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Abstract. We study the dynamical evolution of a system with
a phase space consisting

of configurations with random energies. The dynamics
we use

is of Glauber type. It allows

for some dynamical evolution and aging even at very low temperatures, through the search of

configurations with lower energies. This simple model provides an example of a new type of

mechanism for the aging elfect.

Many efforts are being devoted to the study of the out-of-equilibrium dynamics of spin-glasses,
in order to understand several experimental findings, such as aging and the joint existence of

a new dynamics and memory in temperature cyding experiments iii. Roughly speakiug, the

aging effect is observed in the decay of the thermoremaueut magnetizatiou (TRM), where this

decay is found to depend on the age of the system (the time it has spent in the low temperature
phase) in all the accessible time regimes. It implies that the behaviour of the system depends

on ail its history, and that non-stationary dyuamics persists for arbitrary long time-scales. Iii

a first approximation, trie decay which is observed experimentally or numerically is often well

described by trie fact that the TRM measured after a duration time r
after turning off the

magnetic field depends on the age t~v, roughly Iike a function of r/t~v. Various approaches bave

been used to try to understand this effect, including some phenomenological studies based on

droplet or domain growth [2], numerical simulations [3], mean-field models [4-6], diffusion on

tree like structures iii, and models based on the existence of traps in phase space.
In this note we shall elaborate along the lines of this last approach. It deals directly with the

structure of the phase space, made of many metastables states, figuring the configurations of a

spin system. Such a picture has been put forward [8], and generalized [9], presenting the phase

space as a random energy landscape made of traps, with a broad distribution of trapping times:

the energies are the low lying ones of a random energy model (MM) [loi,
so they have an

exponential probability distribution, and the trapping times, given by an Arrhenius law, have a

power-law distribution with infinite mean. The dimension of the space is infinite (equivalently,
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all the traps are
connected). In this frame, the diffusion is anomalous [8,9, iii, and aging is

present. One virtue of this approach has been to point out a simple "kinematic" ingredient for

aging: the distribution of trapping times itself does not evolve m time, but if this distribution is

broad ii-e-, it is a Lévy Iaw with an infinite
mean trapping time), the probability to be at time

t~v in a trap of lifetime r depends on the number of visited traps and thus on t~v, which induces

aging. Besides this kinematic effect, there might well exist another, "dynamical", source of

aging, namely the explicit evolution with time of the distribution of trapping times. We shall

provide hereafter such an example of a dynamical aging process.

In the trap model, the probability of hopping from one configuration1 to another config-
uration j, W~-j, depends only on the energy of the site 1: the energies are m fact seen as

energy barriers, which are then uncorrelated. The model can be solved in full details: the

equilibrium correlation decays in time as a power law II 2]; however this equilibrium correlation

is never observed (for an infinite system) because of an aging effect due to a broda distribution

of trapping times [8]. The equilibrium dynamics of the REM has been studied in other models,
corresponding to some factorized choices of the transition probabilities W~-j [13,14]. These

choices allow for a solution of the master equation, and the equilibrium correlation function

displays various forms, induding power law and stretched exponential relaxation. Hereafter we

shall consider a case where the transition probability is of Glauber type: W~-j is not factorized,
and the energy barriers are now correlated. This seems a priori a more refined way to define a

dynamics for the REM. Furthermore this case allows for the existence of a dynamical evolution

even at zero temperature, through the search of configurations with lower energies. During
this evolution it becomes more and more dillicult for the system to find a lower configuration,
which results in a slow down of the dynamics. We shall show through an explicit solution at

zero temperature that this mechanism gives rise to an aging effect in which the system never

reaches equilibrium. This aging does not take its origin m energetic barriers, but rather in

some kind of entropic barrier, namely the low probability of finding a favourable direction in

phase space. Another example of aging due to entropic barrier has been proposed recently by
Ritort lis].

The model we consider is defined as follows: The system can be m any of N configurations

=
1,..,N. The configuration has an energy E~. The energies are independent random

variables with distribution P(E). The probability of hopping from one configuration to another

can be defined in several ways, the only a priori constraint being the detailed balance:

w ~-pE, w ~-pE, j~)
~-J J-~

For example, for the trap model, where the lifetime of configuration1 is r~ =
exp(-flE~), the

transition rates are W~-j
=

~~~(~~ Here we consider a transition probability depending

on both Ei and Ej, given by the Glauber dynamics:

~~~
ÎÎ

I +

xp(flÎEj
Ei) ~~~

As mentioned before, this system is quite different from the trap model (see Fig. i). For

instance, at zero temperature, the jump to a lower state is allowed in our model, while it is

impossible to jump out of a trap.

In this study, we will be interested in computing the law of diffusion (the number of con-

figurations reached at time t), the evolution of the mean energy with time, the probability,
given a time t, to be in a configuration of lifetime r (we shall define the lifetime

r
precisely

below), which we will note pt(r), and the two-times correlation function C(t~v + t, t~v). This
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a) b)

Fig. 1. a) trap model; b)"step" model. Remember that the connectivity
is

infinite,
so

that such a

picture can
be misleading!

last quantity is defined as the mean overlap between the positions of the system at times tw
and t~v + t: the overlap is simply either i if the system is in the same configuration, or o if it

has moved. Assuming an exponential decay out of the configurations, the correlation function

is related to pi (r) through:

Citqv + t, tqv)
=

/~
dr pt~ ir)e~~/~ j3)

Before turmng to the exact solution of the master equation at zero temperature, it is useful to

start with a discussion of the trapping time distributions. When the system is in configuration

1, with energy E~, the probability of going away per unit time is

vs lE~)
=

£ W~-j 14)

For large N and using the definition (2) of the transition probability, one gets at zero temper-

ature:
E,

PslE~)
"

/
dE' PIE') 15)

-co

The "trapping time" r~ is defined as It depends only on the energy of the configuration,
ps (E~

through the relation: Î
ÎÎ~ ~~~~ ~~~

We deduce that, regardless of P(E), the a priori distribution of the lifetimes is:

po(r)àr
=

[à(r
i) (1)

As in the trap model, this is a broad distribution with a divergent mean lifetime (although
here it is just margmally divergent, for any P(E)). As was shown in reference [8], this fact

in itself creates an aging effect. In our case there is an additional effect because the effective

distribution of lifetimes evolves with time. After k jumps the system will be in a lower energy
configuration, and the probability Pk(r) of having a lifetime r is different from Po(r). The

zero temperature dynamics gives the recursion relation:

Pk+i(r)
=

Po(r) dr' r'Pk(r')H(r r') (8)
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which leads to:
~

Pk (r)
= ~')))Î ~(T 1) (9)

The typical lifetime thus increases exponentially with k (it
means that the diffusion is loga-

rithmic). This will add up to the usual eifect of a diverging mean lifetime in order to induce

aging.
We now proceed to the solution of the master equation at zero temperature using the Laplace

transform. Denoting by p~(t) the probability of being on configuration at time t, we have

jp~(t)
=

j T~ p~(t) (io)

with Tq
=

Wj-~ for # j, and ~j Tq
=

0. The Laplace transform jl~(çi)
=

/
dt p~(t)e~"

~

~

satisfies the equation:
p~(0) + ) £~ Ù(Ej E~)jlj(çi)

fi~l#)
" i

(ii)

çi +
T~

where the lifetime r~ is defined as before by
=

~j Tj~ and where we will take p~(0)
=

j.
~

J#~
To solve this equation we introduce the Laplace transform of the occupation probabilities for

all configurations of energy E:

f(E, çi) e
~j jJj (çi)à(E Ej (12)

Using equation (11) one denves for f the equation:

fjE, i)
=

gjE, i) (i + /°'dE'fjE',1)) j13)

where

giE> <)
=

( L ~)j
Î~~

= ~
)~Î i14)

J TJ T(E)

The self-consistency equation (13) is easily solved and gives:

RE, #)
=

glE, #) exP
/~ glE', #)dE') ils)

We can now use this solution to compute the physical quantities of interest. We start with

the probability pt(r) to be at time t in a configuration of lifetime
r. Its Laplace transform

with respect to t is given by:

Pô(T)
=

£ ji~(çi)à(r r~)
=

P°(T) f(E(T), #) çi + 1

~

Il + 1) 9(E(T), #) (i + çir)2
(16)

This Laplace transform can be inverted and gives:

Pi(r)
=

~~

~(
~ ~

exp
(-() o(r i) (ii)
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We see that this expression decreases as
t/r~ for t « r, as for a model of traps for

Po(r)
=

1/r~, but the exponential term makes the probability of being at time t in a con-

figuration with lifetime smaller than t very small.

The correlation function can also be computed for large t and t~v:

C(t~v + t, t~v) t

~'°
(18)

t~v + t

We see immediately the t/t~v scaling of the correlation function. The behaviour lim C(t~v +
t-co

t, t~v =
0, sometimes called "weak ergodicity breaking" [8] shows the existence of a non equilib-

rium dynamics even at zero temperature, while the behaviour in the other limit,
lim C(t~v + t, t~v) =

1, reflects the fact that the equilibrium dynamics is frozen at T
=

o.
t~-co

Let us emphasize that ail these results are independent of the distribution P(E). The

two main hypotheses of the derivation are the fact that the connectivity is infinite, and the

temperature has been taken equal to zero. These results can be partially extended in the

case where P(E) is an exponential distribution, P(E)
m~

pexp(pE)Ù(-E). Such a distribution

has been found in mean field spin glass models [16], and it is at trie heart of the trap model

de8cription, since it Ieads to a broad distribution of Iifetimes when fl > p. Specializing in this

case, we can first explain in more detail the zero temperature dynamics studied above. Indeed,
the relation between energy and trapping time can be explicited as: r~ =

e~P~, and the energy
distribution evolves then as

j_~~k+i ~k
PklE)

= ~,
exPlPE)°1-E) l19)

The mean energy decreases as -k/p with the number of visited configurations, or equivalently

as log t/p (remember that the diffusion is
logarithmic).

For finite teniperature, the set of self-consistent equations is more complicated; we write

a~ =
exp(flEj),

so that

=

ai/~ j~'
~'°

i
/l~/~ 120)

and we obtain

p~ io) + /~° d>e-Àa, fj>, çi)

fl>1#)
=

°

~ ~ j 121)

flÀ, #)
=

glÀ, #) +
/~

d~l glÀ +
Î, #)fl/1, #) 122)

~~~'~~
"

( ( Î)1'
=

j f~ d~
uP/Pe-vu

'

°

çi + ~lp/p j" ~'~ du
123)

~
i + ~~~~

Taking
=

r~/P and writing g(r, çi), f(r, çi) instead of g(r~/P, çi), f(r~/P, çi), we obtain for

f the following scaling:

f(T, #)
= jT~~' h(#T) (24)

co

with h(x) behaving as
I/x~ for x » I and

/
dxh(x) finite. After some calculations, it can

o

be shown that pi(r)dr behaves Iike ~~~ for I « t « r, and as

~~ (~) ~~~
for I « r « t,

r r t
and for fl » 1.
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We obtain thus qualitatively the sanie behaviour for pt(r)dr
as before, and also for the

correlation function: the dynamics is not modified by a small temperature.
Note that this behaviour holds in the limit of infinite N; for any finite N the system eventu-

ally thermalises, after a time proportional to N (for example, the minimal energy of N states

with exponentially distributed energies is -logN/p
so it takes a time N to find it).

For this model, some of our results are similar to those of reference [9]: the mean energy
decreases as

-log(t), and at time t the most probable configurations are of lifetime
r =

t.

Nevertheless we must emphasize that the mechanism is totally diiferent: in a model of traps,
the mean energy decreases because the system visits more and more traps, and so it has more

and more chances to find deep ones. At each step Pk(E) remains the same: Pk
"

Po. The

diffusion is in tP/~~, and the energy at step k evolves like log(k), because the minimum of k

energies distributed according to the exponential distribution is in log(k). In our model, on

the opposite, the energy distribution that the partide sees evolves, and so does the distribution

of trapping times (see Eq. (9)); the energy decreases in fact because it is easier to find a

configuration with lower energy lit takes a time proportional to exp(-pE)) than to move by
thermal activation la time exp(-flE) is needed). It means that the system spends less time in

a given configuration but, since the energy at step k decreases like -k, the diffusion is much

slower (logarithmic instead of a power~law), so we finally get the same behaviour for the mean

energy as a function of time. However the main feature is that there exists a zero-temperature
dynamic, which is qualitatively not modified by a small temperature.

It would of course be very interesting to be able to generalize this approach beyond the case of

an infinite connectivity. For instance a more realistic definition of the REM dynamics could be

to start from the definition of the REM in terms of spins with p (- co) spin interaction [10,17],
and use the transition matrix resulting from single spm fiip dynamics. This seems rather

complicated at the moment.
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