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Résumé. 2014 Nous étudions le problème du couplage (« matching ») en dimension finie. Les corrélations
euclidiennes entre les distances peuvent être prises en compte de manière systématique. Par rapport au cas des
distances aléatoires indépendantes que nous avions étudiées précédemment, les corrélations triangulaires
euclidiennes engendrent des corrections qui s’annulent dans la limite où la dimension de l’espace tend vers
l’infini, et restent relativement petites à toute dimension.

Abstract. 2014 We study the matching problem in finite dimensions. The Euclidean correlations of the distances
can be taken into account in a systematic way. With respect to the case of independent random distances which
we have studied before, the adjonction of Euclidean triangular correlations gives rise to corrections which
vanish when the dimension of space goes to infinity, and remain relatively small in any dimensions.

J. Phys. France 49 (1988) 2019-2025 DÉCEMBRE 1988,

Classification

Physics Abstracts
02.10 - 64.40C - 75.10NR

The matching problem is a rather simple system
which has similarities with a spin glass with finite
range interactions [1]. The problem is simply stated :
given 2 N points, and a matrix of distances between
them, find the perfect matching between the points
(a set of unoriented links such that each point
belongs to one and only one link), of shortest length.
In more mathematical terms, if ~ij is the distance
between points i and j (we keep to the symmetric
case fit = ~ji), one looks for a set of link occupation
numbers nij = 0 or 1, such that :

minimize

Given an instance of the problem, i. e. the matrix
f, finding a solution of equation (1) is numerically a
polynomial problem, which can be solved by rather
efficient algorithms [2]. Analytically we would like
to compute the most likely value of E for large
N. The case of the random link model where the
distances are independent random numbers, identi-
cally distributed, has been studied in great detail.

The aim of this note is to extend this study to the
case of Euclidean matching, in which the distance

~ij is a function of the positions of the points
i and j in Euclidean space. In this case the various
distances are obviously correlated (e.g. through
triangular inequalities).

Let us first recall the results which have been

obtained on the random link model. If p (f) is the
distribution of lengths of the links, the only import-
ant feature of p is its behaviour around f = 0 (we
suppose for definiteness that f = 0 is the smallest 

possible distance). If :

Then the length of the optimal matching has been
found to have the following behaviour in the limit
where the number of points, 2 N, goes to infinity :

where :

These results have been obtained with the re-
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plica/cavity method [3, 4], with a replica symmetric
Ansatz. Furthermore this Ansatz has been shown to

be stable for r = 0 [5], and the corresponding results
in the case of bipartite matching with r = 0 and
r = 1 are in good agreement with numerical simu-
lations [5].
As we have suggested before [4], these results can

be used as approximants to the Euclidean matching
problem. It turns out that it is useful to introduce a

generalized Euclidean problem as follows. The

points are chosen randomly (with uniform distri-

bution) inside a hypercube of side 1 in a D dimen-
sional space. If xi and xj are two such points, we
define the v-distance between them by :

Finding the optimal matching with this matrix of
distances will be called the v-Euclidean matching
problem. The usual Euclidean case is of course

recovered for v = 1.
For this kind of matrix of distances, one expects

that in the large N limit the only relevant links are
short ones. Their length should scale as the distance
between near neighbours, i.e. N- ID . Hence one
expects a scaling of the length of the optimal
matching :

(remember that N is the number of bounds in the
matching i.e. half the number of points).

In order to see the connection between the v

Euclidean problem and the random link problem, let
us give the distribution of +distances for the relevant
short links :

where SD = 2 1T D /2( r (D/2 ) )-1 is the surface of the
D dimensional unit sphere. Comparing the two
distributions of links (2) and (7), one can guess that
the random link problem defined by parameter
r will be related to the +Euclidean problem in
D dimensions, whenever the following relation
holds :

In this note we shall prove that the Euclidean

correlations can be neglected in the limit v --+ oo,
D --+ oo, D = r + 1 fixed (Fl). The length of the

v

optimal matching is then just given by the random
link result, apart from a trivial change of scale which
can be read from (2) and (7).

This change of scale is characterized by the

parameter :

and the vanishing of the effect of Euclidean corre-
lations at large D simply means that the rescaled
length :

tends towards the random link result I D 1 (defi-
ned in (3)), in the limit where D - 00, V -+ oo,
D fixed.
v

Of course Euclidean correlations induce some
corrections to this formula in finite D. Hereafter we
shall show how these can be incorporated in the
computation in a systematic way. We shall give
explicit results for f D, II and L D, II including triangular
correlations (and neglecting higher order connected
correlation functions). These results are contained in
the table at the end of this paper. For the real
Euclidean problem ( v = 1), in D dimensions, the
asymptotic length of the optimal matching scales as :

where the series £ D’ D’ ; D’ = D, D + 1, ..., interpo-
D

lates between the real result fD, 1, (D’ = D), and the
random link result LD -1’ (D’ --+ oo).

Let us now turn to the computation. The starting point follows reference [3, 6]. We define the partition
function as :

v

(the factor N D is the correct scaling of temperature which ensures that a good thermodynamic limit exists
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[7]). In order to compute the quenched average of log Z over the distribution of distances, log Z, (where the
bar denotes the average over the different realizations of the t’s) we use the replica method [1]. Introducing
exponential representations of the 8 functions we get :

For each link i  j we can expand the last product:

so that:

where (jk) denotes the (unoriented) link between j and k, and E means the sum over all m-uples of distinct
links.

To proceed we need to perform the quenched average over the link distribution. In the random link
problem the Uij on various links are uncorrelated ; everything is then expressed in terms of [3] :

The series in (15) is then easily exponentiated and gives :

Equation (17) was the starting point of our previous computation [3]. Euclidean correlations of course
prevents the m link average uji k1 ... ujmkm in (15) from factorizing in general. However the two link average
factorizes and the first correlations appear at the level of three link correlations, which are non zero
whenever the three links build a triangle. We shall express these correlations in detail hereafter, but for the
present purpose it is enough to know the way it scales with N. In the same way as the factor

1/N in (16) reflects the fact that the probability of finding a short link (of length  N- v/D) is

N it is easy to see that the probability that the three links in a triangle be short is N 2. (Because of theN N

triangular inequality, we need to ensure that two of the links be short, and the third one will automatically be
short also). Therefore the connected three link average in a triangle scales as :

So if we neglect the higher order connected link averages we find after exponentiation of the series in (15) :

It is worth noticing that both terms in the exponent of (19) are of order N as they should : the first termhas uij - 1/N and a summation over N2links. In the second term the only non vanishing terms are these in
which (ij), (k~), (mn ) build up a triangle ; there are N 3 such terms, each of them being of order
1/N2 from (18). Higher order connected link averages could be included in (19) as well, but in this paper we
shall only consider the effect of triangular correlations in order to keep the computations (relatively) simple.
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We must now find the expression of triangular correlations for +distances in a D dimensional Euclidean
space. Taking three points at random the probability that the corresponding triangle will have sides of v-
lengths equal to e, Q’, f " is :

In the relevant limit of short links (remember that the occupied links in the matching will be of length
v

N D ) a careful computation gives :

where :

(one can check that ~ d~" P D, " (f, Q’, f") = P D, v (f ) P D, v (Q’ ) : the two link connected average vanishes).
From (16) and (19), the typical quantities which we must compute are :

Using (19) and (23) we can derive the expression for Z’ including triangular correlations. It is useful to
introduce the order parameter :

and to enforce these equalities through Lagrange multipliers Qa1... ak.
One gets :

where G1 is the usual contribution of the random link model :

and G3 is the new term coming from the triangular correlations :

where the y means that all the replica indices must be distinct one from another and the Q’s are symmetric
under the permutations of their indices.
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We can now compute Z’ using a saddle point method. In this paper we shall look only for a replica
symmetric saddle point:

Two approaches are possible : one can treat G3 as a small perturbation to Gi (i.e. compute
G3 at the saddle point given by G1), or one can solve directly the saddle point equation including both
G1 and G3. Here we describe only the second approach which is more general than the first one and not
much more complex.

As in the random link case [3] the saddle point equations are more easily written in terms of a

generating function of the Qp. We define :

where the parameter a is the change of length scale a D, II introduced in (9). In order to lighten the notation
we shall not write explicitly its indices D, v in the following computations.

The factor a,8 x in the definition of G(x) has been chosen in a way such as to insure that G will have a

limit when 8 -+ 00 or when D -+ oo (at fixed D ). From the saddle point equations, using the same methods
v

of reference [3], a long, but straightforward computation leads to the following integral equation for
G (x ) :

where the integration kernels are :

The free energy (on the saddle point) is then expressed in terms of the function G (x ) solution of (30) as :

The above expressions become simpler in the interesting zero temperature limit 13 -+ oo. In order to
take this limit one needs the asymptotic behaviour of the kernels I and K. After some work one finds :
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where 0 is the usual step function. Then the saddle point equation becomes :

where L is given by :

where the last term is obtained from the expression between brackets through the permutation of
f’ and ". The corresponding limiting value of the free energy for f3 --+ oo, which is the ground state energy
LD, II defined in (6), is given by :

So in order to solve the matching problem including the triangular correlations for a v-Euclidean
problem in D dimensions, we must first find the function G (x ) solution of (34), and then compute the
ground state energy through (36).

Just for comparison, the approach in which G3 is treated as a small perturbation to G1 gives :

where G (x ) is the solution of the saddle point
equation computed in absence of the G3 term.
One important point is that the triangular corre-

lations (last term in (34)) become irrelevant in the
limit v -+ oo, D -+ 00, - = r + 1 fixed. This can be

v

seen by explicit majoration, under the assumption
that the asymptotic behaviour of G (x ) is not too
much perturbed by these new correlations. This

proves the announced asymptotic result :

In order to go beyond the random link model and
incorporate some Euclidean correlations, we have
solved the saddle point equation (34) by discretizing
the G (x ) function and using a simple iteration of
(34), starting from the random link function G (x ).
We can then evaluate LD, v in (36). The results for
LD, v and the rescaled length f D, v (defined in (10))
are given in the table, for the cases D = 2 and 3

v

D
Table II. - D = 3 (r = 2).

v

which would correspond, for the usual Euclidean
problem ( v = 1) to the matching problem in 2 and 3
dimensions. We see that the effect of triangular
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correlations is rather small, especially for large
values of D, as expected. The comparison of these
results with numerical simulations will be performed
in another paper.

In this paper we have shown how to include
Euclidean correlations into the computations on the
matching problem. We have carried out explicit
computations including triangular correlations, but
clearly higher order correlations can be incorporated
in the same way, at the price of having to solve more
and more complex saddle point equations. We hope
that this kind of improvement will be generalized to
other spin glass like systems like the travelling
salesman problem (for which a possible solution has
already been proposed in the random link case [8]),
or to real Euclidean spin glasses. It is quite possible
that the equivalent of the random link case could
well be the mean field theory (SK model [9]), on

which the present type of approach could build some
improved solution for the finite dimensional case.
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Footnote.

It is amusing to remark that if we face the problem of
connecting the points by a wireless bridge, the

electric power needed to establish the connection is

proportional to the power D - 1 of the distance and
therefore in this case we should take v equal to
D - 1. In the unusual (at least for this problem) limit
D going to infinity, we obtain the r == 0 model.
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