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A b s t r a c t  

We discuss the general link between mode-coupling like equations (which serve as the basis of 
some recent theories of supercooled liquids) and the dynamical equations governing mean-field 
spin-glass models, or the dynamics of a particle in a random potential. The physical consequences 
of this interrelation are underlined. It suggests to extend the mode-coupling approximation to 
temperatures well below the freezing temperature, in which aging effects become important. In 
this regime we suggest some new experiments in order to test a non-trivial prediction of the 
Mode-Coupling picture, which is a generalized relation between the short (/3) and long (c~) time 
regimes. 

PACS: 75.10.Nr; 64.60.Cn; 64.70.Pf; 11.17.+y 

1. Introduction 

Let us face it: there are not so many techniques to deal with the score of  strongly 

non-linear problems that Nature perversely offers, to the theoretical physicis t ' s  dismay. 

Among others, one may of  course cite fully developed turbulence [ 1 ], but also interface 
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growth and disordered systems [2] and strongly interacting liquids (i.e. glasses) [3] .  

The core of  most of  these problems is a non-linear dynamical equation, which we write 

in a symbolic way as 

,~4,(x, t) 
- -  - t z ( t ) d p ( x , t )  - g F ( d p )  + 7 1 ,  (1.1) 

~gt 

where &(x ,  t) is a vector field, F(~b) is a non-linear (though generally local it can also 

be non-local) coupling term and r / a  Gaussian white noise. The term conta in ing/z( t )  

is a restoring force. We leave open the possibility that it can become time dependent in 

order to include in our study the cases where one imposes a 'spherical' constraint on 

the field ~b, such as ~b(t) • ~b(t) = 1. The coupling constant g serves as a book-keeping 

parameter to set up a perturbative expansion. This expansion can either be well-behaved 

or ill-behaved depending, say, on the dimension of  space. It is in any case rather useless 

when g is of  order 1 if it cannot be resummed in one way or another. A very popular 

and versatile class of  resummation schemes amounts to performing a 'one-loop'  self- 

consistent perturbation theory. Depending on the context, self-consistent approximations 

of  this type have received the names of  'Mode-Coupling Approximation'  (MCA)  [4] 

for critical dynamics or liquids, or 'Direct Interaction Approximation'  [ 1 ] for turbulent 

flows; to some extent the Hartree approximation also falls in this category, as well as 

the refined version called 'Self-Consistent Screening Approximation'  [7] .  In the mode- 

coupling - direct interaction approximation for the problem described by the Langevin 

process (1.1) one expands the relevant physical quantities to lowest non-trivial order in 

g and then replaces the bare objects in the correction term by the fully 'renormalised' 

objects that one wishes to compute. This amounts to resumming a particular (infinite) set 

o f  terms in the perturbation expansion. In this way, non-trivial self-consistent equations 

are obtained, which enable one to peep into the strong coupling regime. 

The problem is of  course to try to control this procedure. An important step in this 

direction is to identify a model for which the self-consistent equations are exac t  (just as 

the Hartree approximation describes exactly the large N limit of  an N component field 

problem). This is interesting for three reasons: first of all, it shows that i f  the underlying 

model is well behaved, the approximation does not violate any physical constraint. 

Second, the ingredients needed to build the model shed light into the physical content 

of  the approximation. Third, one may hope to find a systematic expansion around this 
approximation. One can discuss in particular whether the interesting features of  the 

self-consistent equations are or are not an artifact of  the approximation itself. 

This general concern is particularly relevant within the context of  supercooled liquids, 
for which the Mode-Coupling Theory (MCT) 6 offers (at present) the most comprehen- 

sive and successful description [3,5]. It was understood long ago by Kraichnan [6] that 

6 The Mode-Coupling Theory of glasses takes as a starting point an exact Liouvillian description of the 
interacting panicles but not the Langevin noise r/. Through a series of approximations, similar in spirit to, 
but different from, the MCA, one obtains the so-called Mode-Coupling equations discussed in Section 4, 
which happen to be identical to the MCA equations deriving from Eq. ( I. 1 ). There is thus a slight distinction 
between MCA and MCT. 
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the direct interaction approximation for turbulence becomes exact when one considers 

a generalisation of the Navier-Stokes equation which contains some quenched disorder. 

Recently, it has been understood that this same approximation also becomes exact for 
a system with deterministic, but highly chaotic interactions [8], which in fact are not 
very different from random ones (we shall return to this paper later on). This also holds 

for the simplest mode-coupling equations with cubic interactions [9]. The existence of 
an underlying disordered problem is in fact a very general result: we shall show below 

that the MCA for a general non-linear F(~b) and the dynamical generalisation of the 

self-consistent screening approximation [7] are the exact equations describing a suitably 
chosen disordered system. 

One extra difficulty of modelling 'true' glasses (with respect to spin-glasses) is that 
the effective disordered potential slowing down the particles is 'self-induced' by the 

dynamics itself, rather than arising from an external source of quenched randomness. At 
the same time, glasses and spin-glasses behave very much in the same way, suggesting 

that the difference between 'self-induced' and quenched disorder might not be crucial, 

at least in a restricted time window. This scenario has been substantiated within several 
mean-field like models in the recent years [ 10-12]. In a sense, the MCT introduces 

some quenched randomness into the glass problem, without specifying it explicitly. This 
might be a clue to understand the success of the MCT. 

The fact that MCT equations become exact for some disordered system suggests 

how to extend it to low temperatures, i.e. inside the glass phase. The MCT for glasses 
usually addresses the temperature regime above the glass transition, in the supercooled 

liquid phase, where the property of time translation invariance holds. This means that 

the correlations between time t and t ~ depend only on the time difference t - t I (as a 

matter of fact, the MCT is generally formulated directly in frequency space). 

However, as is now well documented experimentally in the case of spin-glasses 
[13] and other structural glasses [14], this property does not hold in general in the 

glass phase. There is a non-vanishing 'waiting time' dependence in the correlation 

and response function - the 'aging' effect. It was recently observed [16] that even such 
simple disordered models (as the ones for which MCA is exact) have a low-temperature 

out of equilibrium dynamics that is both soluble and indeed captures aging phenomena 
in qualitative agreement with the experiments. Hence it is important to know in general 
how Mode-Coupling-like equations can be written in a two-time formalism, without 

assuming, since this allows one to make predictions deep into the glass phase, and not 

just above it. 
Finally, one could hope that some sort of perturbative expansion, taking the disordered 

system as a starting point, would bring one back closer to the original model, in particular 
accounting for finite dimensionality effects. 

The aim of this paper is threefold. We first show that the MCA for a general F(~b) 
is equivalent to studying a general spin-glass system (Section 2). Second, we show 
(Section 3) that Bray's self-consistent screening approximation for the usual 4, 4 theory 
amounts to studying a disordered version of the Bernasconi model [21], which was 
studied recently, precisely to give some flesh to the idea of 'self-induced' disorder in 
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Fig. 1. Diagrammatic representation of the perturbative solution to Eq. (2.1). Crosses indicate noise and 
oriented lines indicate the bare propagator Go. 

glasses. Finally, we summarize in Section 4 the known results [ 16-18] on these disor- 
dered models and rephrase them in the context of supercooled liquids. We suggest that 
well-controlled aging experiments deep below the dynamical glass transition temperature 
might serve as a crucial test for the Mode-Coupling description of glasses. The reader 
who is interested in the physical aspects of the discussion and less by the technical 
details can jump directly to Section 4. 

2. Mode-Coupling Approximation and disordered systems 

We first describe the MCA on the simple case of a single scalar degree of freedom 
4', with an energy 

g 4 ( 2 . 1 )  H = ½/z(t) 4'2 + 4.~ 4' . 

We assume that the dynamics of 4' in contact with a heat bath is described by the 
Langevin equation 

04' g 3 
,9-7 = - ~ z ( t ) 4 '  - ~ .  4, + 71, (2 .2 )  

with initial condition 4'(t = 0) = 0. The thermal noise r/ is a Gaussian noise 7/ with 
( r / ( t ) )  = 0 and (r / ( t )  r /( t ' )  ) = 2 T ~ ( t -  ( )  (in the following the brackets will always 
denote an average over the realisations of the Gaussian white noise r/). 

Setting Go = [/~(t) + O/Ot]-l, the perturbative expansion for 4'(t) is easily written 
as 

g 
4'(t) = G 0 ® r / - ~ . G 0 @ { G 0 ® r l e G 0 ® r l o G 0 ® r l } +  .... (2.3) 

where ® means a time convolution (Go @ f ) ( t )  = f o d t ' G o ( t , t ' ) f ( t  ~) and • is 
a simple product. For the specific form of Go in Eq. (2.2), one has Go( t , ( )  = 

exp ( -  ft: dT"/x(7")). Eq. (3) can be graphically represented as in Fig. 1. Crosses indi- 

cate noise and oriented lines indicate the bare propagator Go. 
% 

Two quantities of interest are the (two-times) correlation function C(t,  t') and the 
response function G(t, t') defined as 
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C(t,t') >( + :~ ) "',,-, / + 6 ) ( 
21[ 

_.L . . .  

G(t,t') -- ) + :~ ~- > +18 " " + . . .  

Fig. 2. (a)  Diagrammatic representation of the perturbative expansion of the auto-correlation function 
C ( t ,  t ' )  ~ I c b ( t ) ( b ( t ~ ) ) .  (b)  Diagrammatic representation of the pellurbative expansion of the response 
function G ( t ,  t ' )  =~ I / ( 2 T )  (q~(tDT(tt)).  

C(t,  t') =- ( d~(t) (b(t') ), (2.4) 

G(t,t') \ ~ /  ~-~ (~b(t) ~/(t') ), (2.5) 

where the last equality holds for a Gaussian noise. The diagrammatic expansion of C, G 

is represented in Fig. 2. 
In what follows we shall assume that the mass is renormalised in such a way that all 

tadpoles (i.e. the second diagrams in Figs 2a and 2b) are already resummed. 
It is useful to introduce the kernels Z( t ,  t ') and D (t, t ~) through the Dyson equations 

t tL 

t') ~ Go(t,t ') +/dtl/dt2 Go(t, t l )  -Y(tl,t2) G(t2, t ' ) ,  (2.6) G(t, 
J t l  

i t l I 

t t I 

C(t, t l ) = / d t ] f d t 2 G ( t ,  t l )D( t , , t 2 )G( t t ,  t2). (2.7) 

0 0 

The MCA for this problem amounts to an approximation of the kernels ,Y(t,t ') 
and D(t,  t') where one takes their values at order g2 and substitutes in them the bare 

propagator Go and the bare correlation by their renormalised values. This gives the 

lbllowing self-consistent equations: 

Y.'(t,t') = ½gZCZ(t,t') G(t , t ' )  , 

D( t , t ' )  = 2 T ~ ( t -  t') + ~gZ [C(t , t ' )  ]3, (2.8) 

which are represented in Fig. 3. This approximation neglects 'vertex renormalisation': 
It keeps for instance the diagram depicted in Fig. 4a that represents a line correction, 
while leaving aside the diagram drawn in Fig. 4b that represents a vertex correction, 

It will also be useful in the following to note that the Dyson equations can be recast, 

after multiplying by G0 -1 , into the form 

Go j ® G = Z  + X ® G ,  (2.9) 

Go ~ ( D C = D Q G +  X ~ C ,  (2.10) 

where 2- is the identity operator. More explicitly, 
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G Go G() ~ d 
, ) + ) > / 

~ t  

G ~ ( ; '  

) < 

Fig. 3. Diagrammatic representation of the MCA. The first two lines represent the Dyson equations, Eqs. 
(2.6),(2.7), which define the kernels 2,' and D. The last identity gives the value of these kernels within the 
MCA in the case of the ~b 4 theory. An oriented double line denotes the full response G, an oriented single 
line denotes the bare response G0, and a crossed double line denotes the full correlation C. 

(a) (b) 

Fig. 4. (a) Example of a graph that is kept in the MCA. (b) Example of a graph that is neglected in the 
MCA. 

t 

OG( t,ot t') = _tz( t ) G( t, t') + 8( t - t') + f dt" X( t, t") G( t", t ' )  , (2.11 ) 

t' 
t I 

cgC ( t, t') / 
8t - - t z ( t )  C(t , t ' )  + dt"D(t , t" )  G(t' , t") 

0 
t 

+ / dt" X(t, t") C(t", t ') .  (2 .12)  

o 

The del ta- funct ion imposes  G( t, t - )  = 1. 
The basic remark is that the d iagrams retained by the M C A  are precisely those which 

survive  if  one  considers  the fo l lowing  disordered problem.  First,  one  upgrades & to an 

N - ' c o l o u r '  object  Oh,, where  ce = { 1 , 2  . . . . .  N}.  The  equat ion o f  mot ion ,  Eq. (2 .2 ) ,  is 

genera l ized  to 
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3(b,~ 
- tz(t) ¢b,~ -4g  Z Ja[~'6q~bq~'Cb6 -brla' (2.13) 3t /3<~,<6 

with independent noises rh~. This equation derives from the Hamiltonian 

Hj  = g ~ Ja~y6~gaq~qbyqb6, (2.14) 
a</3<y<6 

The couplings J,~,~ are independent Gaussian random variables of zero mean and 

variance j2 --- I/N3). In the large N limit, the correlation ~,¢176 

N 
1 

C(t,t') =_ ~ ~ (q~(t)Cb~(t')) (2.15) 
ct=l 

(where the overline denotes the average over the random couplings Ja[376) and the 
response 

G(t , / )  - ~ ~=J \a'q,~(t') (2.16) 

precisely obey the MCA equations, Eqs. (2.7),(2.8),(2.6).  (It is important to notice 
that the random couplings are quenched, i.e. time-independent random variables.) The 
fact that MCA equations are recovered can be seen either directly on the perturbation 
theory, or through the use of functional methods given in Appendix A. A simple physical 
interpretation can be obtained through the cavity method [ 19,17] where one shows that, 
in the large N limit, any one of the ~b,~ evolves through an effective linear Langevin 
equation, 

t 

3ck,Ot - tz(t) gg, + f x(t,t')Cb~(/) +( , ( t )  + ~l,(t), (2.17) 

o 
where s%(t) is an effective (Gaussian) noise, with correlations self-consistently given 
by ((,, ( t)  (,, ( t ~) ) = D ( t, t ~). This result, derived in detail in Appendix A, gives back the 
MCA equations for the two point functions. It also provides a precise recipe to calculate 
higher order correlation functions within the MCA. 

The first to notice that the MCA (for the case of a 'quadratic' dynamical equation) 
corresponds to the exact dynamical equations of a disordered problem with a large 
number of components was Kraichnan [6] in the context of the Navier-Stokes equation. 
The important property of the random couplings which is used in the derivation is that 
the couplings are independent Gaussian variables. 

In the case of J 's with three indices, this can also be implemented using a deterministic 
construction of the J,~t~r, in terms of Clebsch-Gordon coefficients of an O(3) symmetry 
group 7 This was first noticed by Amit and Roginsky [22], and has been recently 
extended for dynamical problems [8,23,9]. 

7 The behaviour of  these coefficients as a function of  their indices looks however extremely 'chaotic' the 
difference between determinism and randomness is thus probably very thin. See the discussion in Ref. [ 1 I I. 
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Interestingly enough, this equivalence between MCA and a disordered system extends 
to an arbitrary non-linear coupling F(q~) (see Eq. (1)) .  Expanding F(~b) in power 
series, 

c~ Frq~r 
F(~b) = E r! ' (2.18) 

r=2 

the natural generalisation of the MCA (i.e. neglecting all vertex renormalisation) reads 

F2 [ C ( t , t ' ) ] ' - l G ( t , t ' ) ,  (2.19) Z(t , t ' )  =g2 Z - ~ - ~ . w r = :  ( r  

~--~ F} [C(t, t ,)]r O(t , t ' )  = 2 T S ( t -  t') +g2 ~ . (2.20) 
r=2 

(Note that for r odd, there appears an additional 'tadpole' contribution in Eq. (2.19), 
which we have assumed again, that it has been reabsorbed into the mass term # ( t ) . )  
The dynamical equations within the MCA for this extended model are readily obtained 
inserting these expressions for 27 and D in Eqs. (2.11) and (2.12). 

These equations can again be obtained as the exact solution of a problem with 
quenched randomness, the problem of N continuous spins q~,~ interacting through the 
Hamiltonian 

H j [ d p ] = g Z F r  Z Jm ..... -,,dPm'"(9,,-,, (2.21) 
r>_2 al  < . . .<at+ I 

and the Langevin equation 

a 4),:r a H j [ fft~ ] 
- -  = - i z ( t ) G  + a,~,  ( 2 . 2 2 )  
at 8&,~ 

where J,~t ...... t are quenched symmetrical and otherwise independent Gaussian variables 
normalized as 

1 
(Jtr~ .... , )2 = N__7. (2.23) 

Therefore the mode-coupling equations corresponding to an arbitrary nonlinearity F(&) 
describe exactly a spin-glass problem with arbitrary multispin interactions. Let us note 
that in order to be well defined, the model defined by the Hamiltonian Hj must be 
supplemented by a constraint preventing the field &,, from exploding in an unstable 
direction set by the coupling tensor J,~,...,,.,~. A convenient constraint is 

N 
1 Z ~b2 ( t ) =  C( t , t )  --- 1, (2.24) 

¢~=1 

which can be implemented dynamically through a Lagrange multiplier, acting as a time- 
dependent mass/z( t )  which must be self-consistently determined. Another possible reg- 
ularisation is to add to Hj a term Ng'/2(~_,,~ fb2/N) {r+l}/2, with g' large enough. As a 
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matter of  fact, this term precisely generates, for r odd, the tadpole contribution in the ex- 
pansion of the original ~r+l model, provided one chooses g'  = g/2 (r- 1)/2 [ (r + 1 )/21 !. 
Surprisingly, it can be checked that this value of g, is not large enough to suppress the 
instability of  the disordered model. We are thus led to conclude that the plain MCA 
approximation (i.e. without imposing an extra constraint) for, say, the t~ 4 model leads 
to spurious instabilities, at least at low temperatures. A similar conclusion was reached 
in Ref. [26].  

Interestingly enough, the disordered multispin Hamiltonian can also be seen 
[29,17,18] as describing a particle evolving in an N-dimensional space in a quenched 

random potential Hj[~b] = V[th] This random potential has a Gaussian distribution 
with zero mean and variance s 

V(~b) V ( 6 '  ) = Ng 2 ~ F7 r+, 
r_>2 ( r +  1)! = NV , (2.25) 

with 

Fr 2 ])(X) = g2 ~_~ xr+l 
r=2 ( r +  1)! 

(2.26) 

The general mode-coupling equations (2 .11) , (2 .12) , (2 .19) , (2 .20) ,  are thus also tile 
exact dynamical equations for the problem of a particle in a random potential in large 

dimension N. In this last context, they are often written [ 17,18] in a differential lorm 
obtained after applying the operator Go 1 , 

OC ( t, t' ) 
at 

t I 

- -  - Iz(t) C( t , t ' )  + 2TG( t ' , t )  + J ' d t "~ ) ' [C( t , t " ) ]  G( t ' , t " )  

o 
t 

+ f dt" G(t, t") "~" [ C ( t, t") ] C ( t", t' ) ,  (2.27) 

o 
t 

OG( t, t') f at - Iz(t) G( t , t ' )  + ~ ( t -  t') + d t " G ( t , t " )  "~"[C(t , t")]  G( t " , t ' ) .  
f f  

(2.28) 

The physical consequences of  this general equivalence will be fully discussed in 
Section 4. The extension of the mapping to a space dependent ~b(x, t) (or to a mul- 
t icomponent field) is straightforward. Several interesting physical examples involve an 

equation of  the type 

a ~ ( k , t )  _ (,,~2 + ~ ) ~ ( k , t )  
c)t 

Note that the sign of V differs from the convention adopted in Ref. I 18 I. 
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oo 
--~-~ Z ~I. ~-~r(k[k' ...... k r ) ~ ( k l ' t )  .... ~b(kr, t) + r l ( k , t ) ,  ( 2 . 2 9 )  

r=2 kl,..k, 

where q~(k, t) is the Fourier transform of ~b(x, t), and r/(k, t) a Gaussian noise such 
that (r/(k, t)~7( k', tl) ) = 2T( k )~( k + kl)~( t - f f ) .  The case of the Kardar-Parisi-Zhang 
equation [2] corresponds to r = 2, £2(klkl ,  k2) = [kl .k2] 6(kj +k2+k) ,  while domain 
coarsening in the q~4 theory corresponds to r = 3,/~3(k]kl, k2, k3) = ~(k! +k2+k3+k) ,  
with a negative /z [24]. The Navier-Stokes equation is similar to the Kardar-Parisi- 
Zhang case, with however an extra tensorial structure due to the vector character of the 
velocity field [ 1 ]. 

The correlation and response functions now become k dependent, 

6(k  + k ' ) C (k ,  t, t') = (,~(k, t )~ (k ' ,  t ' ) ) ,  (2.30) 

( a ~ ( k , t ) )  
~ ( k + k ' ) G ( k , t , t ' ) =  0 - - ~ , 7 )  " (2.31) 

The generalized MCA equations then read (assuming that the structure factors 
£r(k lk l  ...... kr) are invariant under the permutation of k~ ..... kr) 

oo F2 Z Cr(k[kl ...... kr)Cr(krlkl  ...... k) Z ( k , t , t ' )  =g2~--~ ( r -  1)! 
r=2 kl ,..k, 

×C(kl ,  t, t') . . .  C (k r - l ,  t, t ' )G(kr,  t, t') (2.32) 

D ( k , t , t ' )  =2T(k)  8 ( t -  t') +g2 Z ~ Z (£r(k]kl ...... k~)) 2 
r=2 kj,..k, 

×C(kl ,  t, t ') . . .C(k~, t, t') , (2.33) 

where 2:(k, t, t ~) and D(k ,  t, d) are defined in analogy with Eqs. (2.6),(2.7). 

3. Self-consistent screening approximation and disordered systems 

Another useful resummation scheme is the 'Self-Consistent Screening Approximation' 
introduced by Bray in the context of the static ¢~4 theory [7]. It amounts to using an n 
component vector field 4' and resumming self-consistently all the diagrams appearing in 
the large n expansion (n is the number of components of 4'n), including those of order 
l /n.  This approximation can also be seen as a MCA when one introduces an auxiliary 
field by rewriting the Langevin equation for the ~b 4 theory as 

c~b(t) 
- -tzdy(t) - ~fb(t)o'(t) + r14,, (3.1) 

Ot 
o-(t) = ½~b(t) 2 , (3.2) 
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with ~ = 2g/3!. (The factor 2 has been introduced for later convenience). In this form 

one gets back a problem similar to the ones studied before, which can be seen as two 
coupled fields q~ and o- evolving with bare evolution operators 

~9 
(G,b0)- '  = # ( t )  + ~ ,  (G,,o) =2- .  (3.3) 

Once this fictitious decomposition of  the non-linear coupling is perlbrmed, one can 
apply the MCA to the coupled equation (3.2).  Of  course, if the MCA were exact, 
the approximation would give the same results as in the previous paragraph. The fact 
that it is only approximate leaves room to a certain freedom on the starting point 
to improve (or deteriorate) the quality of  the approximation (see Ref. [26] tbr a 

related discussion). Introducing two correlation functions C~b(t, t ~) and C,~(t, t '), and 

two response functions G4,, G,~, together with the corresponding kernels _v0~, D~, v 
and D,~, defined (separately for each field ~ or o-) as 

G - l  = ( G 0 )  - I  - 2 ~ ,  C = G ® D ~ G  v,  (3.4) 

one finds the following result for the kernels 9. 

S6( t ,  t') =~2C,~(t, t ')Ge,(t, t') - ~C4,(t, tZ)G,~(t, t ' ) ,  (3.5) 

D,/,(t, t') = 2Tc~(t - t ' )  + ~Zc6(t ,  t')C,~(t, t ' ) ,  (3.6) 

S,~(t, t ' )  = -~,C6(t ,  t')G~b(t, t ' ) ,  (3.7) 

O,~(t, t') = ½ [C4,(t, t') ]2. (3.8) 

It turns out that, again, these dynamical equations are exact for a certain (mean-field 
like) spin-glass model. Let us define the following 'spin-glass'  Hamiltonian: 

2 

where the j a.~ are identically distributed independent (apart from a constraint of  sym- 
metry in the two indices ce, fl) random variables, such that j a¢~ equals 1 with probability 

1IN and zero otherwise. This model was proposed and studied in Ref. [ 11 ] , as a dis- 
ordered proxy of the Bernasconi model (which serves as a model for glassy behaviour 

without randomness).  The calculations showing that the dynamics of  the model defined 
by Eq. (3.9),  with J0 ~- g, exactly reproduces the self-consistent dynamical equa- 
tion. (3.8) are given in Appendix B. The relation with Bray 's  self-consistent screening 
approximation can be directly seen on the statics of  the disordered Hamiltonian, Eq. 
(3.9).  It is straightforward to show that, in equilibrium, 

T 
C,~(t,t) = (3.10) 

1 + (~ /2T ) [C~( t , t ) ]  2 ' 

') We have again reabsorbed the tadpole contribution in #(t). 
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T 
C ¢ ( t , t )  = , (3.11) 

Iz + (~/T)C~,( t ,  t )C¢( t ,  t) 

which indeed coincide with Bray's equations in zero dimensions with the identification 
n = 1, and his choice for ~ / T  = 2. 

The tadpole term in the expansion of the t~ 4 theory can also be taken care of by adding 
to the disordered system's Hamiltonian (3.9) a term in g t / 2 N ( ~  2 2 ¢,~) . We notice that 

within this approximation the energy (3.9) is always positive, which ensures that the 
dynamical version of the self-consistent screening approximation are well defined, at 

variance with the MCA (cf. above). If  the quadratic term in the original Hamiitonian 

is positive, then the spin-glass system is unfrustrated: it has a single ground state at 
,;b,~ = 0. If  instead we consider a double well t~ 4 theory with a negative /z, we find a 

frustrated spin-glass system. The usual Bernasconi model involves Ising spins with the 
same coupling as in (3.9). It is recovered here in the limit where/z --~ -oo .  The study 

of the physical content of this dynamical self-consistent screening approximation is left 

for future work [25]. 

4. Physical discussion: mode-coupling below Tg 

We have shown in the previous sections that the Mode-Coupling Approximation (or 

the self-consistent screening approximation) for a non-linear dynamical Langevin equa- 

tion amounts to studying an auxiliary Langevin process for a system with quenched 

disorder. In particular, the MCA for the Langevin process (1.1) described by the non- 

linearity F ( ¢ )  leads to the pair of coupled dynamical equations for the correlation 
C ( t ,  t ~) and the response G(t ,  t ~) written in (2.28). As we have seen, these equations 
describe exactly the dynamics of a particle in a random potential in a large dimensional 
space, or else as a certain type of mean-field spin-glass system with multispin couplings. 

Actually the usual mode-coupling equations which have been used successfully in the 
study of supercooled liquids are a special case of these general equations. The MCT 

is written in terms of the density-density correlation function which is normalized to 
one at equal times, i.e. C ( t , t )  = 1, corresponding to the spherical constraint (2.24). 

In the case of a supercooled liquid one studies a system in its high temperature phase 
where it obeys time translation invariance, together with the Fluctuation-Dissipation 
Theorem. The first of these properties allows to write the correlation and response as 
functions of time differences only: C ( t , t  ~) = C ( t  - t ')  and G ( t , t ' )  = G( t  - t ' ) .  The 
fluctuation-dissipation theorem, which states that 

1 
G( 7-) = - ~ O( T)OrC (7") (4.1) 

(where ~- --- t - tt), enables one to rewrite the mode-coupling equations as a single 
equation, 
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T 

07C(r) = - [ z ~ C ( r )  + ~ d r "V ' [C(~ ' -  r " ) ]  O,,,C(r") , (4.2) 

o 

where/2o~ = l im,_ .~/z( t )  - 1 / T g ' ( 1 ) .  
Eq. (4.2) is basically the general Mode-Coupling equation for the density correla- 

tions in a supercooled liquid above the dynamical transition temperature introduced by 
Leutheusser, GOtze and others [3] as a 'schematic' model for the ideal glass transition. 

This similarity (in the high temperature phase) was already pointed out in [27,28i. 
The only difference lies in the fact that the Mode-Coupling equations also possess an 

'inertial' term 02C('r). In the notation of Ref. [3], the 'Fr'  models correspond to the 

case where the nonlinearity is a pure power law, where only Fr is nonzero; the F,,,,~ 
models correspond to a nonlinearity which is a sum of two powers with F~,, F,.~ differ- 
ent from zero, etc. One should note that the Mode-Coupling equations for supercooled 

liquids were written from the start within a time translation invariant formalism ~{~ 

The analysis of these mode-coupling equations (4.2) for supercooled liquids has shown 

the existence of a dynamical phase transition at a certain temperature 7,/ (which is 

traditionally called T~ in the MCT), and identified two classes of behaviours (called 
A and B) when the temperature decreases and approaches Ta. This same classification 

has also been discussed in the spin-glass dynamics framework, where the temperatures 

lower than Ta (i.e. inside the spin-glass phase) has also been discussed and has led 
recently to several interesting developments. As noted recently in Ref. [9], these studies 

of spin-glass dynamics below Tj provide a natural generalisation of the mode-coupling 

equations below the glass temperature, the physical content of which we shall discuss. 
Let us thus summarize the important results associated to the dynamical equa- 

tion (2.28) and rephrase them in the context of the Mode-Coupling theory. 
There exists a critical temperature T,l (or a set of coupling constants F,-) separating a 

'liquid' (or paramagnetic) phase where time translation invariance and the fluctuation- 

dissipation theorem hold. The dynamics is described by Eq. (4.2) and the correlations 
decay to zero at large times: C(~-) --~ 0 when ~- --, oc. The transition can be of two 

types. In a first class of systems the transition is a continuous one: the analysis of 

the static situation through the replica method leads to a 'continuous replica symmetry 
breaking' [19] transition occurring at the temperature Z; which coincides with the 

dynamical temperature T,/ where the ergodicity is broken. This corresponds to class 
A in the classification of Ref. [3]. The second class of systems have a very different 
behaviour where the static transition temperature T~ is smaller than the dynamical one T,/. 
This static transition, in the replica language, is a 'one step replica symmetry breaking' 
transition, which means that it is a first order transition from the point of view of the 
order parameter (but it is second order from the thermodynamic point of view). It 
corresponds to class B in the classification of Ref. [3]. We shall concentrate on this 

i~) If one attempts to extend directly (4.2) to the low temperature phase keeping time translation invariancc 
and the fluctuation-dissipation theorem as in Ref. [3], one obtains a theory yielding di~'erent predictions, the 
meaning of which is not clear to us. 
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second category, which is supposed to be the most relevant for a description of the 
structural glass transition. In that respect, it is interesting to remark that class B systems 
correspond, in the equivalence with a particle in a random potential, to the case of short 
range correlations of random potential, whereas class A systems correspond to long 
range correlations [ 32,17,18 ]. 

Before describing the quantitative feature of the dynamical transition for class B 
systems, a few comments on their physical relevance is in order. The existence of 
a dynamic transition above the static one is associated with the appearance of many 
metastable states and a breaking of ergodicity at Td, which does not reflect onto the 
equilibrium (Gibbs) measure [28]. However, this effect can exist only at the mean- 
field level, and it has been suggested that in finite dimensions some nucleation processes 
[ 10,31] smooth the transition at Ta and replace it by a crossover temperature range 
where the relaxation times will increase very fast with decreasing temperature. The 
glass transition temperature T u, empirically defined by the fact that the relaxation time 
(or the viscosity) reaches a certain conventional value, would therefore lie below the 
mean-field Td (but above the static transition temperature Ts). Actually, the same type of 
argument has been developed in the study of supercooled liquids, where some 'activated 
processes' are supposed to smooth out the dynamical transition [3]. 

Hereafter we shall first recall the existing results for the dynamics above Td in spin- 
glasses and in supercooled liquids. These lead to the well-known predictions of the mode- 
coupling theory for the relaxation just above Td, which have been tested experimentally. 
Then we shall recall the results of spin-glass dynamics below the dynamical transition. 
These lead to some predictions for the (off equilibrium) dynamics which should apply 
to glasses at much lower temperatures (smaller than Tg), such that the relaxation time 

is larger than the experimental time scale. 
- For T >  Ta, the analysis of Eq. (4.2) is sufficient. One finds that [29], for T close 

to (but above) Tc, C(z)  has the form given in Fig. 5, with a plateau and the celebrated 
a and/3 regimes, characterized by two exponents a and/3 related through [3] 

F2[1 + a ]  F2[l - /3]  T "~'"(q) 
= - ( 4 . 3 )  

F [ I  + 2 a ]  F[1 -2 /3 ]  2 (.~,(q))3/2 ' 

with the value of the correlation at the plateau q given by (1 - q ) 2 9 , ( q )  = T,~. Note 
that these two exponents a, /3 are usually called b, a in the Mode-Coupling literature. 
We however feel that it is more appropriate to call ce the exponent corresponding to the 
a peak, and/3 the one corresponding to the ,8 peak! 

- For T < Ta, there appear diverging relaxation times in the problem. It has been 
realised recently [ 16] that in this case one needs to take into account carefully the 
existence of an initial time for the dynamics. Stated differently, one must abandon time 
translation invariance, as the age of the system becomes an important time scale in 
the problem. This leads to the existence of so-called aging effects which have been 
observed in spin-glasses [13], polymer glasses [14] and also in a variety of other 
systems [33]. A study of the full dynamical equation (2.28) shows that one must 
also abandon the fluctuation-dissipation theorem. The system is out of equilibrium, but 
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F i g .  6 .  D e c a y  o f  t h e  a u t o - c o r r e l a t i o n  f u n c t i o n  b e l o w  t h e  cr i t i ca l  t e m p e r a t u r e .  C(1" + tw, tw) v s  7- f o r  d i f f e r e n t  

w a i t i n g  t i m e s ,  twl < t)~.2 < tw3. Tw = dtw / d l n ( h ( t w )  ). 

one can nevertheless obtain some information on its behaviour. The correlation function 
C ( t ,  fl) (and similarly G( t ,  f l ) )  must be decomposed into two parts (see Fig. 6)- 
C ( tw + T, tw ) = CFDT( T ) + C ( tw + r, tw ) , CFDT is time translation invariant, it is related 
to GFDT through the fluctuation-dissipation theorem, Eq. (4.1),  and corresponds to the 
high frequency dynamics (/3 peak), while the aging part  C (tw +~', t,.) is a function of the 
ratio A = h( tw+~-) /h( tw)  only. The 'effective time' h is still not determined theoretically, 
but a likely possibility, advocated in [ 15], is that h(t)  = t. In other words, the relaxation 
time corresponding to the aging part of  the correlation is the experimental waiting time 
tw itself. The a regime thus still exists fo r  T < T,t if the waiting time is finite. Only in the 
limit tw ~ cx~ will the correlation relax to a nonzero value. This is the 'weak ergodicity 
breaking' scenario proposed in Refs. [ 15,16]: l i m ~  limt . . . .  C('r + tw, tw) = q and 
l i m ~  C(~" + tw, tw) = O, Vtw finite. The exponents a and/3 are thus still well defined 
for finite tw (see Fig. 6) as 
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C( tw + r, t w ) ~ q + c ~  "-~ if  C > q ,  (4.4) 

C ( t w + T , t , , ) ~ q - c ~ ( ~ w )  i f C  <~q. (4.5) 

Aging is manifested in the tw-dependence of Tw = d t w / d i n ( h ( t w ) ) ,  which is an in- 

creasing function of tw. In the simple case where h(tw) = tw, one has Tw = tw. 

The exponents a and 13 are now given by a modified relation which reads [ 18] 

F 2 [ 1 + a] F 2 [ 1 - 13] T 9 ' " ( q )  
x - - (4.6) 

F [ I  + 2 a ]  F[1 -213] 2 ( 9 - ( q ) ) 3 / 2 '  

with q given by ( 1 - q)2 . l~(q) = T 2. x is a temperature dependent number, 0 < x < 1. 

A crucial observation is the fact that this number is not arbitrary and could be in 
principle measured. It actually provides the quantitative measure for the violation of the 
fluctuation-dissipation theorem. More precisely, x is defined as [ 16] 

~ ( t , t ' )  = x a C ( t , t ' )  
T c~t ~ ' (4.7) 

where we assume t ~ < t. The usual fluctuation-dissipation relation would state that 
x = 1. Glassy dynamics below Ta gives a value x < 1, which also governs the relation 

between the exponents ce and 13 in (4.6). 
We shall not expand here on the case of class A situations, but just mention that the 

behaviour in the low temperature phase is more complicated [ 16-18]. The correlation 

and response have to decomposed into two parts as in class B situations but the behaviour 

of the aging parts C, G cannot be characterised by a single function h( t )  and the violation 

of the fluctuation-dissipation theorem is given, in the limit of large times, by a non-trivial 
function of the correlation function X[C] (instead of the single constant x). 

Let us finally say a word on the distinction between explicit and spontaneous nonequi- 

librium. Throughout this paper we have discussed extensions of mode-coupling-like dy- 

namical equations which reduce to the usual ones if one assumes that time translation 
invariance and the fluctuation-dissipation theorem hold, as when the system they describe 
has achieved equilibration in some component of phase-space after some finite transient. 
However, we now know that such equations may admit a low-temperature glassy phase 
in which the equilibration time is infinite: there is violation of time translation invari- 

ance and the fluctuation-dissipation theorem at arbitrarily long times. The reason why 
this spontaneous non-equilibrium happens is that the equilibration time diverges, or at 
least becomes extremely large, with the system size. On the other hand, there are sys- 
tems such as surface-growth (describea by the Kardar-Parisi-Zhang equation mentioned 
above) and stirred turbulence which are by construction non-equilibrium situations; their 
equations of motion do not admit any equilibrium solution even for a finite system. One 
can then wonder how to recognize if a given set of equations for response and correla- 
tion functions has explicit or spontaneous long-time non-equilibrium. It is interesting to 
notice that this question has a clear meaning within the supersymmetrical field theory 
described in Appendix A for the dynamics of a disordered system. Any Langevin pro- 
cess that derives from a potential automatically yields an action that possesses a certain 
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(super) symmetry (spontaneously broken if there is a glassy phase), while systems with 

explicit non-equilibrium have a dynamical action that break this symmetry explicitly. 

5. Summary and conclusions 

Summarizing, the major prediction of the Mode-Coupling theory of glasses tbr their 

super-cooled liquid phase is the existence of a critical temperature Td below which the 
correlations do not decay to zero, and above which one observes two relaxation regimes 

( a  and /3), characterized by a power-law behaviour with exponents related by Eq. 
(4.3) - which is indeed qualitatively consistent with experimental data [3,5]. However, 

a quantitative comparison is difficult since experimentally, the relaxation time T(T)  does 

not diverge at T,l but grows rapidly (h la Vogel-Fulcher) as the temperature is decreased 

further. In the Mode-Coupling approach, this is ascribed to some 'activated (or jump) 
processes' which must be taken into account in a phenomenological way. This can 
be rephrased differently: since we have argued that the Mode-Coupling equations are 

equivalent to the dynamics of a mean-field disordered model, it is to be expected that 
actual finite-dimensional systems should depart from this ideal behaviour. A nucleation- 

like mechanism was proposed in Refs. [30,31] to account for the smearing out of the 

transition in finite dimensions, but a detailed understanding of this mechanism is still 
lacking. This is in some sense related to the general question of assessing the quality of 
the MCA, and constructing perturbative schemes to move away from it [8,20]. 

In order to by-pass this difficulty brought about by a finite relaxation time scale below 
Ta, we propose that experiments should be done below Te, so that the experimental time 

scales tw are much smaller than T(T) .  Experimental protocols should allow one to 

monitor in a systematic way aging effects (i.e., the fact that the correlation function 
does depend on tw itself), and to obtain the curves corresponding to Fig. 6. The crucial 

test of Mode-Coupling theory would then be to measure both correlations (or noise) 

and response functions (such as dielectric properties or elastic moduli) to observe the 
violation of the fluctuation-dissipation theorem and check Eqs. (4.6) and (4.7). It 

should be emphasized that most of the experimental data on supercooled liquids (and 
spin-glasses for that matter) can alternatively be interpreted within a phenomelogical 
model of 'traps' [34-36,15,37,38], where each particle diffuses in a random potential 
created by its neighbours. It would be interesting to understand the precise relation 

between this phenomenological picture and Mode-Coupling equations [39], which, as 
we have discussed, also describes a particle in a random potential, albeit in infinite 
dimension. In any case, the genuine non-trivial prediction of the Mode-Coupling theory 
is that the equilibration process within a 'trap' (described by the exponent /3) and the 
aging process involving jump between traps (described, at least for small t / t , , ,  by the 
exponent o:) are intimately related through Eq. (4.6). This is why we believe that its 

investigation is worth the experimental effort. 
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Appendix A. Symmetries and the dynamical equations using the functional 
supersymmetric formalism 

In this appendix we review the technique of superfield notation, which is useful for 
three purposes: 
- It provides a direct dictionary between statical and dynamical developments. There is, 

in this notation, a one-to-one correspondence between static and dynamical diagrams, 
so that one can for example talk indistinctly of 'static' and 'dynamical' MCT or 
self-consistent screening approximation. 

- It makes the diagrammatic developments simpler, grouping 2 L ordinary diagrams of 
L lines into a single superdiagram. 

- It makes explicit a supersymmetry (SUSY) of the action (or equations of motion) 
which embodies the equilibrium theorems. It is then possible to see directly from the 
form of the action whether there is explicit or (possibly) spontaneous non-equilibrium 
phenomena (breaking of SUSY), and to check that an approximation scheme or an 
effective theory does not spoil artificially the possibility of equilibrium. 
We start from a Langevin equation 

d4,~ oH 
- - -  +r /~ ( t ) ,  (A.l)  dt cgq~ a 

where r/. ( t)  are Gaussian random variables with zero mean and variance (r/a (t) r/# ( / )  ) 

= 2T8~13 6(t - t'). 
We now construct the Martin-Siggia-Rose [43,44] functional for the expectation 

value of an operator O(q~) as 

/ \(dq~aCgHdt ~ a  ) (O(&)) = D[&] O(&) I I  6 + r / . ( t )  
oZ 

[ a a £ H _ ]  × det 
L~ 7 ,,,e + &ba&be j , (a .2)  

where the measure D[O] is defined as D[4~] -= 1-I,~ D[~b,~]. 
Exponentiating the delta function through Lagrange multipliers ~,~ (t)  and the deter- 

minant through anticommuting variables ( 'ghosts') (,, ( t ) ,  (,, ( t) ,  and averaging away 
the noise we obtain I J 

II The precise meaning of F.q. (A.4) is seen by going back to the Hilbert-space problem [421 of which 
it is a functional representation. Then, Eq. (A.4) represents an imaginary-time evolution operator associated 
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=fD[q~lD[~lD[s c 1 D [ ~ 1 0 ( 4 ) )  e x p ( - S ) ,  (o(6)) 
J 

where 

S=/dt 

261 

(A.3) 

(A.4) 

The expression for S can be written in a compact form in superspace introducing two 
anticommuting Grassmann variables 0, t~, 

[ 0 ,  (~] + = 0 2 = /~2 = 0 .  (A.5) 

The integrals over these variables are defined as 

fldO=/ldO=O, /OdO=JOdO=l. (A.6) 

The fields, Lagrange multipliers and ghosts are then encoded in the (bosonic) superfield 

@,~ = ~b,, ( t )  + 0sc,~(t ) + ~,,(t)  0 + q~,~ ( t)  00.  (A.7) 

Using Eqs. ( A . 5 ) - ( A . 7 )  one obtains, in terms of the superfields g, , ,  

(o)= f l--[D[@.]O exp f dl [½~cP.(I,D{2)@.(1)-H(@(1)) 1 ( 1 . 8 ,  

where we have denoted 1 = (0 .0 ,  t),  dl  = dO dO dt and the differential 

a 2 o ~2 O 
D {2) = 2T + 20 - -  (A.9) aO O0 c90 at at 

The important point about expression (A.8) is that, apart for the first 'kinetic '  ten-n 

in the exponent and the integration over the ' t ime-like'  coordinates d l  = dOdOdt, the 
rest has the same form as the partition function. Furthermore, the correlation function 

between two superfields (q~,, (1)@t,(2) ) (with 1 - 0 1 , 0 1 ,  tl, 2 ~ 02, 02, t2) encodes all 
correlations and response functions. 

Consider now a single superfield (it,(1) = ~b(t) +OsC(t) + ~ ( t )  0+0~( t )  00. For a system 

satisfying causality, the non-zero expectation values of  the autocorrelation function are 

Q ( I , 2 )  = ( @ ( 1 ) @ ( 2 ) )  

= ( ~ / ) ( t l ) ~ ( t 2 ) )  -~- ( 0 2 - -  01) [ 02 ( ~ b ( t ' ) ~ ( 1 2 ) ) " ~ 0 '  ( ¢ / ~ ( t 2 ) ~ ( t l ) ) 1  

with the Hamihonian ~ a  f i~(Tt~ - iaH/&b~) + ½a~(a2H/a4~arbe)ae, where pa = - i a / a 4 ~  The original 
Fokker-Planck process is recovered by restricting the problem to the zero-ghost subspace, i.e. by considering 
diagrams without fermionic legs. The problem of which convention (lto or Stratonovitch) is used is simply 
the usual problem of factor ordefings in the functional representation. Eq. (A.4) with the assumption that 
~ba (t) (3U/adpa) (t) is understood as q~,~(t + ) (aH/&b,~) (t) is then an unambiguous representation of the 
Hilbert-space problem (in the lto convention). 
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=C(t l , t2)  + (02 -- 01) [02G(tl,t2) + O1G(t2, tl)] . (A. 10) 

Before going into diagrammatic computations, we need to define convolutions of 

two-point functions, as in 

Qc(1,2)  = Q,, ® Qb ~ J d3 Qa( 1,3)Qb(3, 2) (A.I 1) 

and simple products, as in 

Qc(1,2)  = Q,,(1,2) • Qb(1 ,2 ) .  (A.12) 

In what follows we shall denote with • any function based on usual products (e.g. 
Q.3 = Q • Q • Q),  and we shall omit ® when writing convolutions (e.g. Q2 = Q ® Q).  

At any step, one can go down to the 'components' of Q. For example, if Qi ( i  = a, b) 

are of the form (A.10), 

Qi(1,2) = C/(tl,  t2) + (t92 - t~l ) [02 Gi(tj, t2) + Oi Gi(t2, tj ) ] , (A.13) 

then Qc(1,2) obtained with the two products above is of the same form with 

Cc(tl, t2) = f dt ~ [Ca(t1, t')G~(t2, if) + G~(tl, t')Cb(t', t2) ] , 

Gc(tr, t2) = f dt' G,,(tj, t')Gb(t', t2) (A. 14) 

for the convolution (A.11), and 

Cc( tl , t2) = C,( tl , t2 )Cb( t2, t2) , 

Gc(tj, t2) = C,,(tl, tz)Gb(tl, t2) + Ga(tl, tz)Cb(tl, t2) (A.15) 

for the usual product (A.12). 

A. 1. The Mode-Coupling Approximation 

Let us now turn to the example of Eq. (2.2). The Hamiltonian is given by 

g 4 (A.16) / - / (4,)  = ½ ~ ( t ) ~  2 + ~ 4 ,  • 

The dynamical functional then reads 

(O)  = f o [ @ ]  0 ( * )  

× e x p [ - f d ,  ( ½ ~ q ~ ( l ) ( - D l 2 ) + i z ( t ) ) @ ( l ) + g c o 4 ) l  . (A.17) 

Diagrams are constructed as usual. They are based on the Gaussian integrals with bare 
propagator, 

Go = [ - D  (2) + / z ( t ) ]  - l  , (A.18) 
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Fig. A.I. Diagrammatic representation in SUSY formalism of the Dyson equations. In this notation one 
encodes the C-G diagrams of Fig. 3 in only one super-diagram. 

defined by 

Go® [ - D  (2) + # ( t ) ]  = 6 ,  (A.19) 

where we have defined the superspace delta as 

8( 1 - 2) --- 8(h  - t2) (t~l - 02) (01 - -  0 2 )  . (A.20) 

With these definitions, a 'superdiagram' is obtained just as an ordinary diagram, with 

now the labels 1,2 encoding both the times and the Grassmann coordinates, indicating 

the 'components' C, G of Q. Each line of the superdiagram stands for a line of field-field 
( &(tl )qS(t2) ) contraction (,-~ C) and a line of field-noise (qS(h)'q(t2) ) contraction 

( ~  G). The Dyson equations (2.6),(2.7) are both encoded in (see Fig. A.l ) 

Q = Go + Go ®.,~® Q.  (A.21) 

The (super) mass-operator S can be now calculated within the mode-coupling approx- 
imation, which again consists in neglecting vertex corrections. It is given by 

1 2 ~-'~*3 ~ X ( l , 2 ) = g g ~  11,2) .  (A.22) 

Introducing this into (A.21), and multiplying (in the sense of convolution) by Go i, 

we obtain 

,2/ -Ol2)Q(l,2)=-ix(t)Q(l,2)+6(l-2)+~g d3[Q(1,3)]'3Q(3,2). 
(A.23) 

This is the equation of motion. For a general non-linear coupling, one similarly obtains 

1,2) = -IX(t)Q(l,2) + 6(1 - 2) + [ d 3 1 ) " ( Q ( 1 , 3 ) ) Q ( 3 , 2 ) ,  ~O~l 2)Q~ 
,/" 

(A.24) 

which, in components, is nothing but Eqs. (2.27) and (2.28). 
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A.2. The disordered model for the MCA 

One can reconstruct an action functional of which (A.24) is a stationary point. To do 
this, we multiply (A.24) to the right by Q-~, 

(DI 2) - t t ( t ) ) ~ ( l  - 2) + Q-1(1 ,2 )  + V " ( Q ) ( 1 , 2 )  = 0,  (A.25) 

which can be written as 

6S 
- - ~ O ~  6Q 
2S =fdld2 [ ( -DI2)  + / z ( t ) ) Q ( 1 , 2 )  - ] ) ' ( Q ) ] -  T r L n [ Q ] .  (A.26) 

Let us now see how these are the exact equations of motion for a disordered system. 
The dynamical generating functional reads in superspace notation 

JD[q~] exp[-/dl (~½q~.(1)(-D}2)+.(t))..(1)+Hj[@])] 
with the disordered Hamiltonian 

O 0  

HJ[qb] = g E  Fr E Ja, ...... ~,qba,...qba,+l, 
r>2  a, <...<a,-+l 

correlated as in (2.25). 
Averaging over the couplings (see Eq. (2.25)),  we obtain 

f D['lq exp [- f dl (½) ~-~"q~a(1) (-Dl2) + 

xexP[½N f dld2"P'(@(l)N~(2))] . 

Introducing the order parameter 

1 
Q ( I , 2 )  = ~ E q ~ ( 1 ) q ~ , ( 2 )  

g2 

through 

yields 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 
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We can now make the shift 

~ ; ( - O l  2~ + ~ ( t ) )  ~(1 - 2) + 0 ( 1 , 2 )  1.33 

and the integration over q~, to obtain 

i D [ Q I D [ - Q ] e x p [ - ½ N i d l d 2 ( Q ( I , 2 ) - Q ( 1 , 2 )  

+( -DlZ )+ tx ( t ) )Q(1 ,2  ) - ~)°(Q(1,2)))I  exp [-½NTrLnQ--- ] . (A.34 

Using saddle-point evaluation, we can eliminate Q and obtain 

S D[QI exp( -NS) ,  

28= f d l  d2 [ ( -DI  2) +/z( t )  ) Q ( 1 , 2 ) -  ) ) ° ( Q ( I , 2 ) ) ] -  TrLn[Q].  (A.35 

The saddle-point equation over Q yields (A.25). 

A.3. Self-consistent screening approximation and the Bernasconi model 

In a similar way we show that the equations of motion for the disordered Bernasconi 
model (3.9) coincide with the equations arising from the self-consistent screening ap- 
proximation applied to the 4b 4 model. The generating function for the dynamics reads, 
in superspace notation, 

N 

or=| 

A=I a<fl=l  

Making a Gaussian transformation by means of superfields ~ra, 

• [ i (  i D[4~lD[o-lexp - dl ½ ~ 4 ~ ( 1 ) ( - D 1 2 ~ + / x ( t ) ) 4 ~ . ( l )  
A=I 

+ ' V N  ~ J~a'#q~'~@cl°'a + ½~a °'a2 " (A.37) 
a<B,a 
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Averaging over the couplings 

I [ i  (" )] D [ ~ ] D [ o - ]  exp - dl  ½Zqba(1)(--Dl2)+tz(t))qba(l) 
ot=l 

(A.38) 

Note that putting J~,~ = O(I/N) creates an infinitely strong antiferromagnetic force. 

One can then neglect in the previous expression a term fdl d2 (~-]~ ~/ , , ( 1 ) /x /N)2×  

(~'~t¢ ~ / 3 ( 2 ) / x / ~ ) 2  since it is of  order O(1)  and hence much smaller than the other 

O(N) terms. One can just as well put j a = 0 and see directly how this term disappears. 
Introducing two order parameters Q~ and Q~ as in (A.30) , (A.31) ,  

N Q ~ ( 1 , 2 )  = Zq~,~(1)q~,~(2) ,  NQ,r (1 ,2 )  = Z o - a ( 1 ) o ' a ( 2 ) ,  (A.39) 
a h 

we obtain 

i o[qs] O[o-]  D[Q~] D[Q~,] D[0,~]  D [0~,,] 

× exp [- i dl d2 ( I NQ4)( l,2)Q~(1,2) + ½( NQ,~(1,2) 

- Z o',l ( 1 )oa ( 2 ) ) 0 o - ( 1 , 2 )  

N 

-½Z@~(1)([-DIZ)+tz(t)]6(1-2)+OJ~(l'2))@~(2))],~=l 

xexp[-l fdld2 ((2JoQ;2(1,2)+6(l-2))Qo-(1,2))] . (A.40) 

Making a shift (A.33) over Q,t, and the integration over @ and o-, 

/ - _ D[Q,~] D[Q,~] D[Q~] D[Q~] 

xexp[-½Nidld2(Q~(1,2)-Q~(1,2)+Q,~(1,2)-Qc~(1,2 ) 

exp l - ½U{TrLn G + TrLn G }  × 

' J ((2JoQ;2(l 2)+B(] 2))Q~.(I,2))J. (A.41) - ~ N  d l  d2 , - 
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- -  ^ 

Eliminating Q,t, and Q,~ through saddle point evaluation, we obtain the action 

/ D[Qa,] D[Q~] e x p ( - N S ) ,  

/ + + 2 S =  
/ L 

- TrLn [Q~] - TrLn [Q,~] . (A.42) 

The equations of motion are obtained by a saddle point over Q,/, and Q,~, 

o=(-D~j2) +l~(t))6(1-2)+4JoQ,o(l,2)Q,r(1,2)-Q~,l(I,2), (A.43) 

Q,~-1(I,2) = (2JoQ~'o 2 + 6 ) ( 1 , 2 ) ,  (A.44) 

and multiplying the first equation by Q ,  and the second by Q,~ we finally get 

O=(-D(tZ) +iz(t))Qq,(1,2)+4Jo((Q~.Q,f)Q,)(1,2)-6(1-2), (A.45) 

6( 1 - 2) = ( (2JoQ~, 2 + 6)Q¢~) ( 1 ,2) .  (A.46) 

These equations when written in components become equivalent to the equations of 

motion for the self-consistent screening approximation, Eqs. (3 .4)-(3.8) .  

The generalization of what we have done to several modes that derive from an energy 

is straightforward. 

We can now see the formal difference between the MCA and the self-consistent 

screening approximation. Both the MCA and the self-consistent screening approximation 
equation for Q~I, are of the form 

(-D~j 2) + / z ( t ) ) Q ( 1 , 2 )  =6(1  - 2 )  +/d3m[Q](l,3)Q(3,2). (A.47) 

The kernel m[Q] is a function m[Q](1,3) = ' ~ t ° ( Q ( 1 , 3 ) )  for MCA, while it is a 

non-local functional m[Q¢o] = 4,/o(2Jo Q~, 2 + 6 ) - I o  Q~, in the self-consistent screening 

approximation. 

A.4. Symmetries 

Let us finally turn to the question of the symmetries associated with the equilibrium 
theorems. The SUSY group is generated by three operators [40-42],  

D'  T '0 + 0 0 D'  O O = , = --=, [ D ' , / ) ' ] +  = - - ,  (A.48) 
00 ~gt 00 cgt 

D~2 =/0~2 = 0. (A.49) 

We can construct a version of this group that acts on two-point (in general n-point) 

functions, as 

0 0 
D ' = D ' ( 1 ) + D ' ( 2 ) ,  I ) ' = / 0 ' ( 1 ) + / 0 ' ( 2 ) ,  [D ' , I ) ' ]+= - - z7 -+~7- . .  (A.50) 

dt l  Or2 
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The meaning of the three generators can be understood when they are made to act on a 
correlation function. Firstly, causality plus probability conservation imply (irrespective 
of equilibration) 

D 'Q(1 ,2 )  = 0. (A.51) 

(This was already assumed in selecting the non-zero terms in (A.10).) The other two 
generators, 

(0-~l + 0 ~ 2 ) Q ( 1 , 2 ) =  0-- ,  time translation invariance, 

I ) 'Q(1 ,2)  = 0 ~ fluctuation-dissipation theorem. 

The question of non-equilibrium can now be stated as follows: 
• Systems with explicit non-equilibrium have a dynamical action (or dynamical equa- 

tions of motion) that break SUSY explicitly. 
If the system is a priori able to achieve equilibrium, then SUSY is not explicitly 

broken. Then, two things may happen: 
• The effect of the initial conditions is afinite transient N teq in which time translation 

invariance and the fluctuation-dissipation theorem do not hold. In this language, SUSY 
is unbroken by the boundary conditions. 

• If the system never achieves equilibrium, as in the case of the low-temperature 
version of the MCT equations teq ~ o<3, the effect of the initial conditions is then to 
break SUSY [42,45] (violate time translation i nvariance and the fluctuation-dissipation 
theorem) well within the 'bulk' of times. SUSY is then spontaneously broken. 

The initial conditions play for SUSY (the fluctuation-dissipation theorem and time 

translation invariance) the same role played in ordinary symmetry-breaking by space 
boundary conditions: if the symmetry is spontaneously broken their effect extends away 
from them. 

Hence, if one is treating a system like a spin or structural glass within an approxima- 
tion (or a phenomenological model), one must make sure that the resulting theory does 
not break SUSY explicitly, otherwise one may be introducing non-equilibrium by hand. 

Appendix B. Derivation of the self-consistent screening approximation equations 
from a disordered Bernasconi model 

In this appendix, we derive the dynamical equations corresponding to the disordered 
Bernasconi model using standard functional methods. For a more compact derivation 
using supersymmetric functional methods, see Appendix A. Following Ref. [ 11 ], we 
will define the disordered version of the Bernasconi model by the following Hamiltonian: 

2 

I 1 7-/= ~-~ J,~,~.~b8 + ½/z ~--'~ q~ + 

L~<~ ,~ 
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For each A independently, j a,# = j~,,, is equal to 1 with probability 1IN and zero 

otherwise. Each A thus corresponds to a certain 'pairing' of the 'sites' {a}. For J0 > 
O, the ground state corresponds to a configuration of the ~b~ which simultaneously 
minimizes all the 'partial correlation' Sa defined for each pairing as 

N 

S , ( t )  - v ~  ,,<,~ (B.2) 

The problem is extremely frustrated if the q~ are Ising spins, and becomes trivial if the 
~b. are unconstrained continuous variables. The model defined in (B.1) is intermediate, 
since, as usual, a certain amount of constraint is enforced by the terms proportional to 

/~ and g~. 
The dynamical equations read 

a4~. aT-t 
- + ~7~(t), (~7.(t)~?fl(t')) = 2T6~,t~6(t - t ') .  (B.3) 

at 8~b. 

Now, the two identities (B.2),(B.3) can be written in a convenient functional way 
by expressing the ~ functions in Fourier space. (We set g~ = 0 for simplicity, and will 
discuss the modifications induced by g~ 4~ 0 at the end of the calculation.) We thus 

write 

x e x p -  dt Sa(t) Sa(t) v ~ < ~  

+ &~(t) ~ ( t )  +/z~b.( t )  + ~ a , /3  J"'/3~b/3(t) + ~ ( t )  ~ 1 . 

(B,0) 

(The Jacobian associated with the change of variables is equal to 1 if one uses the 
Ito prescription.) Averaging over the (Gaussian) thermal noise amounts to replace 
~b~(t)Th~(t) by T0~( t )  2. The average over the J~,/~ can also be performed and leads, 
for N large, to the following expression: 

[ If  e x p Z  Z - ~ dt(-S~q~dp# + JoSa~q~ + J o S ~ q ~ ) ( t )  
,~ a<fl 

,I +~--~ dtdt' ( - g ~ ¢ ~  + J o S ~  + JoS~4°3~)(t) 

× (-#~4~4~ + J o S a ~  + JoS~8~) (t') 1 (B.5) 
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The second is a sum of N 3 terms with a positive mean, and is thus of order N, while 
the first term is a sum of N 3 terms of random sign, and is of order 1, which we neglect. 

The next step is to define six 'correlation functions', associated to the fields 
q~, q~, Sa, Sa. Let us introduce 

C~(t,  t') = N -j  ~ q~ (t)~ba(t ' )  , 
Ot 

Z~b(t, t') = N -1 Z fb~( t ) fb , ( t ' ) ,  
Ol 

G~(t,  t') = N - l  Z cb,(t)~b,(t ' )  , 

(B.6) 

and similarly for the Cs, G¢, Zs. The expectation values of G are actually response 
functions [44] and those of Z are in fact zero [44] but Z must be kept in the 
intermediate steps of the calculation. Again, these identities are expressed as 6 functions, 

introducing six new 'conjugate' variables NC~,,s, NG~,s, N2~,s. The 'interaction term' 
(B.5), expressed in terms of the C, G, Z, simply reads 

exp (½N / d td t '  [ Zs ( t , t ' )C~( t , t ' ) 2  + 2 j2Cs( t , t ' )Z~( t , t ' )C(~( t , t  ') 

I ~ < t 

-2JoGs( t ' ,  t )G~( t ,  t ' )C~(t ,  t') - 2JoGs(t, t ' )G~(t ' ,  t )C~(t ,  t') 

+2JZG4~( t ', t )G~( t, t ' )Cs(  t, t') ] ) .  (B.7) 

The point now is that all the terms containing C, G, Z are proportional to N, and can 
be treated within a saddle point approximation which becomes exact when N is large. 

The saddle point equations read 

= 0 > ¢¢ = ZsC¢ + J2ZoCs - JoGtsG¢ - JoGsG~, (B.8a) 
aCe 

3 2 t 
064, = 0 ~ 04~ = -JoGtsC4~ + J~GcbCs, (B.8b) 

0 
= o = JgC C , (B.8c) az,  

a 
= 0 ----+ Cs = j2Gt6G4~ - JgZ~C4, (B.8d) 

aCs 
0 

= 0 > Gs = -JoGt~Cq~, (B.8e) 
aGs 

a 
1 2 = 0 > Zs = ~C~b, (B.8e) 

aZs 

where we have dropped the arguments (t, t/) when they appear in the correct order 
(t  > if), and indicated with a t when they appear in reversed order. 

From their physical interpretation (see, e.g. Ref. [44] ), one expects that Zs = Z~ =- 0 
and G 0 = Gs = 0 for t < ft. The saddle point estimate of Eq. (B.4) averaged over the 
J ' s  then finally reads 
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fn[~dcb.(t)d~a(t)][l~a dSa(t)d~a(t) ] 

xexp  - / d t  Sa(t){Sa(t)+ idttJoCcbG4~Sa(t I) ~C,hSa(t) } 
tt ~t 

271 

+ ~ ¢b~(t){~b,~(t) + l-t(b~(t) + / dtIJo(Cc~Gs- JoCsG~)dp,(t ') 
tt ~t 

This last equation is easy to interpret by comparison with Eq. (B.4) - it is simply 
the Fourier representation of some 8 functions implementing the following equations of 
motion: 

t 

j dt' ( ( ( t )  (B. 10) Go~d~(t) = Jo JoCsGo - C~Gs)dp(t') + , 
o 

with Go~ = a/Ot + tz and ( ( ( t )  sc(t')} = 2T~( t - F) + J~CsC~ and 

t 

Gos I S(t) = -Jo / dt'C@G¢oS(t~) + st(t) , B.11 ) 

o 

with Gos = 6( t -  t') and (((t)f(F)} = ~C4, . l  2 Note that C,G are sell-consistently 
determined. Hence, comparing with Eqs. (3.10),(3.1 l ), we indeed see that the equations 
for the usual ~b 4 theory are the exact equations describing the random Bernasconi model 
defined by Eq. (B.1), provided one identifies J0 with the O~ 4 coupling, 2g/3!. The only 
missing part is the 'tadpole' contribution, which can be easily added by choosing a 
suitable value of g~ in Eq. (B.1), since this last term only adds in the equation of 
motion of q~, a nonfluctuating contribution -g~ba C,/, ( t, t) (for N large). 

One should note that, as emphasized in the text, g > 0 in the original ~b 4 theory 
corresponds to J0 > 0, and hence to a well-defined (bounded from below) Hamiltonian 
7-(. The dynamical equations are thus expected to have sensible solutions for all values 

of parameters, contrarily to the direct MCA. 
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