
J. Phys. A Math. Gen. 24 (1991) L1025-LI030. Printed in the UK 

LEITER TO THE EDITOR 

Polymers with long-ranged self-repulsion: a variational 
approach 

Jean-Philippe Bouchaudi, Marc MCzard$, Giorgio Parisi5 
and Jonathan S Yedidialll 
t Leboratoire de Physique Statiatique de I'Ecole Normale SupCrieuren 24 rue Lhomond. 
F-75231 Paris Cedex 05. France 
i Laboratoire dc Physique Theorique de I'Ecole Normale Sup6rieuref 24 rue Lhomond, 
F-15231 Paris Cedex Os, France 
9 Dipartimento di Fisica, Universiti di Roma I I .  Via E Camevale, Roma, 00173, Italy 

Received 16 May 1991 

Abdrrct. We use a variational approach to study self interacting polymers with long-ranged 
repulsion decaying for large distances as r P  For 2 4 A 4 4  and A < d  (where d is the 
spatial dimension), we find that the exponent for the end-to-end distance of the chain is 
Y = 2/A (with logarithmic corrections for A = 2 or A =4), in agreement with renormalization 
group computations and recent numerical simulations. We discuss the entire A,d plane, 
using a renormalization group near A = 4, d = 4. 

The variational treatment of path integrals was pioneered by Feynman in his famous 
treatment of the polaron problem [ l ]  and subsequently used for many other problems, 
including the problem of polymers with an excluded volume caused by short-ranged 
self-repulsion [2]. Recently, the variational approach was successfully combined with 
the replica method in studies of heteropolymers [3] and of directed polymers (or 
maniioidsj in a random medium (41. For these problems, the variational method has 
the advantage that it is inherently non-perturbative, and can therefore incorporate the 
effects of replica symmetry breaking which are crucial for dealing with the presence 
of many metastable states. 

In this letter, we apply a Gaussian variational method to the problem of a homopoly- 
mer with long-ranged power-law self-repulsion. For the case of a polymer with short- 

Y is rather poor, which has perhaps led to a relative neglect of this method for other 
polymer problems. For our problem with long-ranged repulsion, however, we find 
results for Y which agree with renormalization group calculations as well as  numerical 
simulations, and which indeed are probably exact. We shall try to explain why the 
variational approach gives good results for our long-ranged problem even though it 
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We consider a closed polymer made of N monomers in a d-dimensional space, 
The Hamiltonian of the system is chosen to be 

where xN+,  = xl and V ( z )  - gz-A'z for large I. We will work in units such that the 
temperature is equal to 1. 

We are particlarly interested in the value of the exponent v, defined by 

The particular case of the Coulomb interaction between charged monomers (A = d -2) 
has been studied using the renormalization group method by Pfeuty et al [ 5 ] .  They 
find in that case u = 2 / h = 2 / ( d - 2 )  f o r 4 < d < 6 .  

Our variational method is based on the following Gaussian trial Hamiltonian 

where G, , ,  is the trial 'propagator' which will be determined variationally. The exact 
free energy 

F = -log Z = -log 

is approximated by 

(4) 

F o = ( H  - Ho)o-log n d*, e-Ho ( 5 )  J ,  
where (. . .)o means expectation value with the measure e-Ho: 

Fo depends on the trial propagator G, and from the convexity inequality for the 
exponential, one gets Fo& F: We therefore search for the optimal propagator which 
minimizes Fo. 

The variational free energy Fo can be computed easily within the Gaussian ansatz. 
The only term which deserves some special attention is the expectation value of the 
potential energy. Fora given pair of monomers r, T' (T f r'),wecompute( V((X,,-X~)'))~ 
by noticing that within the Gaussian ansatz, U = x+-x, is a Gaussian variable of mean 
0 and width (u'),=dB,,,., where 

B,,,, = G,,+ G,.,,,- 2G,,,. (7) 

Therefore 
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If ~ ( z )  - gz-A’2 for large z, we get 

if A < d, and 

i fA>d.  
Within this variational method, the asymptotic behaviour of ? at large arguments 

will determine the U exponent. Therefore, all the ‘short range’ potentials falling off 
faster than will have the same Y exponent. This is, however, not true for the exact 
solution (see below and figure 1). 

Using (9). we find that the total variational free energy is equal to 

For a ring polymer with xN+, = x, ,translational invariance implies that G,,. = G (  r - 7’). 

where G( T )  is an even function of T which satisfies G( N f  1 - T )  = G( T ) .  The same 
properties hold for B(T)  = 2( G(0) - G(T) ) .  In orderto find the optimum function G( T ) ,  

it is convenient to introduce its Fourier transform G ( w ) .  Taking the N* 00 limit, G ( T )  
becomes an even function defined on the integers. One has then 

d A  

4 -  
3 -  
2- 
1 -%=l 

* 
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Figure I .  Summary of the different regions in the A, d plane. The value of Y is given in 
each region. SR refers to shon range, LR to long range, S to ‘stretched‘, and G to Gaussian. 
The line separating SR from LR is given by: Aus,=2 .  The insert shows the result of a 
renormalization group calculation done to first order in S = 4 -  A and E = 4-d .  The arrow 
indicates where Pfeuty el ol [ 5 ]  performed their renormalization group calculation. The 
‘super-stretched‘ regime A <  I is not shown, since it is strongly model-dependent. On the 
lattice, for example, Y = 1 in this region. 
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and 

The functional minimization with respect to &o) leads to the following set of saddle 
point equations: 

The scaling behaviour with an exponent U corresponds to the following behaviour: 

E (  T )  = C T ~ ”  ( 1 6 )  

for large T and 

for small o. In order to find the value of U, we must analyse and match the small o 
behaviour of the different terms of (15). In this small o regime, the only important 
feature of 9 is its asymptotic shape at large distances, given by (IO), j l l ) .  In fact, 
exactly the same function equation (15), with V behaving as a power law ( V ( z )  = z - ~ ’ ~ ) ,  
has been obtained by des Cloizeaux [ 2 ]  in his analysis of the polymer with short range 
(delta-function) interactions. The analysis of (15) is quite subtle, and has been very 
carefully done in [2]. The results are as follows: 

For 2 < A < 4 ,  u = 2 / A .  
For A =2, one finds logarithmic corrections to.‘ballistic’ behaviour: 

for large T 

For A =4, one finds logarithmic corrections to ‘diffusive’ behaviour: 

lim ( ( x ~ - x ~ ) ~ ) - T ~ ~ ~ ” ~ T  (19) 
N-CC 

for large T. 

The result u = 2 / A  which differs from the naive Flory estimate v F = 3 / ( A + 2 )  has 
been checked recently by a careful numerical simulation ( [ 6 ] )  in d = 3 ,  for A = 2 or 
2.5. In particular, for A = 2, the presence of logarithmic corrections predicted by (15) 
is very clear, although the exact power of the logarithm cannot be determined with 
good precision. On the other hand, this result must break down when A is large enough. 
Indeed for purely short range potentials, ( V ( x ,  -x,,) = S(x, -x,.)), the variational 
approach done by des Cloizeaux [2] leads to Y = 2 / d  for 2 < d c: 4, which is a rather 
poor result compared with the values u,,(d = 2)  = a  and u,,(d = 3) =0.586. It does not 
agree with the E = 4- d expansion to leading order and is much worse than the usual 
Flory result v F = 3 / ( d + 2 ) .  

In order to check the result Y = 2 / A  and to establish its range of validity, we have 
performed a renormalization group calculation fora  &L-o theory with both long range 
and short range interactions in the q54 term. The expansion must be made simultaneously 
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in E = 4 - d  and 8 =4-A. Transposing very similar calculations by Weinrib and Hal- 
perin [71 on a different problemt, one finds, to first order in E and 8, the following 
results: if E < 28, a ‘long range’ fixed point of the renormalisation flow exists, and gives 
vLR =f+$+ .  . . , while for E > 28, one finds the standard short range fixed point, with 
us,=f+e/16+.  . ..Let us notice that the value of uLR is the expansion of 2/A for A 
close to 4. One may argue that the absence of higher order corrections in 6 to 2/A in 
the long range case is related to conservation of ‘charge’ under renormalisation [8]. 

To first order in E, 6, we thus find that the borderline between the two regimes 
occurs for E = 26. More generally, this borderline should be given by the equation 
AusR = 2. This can be understood by a simple scaling argument, treating the long range 
part of the interaction perturbatively. Upon rescaling the ‘time’ T as b~ and the distances 
as b”sR,  one finds that the long range part of the interaction is multiplied by b’-””Ss.,  

and hence decays to zero on large length scales if 2 -AvS,,<O. Note that the exponent 
U is thus continuous across this line. We thus find that U = min(2/A, usR) in the region 
A>2.  

The region A < 2 is less interesting. For 1 < A < 2, one must write x, = ut + Sx, : the 
walk is ‘stretched’ and similar to a straight line. A variational computation can be one 
to evaluate U and the fluctuations ax,$. For A < 1, one finds that the energy density 
becomes infinite in the limit of infinite chains. The walk becomes ‘super-stretched, 
since one finds that u = 3 / ( 2 + A ) >  1. Each spring has thus a length which diverges 
with the number of monomers. Note that in this last regime Y is given by the Flory 
formula. 

Figure 1 summarizes our expectations for the different values of U in the whole 
plane A, d. The three methods (renormalization group, variational and numerical) agree 
with Y = 2/A in the domain 2 < A < 4, A < 21 us,. which is probably an  exact result. 

The reason why the variational method is very reasonable for long range interactions 
but bad for short range potentials is the following. Let P ( r ,  T )  be the probability that 
Ixl+, -xI I = r (in the N + w limit). From scaling, it is clear that P (  r, T )  = 7 C d f (  r / r ” ) .  
For the ususal short range self-avoiding polymer, it is well known (see e.g. [SI) that 
f (x) goes to zero at small x, as x‘~-’)’”, where y is the susceptibility exponent. This 
reflect the difficulty for the chain to ‘loop’. In the variational ansatz, however, fv , , (x)  
is a Gaussian which is maximum for small separations! The potential energy is thus 
very much overestimated in this calculation and in response the chain ‘overswells’, 
giving too large a value for U. For the long range case, on the other hand, the part of 
f (x) near x = O  is negligible in our overall estimate of the potential energy, and thus 
the error made is of no importance as far as the exponent Y is concerned. 

Returning to the short-range case, it is perhaps interesting to notice that the Flory 
value for the Y exponent can be recovered by the following heuristic argument: a value 
of y greater than 1 can be thought of as an enhancement of the effective space 
dimensionality, since 

P ( ~ = ~ , ~ ) - ~ - Y ~  7 4 7 - 1 )  - 7  - d  

where a is some short distance cut-off (the size of a hard core) and-d^=d + ( y -  l ) / u .  
A naive extension of des Cloizeaux’s result then leads to U = 2/d or U = (3 - y)/d, 

t One should set the number m of components of the spins and the inler-replica interaction to zero in their 
calculation. 
2 Here rotational invariance is broken and one must distinguish between longitudinal and transver~e 
fluctuations. 
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which is much better than Z/d. In fact, the choice y = 2 v  (advocated in [SI, 191) leads 
back to the Flory formula, v = 3 / ( d + 2 ) .  

More generally, one may study along similar lines the case where the interaction 
between two monomers r apart decreases as T-*. (The above paragraph corresponds 
to U = y - 1.) One finds in this case that 

v =ma.(!, 7) 
instead of 

which would be the result obtained following a Flory type argument. 
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