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Abstract. We sNdy disordered systems with the replica method keeping the number of replicas 
finite and negative. This is shown to bias the disrribution of samples towards overfrustrated ones. 
General results on the thermodynamics of such a system is presented. The physical situation 
described by this finite-n approach is one where the usually quenched variables evolve on long 
timescales, their evolution being driven by the quasiquilibrium omelations of the thermalized 
variables. In the case of neural networks this amounts to a mupled dynamics of neurons (on fast 
timescales) and synapses (on longer timescales). The storage capacity of the Hopfield model is 
shown to be substantially increased by these coupled dynamics. 

1. Introduction 

An essential feature of the physics of disordered systems is the existence of a wide separation 
of timescales between ‘annealed variables’ which evolve and eventually reach equilibrium 
on experimental timescales, and ‘quenched varables’ that can be considered frozen and 
highly out of equilibrium in experiments. For example, in metallic spin glasses one studies 
the evolution of the magnetic moment of impurities which have random position in a non- 
magnetic substrate. This induces a probability distribution on the values of the interactions, 
which can be identified as ‘quenched variables’. The specific character of the interactions, 
which take both ferromagnetic and antiferromagnetic values leads to frustration. Frustation 
and quenched disorder are commonly thought of as the necessary ingredients in order to 
have complex spin-glass-like phenomena, such as ergodicity breaking and ageing. It is clear 
that on hypothetical timescales such that slow and fast variables equilibrate, frustation and 
all complex phenomena would disappear. This situation, in’contrast to the quenched case 
is often referred to as ‘annealed’. 

In this paper we consider, for the specific case of SK spin glasses [l] and Hopfield 
neural networks [2], a situation somewhat intermediate between the completely quenched 
and the completely annealed cases. The ‘slow’ degrees of freedom-the interaction between 
spins-will be allowed to vary, evolving towards a partial equilibrium with fast degrees of 
freedom. It is quite natural, given the wide separation of timescales, to think of the dynamics 
of the interactions as a heat bath process driven by the free energy of the spin system. We 
call partial equilibrium a situation in which the slow as well as the fast variables are at 
thermal equilibrium, but have different temperatures. We concentrate here on the case in 
which the temperature of the slow variables is negative. The positive temperature case has 
been studied recently in papers by Penney ef a l [ 3 ] .  For positive temperature, the dynamics 
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of the interactions is such as to progressively reduce the frustration of the system. On the 
cont rq ,  if the temperature is negative the system evolves towards configurations of higher 
and higher frustration. The problem can be analysed with the replica method, where the 
'number of replicas' n, which goes to zero in the usual quenched case, has in this context the 
interpretation of the relative temperature between spins and couplings, n = l&,s/Tcoupfings. 
Early work on the replica method with non-zero n can be found in [4,5] 

In the case of SK spin glasses we find that for zero magnetic field the overfrustation does 
not macroscopically change the free energy of the system. In the Hopfield model, in which 
a coupling dynamics with negative temperature is reminiscent of the 'unlearning algorithm', 
we find a dramatic effect for the retrieval phase. The l i t  of capacity is increased from 

The general formalism is discussed in section 2. In section 3 we concentrate on the SK 
spin glass, both for zero and non-zero magnetic field. The Hopfield model, its retrieval and 
spin-glass phases, are discussed in section 4. Finally we draw brief conclusions. 

the AGS value cu, = 0.145 [6] to a, = 1. 

2. Partial annealing and replicas 

Let us consider a general spin system described by some Hamiltonian H[J ;u]  = 
- &j Jijuiuj - h xi ui, which depends on the spin variables [ui i = 1, . . . , A') and 
the spin-spin interactions J i j .  In the usual spin-glass problem, the interactions Jij are 
quenched. The free energy for a given realization of the Jij's ,  

(1) 
1 

F [ J ]  = --lnZ[J] 
B 

is often known to be self-averaging. This means that F[J]/N has a limit for large N for 
almost all realizations, but of course different realizations Jij have non-extensive differences 
in their free-energies. 

Now, let us assume that the spin-spin interactions are not perfectly quenched, so that 
they can also change their values, but the characteristic timescale of their changes is much 
larger than the timescale at which the spin degrees of freedom reach thermal equilibrium. 
We shall consider here the case in which the free energy (1) still makes sense, and becomes 
the energy function (the Hamiltonian) for the Ji,'s degrees of freedom. As we shall discuss 
later, this situation corresponds to the existence of a long-time dynamics of the couplings, 
depending on the correlation functions of the underlying spin system. 

Besides this, the interactions Jij could be of different kind (e.g. real, binary, etc). In 
the quenched case the nature of the Jij's is defined by some statistical distribution function 
P [ J ] .  In the case of the partial annealing this function P[J] can be interpreted as an internal 
potential for the Jij's .  

Let us now assume that the spin and the interaction degrees of freedom are not mutually 
equilibrated, so that the interaction degrees of freedom have their own temperature T', 
which is different from that of the spin degrees of freedom T. In this case the total partition 
function of the system is 

2 = DJP[J]exp(-p'F[J]) = 1 DJP[J]exp s DJP[J](Z[J])" (3) 
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with the definition n = T/T’. Correspondingly, the total free energy of the system is 

F =  -T ’M(((WJY))~ (4) 
where 

(5 )  

We can evaluate 3 in (4) by means of the well known replica formalism, in which 
the ‘number of replicas’ n = T/T‘, initially integer valued, has to be continued to finite 
(arbitrary real) values. A similar approach has recently been developed by Penney er a1 [3], 
who have also noticed this interpretation of the free energy for finite n. Our approach 
follows a different route and in particular we shall concentrate mainly on the case where n 
is negative. 

To obtain the physical (self-averaging) free energy in the replica approach in the case of 
the quenched random Jij’s one takes the limit n --f 0. From the point of view of the partial 
annealing considered here, this situation corresponds to the limit of infinite temperature T‘ 
in the system of Jij’s. This is natural in the sense that in this case the thermodynamics of the 
spin degrees of freedom produces no effect on the distribution of the spin-spin interactions. 

In the case where the spin and the interaction degrees of freedom are thermally 
equilibrated T‘ = T (n = I ) ,  we get the case of purely annealed disorder, whatever the 
difference of the characteristic timescales of the Jjj’s and the spins. This is also natural 
because the thermodynamic description formally corresponds to the infinite times, and the 
characteristic timescales of the dynamics of the internal degrees of freedom become of no 
importance. 

If n # 0 and n # 1, we are in the situation which we call partial annealing. This 
situation may not be as unusual as it looks at first sight. It describes the case of a stochastic 
dynamics of the couplings which could be, for instance, (in the case of continuous couplings) 
a Langevin dynamics: 

In the following we shall keep to the usual terminology and call a given realization of the 
interactions Jij a sample. Of course one should not be misled by this terminology which is 
more adapted to the case of quenched systems: the long-time dynamics of the interactions 
now corresponds to a change of samples. We shall call ‘global configuration’ a given set 
of interactions and spins. F[J] defined in (1) will be called the free energy of the sample 
1.4 and F will be called the total free energy. 

In what follows some concrete systems will be considered. In particular, we are going 
to study the spin glasses and the neural networks in which the parameter n is negative. This 
just corresponds to the situation where the dynamics in the system of interactions drives the 
system towards some samples of high free energy. In the language of spin glasses it means 
that the Jij’s are evolving in a direction such that the degree of frustration in the system is 
increasing (unlike the annealed disorder which is just wing  to remove frustrations). 

In the Hopfield model of auto-associative memory [2], introducing a partial annealing 
means that the stored pattems become (slow) dynamical variables. In conventional models 
of auto-associative memory the pattems, to be associated to the memory states, are quenched. 
In the present model the ‘patterns’, to be thought as the low-freeenergy states, evolve with 
time, and as we will see in section 4, they eventually undergo diffusion in a certain space. 
At first sight this may look astonishing. Nevertheless, we believe that it does make sense, 
and in particular if the temperature in the system of the pattems is taken to be negative, one 
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finds that the 'patterns' move to become as orthogonal as possible. The 'patterns' can be 
interpreted as an internal representation of some information, which adapts itself towards 
internal representations which have as few correlations as possible. This will be shown to 
produce a substantial increase of the storage capacity up to uC = 1. The case of negative n 
presents some similarities with the unlearning algorithm [7], which is known to increase the 
storage capacity due to the reduction of the noisy interference effects among the patterns. 

3. Spin glasses 

Consider the Sherrington and Kirkpatrick (SK) model of spin glasses with long-range 
interactions [l]: 

This system consists of N king spins {ui] (i = 1,2,. . . , N )  taking values i l  which are 
placed in the vertices of some lattice, labelled by the index i. The spin-spin interactions 
Jij in this system are random variables which are independent for each pair of sites (i, j ) ,  
and their a priori distribution is Gaussian: 

P [ J j j ]  = n [ g e x p ( - f J $ V ) ]  
icj 

For the case of quenched .Til's this model has been studied in detail (see e.g. [lo]). In 
an attempt to get a better understanding of the analytic continuation to n -+ 0, it has also 
been studied for small positive values of the replica parameter n [5].  Here we are going 
to follow the same traditional replica approach but keeping the replica parameter n finite 
and negative. As discussed in the introduction this amounts to the hypothesis that the slow 
dynamics of the couplings biases the distribution of samples towards overfrustrated ones. 

The replica partition function of (5) is: 

(here and everywhere in what follows all kinds of preexponential factors are omitted). 
Let us note that the scaling of the Jij in the apriori distribution (8): Jij - I / f i  is the 

usual one needed in the spin system to have energy and entropy of the same order O ( N )  
when N -+ 03. The distribution of interactions (8) contains an overall contribution to the 
global entropy 

which always gives the dominant contribution to the global free energy. This means that the 
corrections to the Gaussian distribution will be very small in all situations. Of course these 
corrections can have a dramatic effect on the spin system. For example, in the presence of 
a non-zero magnetic field h in the spin system, the Jij acquire a non-zero mean value of 
,order 1 / N ,  very small with respect to the dominant contribution which is of order ljn, 
but which can cause non-zero magnetization. In what follows we will be concerned with 
the terms of order N in the free energy, and with the small correction to the Jij statistics. 
Therefore we choose a normalizationin (9) such that SO is subtracted from the free energy. 
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Standard calculations (see e.g. [IO]) lead to the following form of the partition function: 

(((Z[JI)")) = 1 DQexp(-BnNf[Ql) (11) 

where 

is the replica free energy and Qab is the matrix 

The matrix Q.6 can be interpreted in the usual way [ll], and used to reconstruct, for 
example, the probability distlibntion of the overlap between two real replicas of the spin 
system with the same Jij's, P(q) .  Of course P ( q )  becomes thedistribution of overlaps of 
samples which are chosen with the probability distribution P [ J ] Z [ J ] " ,  which means that 
these samples may be quite different from the ones considered in the quenched case where 
the distribution is P [ J ] .  Moreover, Q.6 also admits a natural interpretation in terms of the 
statistics of the Jij's. Let us consider the sum of the values of the frustration on all the 
loops of order k (k > 2): 

and integrating by parts, we obtain 

which is, to leading order in N, 

(Tr'J*) = BkTr(Z + (17) 
One should not be confused by the notations in this formula: the Tr' is a sum over all 
distinct lattice sites defined in (14). while the Tr in the right-hand side is a sum over the~n 
replica indices. The presence of the identity matrix results from the convention Q.. = 0. 
If one includes in the sum (14) the terms with equal indices i, other contributions may be 
present, e.g. one sees that 

(18) 2 - TrJ2) = N + p2Tr(Z + Q) . (F Jij) - ( 
The first term in the RHS of (18) is the usual main contribution coming from the P [ J ] ,  
the second is the (very small) correction due to the coupling with the spin system. In the 
quenched case the second term is zero because it involves a sum over n (+ 0) replica 
indices. 

In order to perform the analytic continuation to non-integer n, we make Parisi's ansatz 
for the matrix Q.b [8, 101. For generic n the matrix is parametrized in terms of a function 
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q ( x )  in the interval x E [n, 11 (x  E [ l ,n]  if n 1). Standard calculations 1111 show that 
P ( q )  = (1/(1- n))dx/dq for generic n. 

In order to compute the global free energy we need to generalize the usual algebra of 
matrices invented by Parisi to the case where n is not zero. Let us remember that the linear 
space of Parisi matrices, when completed with the identity = Sob, is closed with respect to 

operation by means of which it is possible to build many polynomials which are invariant 
by permutations of replica indicest. 

A generic matrix A in this space is parametrized by a diagonal element ii and a function 
a@). The linear invariants are TrA = nii and Cab A.b = -nl i  dx q ( x ) .  Let A and B be 
two Parisi matrices parametrized respectively by (ci, a(x)) and (i, b(x)). For finite n the 
two products take the following forms: 

the matrix product (QP),b = E, Qacpcb and the Hadamard product (Q . P)=b = QobPob. 

A .  B -+ (E& a(x )b (x ) )  (19) 
and A B  -+ (?, c(x)) .  with 

Z = 56 - (ab) 
C ( X )  = -na(x)b(x) + (2 - (a))b(x) + (c - (b))a(x) 

P X  

dY(a(x) -ab))@@) - H y ) )  

where 
1 ( a ) = l  (21) 

For the eigenvalues of a Parisi matrix A and their multiplicities one finds 

ho = 2 - (a) with multiplicity 1 (22) 

h(x)  = 2 -xu@) - dyq(y) with multiplicity - - x E [n ,  I]. (23) 

Therefore the frustration loops (14), (17) Iake the form 

ndx l X 2  

Before giving a general statement about the behaviour of the replica symmetry breaking 
(RSB) solution for Q.b at arbitrary values of the temperature and (negative) n, consider first, 
just for illustration, the situation near the critical temperature Tc = 1 for small values of n 
and external magnetic field h. Expanding the free energy (12) in powers of Qnb one gets 

1 1 1 I 
f [ Q J  = -r-Tr(Q)' - -Tr(QP - - Q:b - --h' Q.6 

o#b o,b 2n 6n 

where 5 = (1 - 2') << 1. 
Inserting the parametrization Q -+ (0, q ( x ) )  and using the rules (20) one easily gets 

f [q (x ) l  = + i l d x [ d ( r )  - fxq3(4  -q (x ) jxdyq2(y )  + %q4(x)  +h'q(x) ] .  

t An example of 

(26) 

invariant which is nor in this dnss is C111..2..,a Q~,,~*Q~,,",Q~,,~,Q~~,~,Q~,~~Q",,~~. 
Such invariants can also be mmputed at finite n, but they do not derive from the d e s  (20). Hereafter we shall 
mostly keep to the SiNations where such invariana do not appear, unless otherwise stated. 
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Variation of this expression with respect to the function q ( x )  gives the following saddle- 
point equation: 

2 s q ( x ) - x q 2 ( x ) - 2 q ( x )  dyq(y)- d y q Z ( y ) + $ q 3 ( ~ ) + h Z = 0 .  (27) 

Before solving (27) let us note that to order zero in z the values of the ‘frustration loops’ 
(24) are just given by Trl = n for all k. << l / f i .  

The solution of (27) is similar to that of the case n = 0. By differentiating (27) with 
respect to x ,  one finds that the only continuous solution is 

I’  6’ 

where 

and the values of qo and ql are defined by the equations 

z - 41 +q: = 0 4403 -nqi - h2 = 0. 
Let us consider separately the two cases h = 0 and h # 0. 

If n is positive, the solution of (30) (to leading order in ,z and n )  is 
(i) h = 0. 

(31) 

and, correspondingly, X I  = 2s and xo = i n .  The solution for q ( x )  becomes replica 
symmetric if q1 = qo. This gives the critical temperature: s(n)  = i n ,  as derived previously 
by Kondor [5] .  

3 q1 N r qo=gn 

If n is negative, the solution is: 

q 1 N r  q o = O  (32) 
and the critical temperature is always s(n)  = 0. The smctnre of these solutions is shown 
in figures l(a) and (b). The free energy F is independent of n for negative n and takes the 
same value as for n = 0. We shall see hereafter that this is a general situation. 

(ii) h # 0. 
In this case one still gets ql N r. For h # 0 the equation for 40 (equation (30)) 

always has a positive non-zero solution. In particular, if n is negative: qo 2: h / m ,  if 
h << (ln1)3/2; and qo = h2l3, if h >> 

In the space (z, h, n )  we find RSB below the surface defined by the equation (41 = 40) 

3z3 3 - nz2 = h2.  (33) 
In general, for arbitrary values of T, n and h, the equation for the transition surface can be 
derived easily 

(here ((. . .)) means Gaussian averaging over the variable z with zero mean and unit 
variance). For h = 0 this equation coincides with that obtained in [5] .  At T + 0 and 
h = 0 one gets: n(T)  N TJ-. Note that when replica symmetry holds, (24) gives 

Tr‘Jk = (1 - q)kn.  (35) 
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The sign of the 'frustration loops' is equal, as expected, to the sign of n. 
We can now make a more general statement about the RSB solution at negative n. Let 

us consider any spin-glass system, for instance the SK model, characterized at zero n by 
an order parameter function qo(x). We shall assume that the saddle-point equations are 
polynomial in Q of arbitrary degree, and vanish at Q = 0, as in the SK model at zero field. 
Simple algebraic arguments can then be used to show that the function 

is a solution of the saddle-point equations with respect to Q for negative n and has the 
same total free energy as in the n = 0 case. This is easily obtained observing by a direct 
computation that the linear space of the matrices of the form (36) form a closed algebra 
with respect to the products mentioned above. Consequently, the saddle-point equations 
generalizing (27) take the form g n ( x )  = 0 with 

Moreover, again by direct inspection, it is easy to relate all the permutation invariants 
and in particular the free energy, to their values in the n = 0 caset. 

In non-zero magnetic field, the above argument does not apply. In fact an inspection 
of the case T Y Tc shows that the right solution qn(x)  has a plateau that extends between 
n and no. 

Let us finally comment about the physical interpretation of the solution. In zero field, 
assuming that the solution (36) is the correct one, one finds two striking results. 

(i) The total free energy 3 is just equal to n times the free energy FO of the n = 0 system. 
This may seem a bit strange at first sight. As we argued in the introduction, taking a 
finite negative n introduces a bias in the sample distribution which favours overfrustrated 
samples which should have a large free energy. Yet we find that the typical free energy 
density of a generic sample is unchanged with respect to the usual n = 0 case. This is 
also totally different from what happens when one turns n to positive values, in which 
case the free energy is lowered. The reason for this phenomenon is that it is very 
difficult to find samples which have a free energy density larger than Fo. The case of 
the random energy model (REM) [9] is instructive in this respect. In the REM there are 
ZN energy levels Ei which are independent random variables picked up at random from 
the distribution P ( E )  = c'exp(-E2/N). In the quenched case the thermodynamics below 
the critical temperature is dominated by the lowest energy levels which have a free energy 
E, = - N m  + eir where e; are small non-extensive fluctuations. If n is positive, the 
total partition functions is dominated by samples in which at least one level has a free 
energy extensively lower than - N m ,  say E1 = - N ( ~ T & ) .  The probability of 
such a sample in the original  measure^ is exponentially small in N ,  but this is compensated 
by the gain in total free energy obtained because of the positive n in (3). Turning now to 
negative n, the situation is very different. In order to increase the total free energy density, 
we seek samples such that all the energy levels verify Et > - N ( n ) + N G ) ,  with 6 > 0. 
But the probability of such a sample is much smaller than exponential in N ,  as can easily 
be seen, and therefore this extremely small probability cannot be compensated by the gain 

t Strictly speaking our proof holds only for those systems in which the free energy as a function of Q is expressed 
by invariant combinations of the two products mentioned in the text. Neverthless we think that the property should 
hold in general 
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of order exp(-nNJ) in the measure (3). A negative n does bias the sample distribution 
towards overfrustrated ones, as can be seen from the iiustration loops, but it cannot change 
the free energy density. 

(ii) The P.(q) takes the form 

A finite probability at the minimal value of q ,  namely q = 0, has appeared. Again this 
phenomenon can be understood by arguments similar to the ones above. While not changing 
the free energy density, a negative n does shift the free energy towards higher values. As 
a consequence the free energy of the states become less scattered and the probability of 
finding two low-lying, but different, pure states is increased. 

4. Neural networks 

In this section we study the Hopfield model of neural networks at negative n,  focusing on 
the zero-temperature limit. Consider the usual Hopfield model [2], described by a system 
of king spins with the Hamiltonian 

N 

(39) H = -1. J..po. 
2 ' J ' J  

j f i  

where 

and [f;} = i l  are the stored patterns. We consider the case where the number of stored 
patterns P is proportional to N in the thermodynamic limit N + 03, so that the parameter 
CY = P I N  remains finite. 

In terms of the standard replica formalism for the replica partition function 

one gets (see, e.g., [6]): 

( (Z") )  = / Dm, / D Q  - / Dfexp{-pnNF[m,, &?I}. (42) 

In the 'condensed ansatz', in which only the overlap with one pattern is macroscopically 
different from zero, the replica free energy F[m,, Q, ;] is 

Here m, is the overlap with the condensed pattern 

(43) 

(44) 
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and Q.6 is the spin-glass order parameter: 

2361 

(Q.. l), rob gives the average value of the noisy overlaps with non-condensed patterns: 

4.1. Replica symmetric solution 

In the replica symmetric ansak one takes 

for all a # b 

for all a 

1). The standard calculations [6] result in the following 

Q.6 = q 
r,b = r for all a # b (47) 
m. = m 

(the diagonal elements Q,, 
expression for the free energy: 

n q )  + -aprq 
2 

I 
--((ln[2cosh(B(m + &%))I)) 

where ((. . .)) means Gaussian averaging over z: 
nB 

The corresponding saddle-point equations for the parameters m, q.  and r are 

( ( ( coshB(m+f i z ) ) " tanh[B(m,+f i z ) l ) )  
m =  

(((coshB(m + f i z ) Y ) )  

In what follows we consider only the case of negative n in the limit of zero temperature. 
It is clear from (52) that if the parameter C remains finite (which will be shown to be the 
case), the parameter r must scale with the temperature as B - ' .  Let us redefine: r = r'/B. 

In the limit p + 00 one gets 

The main contribution to the above integral comes from the saddle point which is defined 
by the equation 

z* = -Inl@sign(pm t @z*) I (54) 
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The solution of this equation is 

In the second case (lnlar' > m) the point zo is achlally not the saddle point: this is the 
situation when the main contribution to the integral in (53) comes from the vicinity of 
the point at which Ipm + @ z [  = 0, such that the Gaussian part -z2/2 is becoming 
irrelevant. 

The result of the integration is 

Let us consider the two cases separately. 

(i) InJar' < m. In  this case from (51) one gets: 
(a) if (In1 + 2)ar' > m: 

(b) if (In1 + 2)ar' < m: 
C 

Therefore, &om (52) one obtains 

pexp(-2p(m - (In1 + 1 ) ~ r ' ) ]  + 0. 

1 
In1 

= - (59) 

One can easily see that, in this case, (Inlar' c m) lzol << lz*l (equation (55)). Therefore, 
from (50) one gets 

(((cosh(Bm + mz)) - l " l s ign ( t  + ZO))) 
(((cosh(Bm + m z ) ) - l " ~ ) )  

(((cosh(Bm + @z))-I"l)) = , (60) 
(((cosh@m + @z))-lnl)) 

m =  - 

According to the condition Inlar' c m, the obtained retrieval solutions r' = l/lnl (or 
r = I/plnl) and m = 1 exist in the domain a <ac = 1. 

Note that in the case In1 < 1, the 'perfect retrieval' state that we have found exists only 
at temperatures such that >> 1. Otherwise, if plnl << 1, the equations are becoming 
equivalent to those of the usual Hopfield model with quenched parre" (n = 0). Therefore, 
in the system under consideration the limits T + 0 and n + 0 do not commute. 

Note also that the finite-temperature corrections to the obtained values of m, r and 
4 = 1 are exponentially small: - exp(-constp). 

(ii) InIar' z m. In this case the main contribution to the Gaussian integration over z 
comes from the vicinity of the point z = ZO, and one immediately sees from (60) that 
m = 0. Therefore, in this case the system is in the spin-glass state. However, it can easily 
be shown that the symmetric ansatz gives a pathological solution for the spin-glass state. 
Indeed, from the result (56) for the parameter C (equation (51)) one gets: 

(61) 
In view of what we have seen before for the spin-glass solutions in the SK model with 
negative n, it is actually quite natural that the considered RS ansatz can also not be applied 
for the spin-glass state in the Hopfield model. 

C = const p 4 00. 
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4.2. Replica symmetry breaking 

For the SK model with negative n and zero field we have learned that the RSB solution for 
the function q ( x )  coincides with that of the model with n = 0 on the interval 0 < x < 1 ,  
and q ( x )  = 0 on the interval -In1 < x < 0. The same general arguments can be used 
for the Hopfield model. Therefore, in the limit T + 0 where the functions q ( x )  and r ( x )  
are getting almost 'Rat' (replica symmetric) on the interval 0 < x Q 1, for the model with 
negative n we shall consider the following simple ansae: q ( x )  = q akd r ( x )  = r in the 
interval 0 < x < 1, and q ( x )  = r (x )  = 0 in the interval -In] < x < 0. 

Using the general expression for the free energy (43) one gets (for m = 0): 

(62) 
1 
B 

--((ln12 cosh(Pfiz))l)) . 

This free energy coincides with the replica-symmetric one of the usual Hopfield model (with 
n' = 0). Therefore the parameters q and r of this solution coincide with the ones of the RS 
spin-glass solution of the usual Hopfield model with n = 0, which are (see, e.g., [6]) 

To conclude this technical analysis, the peculiar point of the Hopfield model with 
negative n is that at zero 'temperature its retrieval state is given be the replica-symmetric 
solutions of the mean-field equations, and this re'uieval solution exists up to aC = 1. In 
the whole interval 0 < Q! < ffC we find perfect retrieval, m = 1. On the other hand, the 
spin-glass state is described by the RSB solution. In the limit of zero temperature we have 
found one such solution which becomes nearly a one-step breaking. Although we have 
not proved that this is the only solution, it seems to be a reasonable one in view of the 
discussion of the previous section on spin glasses. 

The physical interpretation of this model must be understood along the same limes as 
explained in the introduction. It describes a coupled dynamics of neurons and synapses, 
taking place. on two very different timescales. But now the synapses are constrained to be 
of the Hebb type (40). so their dynamics is constrained to a certain subspace., and it can be 
understood as a slow dynamics of the patterns. In the retrieval phase, starting from an initial 
configuration of the neurons which is close to one of the memorized patterns, one will first 
see a fast dynamics of the newons towards the pattern, and superimposed on it the patterns, 
which should rather be called here the internal representations of the original patterns, will 
drift slowly. This drift will tend to overfrustrate the system. In this context it is reasonable 
to believe that it actually corresponds to some small changes of the internal representations 
tending to orthogonalize them. While we have not really proven that this interpretation is 
the correct one, it is in agreement with the above computations. The orthogonalization of 
the patterns is consistent with the fact that the parameter r goes to zero at low temperatures. 
It also agrees with the new value of the storage capacity a, = 1 ,  which is the maximal 
number of patterns that can be orthogonalized exactly. 

The situation that we have studied here is a very special one. However it is interesting 
to see that the coupled dynamics of neurons and synapses, taking place on two very different 
timescales, can be amenabIe to an analytic treatment with the replica method at negative 
n. Such dynamics have received much attention in recent years [3,12].  In our case the 
synapses dynamics was constrained to its Hebbian subspace. It would be interesting to 
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generalize this approach, firstly by constraining the internal representations to stay close to 
the original stored patterns, secondly by allowing the synapses to take values outside the 
Hebbian subspace. 

5. Conclusions 

We have considered spin system in which the interactions between spins, as well as the spins 
themselves are dynamical variables. Spins and interactions characteristic scales are widely 
separated. We have assumed that the spins completely equilibrate before the interactions 
change by a finite amount; conversely, the interactions evolve in a kind of 'consistent field' 
created by the spins. The dynamics is such that spins and interactions do not tend to mutual 
equilibrium at a temperature T. Each kind of variables thermalizes at different temperatures, 
respectively T and T'. For negative T' the spin system tends to induce overfrustration. The 
analysis of the frustration loops confir" this picture. We have shown that in the case of 
the SK model in zero field, overfrustration has a very weak effect for zero magnetic field. 
Due to the constraints imposed by the a priori distribution, the interactions can not differ 
too much from a typical quenched sample. As a result the free energy of the spin system 
does not change extensively compared with the quenched case. Neverthless overfrustation 
has a consequence on the organization of pure states: the P(q)  developes a delta-function 
peak for q = 0 and equilibrium states are more likely to be far apart than in the quenched 
case. 

In the Hopfield model, the results for the spin-glass phase are similar to those for the 
SK. More dramatic effects are observed on the retrieval phase. Overfrustration, which in the 
context of neural networks is reminescent of the unlearning algorithm, pushes the patterns 
towards mutual orthogonalization. This leads to a net increase of the capacity from the 
value of 0.145 to 1. This last value is typical of the 'pseudo-inverse learning rule' [13] 
where the patterns are orthogonalized by hand. A criticism that can be applied to the use of 
this approach as a leaning algorithm is that the patterns, once they have reached thermal 
equilibrium, are still free to diffuse. It is not clear what is the correlation between the initial 
patterns one wanted to store in the system and those found in it for long times. Another 
interesting open question concerns the basins of attraction of the 'patterns'. 
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