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We compute the thermodynamic properties of the glass phase in a binary mixture of soft spheres.
Our approach is a generalization to mixtures of the replica strategy, recently proposed by Mezard
and Parisi, providing a first principle statistical mechanics computation of the thermodynamics of
glasses. The method starts from the interatomic potentials, and translates the problem into the study
of a molecular liquid. We compare our analytical predictions to numerical simulations, focusing
onto the values of the thermodynamic transition temperature and the configurational entropy.
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I. INTRODUCTION

dx efﬁH(X)zg efNBfa, (1)
{xteVv, a

In this paper we present the generalization to the binary
mixture case of a thermodynamic theory of glasses, recentlyhere the functiorH is the Hamiltonian of the system aygi
proposed-;z which allows to deduce equ”ibrium properties is the inverse temperature. The number of ValleyS with a

of fragile glassesfrom those of the corresponding liquid 9iven value of free energy density is defined A4f)

phase, computed for a molecular liquid consistingrof = >ad(f—f.), and we assume that in the thermodynamic
cloneé of the system withm<1 limit it becomes a continuous function. It is then possible to

The hypothesis at the heart of this strategy is the exis\-Nme the partition function as

tence of a liquid-glass thermodynamic transition, driven by ~f 7Nﬁf_f CN[BE-S(£.T)]
the entropy crisis predicted by Kauzmahand the scenario Z= | dfA(f)e = | dfe '

is similar to the one described by Adam, Gibbs, and Diwhere we have introduced the complextiy=log 7N
Marzio®~8 The transition considered here can be also ex- Let us note that the system in equilibrium does not mini-

plained in terms of a certain type of replica symmetry breakyize the free energy of the single valleys, but a collective
ing (called one step replica symmetry breakindRSB. It thermodynamic potentiap(T), that we interpret as the ac-
shares its main features with the glass transition found inual free energy in the liquid and glass phasgéT) is de-
some discontinuous spin-glasses model, as first proposed fined by

Kirkpatrick, Thirumalai, and Wolyne$. e %

We identify the mode coupling temperatufgc1° with PM=T=T2(F.T), ©
the dynamical temperatureT, of the discontinuous Wwheref* is the temperature dependent free energy which
spin-glasse$~13and we assume that below this temperatureMinimizes the functiorf —T=(f,T).
the phase space can be partitioned in a very large number of [N this picture, the total entropy density is the sum of the
different free energy valleys. These valleys are supposed fgNroPY inside the valley, and of the entropy coming from the
be, in terms of free-energy, the equivalent of the so-called®"Y large number of vglleys, with the same value of free
inherent structure¥ which are built from the minima of the energy, that the system is allowed to explore:
potential energy together with their basins of attraction. Stot= Svalleyt 2(T,T*), 4

In other words, we suppose that, o Tycr, atypical o0 the complexity introduced here is completely equiva-
equilibrium configuration belongs to one of these valleys, ot 1o the usual concept of configurational entropy of a su-
We label the valleys with an index, and denote for each percooled liquid.
valley the free energy density dg, the subset of equilib- Assuming the existence of this decomposition of phase
rium configurations belonging to the valley & and the gpace into valleys, we will show that there is a finite tem-
corresponding restricted partition function Zg. The ca-  peratureT (the so-called Kauzmann temperafurénere the
nonical partition function can then be written in the follow- system undergoes a thermodynamic transition with the fol-
ing way: lowing features:
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(@ Tk is the temperature where the complexiy  curve of complexity versus free energy, while the equilib-
vanishes:? This means that, unlike the liquid phase, in rium free energy of the physical system is obtained only after
the whole low temperature glass phase, only a nonextaking the limitm—1.
ponential number of valleys contribute to the partition As we shall see, the thermodynamic potentglm)/m
function, namely the ones with the lowest free energyis a convex function ofn with a maximum at a pointn* (T),
densityf in - which is an increasing function df, vanishing aff=0. The

(b) At Ty there is a second order transition from the ther-second equation of6) is thus well-defined fom=m* (T).
modynamic point of view. The free energy is continu- At m=m*(T), the resulting complexity vanish&=0 and
ous and there is no latent heat. The specific heat jumpthe free energyd®/dm reaches a valuef,,,. For m
from the liquid value to a smaller one, in agreement<m*(T) the complexityX is nonzero: it is thermodynami-
with the Dulong and Petit law. cally favorable to select some valleys which have a free en-

(c) At Tk there is a discontinuity of the order parameter.ergy density larger thaf,,, because of the corresponding
Below Ty, in the glass phase, the system is an amorgain in complexity. If one increases beyondm*(T), the
phous solid and the thermal average of the local parformula(6) gives an unphysical negative complexity. In fact
ticle density becomes nonuniform, exhibiting peaks atin the whole regioom>m*(T) the correct value of is f
the favored positions where the particles tend to be=f ., and the complexity is zero.
trapped in some cages. The order parameter is related This is easily understood from the physical interpretation
to the spatial modulation of the density, and it goesof the transition which we now turn to. The above scenario
discontinuously from zero in the high temperature lig- has

uid phase to a finite modulation in the glass phase. (@ a high temperature phase wheme(T)>1. In this

This transition could be experimentally observed only if ~ Phase, when the limin— 1 is performed and the equi-
one would be able to cool the liquid at an infinitely slow rate, librium free energy of the original system is recovered,
and Ty should correspond to the temperature where the vis-  ON€ gets a valuée,> fiy together with a positive con-
cosity is supposed to divergéollowing for instance a gen- figurational entropy. _
eralized Vogel—-Fulcher lawycexp(T—Ty )3 In real ex- () a low temperature phase whers*(T)<1. In this
periments, infinitely slow cooling is not available, and the phase, in the limim— 1 the equilibrium free energy is

correlation time becomes of order of the experimental ime at ~ fmin @nd the configurational entropy is null.
a temperaturd ¢, which is in general an intermediate tem-

perature Ty <Ty<Tpcr. The value ofTy could be com- . T
puted only if we had under control the time dependence Ogynamlc phases as the supercooled liquid Gnigh) and the

the correlation functions. In this paper we study only staticglass onelow), separated by a thermodynamic transition of

quantities, and we cannot say anything about the val, of second order, driven by the vanishing of the configurational
' * —
or the temperature dependence of the viscosity adgve entropy, at th_e tempe_rgtur‘@ where m™ (T)=1. Al the
In such an entropy crisis scenario, it has been stofvn thermodynamic quantities in the glass phase can bf com-
that the thermodynamic properties of the glass phase can t?é;]t.e?] frlomt';]he er“iattﬁd ffree energy ?tththe Ipomtm ’
computed in principle by considering replicas of the origi- which play the role of the iree energy of the glass.

nal system, constrained to stay in the same valley, by mean This scen_ario of the .glas.s tra}nsitiop Is identical tp the
of a small but extensive coupling term. In this case, the grPhase transition appearing in discontinuoIRSB spin

guments used in the derivation ) can be applied again, glasses whgre it was first egplain@d]’he si_mple;t example
leading to a replicated version of the same equation: g;es;,lch a dng:Ol’lt'IHUOl.JS spin glass trans!tlon 'f the random
gy modéf which displays a total freezing @t="Ty . As
®(m, T)=Min|;(mf-TX(f,T)). (5) first noticed by Kirkpatrick, Thirumalai, and Wolynésfis-
. continuous spin glasses provide some well defined mean
Oncg again, each of tia systems does_not fe"?‘ch the IOWQStfield systems where the old ideas of Adam-Gibbs-Di
possible free energy, but the one which opt|m|zes the balI'\/Iarzio of a real thermodynamic transition driven by entropic
ance betwe'en the free energy and co'mplexnysm . easons are at work. The present approach allows to apply
Interestingly en.ough, one can derlvg many propgrtles oihe replica method directly to the structural glaséesspite
the system frqn(s) if one is able to con'.unl,]e it analytically of the absence of any quenched disorder in the Hamiltgnian
and compute it for any real value af, thinking aboutm as Assuming that the structural glass transition is characterized
anew paramet_er of the _problem. Indeddm,T), _con5|_d- in the replica language by a 1RSB, as in discontinuous spin
ered as a funct|o_n ofn, gives access to the configurational glasse€18we can compute the thermodynamic properties of
enFro_py(c.ompIexn)b 2.(f'T) through a Legendre transform. the glass phase. The comparison with the numerical results
This implies the relations: allows then to justifya posteriorithe main hypothesis.
aP(m,T) m?2 9(®(m,T)/m) At this stagem appears as an auxiliary parameter which
f= “om =T am (6) may be interpreted as the effective temperature of the val-
leys; moreover one finds that in the low temperature phase

It is quite easy, at this point, to recognize these two thermo-

from which it is possible to eliminaten, obtaining>(f), 1—m gives the probability of finding two systems in the
which measure the number of valleys with a given value ofsame valley®
free energy. Let us underline th&6) gives access to the full Summarizing, the study of the liquid-glass transition and
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the investigation of the low temperature phase can be acconi*=pT Y4 For I larger thanI'p=1.45 (corresponding to
plished by computing the free energy of a replicated systenower temperaturgsthe dynamics becomes very slow and
in its liquid phase, or in other wordsthe free energy of a the autocorrelation time is very large. Hence the system en-
molecular liquid where each molecule hasatoms. The ters the aging regime, where violations of the equilibrium
thermodynamic properties of the glass phase can be deducéidctuation-dissipation theorem are observ®dhis value of
by means of the analytic continuation to arbitrary real valued™ is supposed to correspond to the mode coupling transi-
of this parameter. tion below which the relaxation is dominated by activated
In the previous work's? this general approach was ap- processe$! If this simple model behaves like a real fragile
plied to a pure soft sphere system. The extension to binarglass the Kauzmann transition, characterized by a disconti-
mixtures is particularly important since there are well knownnuity in the specific heat, is located below the dynamical
examples of glass forming binary mixtures where an approtransition, and cannot be directly accessed by numerical
priate choice of the interaction parameters strongly inhibitssimulations, maybe with the exception of studies done on
crystallization. This allows therefore to get numerical resultsyery small sample¥’
which can be compared to the analytical ones. Here we will  The application of the theory to a more realistic poten-
consider in particular a mixture of soft spheres. tial, namely a Lennard-Jones binary mixture, will be treated
After discussing the model in Sec. Il, we will present in in detail in a forthcoming papét-
Sec. lll the generalization to binary mixtures both of the  As previously explained, in order to obtain some infor-
small cage expansion and of the harmonic re-summatiomation about the super-cooled liquid-glass thermodynamic
scheme introduced previouslyo deal with the molecular transition, we consider the thermodynamics of a molecular
fluid. Section IV describes the application of the HNC ap-liquid, whose molecules are composedwétoms, each car-
proximation to the center of mass degrees of freedom of theying a different replica index. The tendency to form mol-
molecular fluid. In the last section we will discuss our ana-ecules is forced by a small but extensive coupling term be-
lytic results, together with some strategies for evaluating nutween particles of different replicdsUnlike the pure case,
merically the glass transition temperatufg and the con- we are dealing here with a situation where particles are not
figurational entropy behavior, and a comparison between thell indistinguishable: we have particles of the-* type and

numerical estimates and those obtained analytically. of the “—" type. Physically this has an important effect
when R is not close to one. AR=1, it is clear that the
Il. GENERAL FRAMEWORK valleys of the mixture are close to those of the pure system.

) ) More precisely, taking one given valley of the puiR=1)
We study mixtures composed of two types of partlclessystem' one can generadi/N , !N _! valleys of the mixture
called+ and —, with pairwise interactions. The Hamiltonian yith R=1, by choosing at random the positions of theand

of our problem is the — particles: in this limit the main effect of the mixture is
to add a factor to the entropy, whose valuéNitog 2 when
H= > Vah(x—x) ee{—,+} (7)  N.=N/2. On the other hand, wheRiis very different from

I<i<j=<N

one, the valleys of the mixture are very different from those
where theN particles move in a volum¥ of ad-dimensional  of the pure system; one cannot find a new valley by just
space, and/" ", V' 7, V™ are arbitrary short range inter- exchanging a+ particle with a— particle. This physical
action potentials. We calt, (respectivelyc_) the fraction  problem has an exact counterpart in replica space. One could
of + (respectively,—) particles. study the case where molecules are formed by one particle of
In the explicit computations described in the next sec-each of them different replicas, irrespective of theit na-
tion, we have chosen a binary mixture of soft spheres thagure. Qualitatively speaking, this would mean that inter-
has been extensively studied in the past through numericahanging two particles of different types, the two replicas to

simulationst®>?° The potentials are given by which particles belong would remain in the same valley, that
o \12 is their free-energy would not change. There are two extreme
vff'(r)z( <, (8)  possibilities, corresponding to the two cases discussed
r above:
where (@ ForRvery near to one, the system behaves similarly to
o,y o, to__ the system aR=1. One can form molecules with par-
- 12, o, - ) ticles of any type, and the exchange of & particle
with a “—" one gives a very small change in free

The concentration is taken as = 1/2, and the choice of the

. . I energy.
ratio R=c0, . /o__=1.2 is known to strongly inhibit crys- (b) For R quite different from 1, the exchange of a+*
talization. We also make the usual choice of considering par- particle with a “—” one is a process that can be safely
ticles with average diameter 1 by sefting neglected, since it gives a variation in energy that is

(0. )3+2(0,_ )3+ (o__)° much larger thakT. In this second case the molecules
7 =1 (10 are built up of atoms of the same type.

All  thermodynamic quantities depend on the density In each of these extreme cases the computation is
p=N/V and temperaturel only through the parameter simple: in the first case it just reduces to fRe1 computa-
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tion. In the second case, we can assume, as we shall do heta) For T>Tg the free energy is the liquid onen=1)
that each molecule is built fromm atoms which are all of the and the order parameters are trivial, i.@, (r')
same typgall “ +” or all “ —"). Then one only needs con =C4p.

sidering attractive coupling terms only between particles ofb) ForT<T, the glass free energy is the maximum with
the same kind. The computations in the crossover region are  respect tom of the replicated free energy, and this
rather complex. For our case=1.2, we have decided to maximum is found am* <1. The correlationg.. be-
neglect this kind of corrections and to consider the molecules come non trivial. From the free energy at the maximum
consisting only of particles of the same type. we can compute all the thermodynamic quantities.

The replicated partition function is
The free energy and his first derivatives are continuous at

Z [w]= E z H ddx? Ty, while the heat capacity falls suddenly from liquidlike to
N, |mN rm

Ta Ta

xexp(—ﬁ > VEOE—x5)
2i j,a

solidlike values when the temperature is decreased through
Tk . The transition, then, is of second order from the point of
view of thermodynamics, but it is discontinuous in the order
parameter which abruptly becomes a nontrivial function of

positions in different replicas.

— 2 E o+ (X i)~ Xe (i) It is natural to describe the particle positions in term of

ie{t} azb ? ° center of mass coordinates and relative displacements'
with x=z+u? and=,u?=0. A useful simplification is the
choice, for the polarising potentials.. , of a quadratic cou-
pling that allows to rewritg11) as
where the sum over permutations of atoms in each molecule
is taken into account, and . =c,N, N_=c_N. When re-
labeling particles, so that particieof a given type in replica
a corresponds to particlé of the same type in replich
(which is supposed to belong to the same molegudes so
on, the sum over permutations gives a factor
(NLIN_1y(m=1),

As discussed in the preceding section, in the glass phase

the replicas becomes correlated, so the study of the transition
is accomplished by choosing as order parameters the

-> > @ (Xg iy ™ Xy (i) |+ (11

ic{-} a#b

m-points correlation functions for each of the two different _ 1 (ud— b)z
types of particles: 4a, 3D e+
r.rm= S(xE—rhy...8(xM—rm), (12 1 by 2
p( )=, 2 (8180 =m), (12 S 3w, (16)

p_(rt,...rm= E <5(Xi1_ rl)___5(xim—rm)>_ (13 In the absence of the interacting potent@‘althe{u;”‘ﬂ} for a
fe{-} giveni are Gaussian random variables with a vanishing first
The transition is signaled, then, by the onset of an off-moment and a second moment given by
diagonal nontrivial correlation in replica spaceTat, when
the coupling functionsv.. are sent to zero. This feature is (U2 u
studied as usual introducing the Legendre transform of the e 'V
molecular(replicated free energy:

Clei

5ab—£ 8,y Bii— (17)
m) #"m

Ill. REPLICATED FREE-ENERGY

1
- dea
G[p]_rL'Lnl Bm logZy[w]— H d°r A. Harmonic resummation
,‘\7:2 We are interested in the regime of low temperatures,
where the molecules are expected to have a small radius,
X prt L rMW(rt ™) (14)  justifying a quadratic expansion dfin the partition function
€=+~ (16). After integrating over these quadratic fluctuations, one
with obtains
Nd/2 Nd(m—1) N
m~ %4\ 2
W.(rl,...rm= ra—rby. 15 - f dy.
K )= 2 odri=r?) 19 Zp=—i I a0z
Performing the limitw.-—0 is equivalent to searching a -1
saddle point of the functionaB[p]. In the presence of a Xexr{ BmY, Véci(z—z) - Trlog(BM) |,
glassy transition we expect the following behavior of order =<l
parameters and thermodynamic quantities: (18
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where the matrixM, of dimensionNdX Nd, is given by

<Trcp>:fddzl'”ddzppp > 2 gAzy-7,)

M1 pp €17 €p

M(E:IL)(IV _6” E Vslek(zl_zk)+ v _V;j:j(zi_zj) €1€p € €
€i 19 XCMlMZ(zl—zz)---g P=1p(Zp_1—Zp)
andv ,,(r)=4?v/dr ,r, (the indicesu and », running from X C;ppilf,fp(zpfl— Zp)9PUZy—2y)
1 to d, denote space directionsWe have thus found an e
effective Hamiltonian for the centers of massgsof the XC, oz~ ) (24)

molecules, which basically looks like the original problem at ) ) ) ) )
the effective temperaturg* = 1/(8m), complicated by the The convolutions are computed in Fourier space, introducing
contribution of vibration modes. We shall proceed by usingth® t€nsor:

the same set of approximations which was proposed in the

previous papers? We first perform a quenched approxima- D} (k)—j d%r ge<'(r)C (e, (25)
tion, which amounts to neglecting the feedback of vibration

modes onto the centers of masses, substituting thus the teiffich can be decomposed into its diagori@ingitudina)
Trlog(BM) in (18) by its expectation value, for center of and tracelesstransversal parts with respect to the spatial
mass positiong; equilibrated at the temperatufier. This  (u.v) indices:

approximation becomes exact close to the Kauzmann tem- kK &
perature wheren— 1. D“ (k)=45,,a% (k) + ’I:ZV— %) bee' (k). (26)
Let us introduce the mean values of the diagonal terms
of the matrixM: The last step consists in the diagonalizatiorDdh the space
1 m of the particles typeée,e’). For eactk, there are four distinct
r.=2, cp| dirge(r)= AV + —, (200  eigenvalues, the two longitudinal ones, corresponding to that
' d Qe of the 2<2 matrix
where theg“'(r) are the pair correlation functions. We ne- e’ e’ e’
glect the fluctuation of these diagonal terfas approxima- D (ky=a (k) + d b (k), (27
tion which should be valid at high densitjeand normalize . ]
the off diagonal matrix elements as follows: and the two transverse eigenvalues of the matrix
Cele’ e’ D' (k)=a“ (k) — L bee’ (k). (28)
C(',U«)(IV = rErE,V (zi_zj)' (21) - d
The replicated free energy per particlegp(m,T) The eigenvalues are
=d(m,T)/m, can be expanded in series: N=3D,/ " +D; + \/(D‘T+—D||")2+4(D”+’)2),
d dim-1 __ p—— =
Bb(m,B)=— 5 log(m)— (Z—m) log(2) m=3D; "+D; "= \(D; =Dy ")2+4(D] 7)?),
- — = (29)
dm-1) =3(D[ 74D (DT =D, )*+4(DI)?),
— ——logZ,(Bm)+ ———— (c, log(Br
mi 09 2ia BT (G 0BT — 4Dyt +D (BT T DL )P 4DI )P,
1( * TrCP Using these approximations, the expression of the binary
+e_log(Br-N+ 5 5, ,)22 mixture free energy per particle is
d ( - ) d(m-1)
(22 g(m.p)=— 5 log(m) ~ —5— log(2m) + —5—
where thepth order term depends as usual on theoints
correlation function (m=1)1
X(c4 log(Ar)+c-log(fr-))+————
p
(TrcPy= > > diz,---ddz,
€1 € E{+ -}
. e X J d¥k{La(n(K))+ La(py(K)) +(d—1)
XpPYre(zy2p)C ) P (21— 2) (1)
_ d
CP 1% (7, 4 — Zp)C (Zp_zl) (23) X[Lg(N; (K)+La(u, (K)I} am fd rp

lu'p—]_lu'

We use a ‘“chain” apprOX|mat|on in the computations of
traces, where terms with two equal indices are neglected, and
the so-called superposition approximation for theoints
correlation functiongy®(z,---z,) = 9(z,— 2,)" - -9(zp— 21)-

With these hypotheses we arrive at where the functiorl is log(1—x)+x+x%/2.

1
X2 g2 (CEA(N)* o 10 Zig(Am),

(30
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Let us notice that the condition for identifying the Kauz- B. Small cage expansion
mann temperatureg8F,/dm|,,—;=0, reads in our har-

. N It is possible to introduce a slightly different way to
monic approximation:

compute the molecular liquid free-energy, in order to take
into account:

d 1
Sig=5 log(27re) - 2 (Trlog(AM)) S (@ Nonharmonic terms.

Siq is the entropy of the liquid at the effective temperature(b) Corrections to the quenched approximation.

Terr, which is equal toT for m=1. The right-hand side of = gating from the expansion of the potential in powers of the

this equation is nothing but the entrof, of an harmonic  rg|aive variablesy, if one expands also the exponential of
solid with a matrix of second derivatives given by Thus, 1o corrective term, one obtains an expansiorzgfas a

we find power series inw, and «_. This is the generalization to
BFm mixtures of the small cage expansion scheme utilized in the
E(ﬁ):mza—m = Siig— Ssol- (32)  pure casé:? This expansion is not equivalent to computing
m=1

perturbatively quartic and higher order corrections to the
If Sjq< S the system is in the glassy phage<(T), while Gaussian approximation represented by the harmonic resum-

in the other cas&;,> S, the temperature is greater than Mation. Indeed, in thisr.. expansion we are using a trun-
T« (and of course less thafip if the spectrum ofM is  cated version of the series {@2). On the other hand, this

positive. The complexity is thefE = S;,— S, as expected direct expansion allows to take into account the annealed
on general groundS. fluctuations of the matriXM which were neglected in the
Formula (30) allows to compute the free energy harmonic approximation. Therefore these two types of ap-

®(m,T)=me(m,T) which is the main quantity needed to proximations are complementary. In this paper we consider
investigate the thermodynamics of the low temperature glas§'® harmonic resummation and the small cage approximation
phase, using6). It should be emphasized that within the @S di.stinct_ schemes of ap_proximation and we compare results
approximations we used here, the only properties of the ligobtained independently in both them. However, it is clear
uid phase which are needed to getare the pair correlation that a better approximation of the replicated free energy
g(r) and the free energy. Beside usual thermodynamic quarpould be obtained by adding corrections from the small cage
tities (energy, entropy, heat capacity,.we are interested in approximation, treated in some systematic way, to the har-

_ _ ., found in a following work’*
(@ The square cage radih,, defined asA.=3((X{) The leading term of16) in the ., , «_—0 limit is

—(x;)?) for type € particles. This square cage radii are
obtained by differentiating the free energy with respect

. . ; . dNT(m— dN™ (m—
to coupling terms and by sending couplings to zero in . 2ma, N =L 2ma N (m=D)
the end: Zn =N"m m

B 2 3(BF)
—d(m-1)N, d(1/a,)

A, (a=00). (33

xmiN2Z,.(Bm). (34

The square cage radii are ngarly Ilnear.m temperature in thﬁccordingly, the zero-order free-energy is
whole glassy phase, which is natural since nonharmonic ef-
fects have been neglected.
The effective temperatufB,;=T/mof the molecular lig- B¢ (a, ,a_,m,B)
uid. This temperature varies very little and it remains close to 1
the Kauzmann temperature wh&mspans the whole low tem- = (0)_
perature phase, confirming the validity of our description of mN 109 Zm" =do* ao(cy loga, +c-loga-),
the glass by means of a system of molecules remaining in the (35)
liquid phase. It is worth to stress that the linear behavior of
the parametem as a function ofT is a feature shared by

every 1RSB system to our knowledge. with
The harmonic expansion makes sense onlylihas no
negative eigenvalues, which is natural since it is intimately d(1—m) 2r  d

1
log om 10gm— 5109 Zjig(Bm),

related to the vibration modes of the glass. Notice that here dy= om -
(36)

we cannot describe activated processes, and therefore we
cannot see the tail of negative eigenvall@gh number de-

creasing as exp{C/T) at low temperaturgswhich is always d(m—1)
present? It is known however that the fraction of negative Qp="—"75—".

. - ) 2
eigenvalues oM becomes negligible below the dynamical
transition temperaturé.?®> So our harmonic expansion

makes sense if the effective temperatligg is less tharilp . The first-order term is
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N i a,,a_,m,
Zﬁ}):W f (H d%)(ﬂ I1 dduia) Bl m.8)

2N
=dy+ e (ciloga,+c_loga_)+c,a;a,

N m 1
X d a . —
i];[l(m 5(21 u,)) exp( da, +c_aja_+c,a)"a’+c_a, o
1 +c,c_ay a,a), (41
x (U-uP)?= =3 3 (uf-up)? e
a,b ie+ d_ abie—

where the coefficientagf' are given in the Appendix.
B m d The free energyp should be studied in the zero coupling
-Bm, Vfifj(zi—zj)).<1— > > 2 > (up,—ud) limit, thatisa,, a_—o. This cannot be done directly with

<l <ia=1uw a powers series af, , a_ truncated at a finite order. There-
fore one must first take the Legendre transformdgfas
X(U?V—U?V)Vei:j(zi—zl')) previously discussed, getting the thermodynamic pote@ial
. as an expansion in powers of different cage sikgsdefined
m d by means 0f33). Within this formulation, the free energy
Z(O)( < > (ud, — in the vanishing coupling limit is obtained by looking for
2 <ja=1 e © possible minima ofs with respect toA™,A™.
The Lagrange transformed free energy is, at first order:
X(U?V—U?V)ij?(zi—zj)> ) (37) d1—m)
BG(AT,A™m,B)=yo+ ———— (C, log(A")
from which we get the first-order contribution to the free - -
energy: +c_log(A7))+tcry, A
BeV(a, ,a_,mpB)=c,aja,+c_aja_, (39 tey A,
_ _ o d1— (42
where we define the first-order coefficients as _ (1—m) +_ o+ - -
Yo=8t — =, 717381, 7173,
+_d(m_1) d ++ ++ ; ;
ay =~z |C+ d°r pg (r)E Vi (1) and the saddle points equations read
o
——=0=A" =— ——
+C7Jd“r pgT (N2 Vi (D), A" m oyl By
o
(39 aG x d(1-m) 1 1
dim—1 ——=0=A" — — = ,
ap=to c_f dr pg” (N2 V. (D) oA mo oy B
2m 3 1 (43
N +:C+Jddr pgﬁ;+(l’)—AV++(l’)
+c+f d pg~ (N2 V1N d
o
d + - +-
Up to first order, the harmonic resummation and the small +C—J d°r pgjq (1) g AVT (1),

cage expansion give the same results. Differences appear at
the second-order level, which is presented in Appendix. In —c f ddr g-”(r)l AV (1)
fact, the second-order term in the harmonic resummation is - PSiq d

ml)

1
fddr P2 9% (N2, (CIS L (1), (40 +C+fddr PO (1) g AV (D).

R’he first-order free energy in the vanishing coupling limit is

while the second-order term in the small cage approximatio
correspondiugly given by

adds two new kinds of terrtsee the Appendix

(@ Those involving fourth derivatives of potential, which ,BG(A+ AT \m,B)

are anharmonic corrections, are proportional to ( d(1—m) 20 d
—1)2, unlike any other term up to second order. This T g (W) - == Iog(m)— Iog Zijig(Bm)
means that they are less important n&arwherem
=1, and more important at very low temperatures. d(1—m)
(b) Those expressing the fluctuations of the diagonal terms ~ — ———— (¢ 10g(Br ) +c_ log(Ar-)). (44)
of M. These are corrections to the quenched approxi-
mation. This expression fo6 looks quite reasonable. First of all one

may note that in then— 1 limit it reproduces the liquid free
The free energy per particle, up to second order, is then energy density3f= —log Z;4(8)/N, as it should. Moreover,
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in the limit in which the “+” and *“ —" particles are no
more distinguishable, this expression @rcoincides with
the one found in the pure casé.(More precisely, the two
generalized free energy would coincide in this limit if the 2
liquid free energies at inverse temperatyen were the
same, which would be true if one would forget about the
mixture entropy contributioncc.. logc, +c_ logc.). Finally, the second-order correction to; is obtained by
The computation of the second-order terms can be carf48).
ried out in a very similar way. One gefsee the Appendjx

IV. HNC FOR BINARY MIXTURES

+ A _ + -
BG(AT,A™,m,B)=yo+ y3(Cs l0g(A™)+c_log(A™)) In evaluating the liquid free enerdfy, and theg®®’ at

the effective temperatuf® m we use the so-called hypernet-
ted chain approximatiofHNC), a simple closure approxi-

+C, Yy AT +c_y AT

teiys AT+ y, (AT)?
Mayer expansiof?~?’ For homogeneous fluids, apart from

+ +—A+A—
C+C-72 AA “9 the constans,,sc= —c. log(c;)—c_log(c_), the free energy
with of the liquid in the HNC approximation is given by
1 ,
d(1—m) § BFH9™ (N}]
V3= T o - (46) N { '

2m

In evaluating the formulas of the appendix one needs to
know the three particles correlation function. This correla-
tion function can be computed starting from a generalized
HNC expansiort.Here we follow the simpler route of evalu-
ating the three point function using the superposition prin-
ciple, i.e.,03(x,y,2) =g(x—2)g(x—y)g(y—2z). When look-
ing for the minimumdG/9A* =0, 9G/dA~ =0, one faces
the problem that the second-order corrections are very im-

:|ogp—1+;—)fddr2 c.c.{g (1)

, , 1
X[logg®® (r)+pve (r)—1]+1}— %

dv
xf(z—w)d IogD—EE pc.hee(k)

portant(this happens also in the pure cada this case the (phee'(k))z
solution can be found only through a perturbation around the + 2 CECErT , (50
first-order solution. In this way one gets €€’
. . . where
ATT=A] +6A; , /
he (r)=g* (r)—1, (51
AT =AT +8A; T, (47 andD is the determinant of the matrix
* * 1+pc h++ k C h+_ k
G(A+ ,A7 ymyﬂ):Gl+ 5G2 P ++7 ( ) P + 7(7) . (52)
pc_h""(k) 1+pc_h77(k)

and, by writing m=m;+ ém,, the stationarity condition

mation that consists in neglecting the bridge diagrams in the

The closed set of HNC equations for the two point correla-

reads tions can be derived as a stationarity condition of the func-

JG tional F with respect to these correlation: they are solved

—1(m1)=0, using the same numerical technique utilized in the pure
Jm casé

G 26 _1 (48) HNC is expected to be a good starting point for our

m,=— 952 ml)<_21 (ml)) _ study since bottf and the mean values of quantities that

Jgm Jm involve only two particles correlation functions seem to be

Therefore, one looks for the valuef which maximizesG,,

which is nothing but the first-order free energy,
computes the second order correctionsatmy .

evaluated with an error smaller than 10% in the temperature
region we are interested in, as we verified by comparing the

and then ong o \vtical estimations with simulation results. The terms in-

The result

volving the three point correlation functions, when evaluated
by the superposition approximation and the HNC pair corre-
lations, are reproduced with errors which seem to be smaller

2,y++ y+—
A =202 6 2 than 30%.
2 Py
(v1) (v1)7
V. RESULTS AND DISCUSSION
. +—
AE* = 273 s+cC, 2’22 -, (49) Before discussing the analytical and numerical results on
(71) (y1)'7n the soft sphere binary mixture, let us pay attention, for a
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FIG. 1. The free energy of the pure soft sphere model versus temperature
The three curves are the results obtained from the small cage expansion ¢
the first order(dotted ling and at the second ordédashed ling and those
from the HNC resummation schenteontinuous ling 0.014
oot2t T 1

while, to the soft sphere modéd) with the particular value 0.01
R=1 (i.e., the pure caseThis allows to compare thermody-

namic quantities obtained within the small cage expansion_, 0.c08} 1
up to second ordgevaluating the three point function by the

superposition approximatigrwith those computed at the Cooog 1

same order in the replicated HNC resummation schkme. 0.004 L |
In Figs. 1 and Ra), 2(b) we show the free energy, the

effective inverse temperatug@m and the cage radiu& for 0.002 .

the pure soft sphere model both at the first order, that gives
the same results in the two cases, and at the second one. /
already outlined, when starting from the generalized HNC
expression, the second order coefficief@tis obtained with- FIG. 2. Bm (&) and 8A (b) of the pure soft_spheres model versus tempera—_
out further approximations than the one related to the use ota’[irfhg ?i?stthgiﬁ;?é‘éftzgrﬁ;gearne;ﬂistﬁgtzgffngogégjainﬁzg C”iie o bansion
HNC. On the other hand, these results confirm that evaluathose from the HNC resummation schefgentinuous ling
ing the three point correlation function which appearsyin
by the superposition approximation is a rather good approxi-
mation. In particular we get very similar values for the ther-peratureT/m is always close tdlx, so in our theoretical
modynamic transition poini; x=1.53 from the HNC resum- computation we need only the mean values of observables in
mation scheme and’'y=1.49 when using small cage the liquid phase, at temperatures where the HNC approxima-
expansion, i.e., an error less than 3%. tion still works quite well.

Now we come back to the soft spheres binary mixture ~ One can also observe that the specific fise¢ Fig. 5a)]
with the interaction parameters described(®), taking in ~ shows an evident jump d¥ , remaining close to the crystal-
particular the valu&®k= 1.2 of the ratio between the effective
diameters in order to obtain analytical results comparable to
the numerical ones. We consider both the small cage expan
sion to second order and the harmonic re-summation, finding
results in very good agreement as is shown in Fig. 3, where
the glassy phase free energy computed in the two differen
schemes of approximation is plotted as a functionT dfor
simplicity we take in the followingp=1). -

The evaluations of the thermodynamic critical tempera-
ture obtained by the two analytic methods nearly coincide:
we getI'«=T,*=1.65, which is in agreement with the
numerical estimates that we are going to discuss. For the
sake of comparison, let us remember that the mode coupling
critical value for this modéf is I'y=1.45. Let us note that 4 . . . . ‘

the ratioTp /T is usually found to be between 1.2 and 1.6. 0 002 004 008 T 008 04 012 014

oo+
We stress that the parameterand cages sizey™ and FIG. 3. Free energy of the soft sphere mixture vs temperature. The continu-

A~, plotted in Figs. ) a_nd 4b) are nearly linear _With ous line is the result of the harmonic resummation scheme and the dashed
temperature. This means, in particular, that the effective temiine is the result of the small cage expansion to second order.

o

0 002 0.04 006 0.08 0.1 0.12 0.14 0.16 0.8 02 022
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FIG. 4. In(a) we plot sm vs temperature, from the harmonic resummation F|G. 5. The energya) and the specific hedb) of the soft sphere mixture
schemgcontinuous lingand from the low temperature expansion to second yersus temperature, both in the liquid and in the glassy phase, from the
order (dashed ling In (b) we presentBA* (continuous ling and BA™ harmonic resummation scheme.

(dashed ling computed in the low temperature expansion to second order.

Note that, quite reasonably, the smallest cage radius corresponds to particles

with the largest effective diameter.

Swl(B) _d
N 2

1
(1+log(2m)) = 5 (Trlog(BM)), (59
like value, 3/2(we have not included the kinetic enejgin

the whole glassy phase. The qualitative behavior of thermoE) di lizing the instant Hessi db .
dynamic quantities, apart from the presence of the two dis?Y diagonalizing the instantaneous Hessian and by averaging

tinct radii, is very similar to that observed in the pure ¢dse over different configurations. The knowledge$; andSq

and it corresponds to a second-order transition from the the|gIIOWS to obtain a numerlc_al estimate D as the tempera-

modynamic point of view. ture where the two entropies become equal, and to measure
The harmonic resummation scheme suggests an intrigL}he complexity

ing approach for evaluating the thermodynamic critical tem- 1

perature by simulations, starting fro82). Here the liquid 2(B)= N [Sia(B) —Ssol B)]. (56)

entropy can be obtained for instance by numerically integrat- . _ .
ing the energy When attempting to obtain such evaluations, we face two

kinds of problems.
Siq(B)= B(Eijiq(B) —Fiig(B)) o
(@ The well-known hard task of thermalizing glass-

forming liquids at low temperatures. Here we choose to
perform a simulated annealing run of a quite large sys-
tem, using data on the liquid energy down to the tem-
perature where the equilibrium was still reachable in a
reasonable CPU tim@ ~1.5). Then we extrapolate the
S,?qz N(1—-logp—c,logc,—c_logc_). (54) liquid entropy behavior at lower temperatures by fitting
data in the interval e[1,1.5 with the power law

B
=Siy+ BEig(B)— JO dB’ Eiq(B'), (53
Wheresl?q is the entropy of the perfect gas in tjge-0 limit,
i.e., in the binary mixture case
Moreover, one can think of directly numerically evaluating

the “harmonic solid” entropy Sig(T)=aT #*+b. (57)
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A more extensive study should be performed in order to
better understand these subtleties of the computation of the
solid entropy. However we would like to mention here a
third way for evaluating numerically the solid entropy. Start-
ing from an equilibrium configuration at a givéhvalue, we
performed a Monte Carlo run a=0, allowing only quite
small displacements to each particle. The percentage of non-
positive cigenvalues becomes very rapidy2% in the
whole temperature range considered and correspondingly the
two different ways of evaluating the solid entropy give com-
patible results. The obtaineg{C} is near to the one evaluated
from the ‘instantaneous’ Hessian by using also the absolute
values of negative eigenvalues in the regibr Tp but it
decreases slightly faster when lowering the temperatee
Fig. 6).

FIG. 6. The entropy of the liqui¢+) and the different evaluatiorisee text More precisely, we performed a simulated annealing run
of the amorphous solid entropg{) (X), s (x), ands{S) (), as functions ~ Of a system ofN =258 patrticles, in a cubic box with periodic

'sol

of I', obtained in the numerical simulation. In the liquid entropy case the linehoundary conditions, starting froi=0.05 and performing

. - s . - '
is the best fit to the power lawq=a™>+b, otherwise lines are only 15 222 \C steps at eactA'=0.05, the maximum shift
interpolations between neighboring points. The liquid and solid entropies

seem to cross aroundy~1.75, which is the corresponding estimation of Omax permltted to each partlcle In one step bemg Ch_osen such
the thermodynamic liquid-glass transition. as to get an acceptance rat®.5. The energy and its fluc-

tuation were measured in the last half of the run at a given
value.
, i Just for decreasing the error on the evaluatioggf we
Ir_l fact, _|t has bee_n shov%?l_ t_hat the potential energy of fit the very high temperature data on the energy, uf'§o
simple liquids at high densities and low temperature must_ 0.2, by usingT3E(T")=al'2+bl'+c, obtaining corre-
I/?a”r?/\,\glgct)ryz gg\:é:r?]imevjil{;wditt.hat our numerical data are in aspondinegF(Fo)=4al“g/3_+ 2bT'3+4cT', that turns out to
, . .. be perfectly compatible with the HNC valdiee., we are still
The correct evaluation of th? solid entr_opy,. which is 2in the region where no differences are observable between

subtle task. Beyond the mean field approximation there al. ool qata and the HNC approximatiofihe integration

w;lysh EX'StS a non zero /numbler of negative églgeg\{alue§s subsequently performed by interpolating with a standard
which decreases as expC/T) at low temperatur€sand is — ,erjca| subroutine the simulation data in order to get a

expected to be negligible below the mode coupling temperaz o it independent on the integration interval.

ture. An estimate of the error o8, can be found by doing (a) (b) ; e

the following two measurement$a) One includes in the In order 0 e\_/aluat_(Ssm and Sy, we considered 16 dif
ferent configurations in the last half of the run at each |

computation of TrloggM) only the Npos positive eigenval- oo whileS{) was measured from the configurations ob-

ues.(b) One includes all e!genvalu.es, but one takes the abfained by these ones with 5000 MC stepsTat0 (starting
solute values of the negative ones:

from 8,,,,=0.1 and decreasing it up to 0.02 during the)run

Slig and Ssol

s@ d 27 1 Npos One should note that at a givéhvalue the obtained evalu-
N ~32|l1tlog 5 ) “\ A& loghi)|, (58  ations ofS{9) seem to depend weakly on the starting equilib-
pos 1=1 rium configuration i.e., fluctuations are very smaMore-
(b; d 20 1 9N over we get perfectly compatible results both halving and
%= > 1+Iog( —) ) - <d_N > Iog|>\i|> . (590  doubling the number of MC steién the last case we find
B =1 practically only positive eigenvalugs

The percentage of nonpositive eigenvalues that we find by ~We plot in Fig. 6 boths;4(I') and the obtained evalua-
diagonalizing the instantaneous Hessian is still about 20% &tons of sso(I") by the different ways consideresty) , s{],
I'~1, it decreases to less than 10%TIat1.2 and in the and sgfj are very close to each other when approaching the
region definitely belowTp, i.e., abovel'~1.5, it is ~4%. thermodynamic liquid-glass transition, giving similar esti-
On the other hand, nearly all the negative eigenvalues ar@ates ofl'x~1.75.

less than one in absolute value. Therefore, particularly at The study of the system coupled to a reference configu-
temperature§ =T, we find a sizable difference between ration X, which is an equilibrium configuration of the sys-

S and S (we disregard in both cases the very féwj  tem itself at the considered temperature, allows to measure

<10%), as is shown in{Fig. 6). One should note tha{?)  the complexity by an alternative route. One considers
seems to display the most regular behavior as a function of

I'. The presence of negative eigenvalues is possibly related

also to the fact that when diagonalizing the instantaneous BH=BHo+ e(X— X2, (60)
llessian the system can be far from the center of the mini-

mum, in positions where higher order corrections to a har-

monic approximation of the energy landscape are importantwhere
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FIG. 8. The complexity2(T) computed in the harmonic re-summation
scheme(contlnuous ling and the different numerical evaluations, i-8iq
—s@ (+), sjq—58) (X), sjq—s (*). The O correspond to th& values
3.5 obtained by studying the coupled systenTat1.4 and 1.6.
3t
‘€ 25} b)
w 2
o . . . .
o This means that one can obtain an evaluation of the configu-
z rational entropy as
o)
£
£
.g 2(B)= shq j de’ (X Xrer) > lOQ —1], (65
W
1.8 5550503000 2050 50006330 7006 Bi00 30505000 in the largee limit, taking into account as usual the perfect

€

gas binary mixture entropy.
Here we considered a large systenNs£ 2000 particles
in a cubic box with periodic boundary conditions and we put

FIG. 7. In (@ we plot {((x—X.)?). as a function ofe at the considered
valuesI'=1.4 (+), 1.6 (X), 1.8 (), and 2.0(CJ). Here we show also &e)
(the dashed linein order to make evident the reaching of the asymptotic
behavior. In (b) we present the evaluationgsee text of E:sﬁq

+ [§de’ ((X—Xed) 2)er — 3(log(e/(2m))—1)/2 in the largee limit (the differ-
ent curves, from top to bottom, correspondlie-1.4, 1.6, 1.8, and 2.0,
respectively. The complexity turns out to be compatible with zerol'at
=1.6 which is therefore the evaluation of the thermodynamic liquid-glass
transition temperature.

a cut-off on the potentials, i.e\V¢ (r)=V< (Ryq) for r
>Rmax, €hoosingR,o=1.7 that means a practically negli-
gible V“'(Rmax~10‘3. The algorithm is then implemented
in such a way that for each particle the map of the ones
which are at distance lower th@y,,+26max 1S recorded and
updated during the run.

We performed up toV=2%! MC steps at each consid-
ered'=1.4, 1.6, 1.8, 2.0. At the end of the run, the configu-
ration was copied in the reference one and subsequently a

N d run of V716 MC steps was performed on the coupled system
(X— Xrer) EZ 2 (xt— xref for different € values,e=1, 2, 4, 8,... up to very large
L= ~10* measuring the squared distance. We note that per-

is the squared distance between the configuratioate that ~ fectly compatible results were obtained f4f=2."° The in-
the coupling breaks the rotation—translation—permutation integrals were evaluated by interpolating with a standard nu-
variance. Therefore merical subroutine between the simulation data in order to
obtain results independent on the integration interval.

We plot in Fig. 7a) both the data oR(Xx—X.)?). at

(61)

Bt(e,B)=pBfo(B)+ fo de’ (X=X ?)er (62 gifferent T as function ofe and 3(2¢). The asymptotic be-
havior seems to be reached arow 2000, though also at
where in the regiom <Tp larger e there are very weak deviations from it. When look-
ing at the difference between the corresponding integrals and
Bfo(B)= lim f(e,B)=pe(B)—2(B). (63 d(log(ef2m) —1)—sp, in the largee limit [see(Fig. 7(b)],

e~0" one finds that the complexity is compatible with zerd at
~1.6, a value slightly lower than the previously obtained
I'c~1.75(the analytical estimation beirgx=1.65. On the
other hand, the errors on these estimations are difficult to

evaluate but they might be quite large, a more extensive

On the other hand, one has

lim Bf(e,B)=Bt.(B)=pBe(B)+ 5

€

o)) o
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numerical analysis being necessary in order to improve these
results. z<2>—Z°{1—— <2 > ve'ﬂ(z.—z,)E (= U,

At last we plot in Fig. 8 the different numerical estima- e

tions of the configurational entropy as a function of the 2 a B ce
temperature and the behavior obtained analytically in the X(Uip_ujy)> s <§ > Vi (z-2)
harmonic resummation scheme. In spite of the uncertainties s

in the measures of and in the analytical approximations a . av, . a . a

(first of all related to the use of the HNC closure for evalu- XE C (U7, = uj,) (Ui, — Ujy)

ating liquid quantities the agreement between theory and
simulation looks quite satisfactory. We leave for future work a_a i€
both more extensive numerical studies and the improvement X (U= )+ 2 16 2 2 V V(777
of the analytical results, that should allow a more careful

. 2
comparison. X > (u?#—ujaﬂ)(ufl,,—ujay)) >’ (A1)

where distinction between terms which involve sums over
particles of a given kind is required. Taking the logarithm of
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APPENDIX: SECOND-ORDER COEFFICIENTS
X O(Xj—X—1I>) ). (A3)
The second-order expression of replicated partition func-
tion in small cage approximation is One has
|
B (1-m)? _ /32 (m—1)
a; =7 ———|c foldrpg++ N2 V1) +—foldrpg+ (N2 ViD= 7 3
X Cifddrlddrzng***(rl,rz)Z Vo, TV, (r)+2c.c fd ridfrop?g" (g ry)
mv
2(m—-1
X2V, (r)V, <r2>+c2_f dirydirop?g" T (rLr) 2 Vi, (1), (1) | = ﬂ ( p— :
124 my
mjddr pg (N v;:(r)v++<r>+ fddr pgt (N> V;V‘(r)v;;(r)},
v mv
_ B(1-mp? B (m-1) _ I (A4)
a, =——4fddr pg*” (r)E Vol D)= 5 ——3 fd"r pg (N2 Ve, (DY, (1),
4 m 2 m nv
|
and the expression @f, ~ is obtained by changing the in  and substitute the solutions into
— in the coefficienta; * . oA
To obtain the Legendre transform one must solve theBG(A AM.B)
system of linear equations (1 m) A"
=¢lay,a- ,mpP)+ —F—Ci—
e d(1-m) At a4
= — Cc,,
d(1ay) 2 i . d(1-m) A~ 26
———— C__
00 _da-m (A5 2 Ta
d(la_) 2 € getting
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BG(AT,A",m,B)= 7o+ v3(c; logA"+c_logA~)
+Cy Yy AT +c_y AT

+ery, (AT)PHc oy, (A7)

+c.cy, AT-A” (A7)
with
Yo=Co—ap(l+logm)/m, yz=—ay/m,
yi=ma;, y =ma,
(A8)

ya T=m?a; T+m3(a; 7)%(2ay),
v, =mla, +m3a; )% (2ay),

N S
Y2 =mra; .
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