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Abstract. We discuss trie large scale effective potential for elastic objects (mamfolds) in

trie presence of a
random pinning potential, from trie point of view of trie functional renor-

malisation group (FRG) and of trie replica method. Both approaches suggest that trie energy

landscape ai large scales is a succession
of parabolic wells of random depth, matching on singu-

lar points where trie effective force is discontinuous. These parabolas
are

themselves subdivided

into smaller parabolas, corresponding to trie motion of smaller length scales, in
a

hierarchical

manner.
Consequences for trie dynamics of these pmned abjects

are
underlined.

1. Introduction

'The physics of elastic objects pinned by random impunties is certainly one of the most topical

<ourrent themes of statistical mechanics. The problem is of fundamental importance both from a

theoretical point of view (many of the specific difliculties common to disordered systems are at

stake) and for applications: the pmmng of flux fines in superconductors [1-3], of dislocations,

<Jf domam watts
m magnets, or of charge density waves [4,5], controls in a crucial way the

properties of these materials. Interestingly, this problem is also intimately connected to surface

[6] and crack growth [7] and to turbulence [8].
Two different general approaches bave been proposed to descnbe the statics of these pinned

manifolds, for which perturbation theory badly faits. Trie first one is trie "functional renor-

malisation group" (FItG) which aims at constructing the correlation function for the effective

pinning potential acting on long wavelengths using renormalisation group (KG) ideas [9,10].
'The second is the variational replica method which combines a Gaussian triai Hamiltonian

with "replica symmetry breaking" (ItSB) to obtain results in the low temperature, strongly

pmned phase [11-13]. Although many of the results of these two approaches actually tutu out

to be similar [11,13-17], the feeling that trie link between them is missing is rather widespread,
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Fig. 1. Schematic view of trie effective energy landscape
as a succession of parabohc wells matching

ai singular point. This picture actually corresponds to a
"one-step" rephca symmetry breaking scheme.

reflecting trie fact that our present general understanding of disordered system is still incom-

plete.
Trie aim of this article is to unveil precise connections between these two (sometimes pre-

sented as conflicting [10,16,18] theories. We show that both formalisms are mdeed struggling
to descnbe an awkward reality: the effective, long wavelength pinning potential has the shape
drawn m Figure 1. It is a succession of parabolic wells of random depth, matching on singular
points where the effective force (1.e. the derivative of the potential) is discontinuous. These

discontinuities mduce a singularity
m the effective potential correlation function, and are en-

coded in the rephca language by the ItSB. The replica calculation furthermore provides an

explicit construction of this effective (random) potential, and hence, in tum, information on

the statistics of say the depth of the potential minima. The replica calculation might also

shed light on the domain of validity of the FRG, by making more explicit the assumptions on

which the latter relies.

Apart from the satisfying possibility of reconciling two rather different microscopic methods,

we believe that our construction is very useful to understand the dynamics of such objects.
For example, their relaxation can be analyzed in terms of hops between the different

min-

ima ("traps"), corresponding to metastable long wavelength configurations. The statistics of

barrer heights control the trapping time distribution, and hence the low frequency response
and its possible aging behaviour [19, 20]. Another interesting situation is the zero temperature
depmning transition mduced by an externat driving field, which has recently been mvestigated,
agam usmg RG ideas for expanding around a mean-field limit [21-23]. However, the results

depend on the form of the pmning potential in this mean-field limit. The correct form was sur-

mised by Narayan and Fisher [22] to be the "scalloped" potential of Figure i. Our calculation,
to some extent, confirms their intuition.
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The model we consider is the (by now standard) Hamiltonian descnbing pinned elastic
luanifolds:

~~~~~~~~~
Î ~~~

Î ~ÎÎ~~ ~

~ ~~'~~~~~j
'

~~~

where
x is a D-dimensional vector labelling the internai coordinates of the object, and 1(x)

<~n N-dimensional vector giving the position in physical space of the point labelled
x. Var-

ious values of D and N actually correspond to interesting physical situations. For example,
D

=
3, N

=
2 descnbes the elastic deformation of a vortex lattice (after

a suitable anisotropic
generalization of Eq. (1)), D

=
2, N

=
describes the problem of domain watts pinned by

impurities in 3 dimensional space, while D
=

1 corresponds to the well-known directed poly-
mer (or single flux fine) in a N +1 dimensional space. The elastic modulus

c measures the

(lifliculty of distorting the structure, and Vo(x,1(x)) is a random pmning potential, which we

shall choose to be Gaussian with a short range connected correlation function:

1(x,1)1(x',1')~
=

NWô~ (x x')Ro ~~ j/~~~
,

(2)

where W measures the strength of the pmning potential. The scaling with N is chosen to

ensure a correct N
~ oo limit, in the sense that the pinning part of the free-energy is of order

iV, while each component of the pinning force -§f remains of order 1. In the following,
4

we shall choose for convenience Ro(Y)
"

exp(-fl~) where /l is the correlation length of the

random potential.
Que atm of the theory is to understand how the microscopic pinning potential will affect the

elastic manifold on long length scales, relevant for macroscopic measurements. In other words,

one would like to construct the ejfectiue pinning potential seen by a low wavevector mode of
the structure, after thermalizing the modes with shorter length scales. Both the FRG and the

replica approach propose an approximate construction of this effective potential which we now

discuss and relate.

2. Trie Functional Renormalisation Group

In the spirit of the momentum shell renormalisation group, the FRG method consists in writing
down a recursion relation for the correlation function of the potential acting on "slow" qodes

1<, after "fast" modes 1> (corresponding to wavevectors m the high-momentum shell IA16, Ai
have been integrated out using perturbation theory. This procedure has been addressed in

considerable detail in reference [10], we present only a brief description of the calculations. At

zero temperature the renormalized Hamiltonian is defined by HR(Î<)
"

f~ )ÎVi<(~ + VR(Î<)
and

VR(Î<)
" min

/ Vi>
(~ + V(1< + 1>, x)

,

(3)
1>

x

2

where the original field 1=1< +1> has been spht into low (1<) and high (1>) momentum

components. The renormalized Hamiltonian HR thus describes the long-distance physics of

modes with momenta k < A/b, where A is the original short-scale cutoff, and the rescahng
factor b > 1. The FRG proceeds to determine the minimum in equation (3) perturbatively in

îÎ>. The extreme condition may be expanded in 1>
as

-V~#[
=

-ô~V(1<+1>,x)
m
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where % e
]. Defining the Fourier transform V[J"'

=
%ôj f~ Vii<, x)e~~~'~, the approx-

imate solution is

A2jj
~ m

-ii + A-2 / iz
~,

il,. (5)
, ~,

Inserting this solution into the energy (Eq. (3)) gives

> >

~~ ~
2A2

~~~~ ~
2A4

~~,
~~~'~~~~~~" ~~~

where f~ is restricted to the high-momentum shell. If1<(x) is constant over regions of a

certain size 1, this can be rewritten as an integral of a local potential, up to small errors of

order lli: VR(1<)
ce

fdxvR(1<,x). Thus, m
the long wavelength limit, the renormalized

Hamiltonian is well-described simply by a renormahzed potential. Its connected correlations

can be calculated from the expression

v~(1,x)v~(1,,xi)~
m

R~ ('iji'i~ à(x xl). (7)

Assuming that the statistics of the effective potential remains Gaussian, one finds within this

first order perturbation theory:

RR(Y)
"

R(y) +
~~ ~%ôjR%ôjR %ôjR%ôjR(0)1(8)

8~r 2

in D
=

4, where b
=

e~~ and dl is infinitesimal.

Equation (8) is the final result of the mode elimination. The search for fixed points requires

the additional step of a rescaling transformation, which restores the original value of the cutoff

A. Performmg this rescaling via x ~
bx and #

~
b(# results m

the fuit KG equation for the

correlator

ôiR
=

(e 4()R + (#~fR +
~

%ôjR%ôj R £
ôjR%ôjR(0)j

(9)
8~r 2

Iteration of this equation from the "Initial" condition R(y)
=

Ro Iv) converges towards the

fized point R*(y), describing the long wavelength properties, which has the singular small y

expansion [10]

R*(§) R*(Ù)
"

f§(al a3/2/À +
,

(1°)

where e =
4 D is the small parameter justifying the use of perturbation theory. Another way

of stating this result is in term of the effective force f acting on the manifold, defined as minus

the derivative of the effective potential with respect to #. The force correlation function then

behaves as

if*14) f*14')i~
=

12fa3/214 4'i (ii)

Together with the assumption of Gaussian statistics, this suggests that the effective force acting

on the manifold behaves, for N
=

1, as a tandem walk in # space. This picture was advocated

in [10], and was actually used to argue that the next correction m e to would be of order e~/~
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3. Trie Replica Approach

The rephca approach is, in some sense, more ambitious, since it provides an explicit proba-
bilistic construction of the effective disordered potential seen by the manifold. Qn the other

hand, the method can only be controlled in the N
~ oo limit, where a Gaussian variational

Hamiltonian becomes exact [24]. Let us however stress right away that a Gaussian Hamiltonian

in rephca space ares net mean that trie actual effective potential which we wish to characterize

bas Gaussian statistics. As we shall indeed show below, this is not at ail the case.

Let us sketch first how the correlation function R(y)
can be calculated with replicas and

<oompared with the FItG. (More details can be found in [8,11,12]). The average free-energy
F

=

~W
e

-)In f D#exp[-fl7i] is computed as usual as the "zero replica" limit in Z
=

lima_o ~ù~ The average of Z~ can be seen as the partition function of the following n-replica
Hamiltonian:

~
~ d~a ~

w fil (~a (~) ~b (~))2
~~

2
~

Î ~~~
dx 2

( Î~~~~~~ 2N/l2 '
~~~~

a,

where an effective attraction between replicas has emerged from the disorder average. The idea

is to treat this interaction using a triai Hamiltonian for which analytical progress is possible [26]

7iv %
£ ~j Vl~k)Gà/lk)itlk), (13)

where ç7~(k) e
L~f fd~x #~(x)e~~~'~, and L is the "linear"

size
of the manifold.

The triai free-energy obtained with 7iv depends on Gab and reads Fv [G] =
(7in iv )Tr in G;

lhe optimal matrix G is then determined by mmimizing Fv[G], which leads to a set of self-

(onsistent equations for Gab. The point now is that the structure of Gab in replica space

( an be non trivial in the limit n ~
0, corresponding to "replica symmetry breaking". The

physical meaning of this procedure has already been descnbed in detail in [8,11, 27], and we

shall come back to it later. Before describing the solution to these self-consistent equations in

ihe regime D £ 4, one should darify first in what sense the replica calculation allows one to

<,haractenze the large scale pmning potential. Since the triai Hamiltonian is factonzed over

Fourier modes, one can isolate a particular, very slow mode ko
~

0. The effective force acting

on Çio + @(ko) is f((Çio)
"

-)à in PR (@o), where PR (@o) is the probability to observe Çio
~o

lbr a given realization of the random pmning potential Q. It is thus dear that in order to

(;ompute, say, the correlation function of f,
one should study the object:

~~~~°~~~~~~ ÎiÎà
12 ç7Îôç7["

~~~~~°~~~~~ ~~~~~~~~~~' ~~~~

~rhe last quantity is directly calculable, since the Gaussian ansatz asserts that

ÎÎ Pff (@t)
"

fl ~~Pl~
@l~~~Gà/(k0)@l~~~li

(là)
il

~

~vhere G is the optimal matrix determined via the self-consistent equations and
ir

denotes ail the

1)ermutations of the replica indices. (Ail the saddle points only differing by permutation of the

indices must be taken into account). The quantity in the right hand side of equation (14) cor-

responds to the choice pi
= go for n/2 indices, and pi

=
pi for the other n/2. The next trick
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to compute (15) is to notice that in this case one can write ç7( e
) [go Il + aa) + WI (1 aa)],

where aa =
~l are fictitious Ising spins which pick up a particular permutation, provided

£]_~
aa =

0. The technique for working Dut the sums over such spin configurations has been

developed in the appendix D of reference [8]. Within a Parisi ansatz for the matrix G, the final

result for the force correlation, written in the case of N
=

1 to keep notations simple, is the

following:

/n(wo)/niwi)
= )cki lôwllwi £°° dh~PihU °) i~~~

where il(h,u) satisfies a non linear partial differential equation:

Î ÎÎ ~~Î ~ ~~Î~~l' ~~~~

where 0 < u < 1 is the Parisi variable, indexing the pairs of replica indices a # b in the limit

n ~
0. The function q(u) is related to the matrix G(k, u) through:

q(U)
=

-fl~*° j*'~~G~~lko>U) (18)

and the boundary condition is

il(h,
u =

1)
=

in
l

+ exp[-2h 2q(1) + 2
/

du
(u)])

(19)
~

Hence, once
G(k, u) is determined, the correlation function of the effective potential acting on

mode ko is determined by solving il?), which depends on go vi through q(u).
The solution of the self-consistent equations for G(k,u)

was discussed in [11,12]. Let us

specialize to the case N
= oo, and introduce two important physical quantities, namely:

.
The Larkin-Ovchinnikov length (Lo separating a "weakly distorted" regime for (x( <

(Lo, where ail the displacements induced by the random potential are small compared to the

correlation length of the potential /l, from a strongly distorted regime. Simple dimensional

arguments lead to [12, 28]

~2 ~£4
à

~~°
lk '

~~~~

where lk is a rescaled potential strength, defined as
lk

=
(2ir)~W/(4 D). The reason for

introducing this rescaling in j
comes from the non trivial phase diagram around dimension

D
=

4 [29]. Indeed, it is easily seen from the study of the hneansed, random force problem,
that a "weak disorder" regime with non trivial wandering exponent only exists when lk is

small enough. If one keeps the original W fixed and lets the dimension D go to 4, one enters

a different phase (which actually survives for D > 4) [29].

.
A "Iteynolds" number Ile (this terminology comes from the analogy with Burgers' equation

[8]), defined as the ratio of the elastic energy stored in a volume (£o to the temperature 1/fl.
We shall define Ile as

Re e

flC(D)lk" (c/l~)ô, (21)

where C(D) is a dimension dependent number. Note that for D
=

4 e
with e small, C

=
e~/2.

We shall only consider the case of low temperature and weak disorder, so that Re » 1 and

(~o » a, where a =
2ir/A is the small scale lattice constant which regulanzes the integrals
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<Jver k. Under these conditions, we obtain the following result for D > 2:

@

G~~(k,u)
= -ai

~ ~~

for u<u~ (22)
Uc

= -ai for uc < u < (23)

with ai =

fllkel1l2 and u~ =
1/Re.

The non trivial dependence of G~~(k, u) on u corresponds to continuous "replica symmetry
breaking". Let us now analyze the partial differential equation (17) in the limit fl

~ oo. To
ihis atm, we introduce the notation

+f =

~j~f and the following rescaled variables:

Equation (17) then transforms into

)
=

-U'lifi" + vifi'~l (25)

(the '
means

£), with boundary condition (in the limit fl
~

oo):

ifi(z,
U =

1)
=

-2 ((D 2)g + zvl) 8 (-(D 2)g zvl), 126)

~vhere 8 is the step function. The correlation of free energies (16) thus involves, after change
of variables, the integral

Z e dhil(h,
u =

0)
=

#
dz zifi'(z,

u =
0). (27)Î~

UC

Î~

iJnder this form, the problem of evaluating Z for small (Çio i$Î can simply be treated by
solving equation (25) for ifi'(z,u), perturbatively

m g. The result reads see Appendix:

=
~

Î 't Î
i

l'f)g~/2j
,

~~~~

with £(+f) a complicated function of +f. In the limit D
=

4 e, +f m -1+ [, and £(+f) m
2@.

Transforming back to the original variables, we find, in the limit ko ~
0:

RRSB(Y) RRSB(0)
=

-elk) Il
~ (~~

,

(29)
~ ~ ~ÎLO

with y = (Çio Ào)~. Quite remarkably, equation (29) has the same form as the FRG result,
equation (10), provided lk is chosen in such a way that (Lo remams fixed as D

~
4. This y~/~

behaviour was first obtained within a replica theory in [8] in the case D
=

1 (corresponding to

Burgers' turbulence), where the solution has a simpler, "one-step" structure (valid for D < 2):
(l~l(k,u)

=
-a18(u u~).

4. Physical Interpretation

4.1. SHocKs AND ItELATIONSHIP wiTH THE BURGERS' EQUATION. As mentioned above,
the Gaussian variational ansatz does not mean that the statistics of Vi is Gaussian. Let us
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first discuss the replica construction of the effective potential in the simpler case D
=

1 where

a one step solution holds [8, iii. In this case, one has:

v*(p) % ~-PF«-j(~-~«)~
/(~~à~)]lj30)

~ fl
~

'

where a label the "states", centered around ç7~ and of free-energy F~, both depending on

the "sample" Q. The major prediction of the rephca theory is that the Fa are exponentially

distributed for "deep" states [30], 1-e-:

p(Fa) «F«--m exp(-pucjf~j). (31)

~~~The fuit distribution of the effective force jf (corresponding to the velocity in the Burgers

problem) was analyzed in detail in [8]. Using°the turbulence language, it was found that the

velocity field organizes in a "froth-like" structure of N -1 dimensional shocks of vanishing
width in the limit Ile

~ oo. Correspondingly, the potential has for N
=

1 the shape drawn

m Figure 1: it is made of parabolas matching at angular points the shocks. The singular
behaviour of the force-force correlation function, equation (il ), is due to the fact that with

a probability proportional to the "distance" (Çio i$Î, there is a shock which gives a finite

contribution to /(Çio Î(i$ This means m
particular that ail the moments /(Çio Î($ )ÎP

grow as (Çio $Î for p > 1, instead of (Çio
$Î~/~

as for Gaussian statistics. It is not dear

how this strong departure from Gaussian statistics can be incorporated in an FRG treatment

(see Sect. 4.3 below).
The relation with Burgers' equation is not coincidental and actually quite interesting. Keep-

mg N
=

1 for simplicity, consider a toy model for trie FRG mode elimination in which the

renormalized effective potential is defined as

pv~(p )-_i~ dp ~-Pl(CA2/2)~§+vo(~<+~>)llj32)
~

il
~

This means that VR(w<) is precisely the Cole-Hopf solution of trie Burgers equation [32]

~~Î~ ~~ flÎA2
~~ÎÎ~ ~~

Î~ ~ÎÎ~
~~

~

~~~~

with

V(w,t
=

0)
=

Vo(w) VR(w)
=

V(w,t
=

1). (34)

As is well known [32, 33], a random set of initial conditions (here the bare pinning potential

acting on ç7) develops shocks which separates as time grows, between which the "potential"

V(ç7) has a parabolic shape. Elimination of fast modes
in a disordered system thus naturally

generates a "scalloped" potential, with singular points (which are smoothed out at finite tem-

perature or finite Re) separating potential wells the famous "states" appearing in the replica
theory. Quite remarkably, this structure was anticipated in [34, 20] using different arguments.

4.2. FULL RSB AND MULTISCALE EFFECTIVE POTENTIAL. In the case of continuous RSB,

the effective potential is recursively constructed via a set of "Matrioshka doit" Gaussians. It

is schematically drawn m Figure 2 for the transverse fluctuations #(1) #(o). For each length

scale 1, one can
define a characteristic value of the parameter u(1) which plays the rote of u~

in equation (31) and sets the scale of the energy fluctuations. vii) is such that the diagonal
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"

> $
$

4 1

a,) b)

F'ig. 2. a) Multiscale energy landscape corresponding to a
fuit replica symmetry breaking scheme.

lu this case, trie construction is that of parabolas within parabolas, in
a

hierarchical manner. Trie

depth of the wells (and thus also trie height of the barriers) typically grows as 11 -.#'(~/C. Trie figure
actually corresponds to a two-step breaking scheme, with vi "

ù-à and vo "
o.05, b) A

zoom on a

particular region, showing trie first level of Gaussians.

part of G~~(ko
"

2ir Ii), namely ck(, is equal to the off diagonal part G~~(ko iv), which gives

~
(i)

ce
) ((Lo li)~ (Ù =

D 2 is the "energy" exponent in the case N
= oo, and is related to the

small
u

power-law behaviour of G~~ (ko, u)). The large scale structure of the effective potential

is thus a succession of parabolas of depth
ce

i~, but this envelope structure is decorated by
hierarchically imbedded parabolas corresponding to ail the smaller length scales, between 1and

(Lo, beyond which the shocks disappear, since one enters into the effectively replica symmetric
random force regime. The important point however is that small scale shocks are much more

numerous than large scale ones and completely dominate the small y behaviour of RRSB(Y)i

see Figure 2. This explains why the above result (29) is independent of ko and only reflects

trie structure of G~~(k,u) in the vicinity of u~, corresponding to k ce
1/(Lo. Qn the other

hand, quantities hke [#(1) #(0)]2 are dominated by the region where u ce u(ko
"

2ir 1),
corresponding to large scale moves. More precisely, the main contribution to [#(1)) #(0)]2

comes from minima separated by a
distance1( which happer to be separated by an energy

gap smaller than the temperature iii,17]. This occurs with probability ce
fl~~ x (flu(ko)) (see

Elq. (31)).
In other words, the effective potential calculated within the FRG procedure involves an extra

step which we have not performed within the replica construction, which is a coarse graining
of the # variables. In the FRG calculation, one restricts to configurations which are such that

# is constant on scales 1, and scales as1( [35]. The correct choice of ( then ensures that there

are only a few shocks on the scale 1. As we now discuss in a rather conjectural way, this is

perhaps why the FRG can still be controlled, the departure from Gaussian statistics being in

some sense "weak"

4.3. THE FRG IN THE PRESENCE OF SHocKs. To understand the emergence of shocks in

the FRG picture, and to assess their impact on the perturbative procedure, it is useful to study

trie above toy model for trie renormalization group, defined by equation (32), which amounts

t<J discarding trie internai degrees of freedom. Following reference [10], we write equation (32)
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at zero temperature (and after a
rescaling) as:

VR(#<)
=

min ii>
(~ + V(#< + #>)1. (35)

4> 2

The validity of trie perturbative minimization scheme was discussed in detail in reference [10],

assuming Gaussian statistics for the random potential V. Errors occur in the perturbative
minimization scheme due to an incorrect choice among multiple minima in the effective Hamil-

tonian for #>. For a Gaussian potential, there is an extremely dense set of such minima, and

such an error occurs essentially with probability one. The FRG appears to be saved, however,
because trie magnitude of the resulting error in the energy is small (1.e. higher order in e).

A rather different picture emerges if one assumes a smooth potential with shocks ii. e. slope
discontinuities in V) spaced by O(1) distances. To understand the limitations of the pertur-

bative minimization scheme in this case, consider the extreme condition of the toy model,

4>
=

-V'14< + 4>). 136)

In a scalloped (piecewise quadratic) potential, a perturbative solution in #> converges to

trie minimal energy in the local well containing #>
=

0. For (V( small, this is indeed the

global minimum, unless a shock occurs within a distance (#shockl < O((V(), as can be seen by
examining trie effective Hamiltonian for #> in trie neighborhood of a cusp. Provided that a

shock is present, however, trie incorrect minima is chosen with a probability of O(1), leading
to a large error m VR. Thus for trie scalloped potential, instead of persistent small errors, trie

perturbative minimization scheme is typically correct, but suffers from catastrc@hic rare events

that generate large errors with small probability.
An interesting simplification occurs if one considers a periodic random potential V. Such

periodic potentials occur in models of pinned charge density waves [4,22] and random anisotropy
XY magnets [si. It is straightforward to show that repeated applications of the toy model

iteration drive the potential towards a form with a single symmetric cusp per period [37].
For such a symmetric form, the perturbative minimization scheme always converges to the

correct (deepest) minima of the effective potential, 1-e- the local minimum is always the global
minimum. Within the toy model, then, the perturbative mmimization scheme appears to

be asymptotically exact. Although errors may accrue in early stages of the renormahzation,
these decrease as the length scale grows and the final fixed point form is exact provided the

perturbation theory is carried out to ail orders, of coursel That the FRG and replica methods

lead to essentially the same results in this case was underlined in [13].
The FRG consists, as does any renormalization group, of two parts: the mode elimination

(accomplished via the perturbative minimization scheme) and the rescaling transformation.

The toy model allows a detailed study, in a somewhat schematic way, of the former. Within

this framework, the non-analyticity of R emerges in a natural way via the generation of Burgers'
shocks. The toy model, however, completely neglects the internai degrees of freedom of the

manifold, whose rescaling is crucial for the power-counting in the fuit FRG. In particular, this

rescaling not only leads to the existence of a fixed point for R(#), but also formally renders

the higher cumulants of V strongly irrelevant.

There appears to be a degree of competition between the mode elimmation, which favors

shocks and the corresponding highly non-Gaussian distribution for V, and the coarse graining
and rescaling transformation, which tends to keep the density of shocks to a low value (at least

for small e). A complete description, which is unfortunately not available to us at present,
should properly balance these effects against one another. The special considerations applicable

for the periodic potential discussed above suggest that the FRG may indeed be well-controlled
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in that case. More generally, the fuit accommodation of shocks into the FRG remains a

hallenging open problem.

<1.4. THE 1+1 DIRECTED POLYMER. Àn explicit mo~lel where this construction actually
does not require the use of replicas or of the FRG is the N

=
1, D

=
1 (Directed Polymer)

( ase. From independent arguments [6, 36], one knows that the effective potential V~(#) act-

ing on the "head" of an infinitely long polymer (z
~

oo) is a "random walk" in # space:

(V~(#) V~(#')]2 ce
ii #'(. (Notice the difference with equation (ii), which concerns the

force, and not the potential). In particular, there are no shocks m V~(#). Shocks appear when

(>ne coarse-grains the description on a scale à. Let us define a coarse-grained potential on an

infinitesimal scale q as

v?(P) - 1in
L

d< À~ 1~' y~~~~ e~~~~'~ 137)

where Àl is an arbitrary local "filter". Iterating this procedure a large number of times à/q
produces an effective potential Vj which, again, satisfies a Burgers equation, but now with a

long range correlated "initial condition" V~ ii). As is well known [32, 33], shocks also appear

m this case, with an average spacing growing as
ô~/~. The distribution of distance d between

shocks furthermore diverges for small d as
d~~/~ [33], indicating that there are shocks on ail

scales smaller than ô~/~. Ail these results can alternatively be obtained within the replica
lkamework [25, 31].

5. Discussion and Perspectives

We have shown in this paper that the FRG and RSB techniques are not contradictory but

<,omplementary. They both suggest quite an appealing physical picture: the phase-space of the

system is, on large length scales, divided into "cells" corresponding to favourable configurations
where the potential is locally parabolic, and whose depth is exponentially distributed. These

<,ells are themselves subdivided into smaller cells, corresponding to larger length scales, etc.

ibis hierarchical construction is similar to the one usually advocated for trie phase space of spin-
glasses [38], based on Pansi's RSB solution of the Sherrington-Kirkpatrick model [11, 20]. The

enormous advantage of random manifolds is that this construction can be directly performed

m physical space.

An important consequence of this construction is that it allows us to discuss the dynamical

properties for finite N [39]. In the case of a one-step RSB, one can directly calculate from equa-

lion (30), the distribution of the height of the barriers /lE between two neighbouring wells,

and finds that it decays exponentially as
exp(-flu~/lE). It is interesting to notice that the

barriers thus behave in the same way as energy depths [41], a point recently studied in detail for

iandomly pmned fines m [42]. A natural picture for the dynamics is thus to imagine that the

manifolds jumps from well to well, each of which representing a long-lived conformation of the

manifold. Such a picture is corroborated by recent numerical simulations in D
=

1, N
=

1 [43].
~rhe lifetime of each "trap" is activated

T ce To exp(fl/lE), and is thus distributed as a power-

law T~~~~(~) for large T, where the exponent u(k)
ce

k~ depends on the "size" of the jump (1. e.

ihe mode involved in the change of conformation), small u(k) corresponding to large wave-

lengths. Then, as emphasized in [19] where precisely the same "trap" picture was advocated

lbr spin-glasses, the dynamics becomes non stationary and aging effects appear at low temper-

atures and/or long-wavelengths such that u(k) < 1. For example, the response of the manifold

io a spatially modulated externat field is expected to behave, for t < tw, as
(t/tw)~~~(~),

where tw is the time elapsed rince the quench from high temperature. Correspondingly, the
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a-c- response should behave, for uJtw » 1, as (uJtw)~(~)~l, again much in the same way as

observed in spin-glasses [19]. For finite N however, one may expect that the exponential distri-

bution of deep states ceases to be valid outside the scaling region, 1.e. for /lE W ) [19,31].

This will lead to "interrupted aging" for modes such that In tw »> u(k)~l These equilibrated
modes thereafter only contribute to the stationary part of the response (or correlation).

It is thus rather satisfactory that the "traps" appear naturally m the context of pinned man-

ifolds through the replica description, and that this picture actually complement the "droplet"
construction. It would of course be gratifying to understand precisely how these ideas could

be extended to finite dimensional spin-glasses.
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Appendix

Perturbation Expansion for Equation (27)

We provide here some intermediate steps of the computation of free energy correlations with

the replica method. We need to solve equation (25) with the boundary condition (26), and

compute then the integral Z defined in (27). The limit of interest is g small. We work with

the derivative x(z, u)
=

ifi'(z, u) which satisfies the equation:

together with the boundary condition:

xlz,
U =

1)
=

-2681-ID 2)g zô) (À.2)

The solution to this differential equation to order g cari be wntten as:

x(z,U
=

°)
=

xilz) + x2(z) (À.3)

~~~~~

-(D-21w dz'
~~

(z z')~
(À.4)xi(z)

=
-26

/ / ~ ~
~°° @ 'f ~

and

xi(z)
=

4g u?+~du (A.5)Î~

j°° dz' (z z')2 à /° dzi (z z')2

~

~

-oe

/~ ~~~ 4v?~~ ôZ'
-co

~ ~~~ 4(1 v?~~

Îf + '~ ~ ~
Îf + 1 '~ ~
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Introducing the notation

~°~~~ Î~ ~~ ~~~~ ~~ ~~

we find, after multiplication of x by z and integration:

z
=

19 (A.7)
vi

+~
+ 1

/g3/21/l(D 2) 4
~

U?+~dU
L d~»o(A)»i11)]

+

..)

Expansion of the last integral for e =
4- D small. with

+f =
-1+e /2, reveals that the coefficient

of g~/~ which to leading order should be ce
e~~/~ in fact vanishes, the next term being of order

~o
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