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We compute the thermodynamic properties of the glass phase in a binary mixture of soft spheres.
Our approach is a generalization to mixtures of the replica strategy, recently proposed by Mezard
and Parisi, providing a first principle statistical mechanics computation of the thermodynamics of
glasses. The method starts from the interatomic potentials, and translates the problem into the study
of a molecular liquid. We compare our analytical predictions to numerical simulations, focusing
onto the values of the thermodynamic transition temperature and the configurational entropy.
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I. INTRODUCTION

In this paper we present the generalization to the bin
mixture case of a thermodynamic theory of glasses, rece
proposed,1,2 which allows to deduce equilibrium propertie
of fragile glasses3 from those of the corresponding liqui
phase, computed for a molecular liquid consisting ofm
clones4 of the system withm,1.

The hypothesis at the heart of this strategy is the e
tence of a liquid-glass thermodynamic transition, driven
the entropy crisis predicted by Kauzmann,5 and the scenario
is similar to the one described by Adam, Gibbs, and
Marzio.6–8 The transition considered here can be also
plained in terms of a certain type of replica symmetry bre
ing ~called one step replica symmetry breaking21RSB!. It
shares its main features with the glass transition found
some discontinuous spin-glasses model, as first propose
Kirkpatrick, Thirumalai, and Wolynes.9

We identify the mode coupling temperatureTMCT
10 with

the dynamical temperatureTD of the discontinuous
spin-glasses,11–13and we assume that below this temperat
the phase space can be partitioned in a very large numb
different free energy valleys. These valleys are suppose
be, in terms of free-energy, the equivalent of the so-ca
inherent structures,14 which are built from the minima of the
potential energy together with their basins of attraction.

In other words, we suppose that, forT,TMCT , a typical
equilibrium configuration belongs to one of these valle
We label the valleys with an indexa, and denote for each
valley the free energy density asf a , the subset of equilib-
rium configurations belonging to the valley asVa and the
corresponding restricted partition function asZa . The ca-
nonical partition function can then be written in the follow
ing way:
9030021-9606/99/111(19)/9039/14/$15.00
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e2Nb f a, ~1!

where the functionH is the Hamiltonian of the system andb
is the inverse temperature. The number of valleys with
given value of free energy density is defined asN( f )
[(ad( f 2 f a), and we assume that in the thermodynam
limit it becomes a continuous function. It is then possible
write the partition function as

Z.E d f N~ f !e2Nb f5E d f e2N@b f 2S~ f ,T!#, ~2!

where we have introduced the complexityS[ logN/N.
Let us note that the system in equilibrium does not mi

mize the free energy of the single valleys, but a collect
thermodynamic potentialf(T), that we interpret as the ac
tual free energy in the liquid and glass phases.f(T) is de-
fined by

f~T![ f * 2TS~ f * ,T!, ~3!

where f * is the temperature dependent free energy wh
minimizes the functionf 2TS( f ,T).

In this picture, the total entropy density is the sum of t
entropy inside the valley, and of the entropy coming from t
very large number of valleys, with the same value of fr
energy, that the system is allowed to explore:

Stot5Svalley1S~T, f * !, ~4!

hence the complexity introduced here is completely equi
lent to the usual concept of configurational entropy of a
percooled liquid.

Assuming the existence of this decomposition of pha
space into valleys, we will show that there is a finite te
peratureTK ~the so-called Kauzmann temperature! where the
system undergoes a thermodynamic transition with the
lowing features:
9 © 1999 American Institute of Physics
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~a! TK is the temperature where the complexityS
vanishes.1,2 This means that, unlike the liquid phase,
the whole low temperature glass phase, only a non
ponential number of valleys contribute to the partiti
function, namely the ones with the lowest free ener
density f min .

~b! At TK there is a second order transition from the th
modynamic point of view. The free energy is contin
ous and there is no latent heat. The specific heat jum
from the liquid value to a smaller one, in agreeme
with the Dulong and Petit law.

~c! At TK there is a discontinuity of the order paramet
Below TK , in the glass phase, the system is an am
phous solid and the thermal average of the local p
ticle density becomes nonuniform, exhibiting peaks
the favored positions where the particles tend to
trapped in some cages. The order parameter is rel
to the spatial modulation of the density, and it go
discontinuously from zero in the high temperature l
uid phase to a finite modulation in the glass phase.

This transition could be experimentally observed only
one would be able to cool the liquid at an infinitely slow ra
andTK should correspond to the temperature where the
cosity is supposed to diverge@following for instance a gen-
eralized Vogel–Fulcher lawh}exp(T2Tk)

2n#.3 In real ex-
periments, infinitely slow cooling is not available, and t
correlation time becomes of order of the experimental time
a temperatureTg , which is in general an intermediate tem
peratureTK,Tg,TMCT . The value ofTg could be com-
puted only if we had under control the time dependence
the correlation functions. In this paper we study only sta
quantities, and we cannot say anything about the value oTg

or the temperature dependence of the viscosity aboveTK .
In such an entropy crisis scenario, it has been shown15,4

that the thermodynamic properties of the glass phase ca
computed in principle by consideringm replicas of the origi-
nal system, constrained to stay in the same valley, by me
of a small but extensive coupling term. In this case, the
guments used in the derivation of~3! can be applied again
leading to a replicated version of the same equation:

F~m,T![Minu f~m f2TS~ f ,T!!. ~5!

Once again, each of them systems does not reach the lowe
possible free energy, but the one which optimizes the b
ance between the free energy and complexity in~5!.

Interestingly enough, one can derive many properties
the system from~5! if one is able to continue it analytically
and compute it for any real value ofm, thinking aboutm as
a new parameter of the problem. Indeed,F(m,T), consid-
ered as a function ofm, gives access to the configuration
entropy~complexity! S( f ,T) through a Legendre transform
This implies the relations:

f 5
]F~m,T!

]m
, S5

m2

T

]~F~m,T!/m!

]m
, ~6!

from which it is possible to eliminatem, obtaining S( f ),
which measure the number of valleys with a given value
free energyf. Let us underline that~6! gives access to the ful
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curve of complexity versus free energy, while the equil
rium free energy of the physical system is obtained only a
taking the limitm→1.

As we shall see, the thermodynamic potentialF(m)/m
is a convex function ofm with a maximum at a pointm* (T),
which is an increasing function ofT, vanishing atT50. The
second equation of~6! is thus well-defined form<m* (T).
At m5m* (T), the resulting complexity vanishesS50 and
the free energy]F/]m reaches a valuef min . For m
,m* (T) the complexityS is nonzero: it is thermodynami
cally favorable to select some valleys which have a free
ergy density larger thanf min because of the correspondin
gain in complexity. If one increasesm beyondm* (T), the
formula ~6! gives an unphysical negative complexity. In fa
in the whole regionm.m* (T) the correct value off is f
5 f min , and the complexity is zero.

This is easily understood from the physical interpretat
of the transition which we now turn to. The above scena
has

~a! a high temperature phase wherem* (T).1. In this
phase, when the limitm→1 is performed and the equi
librium free energy of the original system is recovere
one gets a valuef eq. f min together with a positive con
figurational entropy.

~b! a low temperature phase wherem* (T),1. In this
phase, in the limitm→1 the equilibrium free energy is
f min and the configurational entropy is null.

It is quite easy, at this point, to recognize these two therm
dynamic phases as the supercooled liquid one~high! and the
glass one~low!, separated by a thermodynamic transition
second order, driven by the vanishing of the configuratio
entropy, at the temperatureTK where m* (TK)51. All the
thermodynamic quantities in the glass phase can be c
puted from the replicated free energy~5! at the pointm* ,
which play the role of the free energy of the glass.

This scenario of the glass transition is identical to t
phase transition appearing in discontinuous~1RSB! spin
glasses where it was first explained.16 The simplest example
of such a discontinuous spin glass transition is the rand
energy model17 which displays a total freezing atT5TK . As
first noticed by Kirkpatrick, Thirumalai, and Wolynes,9 dis-
continuous spin glasses provide some well defined m
field systems where the old ideas of Adam–Gibbs–
Marzio of a real thermodynamic transition driven by entrop
reasons are at work. The present approach allows to a
the replica method directly to the structural glasses~in spite
of the absence of any quenched disorder in the Hamiltoni!.
Assuming that the structural glass transition is characteri
in the replica language by a 1RSB, as in discontinuous s
glasses,8,18 we can compute the thermodynamic properties
the glass phase. The comparison with the numerical res
allows then to justifya posteriori the main hypothesis.

At this stage,m appears as an auxiliary parameter whi
may be interpreted as the effective temperature of the
leys; moreover one finds that in the low temperature ph
12m gives the probability of finding two systems in th
same valley.16

Summarizing, the study of the liquid-glass transition a
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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the investigation of the low temperature phase can be acc
plished by computing the free energy of a replicated sys
in its liquid phase, or in other words,4 the free energy of a
molecular liquid where each molecule hasm atoms. The
thermodynamic properties of the glass phase can be ded
by means of the analytic continuation to arbitrary real valu
of this parameter.

In the previous works1,2 this general approach was a
plied to a pure soft sphere system. The extension to bin
mixtures is particularly important since there are well kno
examples of glass forming binary mixtures where an app
priate choice of the interaction parameters strongly inhib
crystallization. This allows therefore to get numerical resu
which can be compared to the analytical ones. Here we
consider in particular a mixture of soft spheres.

After discussing the model in Sec. II, we will present
Sec. III the generalization to binary mixtures both of t
small cage expansion and of the harmonic re-summa
scheme introduced previously1 to deal with the molecular
fluid. Section IV describes the application of the HNC a
proximation to the center of mass degrees of freedom of
molecular fluid. In the last section we will discuss our an
lytic results, together with some strategies for evaluating
merically the glass transition temperatureTK and the con-
figurational entropy behavior, and a comparison between
numerical estimates and those obtained analytically.

II. GENERAL FRAMEWORK

We study mixtures composed of two types of partic
called1 and2, with pairwise interactions. The Hamiltonia
of our problem is

H5 (
1< i< j <N

Ve ie j~xi2xj ! e iP$2,1%, ~7!

where theN particles move in a volumeV of ad-dimensional
space, andV11, V12, V22 are arbitrary short range inter
action potentials. We callc1 ~respectively,c2! the fraction
of 1 ~respectively,2! particles.

In the explicit computations described in the next s
tion, we have chosen a binary mixture of soft spheres
has been extensively studied in the past through nume
simulations.19,20 The potentials are given by

Vee8~r !5S see8
r D 12

, ~8!

where

s11

s22
51.2, s125

s111s22

2
. ~9!

The concentration is taken asc151/2, and the choice of the
ratio R[s11 /s2251.2 is known to strongly inhibit crys-
talization. We also make the usual choice of considering p
ticles with average diameter 1 by setting

~s11!312~s12!31~s22!3

4
51. ~10!

All thermodynamic quantities depend on the dens
r5N/V and temperatureT only through the paramete
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G[rT21/4. For G larger thanGD51.45 ~corresponding to
lower temperatures! the dynamics becomes very slow an
the autocorrelation time is very large. Hence the system
ters the aging regime, where violations of the equilibriu
fluctuation-dissipation theorem are observed.18 This value of
GD is supposed to correspond to the mode coupling tra
tion below which the relaxation is dominated by activat
processes.21 If this simple model behaves like a real fragi
glass the Kauzmann transition, characterized by a disco
nuity in the specific heat, is located below the dynami
transition, and cannot be directly accessed by numer
simulations, maybe with the exception of studies done
very small samples.19

The application of the theory to a more realistic pote
tial, namely a Lennard-Jones binary mixture, will be trea
in detail in a forthcoming paper.21

As previously explained, in order to obtain some info
mation about the super-cooled liquid-glass thermodyna
transition, we consider the thermodynamics of a molecu
liquid, whose molecules are composed ofm atoms, each car-
rying a different replica index. The tendency to form mo
ecules is forced by a small but extensive coupling term
tween particles of different replicas.4 Unlike the pure case
we are dealing here with a situation where particles are
all indistinguishable: we have particles of the ‘‘1’’ type and
of the ‘‘2’’ type. Physically this has an important effec
when R is not close to one. AtR.1, it is clear that the
valleys of the mixture are close to those of the pure syst
More precisely, taking one given valley of the pure (R51)
system, one can generateN!/N1!N2! valleys of the mixture
with R.1, by choosing at random the positions of the1 and
the2 particles: in this limit the main effect of the mixture i
to add a factor to the entropy, whose value isN log 2 when
N65N/2. On the other hand, whenR is very different from
one, the valleys of the mixture are very different from tho
of the pure system; one cannot find a new valley by j
exchanging a1 particle with a 2 particle. This physical
problem has an exact counterpart in replica space. One c
study the case where molecules are formed by one partic
each of them different replicas, irrespective of their6 na-
ture. Qualitatively speaking, this would mean that inte
changing two particles of different types, the two replicas
which particles belong would remain in the same valley, t
is their free-energy would not change. There are two extre
possibilities, corresponding to the two cases discus
above:

~a! For R very near to one, the system behaves similarly
the system atR51. One can form molecules with par
ticles of any type, and the exchange of a ‘‘1’’ particle
with a ‘‘2’’ one gives a very small change in fre
energy.

~b! For R quite different from 1, the exchange of a ‘‘1’’
particle with a ‘‘2’’ one is a process that can be safe
neglected, since it gives a variation in energy that
much larger thankT. In this second case the molecule
are built up of atoms of the same type.

In each of these extreme cases the computation
simple: in the first case it just reduces to theR51 computa-
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tion. In the second case, we can assume, as we shall do
that each molecule is built fromm atoms which are all of the
same type~all ‘‘ 1’’ or all ‘‘ 2’’ !. Then one only needs co
sidering attractive coupling terms only between particles
the same kind. The computations in the crossover region
rather complex. For our caseR51.2, we have decided to
neglect this kind of corrections and to consider the molecu
consisting only of particles of the same type.

The replicated partition function is

Zm@v#5
1

N1! mN2! m (
sa

(
pa

E )
a

ddxi
a

3expS 2
b

2 (
iÞ j ,a

Ve ie j~xi
a2xj

a!

2 (
i P$1%

(
aÞb

v1~xsa~ i !2xsb~ i !!

2 (
i P$2%

(
aÞb

v2~xpa~ i !2xpb~ i !! D , ~11!

where the sum over permutations of atoms in each mole
is taken into account, andN15c1N, N25c2N. When re-
labeling particles, so that particlei of a given type in replica
a corresponds to particlei of the same type in replicab
~which is supposed to belong to the same molecules! and so
on, the sum over permutations gives a fac
(N1!N2!) (m21).

As discussed in the preceding section, in the glass ph
the replicas becomes correlated, so the study of the trans
is accomplished by choosing as order parameters
m-points correlation functions for each of the two differe
types of particles:

r1~r 1,...,r m!5 (
i P$1%

^d~xi
12r 1!...d~xi

m2r m!&, ~12!

r2~r 1,...,r m!5 (
i P$2%

^d~xi
12r 1!...d~xi

m2r m!&. ~13!

The transition is signaled, then, by the onset of an o
diagonal nontrivial correlation in replica space atTK , when
the coupling functionsv6 are sent to zero. This feature
studied as usual introducing the Legendre transform of
molecular~replicated! free energy:

G@r#5 lim
m→1
v→0
N→`

2
1

bm
logZm@v#2

1

m E )
a21

m

ddr a

3 (
e51,2

re~r 1,...,r m!We~r 1,...,r m! ~14!

with

We~r 1,...,r m!5 (
a,b

ve~r a2r b!. ~15!

Performing the limitv6→0 is equivalent to searching
saddle point of the functionalG@r#. In the presence of a
glassy transition we expect the following behavior of ord
parameters and thermodynamic quantities:
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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~a! For T.TK the free energy is the liquid one (m51)
and the order parameters are trivial, i.e.,r6(r 1)
5c6r.

~b! For T,TK , the glass free energy is the maximum wi
respect tom of the replicated free energy, and th
maximum is found atm* ,1. The correlationsr6 be-
come non trivial. From the free energy at the maximu
we can compute all the thermodynamic quantities.

The free energy and his first derivatives are continuous
TK , while the heat capacity falls suddenly from liquidlike
solidlike values when the temperature is decreased thro
TK . The transition, then, is of second order from the point
view of thermodynamics, but it is discontinuous in the ord
parameter which abruptly becomes a nontrivial function
positions in different replicas.

It is natural to describe the particle positions in term
center of mass coordinatesr i and relative displacementsui

a

with xi
a5zi1ui

a and(aui
a50. A useful simplification is the

choice, for the polarising potentialsv6 , of a quadratic cou-
pling that allows to rewrite~11! as

Zm5
1

N1!N2! E S )
i 51

N

ddzi D S )
a51

m

)
i 51

N

ddui
aD

3F)
i 51

N S mddS (
a51

m

ui
aD D G

3expS 2b (
a51

m

(
i , j

Ve ie j~zi2zj1ui
a2uj

a!

2
1

4a1
(
a,b

(
i P1

~ui
a2ui

b!2

2
1

4a2
(
a,b

(
i P2

~ui
a2ui

b!2D . ~16!

In the absence of the interacting potentialV, the $uim
a % for a

given i are Gaussian random variables with a vanishing fi
moment and a second moment given by

^uim
a uin

b &5S dab2
1

mD dmnd i j

ae i

m
. ~17!

III. REPLICATED FREE-ENERGY

A. Harmonic resummation

We are interested in the regime of low temperatur
where the molecules are expected to have a small rad
justifying a quadratic expansion ofV in the partition function
~16!. After integrating over these quadratic fluctuations, o
obtains

Zm5
mNd/2A2pNd~m21!

N1!N2! E )
i 51

N

ddzi

3expS 2bm(
i , j

Ve ie j~zi2zj !2
m21

2
Tr log~bM ! D ,

~18!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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where the matrixM, of dimensionNd3Nd, is given by

M
~ im!~ j n!

e ie j 5d i j S (
k

Vmn
e iek~zi2zk!1

m

ae i
D 2Vmn

e ie j~zi2zj !

~19!

andvmn(r )5]2v/]r m]r n ~the indicesm andn, running from
1 to d, denote space directions!. We have thus found an
effective Hamiltonian for the centers of masseszi of the
molecules, which basically looks like the original problem
the effective temperatureT* 51/(bm), complicated by the
contribution of vibration modes. We shall proceed by us
the same set of approximations which was proposed in
previous papers.1,2 We first perform a quenched approxim
tion, which amounts to neglecting the feedback of vibrat
modes onto the centers of masses, substituting thus the
Tr log(bM) in ~18! by its expectation value, for center o
mass positionszi equilibrated at the temperatureT* . This
approximation becomes exact close to the Kauzmann t
perature wherem→1.

Let us introduce the mean values of the diagonal te
of the matrixM:

r e5(
e8

cerE ddr gee8~r !
1

d
DVee81

m

ae
, ~20!

where thegee8(r ) are the pair correlation functions. We n
glect the fluctuation of these diagonal terms~an approxima-
tion which should be valid at high densities! and normalize
the off diagonal matrix elements as follows:

C~ im!~ j n!
ee8 [Acece8

r er e8
Vee8~zi2zj !. ~21!

The replicated free energy per particle,f(m,T)
[F(m,T)/m, can be expanded in series:

bf~m,b!52
d

2m
log~m!2

d~m21!

2m
log~2p!

2
1

mN
logZliq~bm!1

d~m21!

2m
~c1 log~br 1!

1c2 log~br 2!!1
1

N

~m21!

2m (
p52

` K Tr Cp

p L ,

~22!

where thepth order term depends as usual on thep points
correlation function

^Tr Cp&5 (
e1¯epP$1,2%

(
m1¯mp

E ddz1¯ddzp

3rpge1¯ep~z1¯zp!Cm1m2

e1e2 ~z12z2!¯

Cmp21mp

ep21ep ~zp212zp!Cmpm1

epe1 ~zp2z1!. ~23!

We use a ‘‘chain’’ approximation in the computations
traces, where terms with two equal indices are neglected,
the so-called superposition approximation for thep points
correlation functionsg(p)(z1¯zp)5g(z12z2)¯g(zp2z1).
With these hypotheses we arrive at
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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^Tr Cp&5E ddz1¯ddzp rp (
m1¯mp

(
e1¯ep

ge1e2~z12z2!

3Cm1m2

e1e2 ~z12z2!¯gep21ep~zp212zp!

3Cmp21mp

ep21ep ~zp212zp!gepe1~zp2z1!

3Cmpm1

epe1 ~zp2z1!. ~24!

The convolutions are computed in Fourier space, introduc
the tensor:

Dmn
ee8~k![E ddr gee8~r !Cmn

ee8~r !eikr , ~25!

which can be decomposed into its diagonal~longitudinal!
and traceless~transversal! parts with respect to the spatia
~m,n! indices:

Dmn
ee8~k!5dmnaee8~k!1S kmkn

k2 2
dmn

d Dbee8~k!. ~26!

The last step consists in the diagonalization ofD in the space
of the particles types~e,e8!. For eachk, there are four distinct
eigenvalues, the two longitudinal ones, corresponding to
of the 232 matrix

D i
ee8~k!5aee8~k!1

d21

d
bee8~k!, ~27!

and the two transverse eigenvalues of the matrix

D'
ee8~k!5aee8~k!2

1

d
bee8~k!. ~28!

The eigenvalues are

l i5
1
2~D i

111D i
221A~D i

112D i
22!214~D i

12!2!,

m i5
1
2~D i

111D i
222A~D i

112D i
22!214~D i

12!2!,
~29!

l'5 1
2~D'

111D'
221A~D'

112D'
22!214~D'

12!2!,

m'5 1
2~D'

111D'
222A~D'

112D'
22!214~D'

12!2!.

Using these approximations, the expression of the bin
mixture free energy per particle is

f~m,b!52
d

2m
log~m!2

d~m21!

2m
log~2p!1

d~m21!

2m

3~c1 log~br 1!1c2 log~br 2!!1
~m21!

2m

1

r

3E ddk$L3~l i~k!!1L3~m i~k!!1~d21!

3@L3~l'~k!!1L3~m'~k!!#%2
~m21!

4m E ddr r

3(
ee8

gee8~r !(
mn

~Cmn
ee8~r !!22

1

mN
logZliq~bm!,

~30!

where the functionL3 is log(12x)1x1x2/2.
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Let us notice that the condition for identifying the Kau
mann temperature,]bFm /]mum5150, reads in our har-
monic approximation:

Sliq5
d

2
log~2pe!2

1

2
^Tr log~bM !& ~31!

Sliq is the entropy of the liquid at the effective temperatu
Teff , which is equal toT for m51. The right-hand side o
this equation is nothing but the entropySsol of an harmonic
solid with a matrix of second derivatives given byM. Thus,
we find

S~b!5m2
]bFm

]m U
m51

5Sliq2Ssol. ~32!

If Sliq,Ssol the system is in the glassy phase (T,TK), while
in the other caseSliq.Ssol, the temperature is greater tha
TK ~and of course less thanTD if the spectrum ofM is
positive!. The complexity is thenS5Sliq2Ssol, as expected
on general grounds.15

Formula ~30! allows to compute the free energ
F(m,T)5mf(m,T) which is the main quantity needed t
investigate the thermodynamics of the low temperature g
phase, using~6!. It should be emphasized that within th
approximations we used here, the only properties of the
uid phase which are needed to getF are the pair correlation
g(r ) and the free energy. Beside usual thermodynamic qu
tities ~energy, entropy, heat capacity,...!, we are interested in
the two new parameters describing the glassy phase:

~a! The square cage radiiAe , defined asAe5 1
3(^xi

2&
2^xi&

2) for type e particles. This square cage radii a
obtained by differentiating the free energy with resp
to coupling terms and by sending couplings to zero
the end:

Ae5
2

d~m21!Ne

]~bF !

]~1/ae!
~ae5`!. ~33!

The square cage radii are nearly linear in temperature in
whole glassy phase, which is natural since nonharmonic
fects have been neglected.

The effective temperatureTeff5T/m of the molecular liq-
uid. This temperature varies very little and it remains close
the Kauzmann temperature whenT spans the whole low tem
perature phase, confirming the validity of our description
the glass by means of a system of molecules remaining in
liquid phase. It is worth to stress that the linear behavior
the parameterm as a function ofT is a feature shared b
every 1RSB system to our knowledge.

The harmonic expansion makes sense only ifM has no
negative eigenvalues, which is natural since it is intimat
related to the vibration modes of the glass. Notice that h
we cannot describe activated processes, and therefore
cannot see the tail of negative eigenvalues@with number de-
creasing as exp(2C/T) at low temperatures#, which is always
present.22 It is known however that the fraction of negativ
eigenvalues ofM becomes negligible below the dynamic
transition temperatureTD .23 So our harmonic expansio
makes sense if the effective temperatureTeff is less thanTD .
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B. Small cage expansion

It is possible to introduce a slightly different way t
compute the molecular liquid free-energy, in order to ta
into account:

~a! Nonharmonic terms.
~b! Corrections to the quenched approximation.

Starting from the expansion of the potential in powers of
relative variablesu, if one expands also the exponential
the corrective term, one obtains an expansion ofZm as a
power series ina1 and a2 . This is the generalization to
mixtures of the small cage expansion scheme utilized in
pure case.1,2 This expansion is not equivalent to computin
perturbatively quartic and higher order corrections to
Gaussian approximation represented by the harmonic res
mation. Indeed, in thisa6 expansion we are using a trun
cated version of the series in~22!. On the other hand, this
direct expansion allows to take into account the annea
fluctuations of the matrixM which were neglected in the
harmonic approximation. Therefore these two types of
proximations are complementary. In this paper we consi
the harmonic resummation and the small cage approxima
as distinct schemes of approximation and we compare res
obtained independently in both them. However, it is cle
that a better approximation of the replicated free ene
could be obtained by adding corrections from the small c
approximation, treated in some systematic way, to the h
monic resummation. A first attempt in this direction will b
found in a following work.21

The leading term of~16! in the a1 , a2→0 limit is

Zm
~0!5A2pa1

m

dN1~m21!

A2pa2

m

dN2~m21!

3mdN/2Zliq~bm!. ~34!

Accordingly, the zero-order free-energy is

bf~0!~a1 ,a2 ,m,b!

52
1

mN
logZm

~0!5d01a0~c1 loga11c2 loga2!,

~35!

with

d05
d~12m!

2m
log

2p

m
2

d

2m
logm2

1

mN
logZliq~bm!,

~36!

a05
d~m21!

2
.

The first-order term is
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



e

a
a
. I

i

tio

h
(
is

rm
x

g

-

l

r

er:

is

e

9045J. Chem. Phys., Vol. 111, No. 19, 15 November 1999 Thermodynamics of binary mixture glasses
Zm
~1!5

1

N1!N2! E S )
i 51

N

ddzi D S )
a51

m

)
i 51

N

ddui
aD

3F)
i 51

N S mddS (
a51

m

ui
aD D G•expS 2

1

4a1

3(
a,b

(
i P1

~ui
a2ui

b!22
1

4a2
(
a,b

(
i P2

~ui
a2ui

b!2

2bm(
i , j

Ve ie j~zi2zj !D•S12
b

2 (
i , j

(
a51

m

(
m,n

d

~uim
a 2uj m

a !

3~uin
a 2uj n

a !Vmn
e ie j~zi2zj !D

5Zm
~0!S 12

b

2 K (
i , j

(
a51

m

(
m,n

d

~uim
a 2uj m

a !

3~uin
a 2uj n

a !Vmn
e ie j~zi2zj !L D , ~37!

from which we get the first-order contribution to the fre
energy:

bf~1!~a1 ,a2 ,m,b!5c1a1
1a11c2a1

2a2 , ~38!

where we define the first-order coefficients as

a1
15

d~m21!

2m2 Fc1E ddr rg11~r !(
m

Vmm
11~r !

1c2E ddr rg12~r !(
m

Vmm
12~r !G ,

~39!

a1
25

d~m21!

2m2 Fc2E ddr rg22~r !(
m

Vmm
22~r !

1c1E ddr rg21~r !(
m

Vmm
21~r !G .

Up to first order, the harmonic resummation and the sm
cage expansion give the same results. Differences appe
the second-order level, which is presented in Appendix
fact, the second-order term in the harmonic resummation

~m21!

4m E ddr r(
ee8

gee8~r !(
mn

~Cmn
ee8~r !!2, ~40!

while the second-order term in the small cage approxima
adds two new kinds of term~see the Appendix!:

~a! Those involving fourth derivatives of potential, whic
are anharmonic corrections, are proportional tom
21)2, unlike any other term up to second order. Th
means that they are less important nearTK where m
.1, and more important at very low temperatures.

~b! Those expressing the fluctuations of the diagonal te
of M. These are corrections to the quenched appro
mation.

The free energy per particle, up to second order, is then
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
ll
r at
n
s

n

s
i-

bf~a1 ,a2 ,m,b!

5d01
a0

m
~c1 loga11c2 loga2!1c1a1

1a1

1c2a1
2a21c1a2

11a1
2 1c2a2

22a2
2

1c1c2a2
12a1a2), ~41!

where the coefficientsa2
ee8 are given in the Appendix.

The free energyf should be studied in the zero couplin
limit, that is a1 , a2→`. This cannot be done directly with
a powers series ofa1 , a2 truncated at a finite order. There
fore one must first take the Legendre transform off, as
previously discussed, getting the thermodynamic potentiaG
as an expansion in powers of different cage sizesAe , defined
by means of~33!. Within this formulation, the free energyf
in the vanishing coupling limit is obtained by looking fo
possible minima ofG with respect toA1,A2.

The Lagrange transformed free energy is, at first ord

bG~A1,A2,m,b!5g01
d~12m!

2m
~c1 log~A1!

1c2 log~A2!!1c1g1
1A1

1c2g1
2A2,

~42!

g05a01
d~12m!

m
, g1

15a1
1 , g1

25a1
2 ,

and the saddle points equations read

]G

]A1 50⇒A1* 52
d~12m!

m

1

g1
1 5

1

br 1
,

]G

]A2 50⇒A2* 2
d~12m!

m

1

g1
2 5

1

br 2
,

~43!

r 15c1E ddr rgliq
11~r !

1

d
DV11~r !

1c2E ddr rgliq
12~r !

1

d
DV12~r !,

r 25c2E ddr rgliq
22~r !

1

d
DV22~r !

1c1E ddr rgliq
12~r !

1

d
DV12~r !.

The first-order free energy in the vanishing coupling limit
correspondiugly given by

bG~A1* ,A2* ,m,b!

5
d~12m!

2m
log S 2p

m D2
d

2m
log ~m!2

1

mN
logZliq~bm!

2
d~12m!

2m
~c1 log~br 1!1c2 log~br 2!!. ~44!

This expression forG looks quite reasonable. First of all on
may note that in them→1 limit it reproduces the liquid free
energy densityb f 52 logZliq(b)/N, as it should. Moreover,
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



e

he

ca

t
la
e
-
in

im

th

n

t-
-
the

la-
nc-
ed
ure

ur
at
be
ture
the
in-
ted
re-
ller

on
r a

9046 J. Chem. Phys., Vol. 111, No. 19, 15 November 1999 Coluzzi et al.
in the limit in which the ‘‘1’’ and ‘‘ 2’’ particles are no
more distinguishable, this expression forG coincides with
the one found in the pure case.1,2 ~More precisely, the two
generalized free energy would coincide in this limit if th
liquid free energies at inverse temperaturebm were the
same, which would be true if one would forget about t
mixture entropy contribution}c1 logc11c2 logc2).

The computation of the second-order terms can be
ried out in a very similar way. One gets~see the Appendix!:

bG~A1,A2,m,b!5g01g3~c1 log~A1!1c2 log~A2!!

1c1g1
1A11c2g1

2A2

1c1g2
11~A1!21c2g2

22~A2!2

1c1c2g2
12A1A2 ~45!

with

g3[
d~12m!

2m
. ~46!

In evaluating the formulas of the appendix one needs
know the three particles correlation function. This corre
tion function can be computed starting from a generaliz
HNC expansion.1 Here we follow the simpler route of evalu
ating the three point function using the superposition pr
ciple, i.e.,g3(x,y,z)5g(x2z)g(x2y)g(y2z). When look-
ing for the minimum]G/]A150, ]G/]A250, one faces
the problem that the second-order corrections are very
portant~this happens also in the pure case!. In this case the
solution can be found only through a perturbation around
first-order solution. In this way one gets

A1* 5A1
1* 1dA2

1* ,

A2* 5A1
2* 1dA2

2* , ~47!

G~A1* ,A2* ,m,b!5G11dG2

and, by writing m5m11dm2 , the stationarity condition
reads

]G1

]m
~m1!50,

~48!

m252
]G2

]m
~m1!S ]2G1

]m2 ~m1! D 21

.

Therefore, one looks for the valuem1* which maximizesG1 ,
which is nothing but the first-order free energy, and then o
computes the second order corrections atm5m1* . The result
is

A2
1* 5

2g2
11

~g1
1!3 1c2

g2
12

~g1
1!2g1

2 ,

A2
2* 5

2g2
22

~g1
2!3 1c1

g2
12

~g1
2!2g1

1 , ~49!
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G25c1S g3

g1
1D 2

g2
111c2S g3

g1
2D 2

g2
22

1c1c2

g3
2

g1
1g1

2 g2
12 .

Finally, the second-order correction tom1 is obtained by
~48!.

IV. HNC FOR BINARY MIXTURES

In evaluating the liquid free energyf liq and thegee8 at
the effective temperatureT/m we use the so-called hyperne
ted chain approximation~HNC!, a simple closure approxi
mation that consists in neglecting the bridge diagrams in
Mayer expansion.24–27 For homogeneous fluids, apart from
the constantsmisc52c1 log(c1)2c2 log(c2), the free energy
of the liquid in the HNC approximation is given by

1

N
bF@$gee8~r !%#

5 logr211
r

2 E ddr (
e,e8

cece8$g
ee8~r !

3@ loggee8~r !1bVee8~r !21#11%2
1

2r

3E ddk

~2p!d H logD2(
e

rceh
ee~k!

1(
e,e8

cece8

~rhee8~k!!2

2 J , ~50!

where

hee8~r !5gee8~r !21, ~51!

andD is the determinant of the matrix

S 11rc1h11~k! rc1h12~k!

rc2h12~k! 11rc2h22~k!
D . ~52!

The closed set of HNC equations for the two point corre
tions can be derived as a stationarity condition of the fu
tional F with respect to these correlation: they are solv
using the same numerical technique utilized in the p
case.2

HNC is expected to be a good starting point for o
study since bothf and the mean values of quantities th
involve only two particles correlation functions seem to
evaluated with an error smaller than 10% in the tempera
region we are interested in, as we verified by comparing
analytical estimations with simulation results. The terms
volving the three point correlation functions, when evalua
by the superposition approximation and the HNC pair cor
lations, are reproduced with errors which seem to be sma
than 30%.

V. RESULTS AND DISCUSSION

Before discussing the analytical and numerical results
the soft sphere binary mixture, let us pay attention, fo
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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while, to the soft sphere model~9! with the particular value
R51 ~i.e., the pure case!. This allows to compare thermody
namic quantities obtained within the small cage expans
up to second order~evaluating the three point function by th
superposition approximation! with those computed at th
same order in the replicated HNC resummation scheme.1

In Figs. 1 and 2~a!, 2~b! we show the free energy, th
effective inverse temperaturebm and the cage radiusA for
the pure soft sphere model both at the first order, that g
the same results in the two cases, and at the second on
already outlined, when starting from the generalized HN
expression, the second order coefficientg2 is obtained with-
out further approximations than the one related to the us
HNC. On the other hand, these results confirm that eval
ing the three point correlation function which appears ing2

by the superposition approximation is a rather good appr
mation. In particular we get very similar values for the the
modynamic transition point,GK.1.53 from the HNC resum-
mation scheme andGK.1.49 when using small cag
expansion, i.e., an error less than 3%.

Now we come back to the soft spheres binary mixtu
with the interaction parameters described in~9!, taking in
particular the valueR51.2 of the ratio between the effectiv
diameters in order to obtain analytical results comparabl
the numerical ones. We consider both the small cage ex
sion to second order and the harmonic re-summation, find
results in very good agreement as is shown in Fig. 3, wh
the glassy phase free energy computed in the two diffe
schemes of approximation is plotted as a function ofT ~for
simplicity we take in the followingr51!.

The evaluations of the thermodynamic critical tempe
ture obtained by the two analytic methods nearly coinci
we get GK[TK

21/4.1.65, which is in agreement with th
numerical estimates that we are going to discuss. For
sake of comparison, let us remember that the mode coup
critical value for this model20 is GD.1.45. Let us note tha
the ratioTD /TK is usually found to be between 1.2 and 1

We stress that the parameterm and cages size,A1 and
A2, plotted in Figs. 4~a! and 4~b! are nearly linear with
temperature. This means, in particular, that the effective t

FIG. 1. The free energy of the pure soft sphere model versus tempera
The three curves are the results obtained from the small cage expans
the first order~dotted line! and at the second order~dashed line!, and those
from the HNC resummation scheme~continuous line!.
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peratureT/m is always close toTK , so in our theoretical
computation we need only the mean values of observable
the liquid phase, at temperatures where the HNC approxi
tion still works quite well.

One can also observe that the specific heat@see Fig. 5~a!#
shows an evident jump atTK , remaining close to the crystal

re.
at

FIG. 2. bm ~a! andbA ~b! of the pure soft spheres model versus tempe
ture. The three curves are the results obtained from the small cage expa
at the first order~dotted line! and at the second order~dashed line!, and
those from the HNC resummation scheme~continuous line!.

FIG. 3. Free energy of the soft sphere mixture vs temperature. The con
ous line is the result of the harmonic resummation scheme and the da
line is the result of the small cage expansion to second order.
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like value, 3/2~we have not included the kinetic energy!, in
the whole glassy phase. The qualitative behavior of therm
dynamic quantities, apart from the presence of the two
tinct radii, is very similar to that observed in the pure cas1,2

and it corresponds to a second-order transition from the t
modynamic point of view.

The harmonic resummation scheme suggests an intr
ing approach for evaluating the thermodynamic critical te
perature by simulations, starting from~32!. Here the liquid
entropy can be obtained for instance by numerically integ
ing the energy

Sliq~b!5b~Eliq~b!2F liq~b!!

5Sliq
0 1bEliq~b!2E

0

b

db8 Eliq~b8!, ~53!

whereSliq
0 is the entropy of the perfect gas in theb→0 limit,

i.e., in the binary mixture case

Sliq
0 5N~12 logr2c1 logc12c2 logc2!. ~54!

Moreover, one can think of directly numerically evaluatin
the ‘‘harmonic solid’’ entropy

FIG. 4. In ~a! we plot bm vs temperature, from the harmonic resummati
scheme~continuous line! and from the low temperature expansion to seco
order ~dashed line!. In ~b! we presentbA1 ~continuous line! and bA2

~dashed line! computed in the low temperature expansion to second or
Note that, quite reasonably, the smallest cage radius corresponds to pa
with the largest effective diameter.
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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Ssol~b!

N
5

d

2
~11 log~2p!!2

1

2N
^Tr log~bM!&, ~55!

by diagonalizing the instantaneous Hessian and by avera
over different configurations. The knowledge ofSliq andSsol

allows to obtain a numerical estimate ofTK as the tempera-
ture where the two entropies become equal, and to mea
the complexity

S~b!5
1

N
@Sliq~b!2Ssol~b!#. ~56!

When attempting to obtain such evaluations, we face t
kinds of problems.

~a! The well-known hard task of thermalizing glas
forming liquids at low temperatures. Here we choose
perform a simulated annealing run of a quite large s
tem, using data on the liquid energy down to the te
perature where the equilibrium was still reachable in
reasonable CPU time~G;1.5!. Then we extrapolate the
liquid entropy behavior at lower temperatures by fittin
data in the intervalGP@1,1.5# with the power law

Sliq~T!5aT22/51b. ~57!

r.
les

FIG. 5. The energy~a! and the specific heat~b! of the soft sphere mixture
versus temperature, both in the liquid and in the glassy phase, from
harmonic resummation scheme.
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In fact, it has been shown28 that the potential energy o
simple liquids at high densities and low temperature m
follow this law, and we find that our numerical data are in
very good agreement with it.

The correct evaluation of the solid entropy, which is
subtle task. Beyond the mean field approximation there
ways exists a non zero number of negative eigenvalu
which decreases as exp(2C/T) at low temperatures23 and is
expected to be negligible below the mode coupling tempe
ture. An estimate of the error onSsol can be found by doing
the following two measurements.~a! One includes in the
computation of Tr log(bM! only theNpos positive eigenval-
ues.~b! One includes all eigenvalues, but one takes the
solute values of the negative ones:

Ssol
~a!

N
5

d

2 F S 11 logS 2p

b D D2K 1

Npos
(
i 51

Npos

logl i L G , ~58!

Ssol
~b!

N
5

d

2 F S 11 logS 2p

b D D2K 1

dN (
i 51

dN

logul i u L G . ~59!

The percentage of nonpositive eigenvalues that we find
diagonalizing the instantaneous Hessian is still about 20%
G;1, it decreases to less than 10% atG;1.2 and in the
region definitely belowTD , i.e., aboveG;1.5, it is ;4%.
On the other hand, nearly all the negative eigenvalues
less than one in absolute value. Therefore, particularly
temperaturesT*TD , we find a sizable difference betwee
Ssol

(a) and Ssol
(b) ~we disregard in both cases the very fewulu

,1024!, as is shown in~Fig. 6!. One should note thatSsol
(b)

seems to display the most regular behavior as a functio
G. The presence of negative eigenvalues is possibly rel
also to the fact that when diagonalizing the instantane
Ilessian the system can be far from the center of the m
mum, in positions where higher order corrections to a h
monic approximation of the energy landscape are import

FIG. 6. The entropy of the liquid~1! and the different evaluations~see text!
of the amorphous solid entropy,ssol

(a) ~3!, ssol
(b) ~* !, andssol

(c) ~h!, as functions
of G, obtained in the numerical simulation. In the liquid entropy case the
is the best fit to the power lawsliq5ab2/51b, otherwise lines are only
interpolations between neighboring points. The liquid and solid entro
seem to cross aroundGK;1.75, which is the corresponding estimation
the thermodynamic liquid-glass transition.
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A more extensive study should be performed in order
better understand these subtleties of the computation of
solid entropy. However we would like to mention here
third way for evaluating numerically the solid entropy. Sta
ing from an equilibrium configuration at a givenG value, we
performed a Monte Carlo run atT50, allowing only quite
small displacements to each particle. The percentage of n
positive cigenvalues becomes very rapidly,2% in the
whole temperature range considered and correspondingly
two different ways of evaluating the solid entropy give com
patible results. The obtainedSsol

(c) is near to the one evaluate
from the ‘instantaneous’ Hessian by using also the abso
values of negative eigenvalues in the regionT;TD but it
decreases slightly faster when lowering the temperature~see
Fig. 6!.

More precisely, we performed a simulated annealing
of a system ofN5258 particles, in a cubic box with periodi
boundary conditions, starting fromG50.05 and performing
up to 222 MC steps at eachDG50.05, the maximum shift
dmax permitted to each particle in one step being chosen s
as to get an acceptance rate;0.5. The energy and its fluc
tuation were measured in the last half of the run at a giveG
value.

Just for decreasing the error on the evaluation ofSliq , we
fit the very high temperature data on the energy, up toG0

50.2, by using G3E(G)5aG21bG1c, obtaining corre-
spondinglyF(G0)54aG0

3/312bG0
214cG0 that turns out to

be perfectly compatible with the HNC value~i.e., we are still
in the region where no differences are observable betw
numerical data and the HNC approximation!. The integration
is subsequently performed by interpolating with a stand
numerical subroutine the simulation data in order to ge
result independent on the integration interval.

In order to evaluateSsol
(a) andSsol

(b) we considered 16 dif-
ferent configurations in the last half of the run at each
value, whileSsol

(c) was measured from the configurations o
tained by these ones with 5000 MC steps atT50 ~starting
from dmax50.1 and decreasing it up to 0.02 during the ru!.
One should note that at a givenG value the obtained evalu
ations ofSsol

(c) seem to depend weakly on the starting equil
rium configuration i.e., fluctuations are very small!. More-
over we get perfectly compatible results both halving a
doubling the number of MC steps~in the last case we find
practically only positive eigenvalues!.

We plot in Fig. 6 bothsliq(G) and the obtained evalua
tions of ssol(G) by the different ways considered,ssol

(a) , ssol
(b) ,

and ssol
(c) are very close to each other when approaching

thermodynamic liquid-glass transition, giving similar es
mates ofGK;1.75.

The study of the system coupled to a reference confi
rationxref , which is an equilibrium configuration of the sys
tem itself at the considered temperature, allows to meas
the complexity by an alternative route. One considers

bH5bH01e~x2xref!
2, ~60!

where

e

s
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~x2xref!
2[(

i 51

N

(
m51

d

~xi
m2xrefi

m !2 ~61!

is the squared distance between the configurations~note that
the coupling breaks the rotation–translation–permutation
variance!. Therefore

b f ~e,b!5b f 0~b!1E
0

e

de8^~x2xref!
2&e8 , ~62!

where in the regionT&TD

b f 0~b!5 lim
e→01

f ~e,b!.be~b!2S~b!. ~63!

On the other hand, one has

lim
e→`

b f ~e,b!5b f `~b!5be~b!1
d

2 S logS e

2p D21D . ~64!

FIG. 7. In ~a! we plot ^(x2xref)
2&e as a function ofe at the considered

valuesG51.4 ~1!, 1.6 ~3!, 1.8 ~* !, and 2.0~h!. Here we show also 3/~2e!
~the dashed line! in order to make evident the reaching of the asympto
behavior. In ~b! we present the evaluations~see text! of S.sliq

0

1*0
ede8^(x2xref)

2&e823(log(e/(2p))21)/2 in the largee limit ~the differ-
ent curves, from top to bottom, correspond toG51.4, 1.6, 1.8, and 2.0,
respectively!. The complexity turns out to be compatible with zero atGK

51.6 which is therefore the evaluation of the thermodynamic liquid-gl
transition temperature.
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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This means that one can obtain an evaluation of the confi
rational entropy as

S~b!.sliq
0 1E

0

e

de8^~x2xref!
2&e82

d

2 S logS e

2p D21D , ~65!

in the largee limit, taking into account as usual the perfe
gas binary mixture entropy.

Here we considered a large system ofN52000 particles
in a cubic box with periodic boundary conditions and we p
a cut-off on the potentials, i.e.,Ṽee8(r )5Vee8(Rmax) for r
.Rmax, choosingRmax51.7 that means a practically negl
gible Vee8(Rmax;1023. The algorithm is then implemente
in such a way that for each particle the map of the on
which are at distance lower thanRmax12dmax is recorded and
updated during the run.

We performed up toN5221 MC steps at each consid
eredG51.4, 1.6, 1.8, 2.0. At the end of the run, the config
ration was copied in the reference one and subsequen
run of N/16 MC steps was performed on the coupled syst
for different e values,e51, 2, 4, 8,... up to very largee
;104, measuring the squared distance. We note that
fectly compatible results were obtained forN52.19 The in-
tegrals were evaluated by interpolating with a standard
merical subroutine between the simulation data in order
obtain results independent on the integration interval.

We plot in Fig. 7~a! both the data on̂ (x2xref)
2&e at

different G as function ofe and 3/~2e!. The asymptotic be-
havior seems to be reached arounde52000, though also a
largere there are very weak deviations from it. When loo
ing at the difference between the corresponding integrals
d(log(e/2p)21)2sliq

0 in the largee limit @see~Fig. 7~b!#,
one finds that the complexity is compatible with zero atGK

;1.6, a value slightly lower than the previously obtain
GK;1.75~the analytical estimation beingGK.1.65!. On the
other hand, the errors on these estimations are difficul
evaluate but they might be quite large, a more extens

s

FIG. 8. The complexityS(T) computed in the harmonic re-summatio
scheme~continuous line! and the different numerical evaluations, i.e.,sliq

2ssol
(a) ~1!, sliq2ssol

(b) ~3!, sliq2ssol
(c) ~* !. The h correspond to theS values

obtained by studying the coupled system atG51.4 and 1.6.
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numerical analysis being necessary in order to improve th
results.

At last we plot in Fig. 8 the different numerical estim
tions of the configurational entropyS as a function of the
temperature and the behavior obtained analytically in
harmonic resummation scheme. In spite of the uncertain
in the measures ofS and in the analytical approximation
~first of all related to the use of the HNC closure for eva
ating liquid quantities!, the agreement between theory a
simulation looks quite satisfactory. We leave for future wo
both more extensive numerical studies and the improvem
of the analytical results, that should allow a more care
comparison.
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APPENDIX: SECOND-ORDER COEFFICIENTS

The second-order expression of replicated partition fu
tion in small cage approximation is
th
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Zm
~2!5Zm

0 H 12
b

4 K (
iÞ j

(
mn

Vmn
e ie j~zi2zj !(

a
~m im

a 2uj m
a !

3~uin
a 2uj n

a !L 2
b

2•4! K (
iÞ j

(
mnht

Vmnht
e ie j ~zi2zj !

3(
a

~uim
a 2uj m

a !~uin
a 2uj n

a !~uih
a 2uj h

a !

3~ui t
a 2uj t

a !L 1
b2

2•16 K S (
iÞ j

(
mn

Vmn
e ie j~zi2zj !

3(
a

~uim
a 2uj m

a !~uin
a 2uj n

a ! D 2L J , ~A1!

where distinction between terms which involve sums o
particles of a given kind is required. Taking the logarithm
partition function, one finds the second order contribution
f

bf~2!~a1 ,a2 ,b!5c1a2
11a1

2 1c2a2
22a2

2

1c1c2a2
12a1•a2 . ~A2!

The second-order coefficients also depend on the three p
correlation functions

gee8e9~r 1,r 2!5
1

cece8ce9r
2N K (

i Pe, j Pe8,kPe9
d~xi2xj2r 1!

3d~xi2xk2r 2!L . ~A3!

One has
a2
115

b

4

~12m!2

m4 Fc1E ddrrg11~r !(
mn

Vmmnn
11 ~r !1

c2

2 E ddrrg12~r !(
mn

Vmmnn
12 ~r !G2

b2

4

~m21!

m3

3Fc1
2 E ddr 1 ddr 2 r2g111~r 1 ,r 2!(

mn
Vmn

11~r 1!Vmn
11~r 2!12c1c2E ddr 1 ddr 2 r2g112~r 1 ,r 2!

3(
mn

Vmn
11~r 1!Vmn

12~r 2!1c2
2 E ddr 1 ddr 2 r2g122~r 1 ,r 2!(

mn
Vmn

12~r 1!Vmn
12~r 2!G2

b2

2

~m21!

m3

3Fc1E ddr rg11~r !(
mn

Vmn
11~r !Vmn

11~r !1
c2

2 E ddr rg12~r !(
mn

Vmn
12~r !Vmn

12~r !G ,
~A4!

a2
125

b

4

~12m!2

m4 E ddr rg12~r !(
mn

Vmmnn
12 ~r !2

b2

2

~m21!

m3 E ddr rg12~r !(
mn

Vmn
12~r !Vmn

12~r !2 ,
and the expression ofa2
22 is obtained by changing the1 in

2 in the coefficienta2
11 .

To obtain the Legendre transform one must solve
system of linear equations

]f

]~1/a1!
52

d~12m!

2
A1c1 ,

~A5!
]f

]~1/a2!
52

d~12m!

2
A2c2 ,
e

and substitute the solutions into

bG~A1,A2,m,b!

5f~a1 ,a2 ,m,b!1
d~12m!

2
c1

A1

a1

1
d~12m!

2
c2

A2

a2
~A6!

getting
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bG~A1,A2,m,b!5g01g3~c1 logA11c2 logA2!

1c1g1
1A11c2g1

2A2

1c1g2
11~A1!21c2g2

22~A2!2

1c1c2g2
12A1

•A2 ~A7!

with

g05c02a0~11 logm!/m, g352a0 /m,

g1
15ma1

1 , g1
25ma1

2 ,
~A8!

g2
115m2a2

111m3~a1
11!2/~2a0!,

g2
225m2a2

221m3~a1
22!2/~2a0!,

g2
125m2a2

12 .
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