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Abstract. — For the random link travelling-salesman problem we solve the zero-temperature
cavity equations, assuming that there is only one pure state. We get precise predictions for the
length of the optimal tour and the probability distribution of links in this tour. These are
compared with numerical simulations using the Lin-Kernighan algorithm and the one-tree
relaxation of Held and Karp.

Among the several problems of combinatorial optimization which have been studied from
the point of view of statistical physics [1, 2], the travelling salesman occupies a choice place:
it is considered as an important laboratory for testing ideas on NP-complete problems. The
problem consists in the following: given N points i=1, ..., N, and the distances [; between
points ¢ and j, one must find the shortest closed line of N links going through all the points.
For N large (thermodynamic limit) this can be seen as a problem in statistical physics. One
introduces a temperature T, and each tour 4§ of length I, is weighted by a Boltzmann factor
exp[—I,/T]. One can then try to predict the asymptotic value (for N — ) of the length of
the optimal tour, for some sets of samples. One such set which has received much attention
is the random link problem in which the l; are independent random variables, with a
probability distribution ¢(f) (here we keep to the symmetric case ;= 1;).

There have been several studies of this problem in the literature before [1-8], mainly
numerical ones. On the analytical side, the TSP can be written as a self-avoiding walk
interacting through random couplings. It has been studied with the replica method [3]
within the replica symmetric approximation. However, the equations satisfied by the order
parameters were very complicated. An estimate of the length of the optimal tour was
obtained only in one specific case of «flat distances»: a uniform distribution of distances on
[0, 1].

On the numerical side, physicists have concentrated on the use of simulated an-
nealing [1,4, 5] and on the study of finite-temperature properties.
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Our analytic approach does not use replicas, but the cavity method [2]. The cavity
equations have been written down in [6], within the hypothesis that there exists only one
pure state. Adding a new point i =0 to a system of N points i=1, ..., N, the magnetization

N
of the new point is m, = 2A,/((Ar)? — Ay), where A, =3, Tk m! and m; is the magnetization on

=1
site i before the addition of the new point. The coupling constant is To: = exp [— BN? 1], with
f the inverse temperature. For a length distribution ¢(!) scaling as e~ (1—=0),
8=1/(r+ 1) must be chosen to have a good thermodynamic limit 7.
As we are interested in the zero-temperature limit B — o, it is natural to parametrize
m; = exp [Bpil, and the cavity equation for m, simplifies at zero temperature to

00=N’lpz— . 1

In eq. (1) we reordered the points i=1,...,N in such a way that Nelp— o =
sNalgg = (pz-<._ ---_‘:_{NO‘IJON— PN

Denoting by () the average over the distribution of links, eq. (1) implies a self-consistent
equation for the probability distribution of the g;:

P(@)=8(qa—-;oa)=d“(¢—cpi), fi="TpalydV ; (2

To write this self-consistency equation explicitly, we first deduce from eq. (2) the
distribution IT(x) of x=N°’l—9

ﬂ(x)=%j %le(l—x). @)

(For N finite the integral has a cut-off, which diverges with N.) In the cavity method the N
random variables y;=N°ly—¢; are independent, so that the distribution of the second
smallest of all the x/’s (see eq. (1)) is easily derived. Using egs. (2), (3), this leads to

5 " N-2
P(@)=N(N—1)H(x)( JH(u)du) (J H(u)du) ; 4)

x

which for large N is equal to P(¢) = (dG/d) G (p) exp [— G ()], with

@

+1

G(¢)=oj du g P = ). 5)

From this we can deduce the closed integral equation for G, the order parameter function of
the TSP:

@

Gx)= f

-z

(x+y)
rl

{1+G@y)}expl—Gyldy, (6)

G can be computed precisely by iteration. Its relation with the order parameter funetion
defined in the replica approach is complicated.

From G (x), we now compute the length of the optimal tour. Let us define the distribution
of the (rescaled) links, 9X0) as

EW=L 3 001N =530~ laNma) ™

1=si<j=N
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where n; is the thermal average of the occupation number of link #j. At zero temperature,
the cavity equation for ng, written down in [6], tells us that ng = ne =1, and ny,=0(@=3).
(The points are ordered as introduced after eq. (1).) Using this result and eq. (7), we find
after some work the following expression for ¢ at zero temperature:

%%(—%)Idw(l+G(x))exp[—G(w)](1+G(l—x))exp[—G(l—w)], ®)
where G is the solution of eq. (6). The length of the optimal tour (as N — ) is then
L ~N1—1!(r+1)13r with ;

r+

Ij,=fg,f(z)dz= :

1 de G@){1+G@)}exp[—G@)]. ©)]

We summarize our theoretical results: for any » we can solve for G (x) in eq. (6) and then

get from egs. (8), (9) the length of the optimal tour and the distribution of lengths of occupied
links in this tour. i
_ In the case r=0 (flat distances) we find L= L,_,=2.0415... and for r=1 we have
L,.;=1.8175.... This random link case with r = 1 is an approximation for the Euclidean TSP
in 2 dimensions. Following [9], we estimate the length of a TSP for N points uniformely
distributed in the unit square as L,.,/\/2x = 0.7251 which is close to the known bounds [10].
A commonly accepted numerical result is 0.749.

We now turn to the numerical checks of these results (restricted to the case of flat
distances r=0, i.e., l;=1; are uniform random numbers on [0,1]). The TSP being NP-
complete, there are no tractable algorithms for solving large instances of it. The long-
standing interest into the TSP has, however, led to the following situation: there do exist
(very involved) algorithms using linear programming[11] or branch and bound
strategies [12], the best of which are presently capable of solving instances with several
hundreds of points.

On the other hand, a number of methods are available which provide good sub-optimal
tours and thus upper bounds on the optimal tour length. Furthermore, algorithms are
known which solve «relaxed» TSP problems, leading to lower bounds on the length of the
shortest tour. It has been known for some time [12, 13] that these bounds might be quite
tight, even for the random link TSP.

We used two well-known heuristics to determine upper and lower bounds for the TSP,
following [13]. For the lower bound we used the Lagrangian one-tree relaxation of Held and
Karp [14] (our implementation follows ref. [12]). This relaxation solves the problem

Line.tree = Max [( min 3 G+ 4 +2) nij) —23, /\j] ; (10)
n,-jejone-’tme i J

where the min (for fixed A) is taken on certain spanning graphs containing exactly one cyecle
(cf. [12]). The upper bound on the optimal TSP-tour was determined with the Lin-Kernighan
algorithm, which was implemented using the original ref. [15]. Both methods are quite fast:
for an instance of 400 points we can calculate both the upper and the lower bound in less than
1 minute on a Convex C1 computer.

Our numerical results for the bounds are given in fig. 1. In both cases we find good
agreement with a dependence linear in I/N. As N—»o we get 2.039+3-107%<
<L =<2.21+1.3-107% The theoretical value L = 2.0415... is in agreement with the bounds,
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Fig. 1. — Upper and lower bounds for the optimal tour length of the random link TSP (flat distances
L; € [0,1]). The upper curve was produced using the Lin-Kernighan algorithm averaged over, e.g., 360

in fact it coincides within our 2% level of precision with the results of the one-tree
relaxation.

We compared also the probability distribution of links both of the Lin-Kernighan solution
and of the one-tree relaxation with the theoretical prediction. To eliminate sample-to-sample
fluctuations, we rescalded the lengths of occupied links, in each solution, by the average
length of the occupied links. The distribution of these rescaled lengths, for N =800, was

then averaged over, e.g., 100 Lin-Kernighan tours and compared to the theoretical
prediction

F A
I()= [ dl ().

0

The agreement is excellent, see fig. 2. We found equally good agreement with the one-tree
relaxation. We do not know why a simple length rescaling makes agree the Lin-Kernighan
solution (which we suspect to be 10% above optimal) the one-tree relaxation (which does not
produce a tour) and the theoretical result for the optimal solution.

The simulations give the numerical value of the optimal TSP tour length, albeit on a
rather crude level. They also illustrate the power of the Lin-Kernighan algorithm, compared
to simpler heuristies which up to now have all given bounds on the optimal tour length
diverging like log N for N — o [4]. Finally, the extremely close agreement between the one-
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Fig. 2. — Integrated distribution function I(x) for the occupied links in TSP solutions vs. reduced
length variable « (x = 1 corresponds to the mean length of occupied links in each sample).. The curve
gives the theoretical result, the dotted line the numerical results for Lin-Kernighan solutions (100
samples at N = 800).

tree relaxation and the proposed value for the optimal tour suggests to us the exciting
conjecture that the two values may indeed be identical. It would be interesting to apply the
cavity method directly to the one-tree relaxation.

We found some support for the conjecture in additional simulations using the Lin-
Kernighan heuristics repeatedly on each sample and keeping the lowest result. In this way
we can lower the upper bound considerably for finite N, but not for N — . (Preliminary
results with an exact algorithm, by Kirkpatrick [16], agree with an optimal TSP length
around 2.04.)

In eonclusion we remark that the recently developed cavity method of statistical physics
in combination with rather traditional tools of Operations Research have led to a better
understanding of the random link TSP.
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