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Abstract. We consider a simple spin system without disorder which exhibits a glassy regime.
We show that this mortel can be well approximated by a system with quenched disorder which

is studied with the standard methods developed in spin glasses. We propose that the glass
transition is a point where quenched disorder is self induced;

a scenario for which the 'cavity'
method might be particularly well suited.

The problem of the glass state remains one of the major unsolved issues in condensed matter

theory. Despite an enormous body of experimental and numerical data and quite detailed

phenomenological theories [1-3], there is no fully satisfactory microscopic model for the glass
state. The intense theoretical activity on spin-glasses and other disordered systems [4] stemmed

in part because they retain 'half' of the complexity of glasses: given a disordered l'quenched')
set of interactions, what is the thermodynamics of the 'spin' degrees of freedom, is there a

Iow temperature spin glass phase? etc. The spin glass theory has indeed given birth to many

seminal ideas which have been transferred to other glassy systems like proteins là-?], rubber [8],

or even glass itself [3]. One subtle aspect of glasses is that there is no clear a priori distinction

between 'Slow' degrees of freedom responsible for random interactions and 'fast' degrees of

freedom equilibrating therem, although everything goes as if it were the case: quenched disorder

is self-induced. A satisfactory glass theory requires a detailed mathematical description of this

scenario (in fact implicit in the mode coupling theory [9]) and the identification of these 'Slow'

degrees of freedom.

In the following we shall show a possible way tu get round this problem. We present a simple
model, already studied in [loi, iii], which contains no quenched disorder. At this stage, the
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only justification for studying this model comes from numerical simulations the system very
clearly exhibits features of a glass transition jump in the specific heat iii], slow dynamics
and aging [12], etc. We propose an unusual analytical approach to this model which is to

find a 'fiduciary' disordered model which is 'as close as possible' to the pure model, but for

which ail the ideas and methods developed for spin glasses (replicas~ cavity method, statistics

of the metastable states) are readily available. Dur approach is the complete opposite of the

usual one, which is to replace a 'dirty' system by an equivalent, 'pure' one. We show that

the high temperature (rephca symmetric) phase of our 'fiduciary' system reproduces exactly

an approximation due to Golay [loi, Ill] for the original model, which, although unjustified,
accounted reasonably well for Bernasconi's numerical data at high enough temperatures il Ii.

The entropy given by this approximation however becomes negative at low temperatures,
signalling, for our fiduciary model, the breaking of replica symmetry. We find that the system
undergoes a first order transition towards a low temperature (glass) phase which is rather

similar to the low temperature phase of Derrida's random energy model i13], although the

entropy remains non zero reflecting the fact that small scale motions are not completely
frozen. This random energy structure is in good agreement with the numerical findings of

Bernasconi, who found that the energy landscape is 'golfcourse' like, with low energy states

randomly distributed in phase space iii].
We shall first describe the specific model we considered and its fiduciary disordered version,

and sketch the main steps of the calculations. We shall then tutu tu a more physical (and
speculative) discussion on the relevance of the rather abstract model studied here for more

realistic situations.

The model in question is defined by the following Hamiltonian:

j2 N~l N~k ~
j2 N~l

7i
=

# ~ (~ ~S~+kj
+

J ~ RI ii)

k=1 ~=l k=1

where S~=i,.....,N are Ising spins. The scaling of 7i with N has been chosen such that 7i is

extensive. The spin configurations which minimize 7i are binary sequences with small autocor-

relations, which are useful in communication engineering problems iii]. It is difficult to find

them because of frustration eifects.

As mentioned in trie introduction, numerical studies show very dearly that trie system enters

a glassy phase at low temperatures, much as if quenched disorder were present. Furthermore,
the non-trivial features of 7i come from the fact that the sum over k extends to infinity when

N
- oo. In other words, it is the couplings between very far away spins which matter

suggesting that the one-dimensional nature of the problem might not be crucial. We thus

propose to replace equation (1) by the following 'fiduciary' Hamiltonian:

~
l ~ ~~j<k)~~

~~~d @

~ ~ ~

u ~ j

~

k=1 ~=1 j=1

where J))~ are random connectivity matrices, independent for diiferent k's, with each element

equal to Jo with probability (N k)/N2 and zero otherwise. This clloice insures that the

average number of bonds in 7i and 7id is precisely the saine: note that the choice J))~ e Jo[+k,j
reproduces exactly equation il ). (Jo is set to in the sequel), 7id can be considered as the mean

field version of 7i where the geometry is lost. Interestingly, this mean field Hamiltonian allows

one to use the replica formalism. The computation of the quenched free energy associated with

Hd, using replicas, follows standard paths
14] which we cannot detail here. In the average of
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Z", we
first linearize the dependence on J))~ through a Hubbard-Stratonovitch transformation.

The auxiliary variables q~~
=

N~~ £j SIS)
are then introduced together with their Legendre

parameters #~~: these allow us to decouple the various sites. Therefore, @
can be written in

the following form, which allows a saddle point evaluation at large N:

Ù
"

/ ~ dqabd4ab Îlisa eXp
~ #absasb eXp ~N ~ qabàab

a<b a<b

~

a<b

+N /~ d~ log(
/ fl dÀae~ ~~~~~~~~~~~~ ~a ~~~~~~~~~ ~a#b ~°~~°~~~

)l(3)
0

~

from which the free-energy Fà at temperature 1/p is obtained, through Fà + (-1/(Np))

x lima-o ôW/ôn.
Let us first describe the replica symmetric Sadate point of (3), with qa#b + q and #a#b + 4.

We find that qaaddie #
4saddie

#
0, leading to Fp

=
-fl~~ Jj d~ log[1+ pli ~)]. Interestingly,

this free energy coincides e~actly with the one obtained by Golay [loi for the original mortel

equation il), under the (unjustified) assumption that Rk +
L$~ S~S~+k are Gaussian inde-

pendent variables. As shown numerically by Bernasconi, F)~ gives a rather good description
of the 'high' temperature region. This solution however suifers from the usual entropy disease,
which becomes negative below a certain temperature T*

=
0.047564.., and goes to -oo for

T
=

0. However, there is no sign of local instability, suggesting that the transition to a replica

symmetry broken phase must be first-order (from the point of view of the order parameter
function: as we shall see, the transition is second order from the thermodynamical point of

view). As shown m detail in [14], the existence of a phase transition is ensured by the fact

that 22
ci

2~
at high enough T. The one step rephca symmetry broken solution allows us

to introduce, as usual, a minimal and a
maximal overlap qo, qi> as well as the position of the

'breakpoint' m, connected with the density of low-lying states (and in tutu with the dynamical
properties [15], [16]). We find that qo + 0 and m(T)

ci
T/Tg with Tg

=
0.047662 > T*, while

y(T) e fl(1- q)) behaves as shown in figure 1. Figures 2a, 2b show the free energy and the en-

tropy in the low temperature phase T < Tg. Note that the entropy is everywhere positive but

rather small ici 10~~ per spin), goes to zero linearly with T (as in real glasses), and matches

that of F)~ at T
=

Tg. Tg thus appears as a freezing temperature at which qi dîscontinuously
jumps from zero tu a value rather close tu (Note the scale in Fig. l). The specific heat aise

jumps at Tg. The picture of the glass phase is rather similar tu that of the random energy
model, for which [13], [17] qo % 0, m(T) e T/Tg but aise qi OE 1 corresponding to the fact

that the entropy of the frozen phase is strictly zero at variance with Dur model for which a

residual entropy remains. Dur prediction for the ground state energy is EGS
#

0.02028455....

Bernasconi noted that the numerical ground state energy was much higher than this value as

soon as N > 50, which might simply reflect the fact that if the energy landscape is that of the

random energy model, it is extremely difficult tu find the ground state. The apparent freezing
temperature found in Ill, 18] îs aise a factor c~ 2 larger thon Dur Tg (note the diiference in

normalization between Dur work and Bernasconi's). This discrepancy might be due either to

the fact that Dur fiduciary model is net appropriate and faits to reproduce the correct Tg, or

to the fact that the simulated annealing of Ill, 18] gets trapped into deep metastable states as

soon as T reaches Tdyn > Tg. This is a likely scenario in view of the very glassy nature of the

system. A more systematic numerical study is however needed to settle this point.
It could be that a more complicated replica symmetry breaking scheme

is needed. We

however think that the numerical diiferences with Dur results are likely to be extremely small;
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Fig. l. Plot of the quantity y(T) OE Il q((T))/T in trie low temperature phase. Note the scale,
which indicates that the deviations of qi from 1 are very small.

it is furthermore irrelevant to the point addressed in this letter. We shall now discuss the above

results from a more physical point of view. Although quite remote from reality, the mortel we

considered illustrates the fact that a pure model can undergo a glass transition which can

be described using the tools of disordered systems since its mean field formulation naturally
introduces random variables. Breaking of replica symmetry indicates, as usual, the existence of

many (metastable) states, and its physical meaning is best understood in the 'cavity' approach

[4], which is essentially based on a certain (hierarchical) construction of the equilibrium states

and the local field distribution. In disordered systems, this method is in fine equivalent to

the replica calculation. In the pure model at hand, however, the cavity method in fact allows

us to recover ail the above results without introducing a fiduciary random Hamiltoman, but

rather through adequate hypotheses on the statistics of the Si and the Rk (19]. Within a one

pure state picture l'replica symmetric'), the only viable assumption is that < S~ >+ 0, which

immediately leads back to Golay's approximation. The existence of many 'states' a with weight
Fa however allows us to go beyond this result, since it is possible to have £~ Pa < S~ >ae 0

but £~ Fa < S~ >(
= qi ~ 0. In other words, if the spins are frozen in a given state, the field

acting on the extra l'cavity') spin will be much like a quenched random variable. A simplistic

way to express this idea might be the followmg: one can rewrite equaion il) as

~ ~ 1~~~~~
~~~

with J~~ =

~° ~j S~+kS~+k> 1-e- as a spin-glass SK Hamiltonian but for which the couplings
/fl

~

are themselues determined by the spins. However, if the dynamics of the system is slow (which
it is in the 'spin-glass' phase) then the couplings can be self-consistently thought of as quenched

random variables. This suggests that the scenario described here is far more general [9] and

that a genuine short range mortel of glass could be a pure four spm interation Hamiltonian of

the form 7i4
=

-J £~j~~i~ S~S~Sk Si, where < ijkl > denotes, for example, nearest neighbour
tetrahedra on a cubic lattice, 7i4 obviously possesses a 'crystalline' ground state S~ e 1.
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Fig. 2. Plot of the free-energy (2a) and entropy (2b) in the glass phase. Note that S(T) is positive
but rather small. We found that S(T)

=
AT (for small T) with A ci 5 x

10~~

If, however, the system is quenched from high temperature, the (S~) are initially random and

generate random effective couplings Jq, which, if the temperature is sufficiently small, will very

slowly evolve and lead to a 'self consistent' spin-glass. Numerical simulations [20] show that

this is indeed the case: glassy dynamics and aging very simùar to that observed in experimental
spin glasses are clearly observed. Of course, if the interaction is of finite range, this quenched
effective disorder will progressively anneal out (possibly

on astronomical time scales), allowing
the system to find its crystalline state as indeed in real glasses. Only if the interaction is of

infinite range, like in the models considered above, or if some topological constraints forbid the

annealing of disorder [21] will this glass transition acquire a precise thermodynamical meaning.
It is clear, however, that the range of interactions need not be very large for this limit to be

relevant to experimental time scales [22] in this work, we have primarily focused on static

calculations, leaving the investigation of the dynamics (along the fines of [23], [24]) for future

work. A dynamical approach is dearly needed in order to identify which internai degrees of
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freedom get quenched and tu make a link with the mode coupling theory [9]. The success of the

present approach might indicate that the precise decomposition of which degrees of freedom

become quenched or annealed is maybe not so crucial.
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