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Abstract. We study the zero Iemperaure limit of n simple model of slow relaxation without 
energy barriers, recently proposed by Ritort, as well as two other closely related models with a 
much faster relaxation. These models cm be mapped onto random walk problems, which allows 
for their analytic study. We analyse, in particular, a specific aspen of the f o m  model, namely 
the existence of a bias leading to 'entropy barriers' and to a very slow relaxation. 

The study of off-equilibrium dynamics, characteristic of the glassy state, has recently seen an 
upsurge of interest [1-6]. A very widespread phenomenon in this context is the existence of 
a slow relaxation together with an aging effect, where the correlation function of the system 
at two times t ,  t' becomes approximately a function of t ' / t ,  in3tead of the usual equilibrium, 
time-translation invariant, behaviour in t - t'. Recent works have made it clear that this 
phenomenon may be present in a variety of physical situations, for example, domain growth 
or spin-glass dynamics. 

One simple mechanism for slow relaxation and aging, recently put forward (among 
several others [5-8]), is the existence of entropy barriers [9, lo ] .  This term characterizes a 
situation where the system becomes trapped in some regions of phase space without energy 
barriers: some paths out of these regions without any energy cost exist, but they are rare 
and difficult to find. It has been shown in [lo] that the low-temperature evolution of such 
systems can become very slow and show an aging effect, because the number of accessible 
escape paths decreases with energy, and therefore it decreases when time increases. In 
general, one may expect that both entropy and energy barriers to be present. It is, however, 
interesting to consider a model where only entropy barriers are present. 

The first explicit example of such a model was recently proposed by Ritort [9]. One 
considers N distinguishable particles distributed among M boxes. The energy is defined as 
minus the number of empty boxes (the dynamics of this model at zero temperature will he 
defined in more detail below, where it is called model A). While the ground state can always 
be found without encountering any energy barrier (i.e. without having to put a particle into 
an empty box), the simulations in [9] clearly show a slowing down of the dynamics together 
with hysteresis and aging effects. 

In this note we study model A, together with two closely related models (called B 
and C). We show that these models may be mapped onto random walk problems. We 
concentrate on the relaxation of the energy and point out the mechanism leading to the slow 

5 Unit6 propre du CNRS, associ6e B I ' h l e  N o m l e  Superieure et B I'Universit6 de Paris Sud. 

0305-4470/95/230603+09519.50 @ 1995 IOP Publishing Ltd L603 



L604 Letter to the Editor 

relaxation in model A. We identify the bias in the random walk describing model A as being 
responsible for the existence of entropy barriers. In a continuum version of this model the 
entropy barriers are due to an effective potential in the associated Fokker-Planck equation. 
We also discuss the origin of the quantitative discrepancy between this continuum model 
and the original discrete model A. In a very recent paper, Franz and Ritort [l l]  give an 
adiabatic approximate solution of model A, using different methods (see below). 

The three models we shall study are: 
Model A. Consider N distinguishable particles. At zero time these particles are 

distributed amongst M boxes. At each time step a particle is chosen at random and put in 
one of the non-empty boxes chosen at random. This is the zero-temperature version of the 
model introduced in [91t. 

Model E. The particles are now considered to be indistinguishable. At each time step 
a box is chosen at random among the non-empty boxes. A particle is withdrawn from this 
box and put into one of the other non-empty boxes chosen at random. 

Model C. The particles are again distinguishable. At each time step two particles are 
chosen at random. One of the particles is put in the box to which the second one belongs. 

At a qualitative level, it is clear why the relaxation should be much slower in model A 
than in models B and C. In model A, the box from which a particle is withdrawn is selected 
with a probability proportional to the number of particles it contains (hereafter called the 
‘size’ of the box), therefore the largest boxes are emptied preferentially. In contrast, in 
model B this probability is uniform, since a particle is withdrawn from a box independently 
of its size. For these two models the particle which is withdrawn is then put in any of the 
other non-empty boxes with equal probability. Hence the lifetime of small boxes will be 
much larger for model A. In model C, the largest boxes are emptied and filled preferentially. 
We will see that in this case small boxes disappear almost as rapidIy as for model B. 

Models B and C may be mapped onto classical random walk problems mown in the 
mathematical literature as birth-death processes), which are solvable. Model A, though 
it may also be mapped onto a random walk problem, is much more difficult. We found 
it instructive to put model A in perspective with the other two simpler ones, in order to 
characterize the nature of its difficulty. 

The dynamics of the three models can be written in a unified way as follows. The 
number of active (i.e. non-empty) boxes at time 5 is denoted by M ( r ) ,  the number of 
active boxes at time r with k particles by nk(5). The latter are normalized as follows 

One may also denote by n;(r) the number of inactive (empty) boxes, such that M ( r )  + 
n;(r) = M (whereas the number of active empty boxes n&) = 0). We take as initial 
condition nt(0) = &.,MI i.e. each box initially contains one particle and M = N .  The 
fraction h(r) = N / M ( r )  represents the mean number of particles in the active boxes. 
Next, one defines fk(5) .  the density of active boxes with k particles, at time T, by 

t We thus disregard moves from boxes containing one particle to empty boxes, which are allowed by the definition 
given in [9] since they do not increase the energy. The two definitions are nevertheless equivalent for one-time 
quantities, ue to a rescaling of time. 
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fn(r) = n k ( r ) / N .  It is normalized such that 

We also define the energy density of the system as E ( s )  = - f , ( r ) .  
As will be shown below, these models may be described in terms of random walks on 

the half line, with an absorbing site at the origin, the size k of boxes playing the role of the 
position of the random walker. Indeed the density f k (r )  obeys the equation 

(3) 

where p k  and Ak are the hopping rates at site k, to the left and to the right, respectively, 
given by 

d 
d r  -fk(r) Pk+l.i%+l(d +Ak-lfk-i(r) - (Pk +Ak)fk(r )  

P a = k  At = A(T)  (model A) 
p,k = h(r) Ak =A(?) (model B) 
Pk = k  A k = k  (model C ) .  

. 
(4) 

Hence the walk is symmetric for models B and C, while it is biased for model A. In addition, 
the boundary condition fo(r) = 0 is imposed by the fact that empty boxes become inactive. 
The unit of time chosen in (3) closely follows the definition of the models. It corresponds 
to N successfil moves of a particle to one of the M ( r )  active boxes. The time variable t 
defined below corresponds to another possible choice for model A (or B) where one makes 
N attempts to move a particle to one of the M boxes [9,11]. 

We first study model B. The evolution in time of f k ( r )  is given by the equation 

(5) 

This last equation is found by an analysis of the balance between the gains and losses to 
the density f k ( r ) .  Indeed, n k ( t )  increases by one unit, either if one selects a box of size 
k + 1 to which a particle is withdrawn and put in a box of size I # k - 1, k ,  corresponding 
to a probability 

d 
d r  -hW = WdIh+i(5) +h-~(r) - Zfk(r)l. 

or if one selects a box of size I # k ,  k + 1 to which a particle is withdrawn and put in a box 
of size k - 1, corresponding to a probability with a similar form. All the probabilities of the 
even? such that i l k  increases or decreases by one or two units can be computed similarly 
and add up to give equation (5). The balance equations for models A and C are found in 
a similar way. Summing both sides of this equation on k gives the evolution in time of 
l/W) 

In order to solve (5) it is convenient to define a new time variable i by dt = h(s) dz. 
We denote by gk(t )  = fk(7) the density in this new variable. Equation ( 5 )  becomes 

(8) 
d 
df -gk(f)  = gk+l( t )  + gk-i(f) - Zgk(f) .  
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This equation, together with the boundary condition go@) = 0, describes a one-dimensional 
symmetric random walk with an absorbing site at the origin. This problem may be. solved 
in this discrete formulation. However, its solution is simpler in its continuum version: 

where h is now a continuum variable. The solution of (9) is given by 

g(h,  t )  = l m d h f  A h ,  llh', O)g(h', 0) (10) 

where 
1 

p(h, tlh', 0) = ---{expI-(h - h')'/4rJ - exp[-(h + /~')~/4t]) (11) 

is the probability of finding the random walker at a distance h of the origin at time t if it 
started at a distance h' at time 0, without ever passing through the origin. This result may 
be easily found by the method of images. With the initial condition g(h', 0) = S(h' - 1) 
and using (Z), one gets 

Az 

For t large this implies that h ( f )  
integral 

fi. The original time variab1e.r is given by the 

T = lr erf (&) du = (1 + f )  erf ($) + E e x p  (--$ - i. 
Equation (12) together with (13) provide ~. a ~ parametric representation of 1 / X .  When t is 
large (13) gives 7 x 2 m  hence 

(14) 
?I 

A(T) ss ? r  

so that the energy density decreases asymptotically as E ( r )  rz -1 +2/(ns). This behaviour 
is confirmed numerically with high accuracy. Finally we note that the density of active boxes 
has a scaling form at large times: f ( h ,  5 )  = F(x)/A2(r) where x = h / h  and where 

(15) 

normalized to 1, is obtained from (lo), (ll), (13). 
Let us point out that there is a simple connection between this process and the zero 

temperature coarsening dynamics of a one-dimensional Potts model with an infinite number 
of states [U]. The domain walls perform random walks. When two domain walls meet, 
they coalesce into one. Their number therefore decreases in time. In the mean field case 
the density of domains of length h obeys equation (8). The mean field theory gives the 
exact scale invariant distribution of domains (15) [12]. Therefore the model described here, 
which does not possess any spatial structure, should have the same behaviour as its one 
dimensional version, at least for the dependence of h(r) with time. We checked the validity 
of this point numerically. 

?( 
~ ( x )  = -x  exp(-nxz/4) 

2 

Let us now turn to model C. The equation for f k ( r )  is 
d 

--A@) = (k + l)-A+1(5) + (k - 1)6-1(t) - 2 k f k W  dr (16) 
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with fo(r) = 0. Summing both sides of (16) on k yields 

d d 
d r  - - - ( l /AW)  = zf0W = fi(s). (17) 

fk(r)yk One deduces from (16) that the generating function G(y, r )  = f;(r) + 
satisfies the equation 

which is solved using the method of characteristics with the boundary condition G(y, 0) = y. 
One finds 

The first term of the expansion is f;(r). Hence h(r) = 1 + r. Note that, at large times, 
the behaviour of h(r) is linear in time as for model B. The energy converges to -1 as l/r. 
Again f (A, r )  has a scaling form at large times with F(x)  = exp(-x). obtained from (19). 

We finally study model A. The evolution in time off&) is now given by the equation 

(20) 
d 

-fk(r) = ( k +  I)fk+l(r)+h(r)fk-1(r)-((k+h(r))fK(t) d r  
with the boundary condition fo(r) = 0. Summing both sides of (20) on k yields 

Equation (20) describes an asymmetric random walk with transition rates p k  = k, ha = h(r) 
and with an absorbing site at the origin. The k-dependent velocity and diffusion coefficient 
of this random walk read 

vk = hk - @k = h(r) - k Dk = (hk + @k)/2 = (h(5) + k)/2. (22) 

Hence, according to whether k (the size of the box) is smaller or larger than h(r) (the 
mean size of the boxes), the bias vk/(zDk) = (A(r) - k)/(A(r) +k) is positive or negative. 
The existence of such a bias, which is the main difference between model A and the two 
previous models, has far reaching consequences. 

(i) The random walker is attracted towards h(r),  by a restoring force corresponding 
to a confining potential (see equation (29)). This potential is responsible for the existence 
of 'entropy barriers': configurations for which one of the boxes is nearly empty (i.e. the 
random walker is located near the origin) are much less numerous than those where all 
boxes are roughly equally occupied (i.e. the random walker is located around A(r)), and 
thus harder to reach by the dynamics. 

(ii) As a consequence, the random walker is absorbed by the origin at an extremely 
slow rate, and therefore its mean position A(r), which evolves by (21), increases extremely 
slowly with time, i.e. the minimum of the potential is moving slowly to the right. In other 
words, the relaxation of l/A(r) = M ( r ) / N ,  i.e. of the energy, is very slow. 

(iii) In principle, in order to solve (20), one could integrate the equation obeyed by the 
generating function GO., r )  = E,,, h ( r ) y k ,  as was done for model C. The solution thus 
obtained is not explicit. Instead, the former analysis suggests that an adiabatic approximation 
to this process should be very accurate, at least at large enough times. It consists in 
considering that the system is always in a quasi-stationary state obtained by solving (20) 
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with a vanishing left-hand side and with no absorption at the origin. On thB scale of time 
h(r) is considered as constant. One finds 

AL-1 
f d r )  = e x p ( - h ) F  (k 2 1) (23) 

which, up to the normalizing factor A coming from the definition (2)  of fk, is the discrete 
Poisson distribution. It is easy to show that the approach to this equilibrium distribution 
is exponential, with a relaxation time t .  equal to 1. The only dependence in time of this 
distribution comes from A, which evolves through (21). Therefore in this approximation, 
using (23), 

d r  exp(A) 
dh - A2 . 
--- 

As a consequence, the energy decreases asymptotically as E ( r )  - -1 + l/ln(i). A similar 
result is given in [l I]. 

An improved treatment of the adiabatic approximation is as follows. The average 
duration of time before absorption for a random walker initially at position k reads [I31 

Averaging over the starting position k, using (23). yields 

T =  

(26) 

- 
h 

Noting that dT/dA = (exp(h) - l)/h z Z, one gets 
- A" 
T =Ei(h) - Inh - y =-E-- 

nn ! n2l  

(Ei(x) is the exponential integral, y the Euler constant). This quantity represents the average 
length of time between two events where a box becomes empty. In the limit where these 
events are very rare, the distribution of these lengths of time is exponentially distributed, 
with a density l/T, therefore 

This equation is far more accurate than the leading order estimate (24): the difference 
between the exact result and our improved adiabatic approximation is exponentially small 
in h [14], while equation (28) shows that the leading correction to (24) is of order I/h. 

To summarize, the adiabatic approximation relies on the existence of two different time 
scales in this model: the average time for the walker to be absorbed at the origin, of the 
order exp(h)/h - z/ln(r), much larger than the relaxation time to = 1 needed to reach 
equilibrium, at a given value of A. 

(iv) Another consequence of the existence of a bias in model A is the fact that the 
dynamics is not governed by the scaling regime of the fk's. More precisely, for large times 
(large A), the distribution & possesses a scaling form, which is a Gaussian of width a 
centred around A. However, the time evolution of A, given by (21), is driven by f,(r) which 
is exponentially small in A. and lies in the non-universal tail of the distribution. Hence this 
time evolution is governed by rare events. By contrast, models B and C possess a scale 
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invariant density F ( x ) ,  thus f ~ ( r )  is inversely proportional to a power of A. ‘?his ensures 
a fast relaxation, by (7) and (17). 

The same features may be seen in a continuum version of model A. Taking the gradient 
expansion of equation (20) to second order yields the Fokker-Planck equation 
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Figure 2. Emcl density fh obtained from equation (20) compared to the quasi-stationary Poisson 
distribution (23) and to the Fokker-Planck equilibrium distribution f&) (30) (A = 11.44). 

by numerical integration of equation (201, with a Monte Carlo simulation, and with the 
adiabatic approximation equation (28). We chose to represent the data in the time scale t ,  
where dr = Adz, hence (28) yields t(A) = En,' (An+' - l) /n(n + I)!. Figure 2 depicts a 
comparison of the exact density .fk obtained from equation (20) with the quasi-stationary 
Poisson distribution (23) and with the Fokker Planck equilibrium distribution f&z) (30). 
(Here A = 11.44 corresponding to t = IOOO.) Even on a logarithmic scale, the discrepancy 
is hardly visible, except in the tails. This is due to the fact that the ratio In(fq(l))/In(f,) 
converges to 01 very slowly when hincreases. At this value of A, this ratio is equal to 0.96. 
It is equal to 0.824 for h = 100 and to 0.79 for A = 400. 

Let us conclude with some comments. An interesting point would be to better understand 
the nature of the corrections to the adiabatic approximation done above. Another point of 
interest is the t'/t aging behaviour reported in 19,111. These points will be the subject of 
further work [14]. 

The correspondence between model B and the infinite states Potts model has already 
been pointed out. More generally, the models studied here are reminiscent of coarsening 
models where the dynamics is driven by the coalescence of the smallest domaias [12,15- 
171. For example, in 1151, the average size of domains scales as Int, akin to the behaviour 
of A in model A. 

Another interesting situation is that of a polymer in a plane which would like to adsorb 
strongly on a line, but with the constraint that the total'area between the line and the 
polymer is fixed (corresponding to, say, the incompressibility of the solvent). The size 
of a box corresponds in this case to the distance between the polymer and the wall. The 
polymer will then grow longer and longer localized 'hairpins'. Our solution corresponds to 
an idealized, mean-field description of the resulting dynamics where the one dimensional 
structure of the problem has been lost. It would be interesting to pursue this particular 
model or higher dimensional versions further. 

We wish to thank S Franz, J M Luck, F Ritort and I Yekutieli for interesting conversations. 
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