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Abstract. In this paper we develop a variational approach for directed polymers in random 
media in the framework of the replica formalism. We derive the functional expression for 
the free energy in terms of the probability distribution of the probability of finding a 
polymer at a given point. We compare these results with those coming from the broken 
replica symmetry approach and we present some new computations in this framework. 

1. Introduction 

A crucial open problem in statistical mechanics consists in finding the behaviour of 
fluctuating manifolds in a random medium with quenched disorder (for a review see 
Nattermann and Rujan 1989); recent progress has been made using the replica formal- 
ism (Demda and Gardner 1986, Kardar 1987), and the problem was apparently solved 
in the limit of infinitely many dimensions where a simple Flory law has been found 
to be correct (MBzard and Parisi 1990, 1991, hereafter referred to as MP). The Flory 
results cannot he valid in all dimensions for all kinds of correlations of the noise (e.g. 
they are wrong for directed polymers with short range noise in one dimension). 
Systematic corrections can, in principle, be computed in the replica framework (I-D 

expansion), but they are technically rather involved and this has not yet been done 
(for a first step in that direction see M6zard and Parisi 1992). It is therefore useful to 
explore other approaches. In this note we concentrate our attention on directed 
polymers which, due to their one-dimensional structure are rather simpler than the 
fluctuating manifold with generic dimension. 

Indeed in each instance of the directed polymers problem we can compute the 
probability p ( x )  that the polymer ends at the point x. The solution of the statistical 
problem consists in finding the probability distribution P [ p ] ,  i.e. the probability 
distribution (for different instances) of the probability p. 

In section 2 we derive a variational principle for P [ p ]  which reduces the problem 
to finding the maximum of the functional P. In section 3 we derive some consequences 
of this variational principle. In section 4 we compare this approach with the broken 
replica symmetry formalism. In section 5 we present a simple computation of P [ p ]  in 
the broken replica approach and finally in section 6 we discuss the zero-dimensional 
limit (named the toy model). 
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2. The Sebrodioger equatiou for zero particles 

The problem may be formulated as follows (see for instance Kardar and Zhang 1987). 
In the continuum limit the classical Hamiltonian is 
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where o( I) is a vector with N components. The vector valued function U ( / )  represnts 
the coordinates of a one-dimensional manifold in a (Nf 1)-dimensional space. The 
variable I parametrizes the manifold, which has coordinates ( 1 ,  o(l)). The probability 
of a configuration o(I) is P[o]ccexp(-H[w]). 

The function v(l, y )  (y being an N-dimensional vector) represents the effect of the 
disorder and it is a quenched variable, which is usually supposed to be Gaussian 
distributed. Different models may be obtained by choosing different forms for the 
correlation of the noise. In this note we consider only the case where 

w,, ~ ~ 1 7 ~ ~ ~  y 2 ) ) =  w, -12)v(~1 - A  
(2 .2)  

g being the coupling constant. Hereafter we indicate with (A) the average of A[?! 
with respect to the noise 7. 

When A = N, the RHS of (2.2) becomes proportional to S ( y ,  - y 2 )  and the noise is 
short range (Medina et a/ 1989, Halpin-Healey 1989). The models we consider are 
thus characterized by two parameters ( N  and A);  for some values of these parameters 
the model may not be defined in the continuum and a cutoff must be introduced (e.g. 
a cutoff at short distances must be introduced if A 3 2). 

The long range behaviour of these models at low temperatures is characterized by 
a single exponent [, which describes the growth of the transverse fluctuations of the 
manifold as function of the distance, i.e. 

([o ( I , )  - r2)i2) 0~ I I ,  - r2t2' (2.3) 

for large I/, -1'1. Using scaling invariance and Galilean invariance the values of the 
other exponents may be related to 5 (Huse et a/ 1985, Kardar and Zhang 1987). 

The advantage of directed polymers (with respect to the general case where I is a 
vector) is that in this case the problem may be formulated in a slightly different way. 

We consider the stochastic differential equation 

JG(l,x)/Jl=iAG(I, x)+q(l,x)G(l,x). (2.4) 

We fix the boundary conditions at the origin, i.e. at / = 0 (the most popular conditions 
are: ( a )  G(0, x) = 1; or ( b )  G(0, x )  = S(x)); at some it may be convenient to restrict 
the equation to the interval -L/2<x,< L/2, U =  1 , .  . . , N. 

Although G depends on 7, we have not indicated explicitly this fact in order to 
lighten the notation. In the following the average over 7 will be denoted by a bar and 
the function p(  /, x) I G( /, x) / I  dy G( I, y )  is introduced. The problem consists in com- 

other words we must find a functional P,[pl such that 

V(x) = g/AN('+*'')Ix$* 

pu:ii;g :he pi&zy,p,y &;;ibu:ion of :he pGnc~on equiva!ec!!j its mr\me"!S., ic 

d [ ~ l P d ~ l A [ ~ l =  ( A [ P ( ~ ,  x)l) (2.5) 
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where A is a generic functional and d[p] denotes functional integration. In this paper 
we will restrict ourselves to the computation of P,[p] in the equilibrium limit where 1 
goes to infinity; from here on P [ p ]  will denote Iim!-- P,[p]. 

In one dimension (i.e. N = !I, if the noise has a delta function correlation (white 
noise), the model is soluble and it is known that 

P[p]=exp(-C I dx{d(ln p(x))/dx]'). (2.6) 

This is a rather fortunate case. 
In the generic case it is not easy to find the form of the function P[p]. We will 

show now that P[p] does satisfy a variational principle which can be used to find an 
approximated form the functional P[pJ 

The first step consists in using the replica formalism and in integrating over the 
Gaussian noise 1). We introduce n copies of the N-dimensional vector o, which now 
carries two indices: oz ; (I = 1 , .  . . , N; a = 1 , .  . . , n. The expected value of the partition 
function to the nth power can be obtained by using the following classical Hamiltonian: 

ffR=[dl{ ',=,.n 1 P - 1 . N  f[aoz(x)12- a.b-1," 1 v(%(l)-%(l))). (2.7) 

Apart from the simp!e case where A = -2 (Parisi !91)0a), the mode! is no! exnlicitlv r -- ----, 
soluble. It is interesting to note that the model is invariant under the group O( N )  (i.e. 
rotations in physical space), under the S. group (i.e. the permutation group of n 
replicas) and under the group of translations. The actual symmetry group is larger (it 
contains rotations which mix the I and the U coordinates), but we will not use it. As 
usual, we have eventually to consider the limit n going to zero, which gives a distinctive 
flavour to the replica approach (Mkzard et al 1987). 

The classical Hamiltonian (2.7), can be also considered as the Euclidean (i.e. 
imaginary time) action in the Feynman-Katz representation for n interacting particles 
in the presence of the attractive potential - V. The ground-state wavefunction @(x) 
satisfies a Schrodinger equation corresponding to the quantum Hamiltonian 

' . . f  

H = - $  A CI - 1 v ( x n - x b ) ,  (2.8) 
0 = 1 , n  a=L.n,b=l,n 

where A. stands for the Laplacian with respect to the arh variable. 
The ground-state function is rather important because it gives the probability 

distribution of the final point of the trajectories for large 1. Indeed in the infinite I limit 
we have 

Similar relations hold for higher moments of p. 
While it is relatively simple to compute the wavefunction for n particles (provided 

that n is not too large) the situation is not easy when n = 0: a direct numerical approach 
is not possible. Our strategy here consists in representing the function + as 

r 
+(x, , . . . ,x.)=J d R [ ~ L ] ~ ( x i ) , . . , ~ ( x n ) .  (2.10) 

Using functional techniques it can be proved that for attractive potentials (i.e. V 
positive) the ground-state wavefunction JI satisfies (2. lo), where the measure dR[p] 
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is concentrated on non-negative functions p ( x ) .  The relationship between R and P is 
simple: 
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p(xl)Po= I d P [ ~ l ~ ( x J d x J  = I ~ R [ I L I ~ ( ~ , ) I . ( X ~ ) / Z [ ~ I ~  (2.11) 

We want to use the quantum mechanics variational principle for I) (i.e. I) minimizes 
where I [ p ] = f d x p ( x ) .  

($l-q$) ..=der the con&:iax ( $ 1  $)= 1). We find :ha: 

(I)lHlJl)= d R b 1  d R [ ~ l @ . [ ~ ,  VI (2.12) 

where 

@.[p, U] = n / 2  d x  1 dw/dx, du/dx,i[pu]"- '  
v = I , N  

(2.13) 

I 
- n ( n  -1)  dx ~ ~ I L ( X ) C L ( Y ) ~ ( X ) ~ ( Y ) V ( X - ~ ) ~ [ ~ ~ I " - ~  I 

and 

(i . i4j 

The Schrodinger equation (which can be obtained by the variation principle) 

,, r Jnr l > n r  7.r 
!WIV'/= J u~LCLJufil~Al1IL~j". 

becomes in this new representation: 

(2.15) 

where (2.15) should be valid for any (sufficiently regular) function ~ ( x ) .  
It is easy to check that for integer n the Schrodinger equation is a polynomial of 

degree n in the functions p. If we functionally differentiate it with respect to 
p ( x J  . . . p(x . ) ,  we find the usual Schrodinger equation, which involves only the 
moments of order n of R. This simplification is absent for non-integer n. 

We can now easily continue our equations in n up to n = 0. In this limit the 
variational principle can be expressed as finding the stationary point of F[R]  defined 
by 

(2.16) 



A variational approach to directed polymers 4525 

where 

E = limn-o E. In. (2.19) 

@[p, U ]  is homogeneous of degree zero in U and p. Therefore we can consider in 
(2.18) that p is normalized (I p(x)  dx = I ) ,  and that the integration measure on U is 
restricted to normalizable U(X) functions. As p and U are positive, they can be 
considered as probability distributions. In such a subspace the measure d R [ p ]  and 
d P [ p j  coincide (see (?.ii)), and (?,!a) ca:: be ix!e:p:e!ed as a:: eq.:a!lax for d P [ p j :  

d P [ p l @ [ ~ ,  P I  = E (2.20) 

where p and p are probability distributions. 
Equation (2.20) is an exact statement, which is the main result of this paper. In 

principle it could also have been proved by a directed probabilistic method, but we 
have not tried to follow that approach. 

3. The consequences of the Schrodinger equation 

We have not explored all the implications of the functional representation of the 
Shrodinger equation. We will, here, make only a few observations on some consequen- 
ces of the Schrodinger equation. 

In principle (2.18) must be satisfied for any p. It may be convenient to take 
p(x) = p O ( x ) + ~ ( x ) .  We can thus consider the function derivatives with respect to E 

at E = 0 for p,,(x) = 1. In this way we obtain some relations among the p correlation 
functions. For example the first two equations are 

and 

- A ' 3 2 ( ~ 1 , ~ 2 )  

r . 
= 2 v ( 2 ,  - z2)G2(z , ,  z2) - 4  J dyi vp,  - y j  + viz ,  - y) jG,(y, z I ,  z2j 

+ 6  dydx  v ( x - ~ ) G A x , ~ , z i , z 2 )  (3.2) s 
where the G. are proportional to the expected n ps, e.g, 

G3(x,y, x) = LN ~ P [ P ~ P ( x ) P ( Y ) P ( ~ )  - (P (~)P(Y)P(~) ) .  (3.3) 

The proportionality factor L N  ( L N  being the yolume of the space) has been inserted 
in such a way that we may hope that the Gs have a finite non-zero limit when L+m. 
With this normalization we find Gl(x) = 1. 

In a similar way one generates a sequence of equations connecting the n-point 
function with the ( n  + 1) and (n +2)-point functions. These equations are very similar 
in some respects to the Dyson-Schwinger equations of field theory. In the presence 
of a good anzatz for the high-order Green functions it may be possible to find a 
self-consistent solution to them. 
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We do not start this line of investigation here. We only present a few technical 

(1) Equation (3.1) is automatically satisfied. Indeed using translational invariance 
remarks. 

it turns out to be +independent. After integration on zI it can be written as 

(3 .4)  

In the same way the second equation trivializes after integration over 2, .  

( 2 )  The correlation functions probably do not satisfy the usual cluster decomposi- 
tion at large distances. Indeed it is reasonable to suppose that in most cases the function 
p will be nearly concentrated in a compact region, and only in infrequent cases will 
it have non-negligible contributions in two widely separated regions (Parisi 1990b, 
M6zard 1990). The correlation functions at large distance will therefore be dominated 
by rare events. 

Letusbequantitativebytryingtocompute(p(x+z,). . . p (  x + z k ) p ( y + z j )  . . . p ( y +  
4,)) in the region of large x - y  with the zs kept finite (for simplicity let us absorb a 
factor V in the definition of the average (.)). The extension of the analysis of Parisi 
(1990b) suggests that the relative shapes of the function p around the points x and y 
are uncorrelated for large x - y ,  but there is a probability C ( x - y )  that both ps are 
of order 0"P. 1" this czse one finds thlt when x - y  is !2rge 

(p(x+zl) .  . . p ( x + z k ) p ( y + z : ) .  t .  &'(Y+z;')) 

- (p(x+zl) .  . . p ( x f z k ) ) ( p ( y + z ~ ) ~ ~ ~  P(Y+z;')) 

x A r & ( x - y )  (3 .5)  

where a more detailed analysis is needed to find the values of the constants Ark.; 
C(x - y )  is proportional to Gz(x - y )  and according to conventional wisdom it decreases 
asymptotically with a negative power of I x - y l ,  i.e. as Ix-yl- ' ,  with q = N + a ,  (I 
being a critical exponent of the model. As a consequence of the scaling relations at 
large distances (if any) of the correlation functions of p should be of the form: 

( ~ ( A Z I ) .  . . p ( A " ) ) l A ~ ' * - ' ' " ( p ( Z l ) .  . . p ( z k ) )  (3 .6)  

in the region where A goes to infinity. Here the exponent at the RHS of (3 .6)  is given 
by (k - l)q, not by the usual kq. In some sense this change in the exponent is a side 
effect of the necessity of absorbing the factor V in the definition of the average (.). 

( 3 )  It is interesting to find out if the different terms in (3 .2)  scales in the same way. 
The term at the LHS scales as l / x  to the power 2 + q .  The three terms at the RHS 

formally scale as I / x  to the powers q + A,  q + A  + (I, q + A+ 201. In the case where the 
potential is sufficiently long range and the Flory result is correct, we have 

3 a + A = 2  (3 .7)  

so that cancellations must be present in the RHS of ( 3 . 2 )  (the LHS scales as q + A + 3 u ) .  
The cancellation of the term with exponent q + A  may be understood to be a con- 
sequence of identities like (3 .4) ,  but the cancellation of the remaining terms is more 
mysterious. It is rather amusing to note that the four terms differ one from the other 
by a single power of XI. 

(4) Instead of studying the Taylor expansion around po(x)  = 1 of our functional 
equation (2 .20) .  different starting points may be considered. In particular the choice 
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po(x) = S(x) seems particularly interesting. In this case one obtains a sequence of 
equations, the first two being 

f ( - A d O ) / d O ) ) +  V(O)= E (3.8) 

(3.9) 
These equations can be derived directly from (2.4) by imposing the condition that 
some quantities are time independent and by using the Ito differential calculus. The 
first equation states that 

J/Jl(ln(G(I,x))= E. (3.10) 

~ ( - A ~ ( x ) / ~ ( ~ ) ) + K A P ( O ) ~ ( X ) / ~ * ( O ) ) +  2( V(X) - V(O))(p(c)/p(O)) = 0. 

The second one follows by imposing the condition 

d/~l(G(l ,  X)G(I, 0)) =o. (3 .11)  

(5) If it is difficult to find directly a solution using the variational principle, an 
alternative solution consists in looking for a solution in restricted subspace. A natural 
possibility is to consider wavefunctions of the form 

It is easy to see that this factorized wavefunction corresponds to a Gaussian probability 
distribution for q(x) 3 In(p(x)): 

P , [ ~ l a e x p (  -f dx d y d x b b k b - y )  (3.13) 

where the function g is fixed by the condition 

dr ln(f(x-z))g(r-y)= S(x-y) (3.14) I 
or, in other words (q(x)q(y))=In(f(x-z)). 

obtained by writing 
This surprising relation between the two apparently different quantities can be 

(3 . i5)  $(x, ,..., x , j x ~  r diqpjexp r 1 ~{x. ) - , J  , r  dxdyqpixjq(y)gjx-yjl 1 
La=,,. 

and performing the explicit Gaussian integral. 

stationary 
The problem now becomes one of finding the function g which makes that functional 

1 dPg[vp,l dPg[c921@[ex~(rpl), exp(rpd1. (3.16) 

The functional integral is non-Gaussian and cannot be cone analytically. The only 
possibility consists in generating the function q according to the probability distribution 
P J q ]  and evaluating the expected @ numerically. This last approach may seem not 
very elegant; however it gives the correct results for N = 1 for short range correlations, 
so that it cannot be excluded a priori that it gives the correct answer for the critical 
exponents. 

(6) A question which we have not discussed is if the functional F[R] should be 
minimized or maximized. This is a crucial question for the replica approach. In usual 
cases the question is not ambiguous: the requirement is that the Hessian of the free 
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energy must have no negative eigenvalues in order to apply the saddle point method 
in a consistent way. Here it is not clear what plays the role of the Hessian; also we 
are not using a saddle point. There is no doubt that in the replica approach to this 
problem (described in the next section), where a functional saddle point method is 
used, the functional F must be maximized and not minimized (as one could naively 
think). We could also argue that when n particles are present in a translational invariant 
system, there is one degree of freedom which corresponds to the motion of the centre 
of mass, and n - 1 remaining degrees of freedom; in the limit n going to zero, there 
remain a negative number of effective degrees of freedom (on which the functional 
depends) and therefore one should maximize, not minimize F (see also Parisi 1990b). 

Moreover E, = 0 and therefore convexity arguments imply that E, defined in (2.19), 
is non-negative; E = O  can be trivially obtained by the simple wavefunction + = 1. 
Therefore a non-zero result for E may be obtained only if we maximize, not minimize 
F. The consistency of this procedure can be explicitly verified for directed polymer on 
a lattice in the infinite-dimensional limit (Derrida and Spohn 1988, Cook and Demda 
1989a, b). 

4. Breaking the replica symmetry 

If we want to pursue the approach of the previous section, a possibility for doing 
analytic computations consists in using the broken replica symmetry formalism. Indeed 
the formalism of broken replica symmetry provides a large variety of functionals P [ p ]  
which have the following properties: 

( a )  They depend on many parameters so that we have a large variety of choices. 
( b )  If desired, we can construct these probabilities in such a way that the system 

is scaling invariant at large distances. 
(c) The expectation values of @ and of the p correlations can be computed explicitly 

so that the minimum of the functional F can be found for this form of P [ p ] ;  one can 
also take the broken replica symmetry solution as the starting point of a perturbative 
expansion. 

( d )  Last, but not least, the replica symmetry broken form for P [ p ]  seems to be 
exact when the dimension N- of the space goes to infinity. 

Let us see how the broken replica symmetry formalism works. The reader must 
have realized that we can use two quite different languages: we can speak about the 
x dependence of the wavefunction JI or we can discuss the form of the probability 
functional P [ p ] .  The authors of this paper believe that any statement in one of the 
two languages may be translated (with sufficient effort) to the other language. However, 
what can be simply said in one language may sound horribly complicated in the other 
one. 

Let us present the broken replica approach in the language of the wavefunction. 
As this is basically a rephrasing-in a new language-of the method used in Mezard 
and Parisi (1991), we shall not give full details. We shall also keep to the case to the 
case of short-range correlations of the potential, where V ( x )  = S(x). The approach is 
vil_riationi?!i we start with a class of wavefunctions +o(x); which depend on some 
parameters which we denote Q, such that 

. 

F(Q)-(+Q(~)IHIJIQ(X)) (4.1) 

can be computed as far as possible analytically. 
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The simplest case consists in a Gaussian form for $ (Shakhnovich and Gutin 1989). 
We can therefore assume as trial functions 

(4.2) 

The computation of F ( Q )  can be readily done in the case of short-range interaction 
(white noise); after some algebra one finds 

The problem is to find the matrix Q which maximizes the F ( Q ) ;  although the 
original Hamiltonian is symmetric in the interchange of x. with xb (i.e. under the 
action of S., the permutation group of n elements which is called here the replica 
group), one finds that the best matrix is not symmetric under the action of the replica 
group. Therefore if we limit our search to Gaussian wavefunctions we are forced to 
break the replica symmetry group. Indeed a matrix Qa,b, which has the hierarchical 
structure common in spin glasses, is believed to he the hest solution of the variational 
problem. Such a matrix may be parametrized in terms of a function q ( u )  where U 
belongs to the interval 0-1, and of the diagonal element 6. 

The appearance of the spurious spontaneous breaking of a symmetry in the vari- 
ational approach is a well known phenomenon; let us recall a simple example. If we 
try to compute the ground state of the Hamiltonian 

pz-Ax2+x4 (4.4) 

(which is invariant under the transformation x + -x) and we use a variational wavefunc- 
tion of the form $(xj ciexp(A(x - for suiiicient iarge vaiues of A, the best resuit 
will he given by the asymmetric wavefunction with B = +B* # 0. The two possible 
solutions correspond to two different ground states. The variational approach is rather 
good in this case in finding the energy of the ground state; the correct wavefunction 
is quite similar to the symmetric combination of the two asymmetric wavefunctions. 
The two ground states are split by the tunnel effects that are exponentially small in A. 

On the other hand this strange form of matrix Q corresponds to a rather definite 
probability distribution for the functional P[p] which has been discussed in details in 
MP. If we try to compare the results of the replica approach with the one of the present 
paper, we should use a replica symmetric wavefunction. More precisely, using the 
rules of MP, measure dP&] should be such that 

(4.5) 

(4.6) 

where the sum runs over all the elements v belonging to S.. 
Indeed the previous equation for the functional F (  Q )  can, in principle, be computed 

by expressing P(p)  as function of Q and evaluating the expected value of 4. This is 
not exactly what is done in the replica approach, where the original unsymmetrized 
wavefunction ( $ L o ( x ) )  is used. The computation of the RHS of (4.5) is much more 
difficult that the RHS of (4.1). A preliminary evaluation suggests that the difference 
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between (4.1) and (4.5) vanishes when N goes to infinity. Indeed the difference between 
(4.1) and (4.5) is given by interference terms (i.e. ( ILp(x) lHIJl0(?. (x) ) )  with ?. different 
from the identity), which are likely to be small in the limit N going to infinity. 

For directed polymers (the situation may be different for higher-dimension random 
manifolds) the question of whether the replica symmetry is browkn spontaneously or 
not has a clear answer: the replica symmetry is not broken (in a strong sense) because 
the ground state of a Hamiltonian with a finite number of degrees of freedom must 
have the same symmetries as the Hamiltonian (a detailed discussion of the distinction 
between strong and weak replica symmetry can be found in Parisi and Virasoro 1989, 
Parisi 1990b). Irrespective of this problem, the form for P [ p ]  derived using the broken 
replica symmetry theory is very useful in finding a good variational ansatz. 

The breaking of replica symmetry in a hierarchical fashion leads naturally to 
non-trivial critical exponents. The behaviour of the correlation function at large distance 
is related to the behaviour of the function q ( u )  at small U. 

The very nature of the variational approximation we have used strongly suggests 
that the results obtained with the variational approach cannot be exact for all values 
of N, while they are likely to be correct in the limit of infinite N, at least for y in an 
appropriate range (see for instance Natterman 1987 and Amar et al 1991). The 
construction of I/N expansion seems to be feasible, although it may be quite involved. 
It is quite possible that the E expansion is simpler. In any case the explicit computation 
of the first corrections to the mean field approxiation should be very instructive. 

Another interesting application of the broken replica symmetry method is the 
derivation of explicit forms for the correlation functions. Using the equations of MP, 
one finds 

M Mimrd and G Parisi 

' 

where 

s ( u ) = 4 - q ( u ) .  

Using the fact that the function s ( u )  behaves as a power law U-''*, one finds the 
predicted result at large x: 

(p(x)p(O))Oc x - ( N + = )  (4.9) 

and the exponent (I is equal to x /L ,  in the notation of MP, 
A similar, but longer computation, gives 

(P(XI)P(XZ)P(XJ)) 

= $ ( 2 ~ ) - ~  (I du u(3s( U))-"* exp(((-(x:, + x:, + x&)/6s( U)) 

(4.10) 

where the term '2 perm.' refers to the two terms obtained from circular permutations 
ofx, ,x2andx3,x,  isdefinedto beequaltoxi-xk andA(u, u)isgivenbys(u)(4s(u)- 
s(0)). 
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The factorization property (3.5) and the scaling laws (3.6) are valid in this case. 
We also notice that at large distances the three-point function is not conformal invariant. 
This is not surprising, if we consider the anomalous form of the scaling laws (3.6). 

I 

5. Non-Gaussian wavefunctions 

If we want to improve the replica symmetry breaking approach maintaining computabil- 
ity we can try to take more complex wavefunctions, in particular non-Gaussian types. 
To allow the use of a non-Gaussian wavefunction will only improve the results in the 
variational approach. 

Here we show only how the functional F may be computed; we do not discuss the 
actual solution of the equations we find. Let us first consider the case where replica 
symmetry is not broken. A simple translational invariation wavefunction is 

. .  

$(XI , .  . .  , x n ) =  dYg(y-x,)...g(y-xn) (5.1) I 
where g is an even function which characterizes the wavefunction. 

limit n going to zero: 
The computation of ($[HI$) is straightforward for any n. We give it only in the 

where 

G ( h )  = dxg(h -x)G(x). I (5.3) 

The expression for F[g] is rather interesting, because it shows a negative kinetic 
term (the first one) and a positive attractive potential (the second term). Both the 
kinetic term and the potential term change sign from the usual ones at n = 1 (assuming 
translational invariance): indeed they are zero just at n = 1. If, in the upside down 
world of n = 0 particles, we change sign to F, we find the usual signs. It should be 
clear now why we would maximize and not minimize F, if reasonable results are to 
be expected. 

The computation becomes more involved if we assume that the replica symmetry 
is broken. Here we limit ourselves to the case where replica symmetry is broken at the 
one-step level (Mtzard et a l  1987). This amounts to saying that the n particles are 
divded into n/m blocks of m particles each. To each index a we can associated a pair 
of indices ( i ,  a), with i going from 1 to m, a going from 1 to n/m, such that the 
original index a is given by i + m ( a  -1). The wavefunction we propose is 

$=I Il d y m ( . l l  g(y=x,d I . (5.4) 
= = 1 , n / m  t-1.m 

This wavefunction corresponds to having blocks of m particles forming bound states. 
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The computation of the energy functional requires some care; however, after a not 
too difficult computation one finds, always in the limit n going to zero 

(5 .5)  

In the limit m going to zero, we recover the previous formulae for the unbroken case. 
It would be rather interesting to find the minimum of - F [ g ,  m); in particular, the 

comparison of the general case with the simpler case g(x)=exp(-Ax2) should give 

the Gaussian approximations. This point will not be discussed here; we only present 
some remarks on the probabilistic interpretation, i.e. on the functional P [ p ]  correspond- 
ing to these two functions. 

Instead of giving the explicit form of P [ p ] ,  it is more convenient to describe a 
process that generates p with the probability P [ p ] .  For simplicity, we will consider 
the case where we aye confined_ in E box Qf size L. and cQnsi&r the !im-it L. + 00 C! ths 
end. 

In the first case the solution is rather simple. We have to choose a pointy, uniformly 
distributed, and the function p ( x )  is just given by g ( x - y ) .  In other words the 
approximation consists in assuming a fixed shape for the function p, which, however, 
may be located in an arbitrary position depending on the sample. 

The corresponding probability distribution for the second case is less trivial and it 
can be derived by using the techniques of MP. The procedure is as follows: we generate 
an infinite set of variables f.* such that the probability of finding a given f. in the 
interval z-(z+dz) is given by exp(m2) dz. We define the quantities 

0-m- :nA:mt :nne  nn h r \ . . z  . tr~n.. l . .  +h- --r..ltr AC +h- -___-"- h " - ~  -=-,,+-A L.. 
-".la., I.. Y . S P L L " 1 . I  ".I I."- ' . . V ' . 6 L J  ,,AV .CDY.LD U1 L L l r  ,cy,,ca ayy,ua.*,, P l C  P,,ci.,l.z" "J 

w, =exp(-L)/(fexp(-f,)) 

and we associate to each 01 a vector y., taken randomly in the box. The corresponding 
p is given by 

p ( x ) = 1  w.g(x-y,).  
n 

This formula generalizes the one for the more standard one-step replica symmetry 
breaking where the function g is Gaussian. 

Mathematical consistency implies that the result for the free energy can be obtained 
starting from the probability distribution described in the previous equations and by 
computing the average of @. The strategy of using the wavefunction representation 
for computing the free energy seems to give the final results for free energy in the most 
efficient way (at least in the case where one can neglect the necessity of symmetrizing 
the ground-state wavefunction). 

6. The toy model 

A simple but interesting limit of directed polymers arises if we neglect the I dependence 
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of ~ ( 1 ) .  In this way we simply have 

H=do) (6.1) 

where w is a vector with N components; here the manifold reduces to a point. 
The function ~ ( y )  (y being an N-dimensional vector) is a quenched variable, which 

is Gaussian distributed. Different models may be obtained by choosing different forms 
for the correlation V of the noise: 

GmX= V(Yl-Y,). (6.2) 

For a given q ( x ) ,  the probability distribution p ( x )  is given by 

p(x)=exp(-T(x)) dy e v - d u ) ) .  (6.3) 

In the replica approach we find that this model corresponds to the classical 

H . = -  1 v(wz-wb). (6.4) 

Therefore this gives a probability distribution exp(-X:,, V(w. - ob)), similar to that 
disccssed I! the end of section 5 (see (5.8)). This mode! is ir?!eres!ir?g beczcse, ir? spi!. 
of its apparent simplicity, it cannot be solved analytically, even for simple forms of 
the function V(x). On the other hand the broken replica symmetry approach may be 
successfully used to derive qualitative and quantitative results for this model. It seems 
also that this toy model has many structural properties in common with real directed 
polymers. Some aspects were studied in Schulz et al (1988), M6zard and Parisi (1992). 

Our aim is to find exact relations among the correlation functions of this model, 
similar to those found for the directed polymers. The simplest way to derive them 
consists in using integration by parts: one easily gets the Dyson-Schwinger equations 

/I 
Hamiltonian 

a- l . n ,b= l ,n  

(J/JX:A(X)~:(X)). = O  

f:(x)= V,(x"-xb) (6.5) 

V,(x) =a/Jx,V(x) 

b-1.n 

where A is an arbitrary function of the xs, and ( )n is the Boltzmann average with 
the Hamiltonian (6.3). 

It may be convenient to introduce the probability P [ p ]  such that 

If we specialize the previous equation (6.6) to the case in which A is an arbitrary 
function of x n  and xc, we find the following equation 

r 
a/JXv(p(X)p(y))-2 J dz u,(x-z)(p(x)p(y)p(z))+ V,(X -Y)(P(~)P(Y))  (6.7) 

which looks like those of the previous section apart from the presence of a first 
derivative, not a Laplacian. 
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In principle we could obtain similar equations by differentiating (6.7) and by using 

A fast way to obtain the result consists in recalling that the function #(x)= 
again the equation of motion. 

exp(H,(x)) satisfies the Schrodinger equation 

where the potential w is given by 

(6.9) 

In this way we find formulae quite similar to those of section 2, both for the variational 
principle and the identity among the correlation functions. The main difference is that 
a three-body interaction is present in this case. 

In the case N = 1, V ( x )  = 1x1 the three-body potential disappear and we remain 
with the simple case where the potential contains only a two-body interaction propor- 
tional to a deltafunction. The probability distributions for the zero-dimensional case 
with V ( x )  = 1x1 are the same as that of directed polymer with short-range correlations, 
which is implicit in (2.6). 

The toy model seems, therefore, a nice testing ground for developing approximate 
solutions of the variational principle and of the coupled equations of the form (6.7). 
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