 5  shown on figures 1 and 2. 
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behaves as a spin glass, and  our formulae for qo = 0 and 77 = 1 are equivalent to those 
of Gardner et al (1987a). 

5. Conclusion 

In this paper we presented a one-pattern neural network model with which to describe 
the retrieval phase of a neural network. This model stresses the importance of the 
stability and  symmetry concepts. Using numerical methods we found it to provide in 
general a good qualitative description of real neural networks, and even a good 
quantitative agreement in some cases. 

Analytical calculations enabled us to obtain the dynamics at short times, and to 
demonstrate that for ‘zero symmetry’ (77 = 0) the dynamics is solvable and simple: the 
dynamics is equivalent to the one on the extremely diluted asymmetric network. We 
expect this last result to be quite general. The equivalence of the dynamics of the OPN 

model for zero initial overlap with the pattern and  that of a spin glass provides a rather 
nice illustration of the similarities between spin glasses and neural networks. Without 
partial information about the patterns, the latter will, for all finite times, behave as 
the former. 

In the OPN model we have shown that the critical overlap qc (the border of the 
basin of attraction) depends on a function of the stability and  the symmetry: typically, 
the larger the stability A and the smaller the symmetry 7, the smaller q c .  We expect 
this to be true in a real neural network, where, of course, the two variables are no 
longer free, and depend on the learning rule and  on the number of stored patterns. 

To study the influence of the stability and the symmetry on real neural networks, 
we envisage several possibilities. As an  example, one can consider iterative learning 
procedures with a tabula non m a  scheme (Toulouse er a1 1986, Personnaz er a /  1986), 
modulating the values of the stability and  of the symmetry by proper choices of the 
initial matrix. Then one can look, at a given value of a, for the values leading to the 
largest basins of attraction. As another possibility, one could study relatively sparse 
networks, in which the degree of symmetry can be reduced by setting an important 
number of links J ,  equal to zero. More generally, it may be that one will have to look 
for learning schemes which try to reach reasonable values of the stability while trying 
to keep the symmetry low. 
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Appendix 

We determine the dynamics of the OPN model up  to four time steps. To d o  so, we 



3008 W Krauth, J-P Nadal and M Me'zard 

calculate the 'partition function' Z( t ) :  

averaged over the distribution of the J,] : 

where Tr, denotes the trace equation (4.2). Using the representations (4.6) and (4.7) 
for the 6 and 8 functions, respectively, we get 

This leads to the following generalisation of equation (4.9) for t time steps: 

a U =  yi+ c x$;. 
I =0,1- 1 

Taking the trace on the J;", and keeping only the dominant terms in N, we get 

After replacing a,J in (A6) by the RHS of (A5), one can perform the integration on 
the yI. Then it is convenient to introduce the macroscopic parameters 

1 
qr = c s: lslsr-1 (A7a) 

Os l'<ls r - 1  (A7b) qrrf = c s:s; 
I 

1 
I 

1 
v , I - N  --cx;s; Os I'z Is t - 1 (A7c) 

1 
U1 = - 1 xis; o s  1s t -1 (A7d) 

0sIst-1 (A7e) 

NJ 
1 ,  
NI 

T, = - 1 xJ 
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by means of conjugate variables if, ill., ell,, f i l ,  fl, and one obtains 

with 

and 

and, finally, 

1-41 * -_-  x: - 
2 

(A1 1) xlxl.( qll, - qlqlr) - ixlhlSI+l - flxl - filxlSl - ~ l l . x l S I . .  
2 l ' < l  I , #  I 

We then take the saddle points. As in Gardner et a1 (1987a), ql,  qIrl ,  

I -  

are functions 
of the time steps I " <  1, and many order parameters are zero. Noting that the sum over 
S, together with the integral over dA,-, leads to CS(X+~), one deduces 

u/=T,= f i 1 = i j 1 = 0  1 s t - 1  

VI,. = 0; &! = 0; el,l = 0 l ' < l  

and 

fl = -iAql - r ]  c Vl,lqlr 
I , < /  

A 

Vfl~ = r] Vlfl l '<  1. 

At the saddle point, G = 0, and f can be written as 

f = C y  l + q  s 'log f f { d x l [ 2 e x p ( : $ * l )  
SI, ..., s, I = O  so 

1 - " 2  

* I = -  
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Once (A15) has been obtained for 1 S t - 1, we can calculate q,, qr, and V,, for 1 < t 
by introducing ad hoc source terms exp(hS,), exp( hSIS,) ,  and exp(hxlS,), respectively, 
and by taking the derivative with respect to h at h = 0. 

One can see also that qrr.-qrqr.  is zero if 1 and I' are of differing parity, and that 
V,,, is zero if I and I' agree in parity. For 7 = 0, qu, - qrqr, is always zero. 

This leads to the following results for t s 4: 

t = l  

t = 2  

with 

with 

where 
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t = 4  
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