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Abstract 

We study the spectrum of a random matrix, whose elements depend on the euclidean distance 
between points randomly distributed in space. This problem is widely studied in the context of 
the Instantaneous Normal Modes of fluids and is particularly relevant at the glass transition. We 
introduce a systematic study of this problem through its representation by a field theory. In this 
way we can easily construct a high density expansion, which can be resummed producing an 
approximation to the spectrum similar to the Coherent Potential Approximation for disordered 
systems. @ 1999 Published by Elsevier Science B.V. All rights reserved. 

1. Introduct ion  

The theory of  random matrices has found applications in many branches of  physics 

[ 1 ]. The most developed theory concerns matrices where the matrix elements are either 

independent random variables, as in Gaussian ensembles, or are taken with a statistical 
distribution which is invariant under some symmetry group. However, in many physical 

applications, from vibration spectra of  glasses [2,3] to instantaneous normal modes 

in liquids [4] ,  electron hopping in amorphous semiconductors [2] or combinatorial 

optimization problems [5] ,  one needs to compute the spectrum and the eigenstate 

properties of  some random matrices which are of  a different type: The disorder is due to 
the random positions of  N points, and the matrix elements are given by a deterministic 

function of  the distances between the points. We shall call these matrices euclidean 

random matrices (ERM).  
Specifically we want to study the following mathematical problems: Consider N points 

in a volume V of  a d-dimensional euclidean space. For a given sample, characterized 
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by the positions xi of the N points (i E { 1 . . . . .  N}) ,  we want to study the properties 
of  the N × N random matrices M defined as 

Mij = f ( x i  - x j )  - uSij ~ f ( x i  - xk) , (1) 
k 

where u is a real parameter which enables us to interpolate between the two most 

interesting cases u = O, 1. The case where u = 0 is the simplest mathematical problem 

with euclidean-correlated matrix elements, the case where u = 1 is the natural problem 

which appears when studying for instance vibration modes of  an amorphous solid, 

instantaneous normal modes of  a liquid, or random master equations. The main difference 

is that when u = 1 the matrix M has fluctuating diagonal terms, tailored in such a way 

that ~ i  Mi.l = 0: the vector with all components equal to one is an eigenvector with 
zero eigenvalue, which expresses global translation invariance. 

To fully specify the problem one needs to characterize the probability distribution of  

the random points xi, as well as the function f ( x ) .  In this paper we shall concentrate 

on the case where the points are uniformly distributed in a cubic box of  size L = V l/a, 

without correlations. In many applications one will have to generalize the problem to 
the case where the xi's are correlated, including a short distance repulsion. This is a 

much more complicated problem which we shall not address here. As for the function 

f ( x ) ,  we shall assume that it depends only on the distance Ix[ and that it decays 

fast enough at large argument. In particular we shall assume that the Fourier transform 

f ( k )  =_ f d x e i k ' x f ( x )  is a well defined function at all k. 

The general problem of ERM theory is to understand the statistical properties of  the 

eigenvalues and the corresponding eigenvectors of  M in the large N limit (taken at fixed 

density p = N / V ) .  This is certainly a very rich problem. In particular one can expect 

that the eigenvectors will exhibit in dimension d /> 3 some localized and delocalized 

regimes separated by a mobility edge [6] .  Here we wish to keep to the much simpler 

question of  the computation of  the spectrum of M. We shall develop a field theory 
for this problem, check it at high and low densities, and use a Hartree type method to 
approximate the spectrum in the u = 0 case. 

2. Field theory 

The spectrum can be computed from the resolvent 

R ( z )  = 1 T r  1 
N z - M '  (2) 

where the overline denotes the average over the positions xi. It is possible to write down 
a field theory using a replica approach. We shall compute ~N = det(z - M)-" /2 ,  and 
deduce from it the resolvent by using the replica limit n ~ 0. It is easy to show that 

one can write ~N as a partition function over replicated fields ~ ,  where i E { 1 . . .  N}, 
a E  { l . . . n } :  
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-- Jf r-r d x i -2Z Z ( dp ~, ) 2 
= = a = l  i,a 

+7 ~ f (x i  -- xj)dp idpj - ~ 
i,.],a i,a j 

Let us introduce the bosonic fields 

N 

and 
i= 1 i , a  

together with their respective Lagrange multiplier fields ~a(x)  and ~ (x ) .  One can 
integrate out the ~ variables, leading to the following field theory for ~N: 

/ ~N = D[Oa,~a,X, 2]ANexp(So) , (4) 

where 

1 So=i~_. / dx~,,,(x)q,.(x) + ~ f ax 2(x)x(x) 
0 

' /  + 2 S dxdy~ba(x)f( x - Y)O"(Y), (5) 
a 

A=. -V- z + ~(x) 

×exp - ~u d y f ( x - y ) x ( y )  2 ( z + , ~ ( x ) )  . 

It is convenient to go to a grand canonical formulation of the disorder: we consider an 
ensemble of samples with varying number of points, and compute the grand canonical 
partition function Z ( a )  =- ~N=0 = ~N/~.r) --U'~ /~*., which is equal to 

Z =  [D[~ha,~ta,X,~(]exp(So+S1); $1 - a A .  (7) 
] 

Notice that we can also integrate out the g, field thus replacing So by S 0, where 

S O = - -~ t r log f+  -~ dx ,~(x)x(x  ) + ~ dxdyOa(x ) f - l ( x  - y ) ~ " ( y ) ,  

(8) 

where log f is the logarithm of f considered as an integral operator and ,f-i  is the 
integral operator which is the inverse of f .  

The expression (7) is our basic field theory representation. We shall denote by 
brackets the expectation value of any observable with the action So 4- S). As usual with 
the replica method we have traded the disorder for an interacting replicated system. The 
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basic properties of  the field theory are related to the properties of  the original problem in 

a straightforward way. The average number of  particles is related to a through N = a(A),  

so that one gets a = N in the n ~ 0 limit. From the generalized partition function Z,  

one can get the resolvent R(z) through 

2 ,9 log Z 
R ( z )  = - lim (9) 

,~o nN 3z 

3. High density expansion 

Let us first show how this field theory can be used to derive a high density expansion. 

We shall rescale z as z = p£, and rescale the X fields as j , (x )  = pO(x), X(x) = c(x)/p.  
The interacting part of  the action, S~, can then be expanded as 

I "I "'I SI ~-p dxIx(x) - -~ dxdy Ix (x ) f ( x , y ) c (y )  + ~p dxdyc (x )h (x , y )c (y )  

I[d V"O'(x)2 
X - - - -  2J ~ +O(x) ' 

where we have introduced 

Ix(x) ~ (p (~  +2~O(x))J~-"/2; 

(10) 

h(x,y)  - f d r f ( x , r ) I x ( r ) f ( r , y ) .  (l l)  

Performing the quadratic c functional integral, one finds (here and in the following we 

drop all the irrelevant -~ independent- constants): 

Z~x f D[~a,~]exp[p f dxix(x)-2 f dxdye(x)h-l(x,y)e(Y) 
l ~-'~ / dx dy~ta( x)G- '  (x, y)~ta(y)] (12) 
2 . 

where G -1 (x, y)  = 6(x - y ) / (~  + g'(x)) - f - I  (x, y) is the propagator of  the ~ field, 

and the field e(x) is defined as 

e(x)=V~@(x)-uf d y f ( x - y ) I x ( y ) ) u  
~ V ~ ( -"/ ) ~ ( x ) - u f ( O ) - - 2 -  d y f ( x - y )  log(~+~(y))  . (13) 

II 

We then change variables from ~ to e, which involves a Jacobian which is easily 
computed to order n. The @ integral is Gaussian, and to leading order in p, the • field 
can be neglected in G, as well as in h. The only term in which • is relevant turns out 

to be f dx Ix(x), which is simplified by an expansion to order e 2. Gathering the various 
contributions one gets 
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nN ( u "2 f (dk) f f (k)  2 1 f(O) 
l o g Z _ ~ - - ~ - - \ l o g ( ~ + u f ( 0 ) )  2 p ( ~ + u f ( O ) )  2 + p ~ + u f ( O )  

l f (dk) log[e +"ff(O)- ff(~)] +O[-~l ) (14) 
p - ' 

where the first two terms come from the expansion of f dxt~(x), the third one is 

the Jacobian, and the fourth one is the contribution of  the determinant from the ~/~ 

fluctuations. 

This gives for the resolvent 

l 1 l f f  f ( k )  R(z) - + ~ j ( d k )  p~ +uff(o) 7 (~ +,,ff(o)- ff(k))(~ +.ff(o)) 
uf(O)_ ( z ~ - ~ 7 ' u 2 f d r f ( r ) 2 ) ( ~ )  

(e  + uff (0))2  + + O  . (15) 

This result is valid in the large p limit, whenever the resolvent parameter z is scaled as 

z = p f .  It can be checked directly. We consider the original form (2)  of the resolvent 
and expand it in a 1/z series. At order 1/z p+l, the first two leading terms in p are: 

,o1' (-uff(O)) p + p(1  - u)f(O)p"- '  (-uff(O))"-'  
P 

y=2 

~--I o 9 f +pt u 'Cp ( - u f ( 0 ) )  p-2 dr f f r )  2 , (16)  

where C/]' = K(p + 1) / (F(p  ~ + l ) F ( p  - p '  + 1)). One can see that in the large p 

limit the series simplifies if we first scale z proportionally to p. Writing z = p~., we can 

resum the leading terms in the series, which gives back the same resolvent as (15).  

One can study with this method the eigenvalue density for eigenvalues ]3.1 ~ O(p), 
by taking z = ,~ + i'q and computing the imaginary part of  the resolvent in the small 

r/ limit. For p --~ ~ one would get the trivial result for the eigenvalue dens i tyP(M = 

6()t + puff(O)). Including the leading large p correction which we have just computed, 

we find that P(,~) develops, away from the peak at A ~ - p u f f ( 0 ) ,  a component of the 

form 

' /  P(A) ~ -  ( d k ) f ( / l - p ( f ( k ) - u f ( O ) ) ) .  (171 
P 

The result (17) is the one that one could guess using the following simple argument: 

introducing ~bi = exp(ikxj), one gets 

ZMi . jOS j=AiqS i ,  a i = Z e - i k ( x ' - - ' J ) f ( x i - - x j ) - - u Z f ( x i - - x , , , ) .  (18) 
j .i m 

In the large density regime it is reasonable to use the central limit theorem to approximate 

the above sum, which would show that ~b is near to an eigenvector, with eigenvalue 
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p ( f ( k )  - u f ( O ) ) .  Notice that for this argument to hold, the discrete sum giving hi 
in (18) must sample correctly the continuous integral. This will be the case only when 
the density p is large enough that the phase - i k ( x i -  x j )  does not oscillate too much 

from one point xj  to a neighbouring one. This imposes that the spatial frequency Ikl be 
small enough: Ikl << p i N .  This same condition is present in the field theory derivation. 

We assume that f ( k )  decreases at large k, and we call kM the typical range of k 
below which f ( k )  can be neglected. Let us consider the corrections of order p -2  in 

Eq. (15). It is clear that, provided ~ is away from - u f ( O ) ,  the ratio of the correction 

term to the leading one is of order k ~ p  -1,  and the condition that the correction be 
small is just identical to the previous one. The large density corrections near to the peak 

/~ ~ - p u f ( O )  cannot be studied with this method. 

4. Low density expansion 

The low density expansion is also easily performed from the field theoretic represen- 
tation. Since the interaction a A  is proportional to p in the n --, 0 limit, we can expand 

in powers of ce, 

Z : / D [ ~ a ' X ' f ( ] e S ~ [ l + a / d x ° - - V - ( z  +~-(Xo)/2zr ~n/2 

×exp  - ~  d y f ( x o - y ) x ( y ) - 2 ( z  + f ( ( xo )  ) 
O 

(19) 

At first order we can perform the X integral, which fixes ,~(x) = u f ( x  - xo) and we 

get 

Z = 1 + p ( d e t K i )  -n/2 , (20) 

where KI is the operator K1 (x, y) = 8(  x - y )  - 8(  x - xo ) 8(  y - xo ) f ( O ) / ( z + u f ( O ) ). 

Using (9),  one finds R ( z )  -- 1 / ( z  - (1 - u ) f ( O ) ) ,  which is obviously the leading 
result at very low densities, such that the points are isolated. At second-order, the 

expansion (19) involves a double integral over points xo, xl .  The X integral fixes 
k ( x )  = u f ( x  - xo) + u f ( x  - xl ). One needs to study the determinant of the operator 
1(2 defined as 

f ( x  - y)  
1(2 = f i (x  - y )  

z + 2 ( x )  
( 6 ( x  - xo) + ~ ( x -  x l ) )  ( ~ ( y  - x o ) + 6 ( y  - Xl)) .  

(21) 

This gives after a simple computation the order p correction to the resolvent 

2 z - - [ ( l - u ) f ( O ) + ( 1 - - u ) f ( r ) ]  
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1 2 ) 
4 - . (22) 

z - [(1 - u ) f ( O )  - (1 + u ) f ( r ) ]  z - (1 - u ) f ( 0 )  

This corrects the leading small p formula by adding the contribution due to pairs of 
points, a distance r apart, which are isolated from all other points. This expansion 
can be easily carried out to higher order, the order pk involving the computation of a 
kd-dimensional integral. 

5. Variational approximation 

In order to try to elaborate a general approximation for the spectrum, which inter- 

polates between the high and low density limits, we have used a standard Gaussian 
variational approximation in the field theory representation, which appears under vari- 

ous names in the literature, like the Random Phase Approximation. We have developed 
it only in the case u = 0. The field theory then simplifies since the X and j, fields can 
be integrated out. Changing ~ ~ i~, we obtain 

Z = f DL~ a] exp (S,=0) , 23) 

where 

1 
s,,=o=  fdxdy y ) ~ " ( v )  

a 

+ p z - " / 2 / d x e x p ( ~ - ~ g f i a ( x , 2 ) .  24) 

We look for the best quadratic action 

S,. = - ( 1 / 2 )  ~ '  [ dx dy G J  (x, y)g)"(x)g)a(y), 25) 
o b  

. ]  

which approximates the full interacting problem, using the fact that the variational free 

energy F,. = (S,,=0),.- log&, should be minimized. (Here Z,. = f D[~] exp(S,.), and 
the expectation values {.)~. are meant as Boltzmann-like averages with the measure 
exp(S,.) ). The variational free energy is easily obtained, 

-n/~ [" , f det( K)'~ U2 
F,,V - 21Tr f - I G -  pz - j a x o ~  j - l T r l o g G , 2  (26) 

where the operator K is defined as 

K-',a, (x, .v) = Gab I (x, y) - 18,,hrF(x - xo)a(y - xo) . (27) 
2 

In (26), both G and K are considered as operators in x space and in replica space. 
Keeping to translation invariant variational actions, the result is easily expressed in terms 
of the Fourier transform Gab(k) of the function G,a,(r). One finds that 



696 M. Mdzard et al./Nuclear Physics B 559 [FS] (1999) 689-701 

d e t ( K ) _  [ ( ~ ) ]  
det(G) exp Tr~ log 1 - , (28) 

where Hab = G,,b(r = 0) = f (dk)Gab(k)  is a n x n matrix, and the trace Tr, is a trace 

in replica space. This gives for the variational free energy 

F~, 1 [ TrnG(k) 
- V - = 2 a ( d k )  f ( k )  - # e x p  

,/ 2 (dk) Tr. log G(k).  

l ,) 
- ~ Tr,, log(1 - H/z 

(29) 

We have found a solution of the stationarity equations, OFv/OGab(X) = 0 ,  of the form 
G~l,(x) = 6~bG(x), where the Fourier transform G satisfies the self-consistency equation 

f ( k )  C = P (30) 
G(k) - 1 - C f ( k )  ' z - f ( d k ) G ( k ) "  

In terms of this function, the variational free energy density per replica is 

F~, 1 /  C,(k) p ( 1 f ' I f  n V - 2  (dk) f ( k )  + ~ l o g  1 -  7 (dk)G(k)  - ~  (dk) logG(k) (31) 

and the resolvent is obtained from 

1 2 a  F,,  C 1 
- + - - ( 3 2 )  

R(z)  = z p3z  nV p z - f ( dk ) G( k ) "  

Formulas (30), (31), (32) provide a closed set of equations which allow us to 
compute the Gaussian variational approximation to the spectrum for any values of f 
and the density. In Section 6 we shall compare this approximation to some numerical 
estimates of the spectrum for various functions f and densities. It is easily checked 
that the variational gives the correct spectrum to leading order in the large p expansion 
(see (15) ) and in the small p expansion, which is not a surprise since we had seen that 
these leading orders are given by purely Gaussian theories. Of course it fails to give 
the exact result beyond leading order, but it provides a reasonable interpolation between 

these extremes. 
Another partial resummation of the p expansion can also be done in the following 

way: if one neglects the triangular-like correlations between the distances of the points 
(an approximation which becomes correct in large dimensions, provided the function f 
is rescaled properly with dimension), the problem maps onto that of a diluted random 
matrix with independent elements. This problem can be studied explicitly using the 
methods of [7-12].  It leads to integral equations which can be solved numerically. The 
equations one gets correspond to the first-order in the virial expansion in Eq. (3),  in 
which one introduces as variational parameter the local probability distribution of the 
field ~b. The detailed computations involving this other approximation scheme are left 
for future work. 
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6. Numerical simulations 

6~)7 

For a function f ( x )  which is positive, as well as its Fourier transform f ( k ) ,  simple 

bounds on the spectrum can be derived in the two cases u = 0 and u = 1. In the 

u = 0 case, calling ~Pi a normalised eigenvector ~/Ji of the matrix M defined in ( 1 ), wilh 

eigenvalue A, one has 

Z I / / i f ( x i  --  X j ) l p j  = ,~, ( 33 ) 
i i 

and the posit ivity of  the Fourier transform of  f implies that A ~> 0. In the u = 1 case, 

the eigenvalue equation implies that 

IMijll 'jl > la  - M.I IJ . , I  • (347 
j (~ i )  

Summing over i, using the fact that Mi; is positive for i 4: j ,  together with the constraint 

~ j  Mij = 0, one gets 

([M.i./I - t A - Mr.~I)10jl > 0, (35)  
i 

which implies that there exists at least one index j such that IM.ij[ - [a - Mj./I >~ O, 
and therefore 3. ~< 0. Furthermore, in this u = 1 case, there exists one eigenvector (the 

uniform one) with zero eigenvalue. 

In the u = 0 case, we have studied numerically the problem in dimension d = 3 with 

the Gaussian function f ( x )  = (2rr ) -3 /2exp( -x2 /2 ) .  In this Gaussian case the high 

density approximation gives a spectrum 

P ( A )  ~ - - -  log O ( p -  A). (36) 
p~2  A 

Notice that this spectrum is supposed to hold away from the small a peak, and in fact 

it is not normalizable at small A. 

The variational approximation computation described in the previous section is more 

involved. From (30) ,  (31) ,  (32) ,  one needs to solve, given z = A - i• ,  the following 

equations giving the complex function of  z, C ( z )  which we write as C = a + ib: 

o o  

a l_L - [ k2 e  2/2 - .  

0 
O(3 

b b f k2d k 1 
• = p a 2 + b 2 27r 2 (ek2/2 _ a) 2 q- b 2 

o 

(37)  

One needs to find a solution in the limit where • --~ 0. We have done this as follows: For 

a given value of  a, we search for the values of  b which solve the second of  Eqs. (37)  



698 M. Mdzard et al./Nuclear Physics B 559 [FS] (1999) 689-701 

20.0 

15.0 

~ 1o.o 
o 

In 
\Yl 

• I 

5.0 

,' ,,,'-,... 

0.00 0.10 0.20 0.30 
eigenvalue 

0.40 

Fig. 1. Density of eigenvalues of a euclidean random matrix in three dimensions, density p = 1. The function 
f is .f(x) = (2~)-3/2exp(--x2/2),  and the matrix is defined from Eq. (1) with u = 0. The full line is 
the result of a numerical simulation with N = 800 points, averaged over 100 samples. The dashed (red) line 
is the result from the high density expansion. The dash-dotted (green) line is the result from the Gaussian 
variational approximation (RPA) to the field theory. 

0.40 

0.30 

0.20 

0.10 

0.00 
-8.0 

\ 
\ 

\ 
\ 

\ 
\ 

~s 

i 

-6.0 -4.0 -2.0 0.0 
Iog(eigenvalue) 

2.0 

Fig. 2. Density of the logarithm (in base 10) of the eigenvalues of a euclidean random matrix in three 
dimensions, density p = 1. The function f is f (x )  = (2~r)-3/2 e x p ( - x 2 / 2 ) ,  and the matrix is defined from 
Eq. ( 1 ) with u = 0. The full line is the result of a numerical simulation with N = 800 points, averaged over 
100 samples. The dashed (red) line is the result from the high density expansion. The dotted (green) line is 
the result from the Gaussian variational approximation (RPA) to the field theory. 

w i t h  e = 0.  D e p e n d i n g  on the  v a l u e  o f  a ,  there m a y  ex i s t  zero ,  o n e ,  or t w o  s o l u t i o n s  in 

b. For  e a c h  such  s o l u t i o n  w e  c o m p u t e  the  v a l u e  o f  A f r o m  the first o f  Eqs .  ( 3 7 ) ,  and  

the  c o r r e s p o n d i n g  d e n s i t y  o f  s tates  is  g i v e n  b y  b / ( p ~ r ) .  

In F i g s .  1, 2,  w e  p lo t  the  o b t a i n e d  s p e c t r u m ,  a v e r a g e d  over  1 0 0  rea l i za t ions ,  for  



z 
10.0 

M. MEzard et al./Nuclear Physics B 559 [FS] (1999) 689-701 

20.0 s I 
I I  
I I  

I i  
15.0 ' I I 

, t I 
\ I i  

\1 I 

/ \ , r . .  , 

0._0.000 O. 10 0,20 0.30 
eigenvalue 

5.0 

0.40 

699 

Fig. 3. Density of eigenvalues of a euclidean random matrix in three dimensions, density p = 0.1. The function 
f is f(x) = (27r)-3/2exp(-x2/2), and the matrix is defined from Eq. (1) with u = 0. The full line is 
the result of a numerical simulation with N = 800 points, averaged over 200 samples. The dashed (red) line 
is the result from the low density expansion. The dash-dotted (green) line is the result from the Gaussian 
variational approximation (RPA) to the field theory. 

N = 800 points at density p = l (We checked that with N = 600 points the spec- 

trum is similar).  Also shown are the high density approximation (36) ,  and the result 

from the variational approximation. We see from Fig. 1 that the part of the spectrum 

,~ ~_ [0.2, 1.5] is rather well reproduced from both approximations, although the vari- 

ational method does a better job at matching the upper edge. On the other hand the 

probability distribution of the logarithm of the eigenvalues (Fig. 2) makes it clear that 

the high density approximation is not valid at small eigenvalues, while the variational 

approximation gives a sensible result. One drawback of the variational approximation, 

though, is that it always produces sharp bands with a square root singularity, in contrast 

to the tails which are seen numerically. 

In Fig. 3, we plot the obtained spectrum, averaged over 200 realizations, for N = 800 

points at density p = 0.1 (We have checked that there is no substantial variation of 

the plot when going from N = 600 to N = 800.) Also shown are the low density 

approximation (22) ,  and the result from the variational approximation. We see from 

Fig. 3 that this value of p = 0.1 is more in the low density regime, and in particular 

there exists a peak around ,~ = f ( 0 )  due to the isolated clusters containing small 

number of points. The variational approximation gives the main orders of magnitude of 

the distribution, but it is not able to reproduce the details of the spectrum, in particular 

the peak due to small clusters. On the other hand the leading low density approximation, 

which is not normalizable, gives a poor approximation at this intermediate density. 

We now turn to the tt = 1 case. We have run some simulation in d = 3 with the same 

Gaussian f of width one, at density p = 1. As seen in Fig. 4, the direct simulations 

with periodic boundary conditions, and sizes N = 1000 to 1400, show roughly the same 
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Fig. 4. Density of eigenvalues of a euclidean random matrix in three dimensions, density p = 1. The function 
f is f ( x )  = (2~)-3/2 exp(-x2/2), and the matrix is defined from Eq. ( 1 ) with u = 1. The right hand graph 
gives an enlargement of the spectrum at small eigenvalues. The full line is the result of a numerical simulation 
with quenched-twisted boundary conditions (see text), with N = 500 points, averaged over 500 samples. The 
dashed (red) line is the result from the high density expansion. The dash-dotted (green) line is the result of 
a simulation with untwisted periodic boundary conditions, with N = 1000 points averaged over 50 samples. 
The dotted (blue) line is the result of a similar simulation, but with N = 1400 points. 

densi ty of  states, with a very broad peak around ,~ = - 1  = - p f ( O ) .  However, they 

disagree in the tail of  the spectrum near  to the zero eigenvalue.  In this region the finite 

size effects are more  p ronounced  because of  the gap opening at m om en ta  less than 

2 7 r ( N / p )  -V3 ,  which is rather large for the accessible values of  N. In order to get a 

more precise result, less sensit ive to the finite sizes, in this region of  the spectrum, we 

have run some s imula t ions  which deal with an infinite set of  points. Starting from a 

given sample  of  N points in a box of  side L = ( N / p )  U3, one imagines  bui ld ing up 

an infinite cubic  lattice, for which the unit  cell is the original  box. Bloch ' s  theorem 

tells that there exist N bands,  and the eigenstates of  the infinite system are the products  

of  a periodic funct ion of  period L ( in  each direct ion)  t imes a plane wave e ipxj. For a 

given value of  the m o m e n t u m  p c [ - T r / L ,  7r/L] 3, the N eigenvalues are those of  the 

modif ied matr ix,  

M(P) i i = f (di.i) e ip'*~j - uSi.i Z f (d ik)  • ( 3 8 )  
k 

Here di.i is the dis tance be tween  xi and x.i with periodic boundary  condit ions,  defined 

as the m i n i m u m  over  all t ranslat ion vectors t ( t ranslat ions of  length mult iple  of  L in 

each d i rec t ion)  of  Ixi - x.j - tl. The phase d~ij is a d -d imens iona l  vector. Its componen t  

in direct ion Iz is related to the op t imum translat ion t through: ~b~ = tU/L.  Given p,  

the p rob lem is thus mapped  to f inding the spectrum of  an L a x L a matrix M (p), with 

r andomly  twisted boundary  condit ions.  The resul t ing matrix is hermit ian and can be 
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d iagonal ized  by standard l ibrary routines.  We have averaged the spectra over many  

samples,  choos ing  for each sample  one random Bloch momen tum.  This method [13]  

al lows to access the small  e igenvalue  region of  the spectra. As we see from Fig. 4, this 

whole region is well approximated by the high density approximat ion (17) ,  but this 

approximat ion  fails to reproduce the broad peak of  the spectrum, as expected. 

To summar ize ,  we have introduced a family of  random matrices with eucl idean corre- 

lations, and developed for them a field theory representat ion,  as well as some systematic 

expans ions  giving some properties of  the eigenvalue density. The spectra can be rather 

well approximated  in the simplest  case u = 0 us ing some variational approximat ion to 

the field theory. In the most  interest ing case u = 1, the situation is more complicated 

and we could get only  the behaviour  of the spectrum at small  eigenvalues,  using the 

high densi ty expansion.  It would certainly be interest ing to generalize the variational 

approximat ion  in order to treat also this u = 1 case. 
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