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Abstract 

We study the off equilibrium dynamics of a mean field disordered systems which can 
be interpreted both as a long range interaction spin glass and as a particle in a random 
potential. The statics of this problem is well known and exhibits a low temperature 
spin glass phase with continuous replica symmetry breaking. We study the equations 
of off equilibrium dynamics with analytical and numerical methods. In the spin glass 
phase, we find that the usual equilibrium dynamics (observed when the observation 
time is much smaller than the waiting time) coexists with an aging regime. In this 
aging regime, we propose a solution implying a hierarchy of crossovers between the 
observation time and the waiting time. 

1. Introduction 

A lot of efforts have been devoted in the last fifteen years to the study of 
equilibrium static and dynamic properties of spin glasses [ 1-3 ]. Comparatively, 
the off equilibrium dynamical effects have received less attention. The recent 
years have seen a renewal of interest for this OED. One reason is experimental. 
While it is clear that many experimental observations are inherently dynamical 
effects, the status of the off equilibrium dynamical effects have turned recently 
from that of an annoying perturbance to that of a very powerful probe. 
Some of the most interesting recent experimental findings in spin glasses, 
like the slow relaxation of the thermoremanent magnetization, aging, and 
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memory effects during temperature cycling experiments, are inherently out 
of  equilibrium phenomena [4-7]. Several phenomenological models of these 
effects have already been proposed, based on ideas of droplets [8,9] or phase 
space traps with a broad distribution of trapping times [ 10 ]. The second origin 
of this upsurge of interest comes from the theoretical side. Prompted by the 
experimental observations, it has been realized recently that some microscopic 
analytical approach to these problems is possible, and that the off equilibrium 
nature of the dynamics might even cure some old problems of the dynamical 
approach. The first works on spin glass dynamics, following the idea that 
the use of a dynamical generating functional could be an alternative to the 
introduction of replicas [11], focused on the ED [12,13]. Early attempts to 
model some aspects of  the OED along these same lines have concentrated on 
the mean field theory of spin glasses close to the critical temperature, taking 
into account explicitely the changes in external parameters like temperature 
or magnetic field [14,15]. More recently, it has been observed that these 
effects can be studied without any reference to time variation of the external 
parameters, but by keeping into account the existence of an initial time for 
the dynamics (corresponding to the quench into the spin glass phase in the 
experiments), and the existence of a finite waiting time [ 16-20]. 

In this paper we study the off equilibrium dynamics (OED) through a micro- 
scopic approach along the lines above. We consider the problem of an oriented 
D dimensional manifold embedded in a D + N  dimensional space, in presence 
of a random potential. This is a very interesting and general problem [21] 
which is connected to interface pinning by impurities , directed polymers in 
disordered media, vortex pinning in high temperature superconductors [22,23], 
and also, after various mappings, to growth phenomena [24] or turbulence 
[25]. We shall work in the limit of an infinite dimensional embedding space 
(N --, ~ ) .  This limit has two major advantages. It allows for the derivation of 
exact integrodifferential equations for the correlation and response functions. 
Also in this limit the static properties have been studied in details using the 
replica method, and it has been shown that a full hierarchical replica symmetry 
breaking (r.s.b.) is needed in order to describe the system [26]. 

Our work has two aspects. One is an analytic study of the OED equations 
at large times, which shows a possible family of solutions related to the static 
(r.s.b.) solution. The other one is the numerical solution of these equations. 
This numerical solution is in fact limited to the D -- 0 version of the general 
random manifold problem. This is nothing but the "toy model" of a single 
particle in N dimensions, submitted to a potential which is the sum of a 
quadratic well and a Brownian process [27-30,20]. In the large N limit, this 
model can be interpreted as a long range spin glass model, and we shall show 
that many interesting aspects of  the dynamics are kept by this toy model, as is 
true for the statics [26,29]. A brief account of our work has appeared recently 
[311. 
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The equilibrium Langevin dynamics (ED) of the manifolds in the large 
N limit has been worked out by Kinzelbach and Horner in two interesting 
recent papers [32,33], following the general strategy used by Sompolinsky and 
Zippelius [ 12,13 ] in spin glasses. We shall basically reconsider their approach, 
using the OED corresponding to a finite waiting time, in the spirit of the 
recent work by Cugliandolo and Kurchan on the spherical spin glass with p- 
spin interactions [17]. Technically the difference is that in the off-equilibrium 
dynamics the dynamical evolution starts at a time to = 0. Therefore the corre- 
lation function C(t ,  t') and the response function r(t, t') depend explicitely on 
both t and t'. In the equilibrium dynamics the time to is sent to - ~ ,  and the 
correlation and response become functions of the differences between t and t': 
C e q ( t  - t t )  and req ( t  - t ' ) .  

As we shall see there are many formal similarities between these two dynam- 
ics, together with formal similarities with the static r.s.b, solution. However 
one should keep in mind that the physical contents of these two approaches 
are actually quite different. In ED, Ceq and req satisfy coupled equations which 
depend explicitely on an anomaly of the response occuring on infinite time 
scales. One must assume the existence of a regularization of these diverging 
times by considering for instance a system with a finite number of degrees of 
freedom. The "dynamical" equations on diverging time scales turn out to be 
identical to the static (r.s.b.) equations of the replica method. It is important 
to notice that this "dynamics" on diverging time scales is not really a dynam- 
ical solution (for instance it is invariant under arbitrary reparametrizations of 
time). In our opinion this equilibrium "dynamics", considered on diverging 
time scales, rather gives an "intuitive" and appealing description of the strange 
algebra of the replica method [34]. 

In contrast, in OED, C(t ,  t') and r( t , t ' )  obey causal equations which have 
a unique solution (for instance, for t > t', OC( t , t ' ) /O t  depends only on C 
and r evaluated at times smaller than t.) [17]. One can work directly with 
an infinite system, and there is no need to introduce diverging time scales. 
An important point is that the introduction of  a finite waiting time provides 
a natural regularization: as we shall see, the roles of the diverging time scales 
are then played by some functions (e.g. powers) of the waiting time. 

It is not easy to get some analytical information on the correlation and 
response in OED. However, as they obey causal equations, one can solve them 
numerically in a rather straightforward way. Our work is based on a detailed 
numerical solution of  these OED equations of the toy model. We shall divide 
our results into two groups. One which refers to the asymptotic regime (t - t' 
finite), the other refers to the non-asymptotic regime. 

In the asymptotic regime, we shall present hereafter numerical evidence that: 
(1) There exists a limiting response function ras (z) = l imt~-~  r(tw + r, tw); 
(2) This function is the same as that derived in ED [32], with a certain 
condition of criticality of the anomalous response coming from diverging time 
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scales; (3) Similar results hold for the correlation. In particular, the values of  
Cas(0) and Cas(Z ~ oc) agree with the results for the statics from the full 
r.s.b, solution; (4) The energy E(z )  also converges to its static r.s.b, value at 
large z. 

These results on the asymptotic behaviour provide an independent confir- 
mation of both the static r.s.b, approach, as well as the usual equilibrium 
dynamics on finite time scales. In order to understand the origin of these 
results, and simultaneously to study the aging effects, one needs a careful study 
of  the correlation and response for finite waiting times. Here we shall point 
out a few effects: ( 1 ) The very fact that one recovers the static r.s.b, results in 
the spin glass phase implies that there must be aging effects (in the sense that, 
at an arbitrary large time t, some perturbation of  the system at times t' < t has 
a relevant effect, even when t - t' is very large). These aging effects are also 
seen in our numerical studies on the (short) time scales we can achieve. (2) 
It is possible to find a family of  approximate solutions of  dynamical equations 
at large times. These solutions are technically related to the solutions of  the 
dynamics on diverging time scales found in [3 3], but the role of  the "diverging 
time scales" is now played by some functions of the waiting times (like for 

u instance t w ). 
In the next section we introduce the model and write down the dynamical 

equations in the large N limit. In Section 3 we review the static results obtained 
with the replica method. Section 4 presents an analytic study of  the asymptotic 
regime, which is compared to the numerical integration of the equations 
in Section 5. Section 6 deals with the aging regime. Some perspectives are 
summarized in Section7. 

2. The model 

The manifold is decribed by a N component field ~b~(x), where a E 1 .... N. 
The energy is: 

/ ~ = 1 ~ = 1  

N ) 
+ 5 = ,  u + f a x  v(x,O(x)) , (1) 

where V is a gaussian random potential, the correlations of which are taken 
a s :  

V(x ,  qJ)V(x',q~') = - N O ( x - x ' ) f  ( ( q ~ q ~ ' ) 2 )  , (2) 

with: 

f (b) - (O + b) 1-y 
2(1 - y )  (3) 
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We assume a Langevin dynamics: 

aq~(x,t) OH 
at o (~ (x , t )  

+ q~(x,t),  (4) 

where q is a white noise with (q~(x,t)q,~,(x',t')) = 2 T f , ~ , 6 ( x - x ' ) 6 ( t -  
t'). This dynamics can be studied by usual field theoretical techniques [12] 
which are reviewed, in the present context, in [32]. We present an alternative 
derivation of the equations, based on the cavity method [1], in the appendix. 
For the OED, we find that, in the large N limit, the correlation: 

1 
C(x , t ; x ' , t ' )  = (-K ~-~ (9~(x , t )~(x ' , t ' ) )  

ot 

(5) 

and the response: 

1 O ~ ( x , t )  
r (x , t ;x ' , t ' )  = ( ~  y~  Orl~(x,,t,)) (6/ 

ot 

satisfy the following equations: For t > t': 

Or(x, t;x', t') 
Ot 

= (Ax - l t ) r (x , t ;x ' , t ' )  

t 

+ fds m(t , s ; x )  ( r (x , t ;x ' , t ' )  - r (x , s ;x ' , t ' ) )  
0 

(7) 

OC(x , t ;x ' , t ' )  
Ot 

t t 

= (Ax - ~ ) C ( x , t ; x ' , t ' )  + 2fds w(t,s;x) r(x , t ' ;x ' , s )  
0 

t 

+ fds m(t , s ; x )  (C(x , t ; x ' , t ' )  - C(x , s ;x ' , t ' ) )  , (8) 

0 

and: 

1 d C ( x ,  t; x' ,  t) 
2 dt 

t 

= ( A x - l t ) C ( x , t ; x ' , t )  + 2fds w ( t , s ; x )  r (x , t ' ;x ' , s )  
0 

t 

+ f ds m(t , s ; x )  ( C ( x , t ; x ' , t ) - C ( x , s ; x ' , t )  + T .  
0 

(9) 

In these equations, we have used the following notations: 
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w ( t , t ' ; x )  = f ' ( b ( t , t ' ; x ) ) ,  m ( t , t ' , x )  = 4 f " ( b ( t , t ' ; x ) ) r ( x , t ; x , t ' )  , 

b ( t , t ' ; x )  = C ( x , t ; x , t )  + C ( x , t ' ; x , t ' )  - 2 C ( x , t ; x , t ' )  . (10) 

This set of  equation is causal. The boundary conditions on r are r ( x ,  t, x ' ,  t -  ) = 
( x -  x' ). Given an initial condition C (x, 0, x', 0), it has a unique solution. 
In the following we shall concentrate on the toy model, D = 0, where 

the space dependence in these equations is dropped. We note that in this 
limit the model, described by the simple Hamiltonian H = ( 1 / 2 ) / ~  052 + 
V(05,,...,05N), admits another interesting interpretation as a spin-glass. The 
components 05a c a n  be thought as soft spins in a quadratic well, interacting via 

the random potential V. In particular, in its spherical version, i.e. taking the 
constraint ~z ~ q 52 = 1, it is possible to choose the values of 0 and y such as 
to obtain the spherical p-spin model considered in [35,1 7]. 

3. Static replica solution 

We briefly review here the results of the static r.s.b, approach for the toy- 
model (D -- 0), concentrating on quantities that we will study in dynamics. 
We keep to the case of "long range" disorder correlation y < 1 where the 
replica symmetry breaking is of  the full continuous kind. The equilibrium 
statistical mechanics of the model has been studied in [26,29] for the special 
case 0 = 0. In dynamics a non-zero 0 is needed to regularize the correlations 
of the potential at short distance. The results of [26,29] generalize as follows. 
At high temperature the system is ergodic and replica symmetric, and the 
equilibrium is characterized by the correlations 

1 T 1 2T 
- -  ( ~)Gibbs = q /2 - ~  ]l N 052 = - - +  (0 + - - ) %  

ot 

1 1 2 T .  r 
-~E(05a} iGibbs  = q = #" (0 + --7-)- , (11) 

c~ 

where by angular brackets we have denoted the thermal average and by an 
overline the disorder average. The energy is given by 

E = ~-q + [ f ( 0 ) - f ( 2 ( ~ -  q) ) ] .  (12) 

At a critical temperature To, 

/* - 0  + (13) Tc = -~ - ~  , 

there is a phase transition and replica symmetry is broken. The thermodynamics 
of the system is fully specified by ~ = -~ ~ (05a 2) and by a function q(u),  
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u E [0, 1 ]. Standard arguments from the mean field theory of spin glasses [ 1 ], 
imply breaking of ergodicity and the existence of many pure states, whose 
correlations are characterized by a non-trivial P(q) defined as the overlap 
distribution for two copies of the system with identical realization of the 
random potential V: 

1 N du(q)  
P(q) = (-~ y~ d(~ ,~  - q))Gibbs : dq 

o~=1 

(14) 

where u (q) is the inverse function of q (u). The order parameter function q (u) 
is: [qo, 

0 1 V / ~  2/(7-1) 
m -- - -  , b/0 ( b/ ( R1, 

q(u) q + 2  2 1 + 7  

ql ,  Ul < b/ < I ,  

(15) 

where 

q0---- ~ 1 ( f l ~ )  - 1 / ( i + y )  

u0 = T(1 + 7) (/z) (I-y)/CI+y) (27) -1/(l+~) 

ui = ~ 2 ~ ( 1  + y)(O + 2 ( q - q l ) )  (7-1)/2, 

4 1 + 7 - 0/2 
- -  27 \ ~ /  

(16) 

and ~ - qi is the solution of the equation 

T ) ( l+y)/2 q - q l  - ( 0 + 2 ( q - q 1 )  • (17) 

From the knowledge of ~ and q (u) all the physical quantities at equilibrium 
can be calculated, for example the energy is: 

E = ~ q +  [ f ( O ) -  

1 

f du f(2(cl-q(u)))].  
0 

(18) 

The results presented here for the q(u) have also been obtained in [33] in the 
ED approach with Sompolinsky ansatz, which, as we have already remarked, 
reproduces the algebra of the r.s.b, approach. 
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4. Analytic study of the asymptotic regime 

55 

The scope of  this section is to study the behaviour of  the solution of  the 
dynamical Eqs. (7), (8), (9) in the "asymptotic" limit. This limit is defined 
as t = tw + z, t '  = tw, with tw ~ oc while z is kept fixed. For the sake of  
the simplicity of  the presentation, we shall present the whole analysis in the 
case D = 0. The generalization of  the analytic results to higher dimensional 
problems is straightforward. We rewrite here, just for graphical transparency, 
the dynamical equations (7), (8), (9) for D = 0, 

t 

Or( t , t ' )  - - I z r ( t , t ' )  + f ds m ( t , s ) ( r ( t , t ' ) - r ( s , t ' ) )  
Ot ' 

o 

t '  

OC(t,t')ot - - t l C ( t , t ' )  + 2 f ds wU, s) r ( t ' , s )  

o 

t 

+ fd s  mU, s) ( C ( t , t ' )  - C ( s , t ' ) )  , 

o 

t 

1 d C ( t , t )  _ I~C(t , t )  + 2fds  wU, s) r ( t , s )  
2 dt  

o 

t 

+ / d s  m ( t , s )  ( C ( t , t ) - C ( s , t ) )  + T ,  (19) 

0 

with 

w ( t , t ' )  = f ' ( b ( t , t ' ) ) ,  m ( t , t ' )  = 4 f " ( b ( t , t ' ) ) r ( t , t ' )  , 

b ( t , t ' )  = C ( t , t )  + C ( t ' , t ' )  - 2 C ( t , t ' )  . (20) 

For future reference we also give the formula for the energy: 

t 

E ( t )  = 2 C ( t , t )  - 2 f f ' ( b ( t , s ) ) r ( t , s ) .  (21) 
o 

Let us make the reasonable assumption, supported by the numerical inte- 
gration below, of  the existence of  an asymptotic regime for t, t' ~ cc keeping 
z = t -  t' finite. Namely we will suppose the existence of  the two limiting 
functions 

ras(Z) = lira r(t '  + z , t ' ) ,  (22) 
lt.--~OO 

Cas(Z) = lim C( t '  + z , t ' ) .  (23) 
t'---~oe 
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Taking the limit of  the dynamical Eqs. (19) in the asymptotic regime, we 
get the non-causal equations 

T 

dbas f dr = (-/z + Mas + -M)bas(r) - dr'  
0 

dras 
dz 

m a s ( r -  r ') bas(r') + 2T  

-- f dr' [mas (r + r') - mas(r') ] bas(r') 

0 

+ 4  [Was(r + r') -Was(r')]ras(r'), 

( - f l  + M a s  + - M ) r a s ( r )  f dr' ( r  r ' )  r a s ( r ' )  , = --  m a s  - 

0 

(J J )  1 T+l ~ _  -~ ds mas(S) bas(S) + 2 ds Was(S) ras(S) 

0 0 

Cas(O) = - -  

(24) 

(26) 

The functions mas and Was are defined in a way similar to m and w in (20), 
but using the asymptotic correlation and response. 

The term M, which we will call "anomaly" in the following, is the term which 
couples the asymptotic time regime (r = t - t' finite) to the non-asymptotic 
ones. The Eqs. (25) are identical to those which appear in the ED studied by 
Kinzelbach and Homer  [33]. The only difference lies in the interpretation of 
the anomaly: In ED it is supposed to be due to the response of the system 
to some perturbations taking place on infinite time scales. This is not easy 
to define, since the regularization of these diverging time scales by using a 
finite volume system in principle invalidates the derivation of the dynamical 
Eqs. (25). The definition (26) of the anomaly in OED is very clear. 

Let us now briefly quote the following results from the study of ED in [33]: 
One may search a solution of the asymptotic Eqs. (25) which satisfies the 
fluctuation-dissipation-theorem (f.d.t.): 

O 1 0  
Tras(r) = -  Cas(r) = ~ -~bas ( r ) .  (27) 

t 

M = ds m ( t , s )  - Mas. 

0 

o o  

- fdr mas(r), (25) 
0 

where for convenience we have written the equation for the correlation in 
terms of bas (r) = 2 [ Cas (0) - Cas (r) ] instead of Cas (r) and we have denoted 
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Assuming the f.d.t., the asymptotic equations simplify to: 

dbasdz = 2 T  - bas(Z) (Iz - - M -  Mas) - f ds mas(Z - s )bas(S)  (28) 

0 

The condition for the existence of  a monotonous solution b (t) to this equation 
is that 

2T 
b a s ( ~ )  -- - -  < b m  , (29) 

I z -  M 

where bm is the point where the function of  b: T / b -  f ' ( b ) / T  is minimal. 
There are two regimes: at temperatures above the critical temperature Tc 
which equals the value (13) computed within the static approach, there exists 
a solution when the anomaly M is zero. This solution agrees with the static 
replica symmetric results ( 11 ): 

2T 
b a s ( ~ )  - - 2 ( ~ -  q)  , Cas(O) = q .  (30) 

At low temperatures, T < Tc, there is no solution satisfying the f.d.t, relation 
if M = 0. For such a solution to exist one needs a non zero anomaly: M < 
l ~ -  2 T / b m  < 0. The special choice (named "postulate of  marginal stability" in 
[33] ) of the anomaly: 

M = l z -  2 T / b m  (31) 

leads to an asymptotic correlation bas(OC) = bm, which is equal to the static 
result: 2 (q -q1)  computed within the static approach with r.s.b. (17). Similarly, 
one gets Cas ( O ) = q. 

We can summarize this discussion about the asymptotic dynamics in the 
low temperature phase as follows: In view of the static analysis, and its 
interpretation in terms of  ergodicity breaking, it is reasonable to assume the 
existence of an asymptotic regime, obeying the f.d.t., and such that the two 
following static correlations are recovered: Cas (0)  = ~, Cas ( oc ) = ql. However 
for such a regime to exist one needs a non-zero value of the anomaly. In the 
next section we present some numerical results which confirm the validity of  
these assumptions, in Section 6 we study the implications of the existence of 
an anomaly in terms of  aging. 

5. Numerical study of the asymptotic regime 

While the set of  assumptions which have been put forward at the end of  the 
previous section look very reasonable, they still deserve a confirmation. (In fact 
some models have been found, such as the spherical spin glass with p (_> 3) 
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spin interactions, where even the values of the critical temperatures found in 
the static and dynamic approaches are different [36,17,35]. It is believed that 
this effect is related to the fact that the replica symmetry breaking is first order 
in these models.) If these assumptions are correct, it means that the system 
of causal first order Eqs. (7, 8) contains the static solution with full replica 
symmetry breaking, which is in itself an interesting observation. 

In this section we present a numerical study of the dynamical Eqs. (19). 
Our aim is to study the low temperature phase of the model comparing the 
result of  the integration with the static solution and the asymptotics of  the 
previous section. The values of  the parameters appearing in the Hamiltonian 
have been chosen equal to y = 1/2, /2 = 1/8, 0 = 5. With this choice the 
critical temperature is Tc = 0.658, and for T <_ Tc the static correlations take 
the value ~ = 21.5. 

The discretization of (19) was chosen to be the simple one induced by the 
discretization of the Langevin equation (4) with the Ito convention. We have 
solved the discrete equations with time steps 4h, 2h, and h, and extrapolated 
the correlation and response to h = 0 by a second degree polynomial, h was 
chosen in such a way that this extrapolation does not differ too much from the 
linear extrapolation of  the data at 2h and h. In this way with h = 0.3 we where 
able to reach times of the order of 1000. We also performed the integration of 
the equation for longer times for some particular value of h, as we will specify 
in the following. In most of the simulation the initial condition C (0, 0) = 21.5 
was taken. We have checked that the dynamics in the asymptotic region does 
not depend on this choice. 

We have integrated the system (19) for T = 0.5 and T = 0.2. A run 
was also performed at T = 3 > T~. With this last run we checked that in 
the high temperature phase the OED simply corresponds to the relaxation 
into the unique equilibrium state described by the r.s. statics. Coherently we 
find that C(t,t)  tends exponentially to its r.s. value [lrs = 32.8, and the 
energy to Ers = 0.368. In the low temperature phase the situation changes. 
The asymptotic extrapolation for C(t,  t) and E (t) become incompatible with 
the r.s. values. As a first approximation, the behaviour of the equal time 
correlations C(t, t) is compatible with a power law approach to its asymptotic 
value (with an exponent, deduced from the behaviour of dC (t, t)/dt, equal to 
-0 .73 + 0.05) [31 ]. When one uses this power law fit in order to extrapolate 
C(t, t) to infinite t, it yields the result 21.4+0.1 which is in agreement with the 
r.s.b, prediction 21.5. For lower temperatures this procedure is less precise, and 
there are clearly corrections to the simple power law behaviour of dC (t, t)/dt. 
Better estimates for the asymptote are obtained fitting the time derivatives of 
C(t, t) and E(t) with functions depending on three parameters: 

a3 f l ( t )  =alt-a2(1 + T ) ,  
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Fig. 1. (a) An estimate of the large time limit , C~, of the autocorrelation C(t,t), from the 
numerical solution of the dynamical equations with a grid size h = 1.2. The derivative dC (t, t)/dt 
has been fitted to a power law with logarithmic corrections (see text). For each time t, Coo is 
approximated by C (t, t) plus the integral of the fit of the derivative. The plot gives this estimation, 
versus the time t. The analytical result from r.s.b., Coo = 21.5, is compatible with the result, when 
one takes into account the effects due to the finite value of h (see (b)) and to the uncertainties 
of the fit. 
(b) The difference between C(t, t) computed with a grid size h = 1.2 and that computed with 
h = 0.8, plotted versus time in a Log-Log plot. This difference seems to extrapolate to zero at 
large times (with a power law behaviour). 

f 2 ( t )  = al t  -a2 ( log ( t ) )  a3 (1 -- a2 + ~ ) .  (32) 

In the t ime  window we reach, these two fits give comparab le  errors, but  
also comparab le  es t imates  for the a sympto te  (after  integrat ion o f  the fits). 
For  instance we show in Fig. l a an es t imate  o f  the large t ime l imit  , C a ,  
o f  the autocorre la t ion  C(t ,  t),  f rom the numerical  solution o f  the dynamica l  
equat ions  with a grid size h = 1.2. The  der ivat ive  d C ( t ,  t ) / d t  has been fitted 
to the funct ion j~. For  each t ime t, C ~  is app rox ima ted  by C(t ,  t) plus the 
integral o f  the fit o f  the derivat ive.  The  plot gives C(t ,  t) + ft ~ f2 (t ' )  dt '  versus 
the t ime  t. Fig. lb  shows that  the effect o f  the in terpolat ion at h = 0 become  
small at large t ime. Altogether  this p rocedure  gives Co~ -~ 21.49, with an error, 
due to the fit, the extrapolat ions,  which we es t imate  subjectively to 4-0.05. 
This  is quite compat ib le  with the analytical  result f rom r.s.b., C a  = ~ = 21.5. 
In Fig. 2 we give the analogous plots for the energy. The  correct ion due to the 
finite grid size do not vanish  at long t imes and  must  be incorporated.  We get 
as a final result: E ~  = - 1 . 3 6 6  + 0.02, in very good agreement  with the r.s.b. 
computa t ion :  E ~  = -1 .3660 .  Similar  results can be found at a t empera tu re  
T = 0.2. P robab ly  the best evidence for the convergence o f  C ( t , t )  to ~ is 
ob ta ined  considering the quant i ty  

A ( t )  = ~(1 - r ( t , O ) )  - C ( t , t )  (33) 

and  observing, that  r( t ,O) ,  the response at t ime t to a change in the field at 
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Fig. 2. (a) An estimate of the large time limit , E ~ ,  of the energy E( t ) ,  from the numerical 
solution of the dynamical equations with a grid size h = 1.2. The procedure is the same as that 
followed for the estimate of C ( t , t )  in Fig. 1. The analytic result from r.s.b., E ~  = -1.3660, is 
compatible with this data when one takes into account the effect of the extrapolation to h = 0 
(see (b), and the text). 
(b)The difference between E( t )  computed with a grid size h = 1.2 and that computed with 
h = 0.8, plotted versus time. This difference is well approximated by a power law fit with an 
asymptote equal to 0.0116. 

10 ̧  
A ( t ) ~  

B ( t )  . . . .  

i i i k i i i i L 

100 1000 

Fig. 3. The quantities A(t )  (continuous line) and B(t )  (dotted line) defined in the text in a 
Log-Log scale. A (t) is better approximated by a power law then B (t). A pure power law fit on 
the last 300 points over a total of 890 gives A(t)  = 0.04 + 14.8 t --57 with a relative error on the 
whole interval of the order AA/A ~ 10 -6 and B(t)  = 0.29 + 35.1 t -57 with A B / B  ~ 10 -5. 

t ime zero, should tend to zero at large time. So if  C(t ,  t) converges to ~, A ( t )  
must go to 0 at large times. In Fig. 3, A ( t ) ,  as well as B ( t )  = ~ - C ( t , t )  are 
plotted on a log-log scale for T = 0 . 2 .  A pure power law fit gives: 

A ( w )  = 0.04, B ( ~ )  = 0.3, (34) 

the quality of  this two parameter  fit on A is comparable  with the ones we had 
on C with logarithmic or power law corrections. 

Let us now turn to the study o f  the asymptot ic  functions bas and ras. In Fig. 
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Fig. 4. In (a), the response r(tw + z, tw) versus z. From top to bottom, tw = 432,504, 576,648. 
Also shown (bottom curve) is the power law extrapolation of these curves to tw ~ oo, together 
with the prediction for ras ( r )  from the asymptotic dynamics (these last two curves are nearly 
undistinguishable). 
In (b), similar curves for the corrrelation b (tw + r, tw). From top to bottom, tw = 432, 504, 576, 
648, the extrapolation and the expected result from the asymptotic dynamics. 

4a we plot for T -- 0.5 the response r (tw + z, tw) versus r for various values 
of the waiting time tw. We also give the result ras (r) of a 3 parameter power 
law extrapolation of these data at tw = oo. The same is done in Fig. 4b for the 
correlation b(tw + r, tw) = C(t~ + r,t~ + r) + C( t~ , t~)  - 2 C ( t w  + r, t w). 
According to the statics, the correlation should go to l im~oo bas(r) = 2 ( ~ -  
ql ) = 6.068. It is possible to see directly that the data is compatible with this 
asymptota, with a power law approach. However, in view of the relatively short 
times r accessible here (keeping r <<  t~), we prefer to use a different approach 
which is the comparison to an analytic study of the asymptotic equations. In 
Fig. 4 the limiting functions obtained from a power law interpolation are 
compared to those obtained from the numerical integration of the asymptotic 
Eqs. (25) with the anomaly set to its "marginal" value (31). The agreement 
is very good. This confirms that the asymptotic dynamics coincides with the 
ED on finite timescales, and agrees with the static r.s.b, results. 

6. The non-asymptotic regime: aging 

We now turn to the non-asymptotic times. From the previous sections we 
know that there exists a non-zero "anomaly". This means that the decay of 
the response r( t ,s)  at large t -  s is slow. More precisely, it implies that the 
integrated response at a large time t, f o r ( t , t -  r)dr,  receives some finite 
contributions from time differences r which diverge when t goes to infinity. 
We define such a situation as a situation of aging. This definition is compatible 
with the ones used so far. It basically means that even at large times the physics 
of the system depends on its previous history. Besides the usual asymptotic 
regime t --, oo, t' ~ ~ ,  t - t' finite, there exist other "crossover regimes", in 
which the limit t, t' ---, oo is taken in a different way. The asymptotic regime 
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cannot  be decoupled f rom these other  regimes. 
We now propose a solution o f  the dynamical  equations,  giving the correct  

result for the anomaly,  in the non-asymptot ic  regime. Basically we propose 
a reformulat ion of  the Sompolinsky Ansatz [13,33] in the context  of  OED. 
The main difference is that here we do not impose temporal  homogeini ty  in 
the equations ab initio. The diverging t ime scales of  Sompolinsky's  approach,  
needed for the system to cross the diverging barriers, are here substi tuted by 
some funct ion of  the waiting t ime tw, which provides a natural  cut-off  for the 
theory. A simple version of  this scenario, including one single crossover domain  
(corresponding to a single step of  r.s.b.), had been found by Cugliandolo and 
Kurchan  in the spherical p-spin model  [17]. Recently they have also proposed 
a similar scenario for  the OED of  the Sherrington Kirpatr ick model  close to 
its critical tempera ture  [37]. Let us perform the limit t, t' ~ co by dividing 
the octant  t' <_ t into non-overlapping crossover domains.  A crossover domain  
Du is defined, using an increasing funct ion hu(t),  as the set of  t imes t ,t '  
which are both  large, but  keeping the ratio hu (t ') /hu (t)  = exp ( -  z) fixed, with 
z C]0, co[. 2 Suppose that in the crossover domain  Du one has: 

b( t , t ' )  = bu(Z) r( t , t ' )  - d ln[hu(t ')  l ~u(r) (35) 
' d t '  " 

Then the contr ibut ion to the anomaly  f~ ds m (t, s) f rom all the times s such 
that s and t are in Du is finite and equal to 

f dz 4 f "  (bu (z)) iu (z) 
0 

(36) 

which is independent  on the funct ion hu. 
In a simple problem like for instance the high tempera ture  phase, there should 

exist a single crossover domain,  the asymptot ic  one defined by h (t) = e t. In 
a glass phase, we can have a relatively simple scenario in which there exists, 
beside the asymptot ic  domain,  another  one defined by some other  function 
h(t) .  Such a case (with h( t )  = t) has been found recently [17]. But one 
can also have some systems with many  crossover domains.  The condit ion we 
impose is that  they do not  overlap. We can index them by a parameter  u such 
that, i f  w < u < v and the points ( t , t ' )  belong to Du, then hv( t ' ) /hv ( t )  = 0 
and hw(t ' ) /hw (t) = 1. A possible choice leading to such a behaviour  would 
be for instance hu (t) = exp(tU). With this choice the points (t, t') belong to 
Du when t' = t - t(1-u)z/u. 

2 The index u of the domains should at first be taken as a discrete variable, in a procedure 
analogous to that of statics in which one considers first a finite number of r.s.b, and then passes to 
the continuum limit. This is familiar to the reader both from the static r.s.b, approach and from 
the ED, and it will be not repeted here. We just mention that u will turn out to be a continuous 
variable in the interval [0,1 ]. 
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The alert reader will have recognised in this scenario a hierarchical stucture 
which is reminiscent of  the ultrametricity assumption underlying both the 
statics and the equilibrium dynamics [38]. We have here a hierarchy of time 
crossovers. Considering three times t" < t' < t, one sees that, if (t, t ') belongs 
to the crossover domain Du and (t' ,t") belongs to 79v, then (t,t") belongs to 
~)inf(u,v) ,  which is an ultrametric inequality, and obviously implies ultrametric 
relations for the corresponding correlation functions. 

The dynamical equations can be solved within this scenario because one 
can forget the time derivatives in the dynamical equations. The existence of 
an asymptotic regime in which lim~--.oo OCas(Z)/Oz = 0, implies that in the 
crossover regimes OC(t, t ' ) /Ot '  ~ 0 while Or(t,t ')/Ot' tends to zero more 
rapidly then r(t, t'). The 1.h.s. of (19) can be neglected in this situation and 
the problem becomes invariant under the family of transformations 

C(t, t') ~ C(h (t), h (t') ) 
dh ( t' r(t , t ' )  - ----~)r(h(t) ,h(t ' )  ) (37) 

dr' 
for any monotonically increasing function of time h (t). Any non-trivial solution 
will break this invariance, consequently from a given solution we can generate 
a whole "orbit" of  equivalent ones just reparametrizing the time. As we have 
already remarked, the solution of (19) is unique at any finite times t, t'. 
The appearence of this invariance seems somewhat artificial; among all these 
possible solutions, only one can be the asymptote of the finite time dynamics. 
At this stage it is an open problem what is the choice which will be picked up 
by the dynamics. 

The ambiguity due to the time reparametrization invariance of the asymp- 
totic equations reflects in the fact that the equations for bu and ?u are indepen- 
dent of the choice of all the arbitrary functions hu (t). In fact these equations 
are identical to those derived in ED on diverging time scales; this set of  equa- 
tions has been shown [33] to possess solutions satisfying the "quasi f.d.t." 
relation: 

udbu 
= 2Tt:u (r).  (38) 

Denoting bu + = bu (0) and b u = bu (c~) one has for adjacent domains indexed 
by u < u', bu + = b~. Within the OED, we find that the dynamical correlations 
are related to the static order parameter function q(u) by the formula 

b u = 2 ( ~ -  q(u)) .  (39) 

With these ingredients we reproduce the algebra of the static replica solution, 
which gives the value (31 ) for the anomaly. In each domain, apart from the 
asymptotic one, the variation with r of  the functions bu (z) is infinitesimal, 
and q (u) becomes the continuous function given by (15 ). 



64 S. Franz, M. M~zard / Physica A 210 (1994) 48-72 

As we stressed before, this solution can be understood as a reinterpretation 
of the ED solution, and of the static r.s.b, solution. With respect to the ED so- 
lution, the main advantage is that the diverging time scales have been replaced 
basically by some powers of the waiting time. Unfortunately it does not solve 
the second problem of ED, namely the invariance through reparametrizations 
of time which implies that one looses all the physical (crossover) time scales. 
We stress that this is only a problem of the family of solutions that we have 
introduced. This problem is not intrinsic to the OED itself. On the contrary, in 
the real OED problem there is a unique solution to the dynamical equations. 
This solution might go asymptotically to one of the solutions we have pre- 
sented here (choosing dynamically a set of functions hu(t)), or it might even 
converge to some other asymptote. So far we have not been able to answer this 
problem analytically. So we shall now propose some numerical checks which 
proceed through the numerical solution of the dynamical equations. 

The numerical test of this family of solutions might seem hopeless insofar 
as they depend on an arbitrary set of functions hu(t) which allow for a 
reparametrization of time. We shall call such a set a choice of gauge. In order 
to decide whether the asymptotic solution belongs to our family, we propose 
to use criteria which are gauge independent. One possibility is to use some 
integrated quantities like the "dynamical moments" introduced in [17]: 

t 

Ck(t) -- k f ds Tr( t , s )C( t , s )  k-l, (40) 
, I  

0 

Within our scenario of hierarchical crossover domains, these moments should 
have a large time limit given by: 

lim Ck(t) = ~k _ f dqp(q)qk. (41) 
J 

Another possibility consists in the introduction of the function: 

U(t,t ')  = Tr(t , t ' )  (42) 
OC(t, t ' ) /Ot" 

In the crossover regime, where the f.d.t, relation holds, U takes the value 
U(t,t ')  - 1 at large times, while, in the crossover domain it gives us a 
measure of the violation of f.d.t.. We shall call this function the fluctuation 
dissipation (f.d.) ratio. The gauge invariant prediction of the hierarchical 
crossover domains scenario is that, if one plots the f.d. ratio U as a function 
of the time t along the lines of fixed correlation C, its value at large times is 
equal to u(q), the inverse of the order parameter function. Let us make this 
statement more precise: we first observe that for fixed (and large enough) t, 
C(t, t') is a monotonously increasing function of t'. This allows to define the 
function t' (q, t) as the time t' such that C (t, t') = q. The prediction is that: 
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q 

Ud(q) -- lim U( t , t ' ( q , t )  ) = u(q) = / d q '  P(q ' )  , (43) 
t--+ OG J 

0 

which is the inverse of  the order parameter function defined in (15). We 
have been able to obtain the following general results on the f.d ratio. It is 
easy to show that C(t,O) = r(t, 0)C(0 ,  0). Under the reasonable assumption 
limt__.~r(t,O) = 0, one gets that limt__,~ C(t,O) = 0, and it is easy to deduce 
that l i m t ~  U(t , t '  = 0) = 0. We have seen numerically, but we have not 
been able to prove, that for large enough t, U (t, t') is an increasing function of  
t'. Together with the f.d.t, result in the asymptotic regime limt~o~ U(t, t) = 1, 
this shows that U tends to a probability at large times. 

We have tried to use the simple dicretization algorithm described in the 
previous section to study these aging effects (with the same values of  h). 
Although we shall see that the times we have reached do not allow to draw 
definitive conclusion on the crossover regimes, we think it is worth to present 
some of the data, in order to see what happens on relatively short times, 
and to give an idea of the type of  computing effort which will be needed in 
order to solve this problem. The values of  the parameters are 7 = 0.5, 0 = 
5.,p = 0.125, T = 0.5, C(0 ,0 )  = 0. We have checked that the errors due to 
the discretisation and interpolation procedures are negligible on the scales of  
the figures. 

We first present some confirmation of  the existence of  the aging effect. In 
Fig. 5 we plot the "thermoremanent magnetization" which we define as: 

tw 

A4(~,tw) = / ds r(tw + ~,s). (44) 
,I 
0 

The plot shows A4(~,tw) versus ~ for fixed values of  the waiting time tw, 
on logarithmic scales. On these time scales, one clearly sees an aging effect 
which is qualitatively similar to the one observed in experiments [4-7] and 
numerical simulations [39,18,19] in spin glasses. The effect is confirmed in 
Fig. 6 which plots the normalised correlation C(tw + 3, tw) /C(tw,  tw) versus 
z, at fixed tw. We have observed that the curves do not scale very well as 
functions of  Z/tw. 

We have tried to test the hierarchical solution by some studies of  gauge 
invariant quantities. We first study the dynamical moments (40). The first 
moment Ca satisfies a kind of  Ward identity (related to the translational 
invariance of  the distribution of  the random potential): 

r(t, 0) = 1 - -~C[ (t) (45) 

(a simple proof consists in showing that the two sides of  this equality satisfy the 
same first order differential equation in time, with the same initial condition). 
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Fig. 5. T h e  t h e r m o r e m a n e n t  m a g n e t i z a t i o n  A4 (z, tw) d e f i n e d  in  ( 4 4 )  v e r s u s  r for  f i x e d  v a l u e s  
o f  the  w a i t i n g  t i m e  tw, on  l o g a r i t h m i c  scales .  F r o m  b o t t o m  to top,  tw =38.4, 76.8, 153.6, 307.2, 
614.4. 

Fig. 6. T h e  n o r r n a l i s e d  c o r r e l a t i o n  C (tw 4- z, tw ) / C (tw, tw ) versus z, for  f i x e d  v a l u e s  o f  the  w a i t i n g  
t i m e  tw. F r o m  b o t t o m  to top,  tw =38.4, 76.8, 153.6, 307.2, 614.4. 

As r(t, 0) should vanish at large times, this implies that l i m t ~  Ci (t) = T/p = 
21- f dqP(q)q. Numerically we have checked that the Ward identity (45) is 
satisfied with a precision of 10 -5, and that the behaviour of r(t, 0) is consistent 
with a decay to zero. We have computed numerically the first five moments 
Ck (t), k = 1,..., 5. In Fig. 7 we plot the third moment versus time. Within the 
hierarchical scenario one would expect that its large time limit should be given 
by the third moment of the static P(q) as in (41), which is equal to 9011 in 
our case. The inset of Fig. 7 shows that the relative difference of C3 (t) with this 
value decays approximately as a power law. However at t ~ 800 the relative 
difference is still of  order 10 per cent. Fig. 8 shows the fifth moment and its 
approach to the static value 5.76 × 10 6. We consider this data as compatible 
with the hierarchical scenario but not really conclusive. As explained above, 
a more detailed analysis of  the data consists in studying the f.d. ratio (42) 
and to test the prediction (43). In Fig. 9 we plot C(t, t ' ) /C(t , t )  versus the 
time t, along lines in the t',t plane such that U(t,t') is constant, equal to 
u0. According to the hierarchical scenario, this quantity should go at large t 
to q(uo)/~l defined in (15). On this time scale, we do not see evidence for 
such a convergence. To summarize, we consider the results on the moments as 
encouraging, but the detailed analysis on the f.d. ratio shows that simulations 
on much longer time scales are needed in order to decide on the correctness 
of the hierarchical solution. 
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Fig. 7. The third dynamical moment  C3(t), defined in (40) versus t. The inset is a log-log plot 
of the relative difference between the moment  at t ime t and the prediction from the scenario of 
hierarchical crossovers concerning its large time behaviour: (9011 - C 3  ( t ) ) /9011 versus t. 

Fig. 8. The same plot as in Fig. 7, for the fifth dynamical moment  versus time, and its convergence 
to the theoretical result 5.76 × 106. 
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Fig. 9. The function C(t, t ' ) /C( t ,  t) versus the time t, along lines in the t, t '  plane such that the 
f.d. ratio U(t, t') is constant, equal to u 0. From bottom to top, u0 = 0.1,.2 ..... .9. If  the scenario 
of hierarchical crossovers would hold, at infinite t the curves with u0 < 0.375 should extrapolate 
to 0.744, the ones with u0 > 0.411 should extrapolate to .859. There is no such indication on this 
time scale. 

7. Conclusions 

In this paper we have studied the off  equilibrium dynamics of  a disordered 
model which represents on one hand a limiting case of a manifold in a random 
environment, on the other hand a spin glass with long range interactions. 
The choice of  this model has several motivations. Its static solution at low 
temperatures implies a full continuous r.s.b., as for instance in the SK model; 
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this r.s.b, solution is known in all details. On the other hand, we can write 
a closed set of coupled dynamical equations between the correlation and 
response. Because of  this, we have been able to generalize the analytic solution 
of [17] in the aging regime of the spherical p-spin model to a full r.s.b, case 
and to compare to a numerical integration of the equations. Simultaneously to 
our work, Cugiandolo and Kurchan have also extended their analytic solution 
to the SK model close to Tc [37]. 

Our analysis is consistent with the existence of two regimes at large times 
in the low temperature phase: an asymptotic regime where time homogeneity 
and fluctuation dissipation relations hold, and an aging regime where both 
these properties are violated. These regimes are similar to the ones observed in 
experiments and simulations. We have found convincing numerical evidence 
that the asymptotic regime agrees with the static r.s.b, results and with the 
ED results. The correlations are those characteristic of a system reaching 
equilibrium inside one single valley. We have shown that these facts imply the 
existence of a non-trivial aging regime. 

We have proposed a family of solutions of the dynamics at large time in 
this aging regime, based on a hierarchy of crossover domains. This solutions 
solve the problem of the diverging time scales which had to be introduced in 
ED. On the other hand several problems are left open. We have not been able 
to show that the dynamics converges to one of  these solutions, and afortiori 
we do not know which of them is picked up. This choice might well depend 
on the choice of the Langevin dynamics and of  the type of initial conditions 
which are used. We have found that the f.d. ratio tends to a probability law at 
large times. Longer simulations are needed to decide whether this probability 
law is identical to the static u(q), as implied by the hierarchical scenario. 
At the present stage, we believe that it is crucial to carry out this numerical 
study. The physical interpretation of the dynamical probability is also a very 
important open question. 

It would be interesting to generalize this approach to systems driven by an 
external force (charge density waves, vortex lattices,...), and to study more 
subtle effects like those of temperature cycling. We would also like to point out 
that this route of OED seems to be a promising one towards a rigorous study 
of  spin glasses. One should first obtain a rigorous derivation of the dynamical 
equations, and then understand the large time behaviour of these equations. 
This is certainly not easy, but it is a well defined mathematical problem and 
our work suggests that these coupled dynamical equations contain in some 
sense the full r.s.b, solution. A first step towards a rigorous derivation of the 
dynamical equations has been taken recently for the SK model [40]. 
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Appendix A 

In this appendix we sketch the derivation of  the mean field dynamical 
Eqs. (19) for the toy-model by the cavity method [1]. This method provides 
the same results as the functional derivation of  [32]. We include a brief 
description here because it is maybe more explicit on the physical content of  
the derivation. Apart from unessential complications, the derivation could be 
done similarly for the more general Eqs. (7,8,9) for finite D. The method 
involves an induction over the number dimensions N of the space in which 
the particle lives, together with a large N limit. We pass from a N dimensional 
system described by ql = {q$1 .... , ~N} to a N +  1 dimensional one described by ql, 
plus a new component q$0. In the derivation we follow a procedure analogous to 
that which has been used e.g. to study the statics and the equilibrium dynamics 
of the SK model. We will make crucial use of  two hypotheses that mutatis 
mutandis habe been put forward in that case. Namely, the applicability of  the 
linear response theory fort the Langevin equation (LRT),  and the fact that 
the responses J~b~ ( t ) / jq l  ~ (s) can be considered small (in a suitable sense) for 
a # ft. A justification of  these in the case of  equilibrium dynamics is given 
in [ 1 ]. For OED, we just assume these two facts. It will be interesting to see 
if similar assumptions are contained in the functional approach, or whether 
these facts can be derived. 

Consider the Langevin equation for the toy-model: 

dq$~ (t) OH(fJ(t))  
- + ~ ( t ) ,  

dt O~a 

(q,( t)q~(s))  = 2 T J ~ J ( t  - s). (A.1) 

If an infinitesimal perturbation J H ( ~ )  is added to H, the perturbed process 
qi*(t) can be expressed in terms of the unperturbed one qt(t) by the linear 
response relation: 

t 

(J~(t) = ~ ( t )  - f ds o~IZ(O(s))  J(9~(t) 
o 0 ~  ~ p  (s)" 

(A.2) 

Let us now introduce the new component, and denote by VN(~) and 
VN+I(qSO,¢) the random potentials for the N and N + 1 components sys- 



70 S. Franz, M. M~zard / Physica A 210 (1994) 48-72 

tems respectively. In making this step, the Hamiltonian H = #q~2/2 + VN ((~) 
will undergo the variation 

5H(4)o,0) = lt4)~/2 + 5V (¢o, (~), 

(JV(4)O,O) = VN+I (4)0,~) -- VN(O) .  ( h . 3 )  

The 4)~ and 4)~ in (A.2) have to be identified with the a-th component  of the 
position of the particle respectively in presence and in absence of 4)o. 

To study the statistical properties of ~ V we can expand in series the corre- 
lations of the potential of the N + 1 components system 

VN+I (4)0,~)VN+I (~//0, I/g) 

= - ( N + l ) f (  [ ( q ~ - q t ) 2 +  ( 4 ) ° - ~ 0 ) 2 ] ) ( N +  1) ' (A.4) 

and retain only the terms of the series which do not tend to zero when N --, oc. 
In this way we find: 

~JV(4)o,~)tJV(q/o, i/¢) = - [ f ( ( O -  I/t)Z/N) ( ~ -  qt)2 f '  ((~ - qt)Z/N) 
t N 

+ (4)0- ~'o)2f '((q ~ - q t )2 /N)}  • (A.5) 

These formulas can be obtained expanding formally Vlv+l (4)0, qt) in powers of 
4)0 up to the second order. In this way, denoting b = ( 0 -  ~ )2/N, one easily 
shows that aV(4)0,~) can be written as 

gV(4)o,~) = A(qt) + B(q l )~  + D(qt)q~ (A.6) 

where A, B and D are gaussian random functions with zero averages and 
correlations: 

A(tk)A(~) = - [ f ( b )  - bf ' (b)] ,  

A(gp)D(¥) = - i f ( b ) ,  
B(¢J)D(q~) = O(1/N), 

A(~)B(qt)  = O(1/N), 

B ( ~ ) B ( ~ )  = 2 f ' ( b ) ,  

D((J)D(qt) = O(1/N). 

We can now write the Langevin equation for the zeroth component  ¢0 

dqSo (t) 
- /X4)o-B(~*(t))  -2D( t~*( t ) )~ ( t )  + qo(t). 

dt 

Using the LRT we find 

t 
f OB(¢(t))  ~¢~(t) B(dp*(t)) = B ( ¢ ( t ) ) -  ds Z 
0 ~/~ 

x~-~-~p0 [A(q i ( s ) )+  B((J(s) )qSo(s) + D(~(s)  )qS~ (s)] 

(A.7) 
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t 

D(q)*(t)) = D(q~(t)) - /  ds y~  
OD(q~(t) ) 

o ~ O~b~ 6tlp(s) 

x~-~#0 [A(~(s) )  +B(~(s))C)o(S) +D(~p(s))d~(s)]. (A.8) 

At this point we use the hypothesis that 8¢)~(t)/Srl~(S) is small for ~ ~ ft. 
More precisely we suppose that as in the SK model 1/N 2 ~ p  8dp~ (t)/~rlp (s) 
and analogous sums will tend to zero in the large N limit. One deduces that 
(A.8) reads in this limit: 

l 

B(¢)*(t) ) = B(~(t )  ) - / ds 4 f "  (b(t,s) )r(t,s)C~ (s), 
0 

t 

D(¢* (t) ) = D(¢(t )  ) - / d s  2 f"  (b(t,s) )r(t,s), (A.9) 

0 

where b(t,s) = (¢(t) - ¢(s) )2 /N  and r(t,s) = ( I / N ) ~ , ~  ((~¢Oa (t) /~qa (s) ). 
Denoting m(t ,s)  = 4 f " (b ( t , s ) ) r ( t , s )  and making use of Eq. (A.9) the 

Langevin equation (A.7) is rewritten as 

t 

dq~o (t) f dt - -#Oo(t) -B(gp(t))  + ds m(t,s)[qSo(t) - q~o(S)] + qo(t). 

0 

(A.10) 

(In deriving (A.10) we have dropped a term proportional to D(~(t))~o(t)  
which is negligible because of the vanishing correlations (A.7) of D at large 
N.) The term B((~(t)) is a random field with zero mean and correlations 
B(~( t ) )B (~ ( t ) )  = 2 f ' (b ( t , s ) )  -- w( t , s ) .  Therefore Eq. (A.10) is the usual 
Langevin equation on one single component, with a condition of selfconsis- 
tence, from which the dynamical equations are easily derived. We just notice 
that this derivation shows a property of self averageness of the response, 
namely the fact that the response function of each component is identical: 
r(t,s) = (~Oo(t)/~qo(S)). 
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