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A first-principle computation of the thermodynamics of glasses
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We propose a first-principle computation of the equilibrium thermodynamics of simple fragile
glasses starting from the two-body interatomic potential. A replica formulation translates this
problem into that of a gas of interacting molecules, each molecule being built ofm atoms, and
having a gyration radius~related to the cage size! which vanishes at zero temperature. We use a
small cage expansion, valid at low temperatures, which allows to compute the cage size, the specific
heat~which follows the Dulong and Petit law!, and the configurational entropy. ©1999 American
Institute of Physics.@S0021-9606~99!50326-7#
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I. INTRODUCTION

Take a three-dimensional classical system consisting
many particles, interacting through a short range poten
with a repulsive core. Very often this system will underg
upon cooling or upon compression, a solidification into
amorphous solid state—the glass state. The conditions
quired for observing this glass phase is the avoidance
crystallization, which can always be obtained through a f
enough quench~the meaning of ‘‘fast’’ depends very muc
on the type of system!.1 There also exist potentials whic
naturally present some kind of frustration with respect to
crystalline structure. Whether their actual stable state
crystal or a glass is not known, but they are known to
lidify into glass states, even when cooled slowly—such is
case for instance of binary mixtures of hard spheres,
spheres, or Lennard-Jones particles with appropriately dif
ent radii. These have been studied a lot in recent nume
simulations.2–6

Our aim is to compute the equilibrium thermodynam
properties of this glass phase, using the statistical mecha
approach, namely, starting from the microscopic Ham
tonian ~an attempt to build up a nonequilibrium thermod
namic phenomenology can be found in Ref. 7!. We shall
therefore assume that crystallization has been avoided,
consider only the amorphous solid state. The general fra
work of our approach finds its roots in old ideas
Kauzman,8 Adam and Gibbs,9 which received a boost whe
Kirkpatrick, Thirumalai and Wolynes underlined the analo
between structural glasses and some generalized
glasses.10 This framework should provide a good descripti
of fragile glass formers. These are the systems in which
increase of relaxation time upon decreasing the tempera
is much faster than Arrhenius often parametrized as
Vogel–Fulcher law, displaying a divergence of the rela
ation time at a finite temperature.1 In this approach, the glas
transition, measured from dynamical effects, is suppose
be associated with an underlying thermodynamic transi
at the Kauzman or Vogel–Fulcher temperatureTK . This
1070021-9606/99/111(3)/1076/20/$15.00
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ideal glass transition is the one which should be observed
infinitely long time scales in fragile glass formers.1 This tran-
sition is of an unusual type, since it presents two appare
contradictory features:

~1! The transition is continuous~second order! from the
thermodynamical point of view: the internal energy
continuous, and the transition is signalled by a discon
nuity of the specific heat which jumps from its liqui
value aboveTK to a value very close to that of a cryst
phase below.

~2! The order parameter is discontinuous at the transitio

In order to make this last statement precise, we sh
have to define an order parameter for the glass phase in
framework of equilibrium statistical mechanics, which i
volves some subtleties and will be addressed below. At
introductory stage let us take loosely as an order param
the correlation in the positions of the particles at very lar
times. In the liquid, there is no correlation. In the glass,
positions are correlated in time. Clearly, the order param
jumps discontinuously between the liquid phase and
glass phase. The two properties above are indeed observ
generalized spin glasses.11 The problem of the existence o
not of a diverging correlation length is still an open one.12

This analogy is suggestive, but it also hides some v
basic differences, like the fact that spin glasses h
quenched disorder while structural glasses do not. The re
discovery of some generalized spin glass systems with
quenched disorder13–15 has given credit to the idea that th
analogy is not fortuitous. The problem was to turn this ge
eral idea into a consistent computational scheme allowing
some quantitative predictions. Important steps in this dir
tion were invented in Refs. 16 and 17, which showed h
useful it is to study several coupled copies of the same s
tem in order to characterize properly the glass phase.
previous preliminary study, we used some of these idea
estimate the glass temperature, arriving from the liq
phase.18 However, the approximations we did were not a
equate for the description of the low temperature pha
6 © 1999 American Institute of Physics
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1077J. Chem. Phys., Vol. 111, No. 3, 15 July 1999 The thermodynamics of glasses
Here, we concentrate instead on the properties of the g
phase itself and we introduce approximations which
much more appropriate to describe its properties particul
at low temperatures. We are now able to construct analyt
tools for doing computations in the glass phase and to
the results in numerical~and eventually real! experiments. A
brief description of a part of the present work has appea
in Ref. 19.

In the next section, we shall present in more details
general physical picture underlying our approach. In Sec.
we shall explain why and how one can characterize
study the glass phase using a replicated liquid. Section
derives the Hamiltonian of the molecular liquid, which
studied in the next two sections, first of all by a small ca
expansion in Sec. V, then by a molecular HNC closure
Sec. VI. In Sec. VII, we present the results of these vari
approximations concerning the glass transition tempera
and the thermodynamic quantities. Section VIII gives a
of some directions into which this work could be extende
Two appendices contain the derivation of the molecu
HNC closure on one hand, and its expansion to second o
in the small cage parameter on the other hand.

II. THE BASIC SCENARIO

In this section, we want to present some of the gene
ideas which provide a background to our approach. Th
have to do with the existence of a configurational entro
and the identification of the glass transition as a point wh
the configurational entropy vanishes. These ideas are
sented in general, without special reference to a specific
tem. They can be derived in great details in some mean fi
spin glass models. Although the microscopic description
these models is somewhat remote from the actual glass p
lem which interests us, we have included for completene
short summary of some of the results found in these syste
This will help to formulate the basic hypotheses of our a
proach.

A. Configurational entropy

We consider a system ofN particles moving in a volume
V of a d-dimensional space, and interacting by some sh
range potential. These could be for instance hard sphere
Lennard-Jones particles.

Let us introduce the free energy functionalF@r# which
depends on the local particle densityr(x) and on the tem-
perature. We suppose that at sufficiently low temperature
functional has an exponentially large number of minima20

More precisely, the number of free energy minima with fr
energy densityf 5F/N is supposed to be exponentially larg
in some region of free energies,f min(T),f,fmax(T):

N~ f ,T,N!'exp@NSc~ f ,T!#. ~1!

Exactly at zero temperature these minima coincide with
minima of the potential energy as function of the coordina
of the particles. The functionSc is called the complexity or
the configurational entropy~it is the contribution to the en
tropy coming from the existence of an exponentially lar
number of locally stable configurations!. The number of lo-
cal minima is supposed to vanish outside of the reg
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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f min(T),f,fmax(T), and the configurational entropySc( f ,T)
is supposed to go to zero continuously atf min(T), as found in
all existing models so far~see Fig. 1!.

Let us first discuss the properties of the system at th
mal equilibrium: we thus consider the case where each c
figuration of the system is assigned a probability given by
Boltzmann weight. We label the free energy minima by
indexa. To each of them we can associate a free energyFa

and a free energy densityf a5Fa /N. In the low temperature
region, we suppose that the total free energy of the sys
~F! can be well approximated by the sum of the contrib
tions to the free energy of each particular minimum:

Z[exp~2bNF!.(
a

exp~2bN fa!. ~2!

For large values ofN, we can write

exp~2NbF!'E
f min

f max
d f exp$2N@b f 2Sc~ f ,T!#%. ~3!

We can thus use the saddle point method and approxim
the integral with the integrand evaluated at its maximum. W
find that

F5min
f

F~ f ![ f * 2TSc~ f * ,T!, ~4!

where

F~ f ![ f 2TSc~ f ,T!. ~5!

This formula is quite similar to the usual formula for the fre
energy, i.e.,f 5minE@E2TS(E)#, whereS(E) is the entropy
density as a function of the energy density~E!. The main
difference is the fact that the total entropy of the system
been decomposed into the contribution due to small fluct
tions around a given configuration~this piece has been in
cluded intof!, and the contribution due to the existence o
large number of locally stable configurations, the configu
tional entropy.

FIG. 1. Qualitative shape of the configurational entropy vs free energy.
whole curve depends on the temperature. The saddle point which domi
the partition function, form constrained replicas, is the pointf * such that
the slope of the curve equalsm/T ~for the usual unreplicated system,m
51!. If the temperature is small enough the saddle point sticks to the m
mum f 5 f min and the system is in its glass phase.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Calling f * the value off which minimizeF~f!, we have
two possibilities:

• The minimum lies inside the interval and it can b
found as the solution of the equationb5]Sc /] f . In this
case, we have

F5f*2TSc* , Sc*5Sc~f* ,T!. ~6!

The system may stay in one of the many possi
minima. The number of accessible minima is exp(NSc* ).
The entropy of the system is thus the sum of the entr
of a typical minimum and ofSc* , which is the contri-
bution to the entropy coming from the exponentia
large number of metastable configurations.

• The minimum is at the extreme value of the range
variability of f: it sticks at f * 5 f min and the total free
energy isF5 f min . In this case, the contribution of th
configurational entropy to the free energy is zero. T
different states which contribute to the free energy ha
a difference in free energy density which is of ord
N21 ~a difference in total free energy of order 1!. This
situation is often encountered in spin glasses, both
usual cases of spin glasses with quenched disorder21,22

and also in some spin glass systems without quenc
disorder.13–15

One aim of the theory of glasses at equilibrium could
to demonstrate from first principles the existence of a c
figurational entropy function such as depicted in Fig. 1, a
to compute it. This is difficult to achieve. For instance, K
pler’s conjecture, a simple zero temperature statement sa
that there is no denser packing of hard spheres in three
mensions than the fcc lattice, has resisted a proof for m
than three centuries.23 Here, we shall take a more mode
starting point: we shall assume the existence of the lo
minima and of the configurational entropy function with t
general properties depicted above, and within this assu
tion we shall show how to compute~approximately but with
a rather good accuracy, and one which can be improved
tematically! the various properties of the system, includi
the configurational entropy function itself.

B. Mean field situation

So far, the only systems for which the above progr
could be carried out in all details are some type of mean fi
spin glasses with a discontinuous jump of the order par
eter at the transition.11,10,24–27

Although we will not need all the ingredients that ha
been found in these other problems, it is useful to rec
some of them; later on, we will mention how this pictu
might be modified in a realistic—nonmean field—syste
The configurational entropy function is convex, and previo
work indicates that it depends smoothly on the temperat
the main effect of a temperature change being a global s
of the free energies. Starting from high temperatures, we
encounter the following temperature regions~we use here the
language of liquids and glasses!.

• For T.TD , the free energy functional is dominated b
the uniform density solution,r(x)5r ~there may exist close
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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to TD other minima,28,25 but their total contribution has a
higher free energy than the uniform solution!. The system is
obviously in the fluid phase.

• In the region whereTD.T.TK , the minimum of the
functionF( f ) is within the interval@ f min(T),fmax(T)#. There-
fore, the system can stay in one of many different states.
entropy of the equilibrium system receives a contributi
from the configurational entropy, which is nonzero. A ve
surprising result, found in all generalized mean field sp
glasses with discontinuous transition so far, is that the to
free energy of the system including the configurational
tropy contribution,F( f * ), is equalto the free energy of the
fluid solution with uniform r.16,17 This result has not re-
ceived a general explanation beyond the simple idea of
transition atTD being a fragmentation of accessible pha
space into many separated pockets, the total volume
which should be continuous atTD . Although the thermody-
namics is still given by the usual expressions of the liqu
phase and the free energy is analytic atTD , below this tem-
perature the system, at each given moment of time, may
in one of the exponentially large number of minima.

• In the region whereT,TK , the saddle point ofF
sticks at its minimum and the free energy is dominated
the contribution of a few minima having the lowest possib
value f min(T). Here, the free energy is no more the analy
continuation of the free energy in the fluid phase. A pha
transition is present atTK and the specific heat is discontinu
ous here.

The intermediate phaseTD.T.TK is particularly inter-
esting. In the mean field systems, an exact solution of
Langevin dynamics indicates a dynamical phase transitio
TD , the system being trapped in some states with a f
energy which is extensively higher than that of the equil
rium state.29 For the realistic finite dimensional problem
which we want to study, the situation is much less clear,
one can speculate that the system will equilibrate in t
regime, very slowly.10 The time to jump from one minimum
to another minimum is quite large: it is an activated proc
which is controlled by the height of the barriers which sep
rate the different minima. The correlation time will becom
very large belowTD and for this reasonTD is called the
dynamical transition point. The correlation time~which
should be proportional to the viscosity! diverges only at the
true thermodynamic transition temperature, sometimes ca
the ideal glass temperatureTK ~see Fig. 2!. The precise form
of this divergence is not well understood. It is natural
suppose that one should get a divergence of the fo
exp@A/(T2TK)n# for an appropriate value ofn, but a reliable
analytic computation ofn is lacking.10,30 Experiments can
often be fitted by this law with various values ofn, including
the Vogel–Fulcher fit withn51. The equilibrium configura-
tional entropy is different from zero~and it is a number of
order 1! when the temperature is smaller thanTD , it de-
creases with the temperature and it vanishes linearly aT
5TK . At this temperature, the entropy of a single minimu
becomes equal to the total entropy and the contribution
the configurational entropy to the total free energy vanish
Therefore, the total entropy and the internal energy are c
tinuous at the transition.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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1079J. Chem. Phys., Vol. 111, No. 3, 15 July 1999 The thermodynamics of glasses
C. Relationship to experiments

The above scenario is appealing in that it puts into
unified framework a number of experimental facts
glasses, as well as some general theoretical ideas.

Experimentally, the system falls out of equilibrium whe
its relaxation time becomes larger than the experime
time. The ‘‘glass transition temperature,’’ defined conve
tionally as the temperature where the typical relaxation ti
reaches a value of order one hour, falls somewhere betw
TK andTD . By considering slower and slower quenches, o
can equilibrate the system at lower temperatures. Howe
in this scenario, there exists an underlying thermodyna
transition at the temperatureTK , which is the ideal glass
transition temperature. This temperature is also the
where the viscosity would diverge in the Vogel–Fulcher ty
fitting of the viscosity versus temperature. Clearly, it a
corresponds to the Kauzman temperature: the excess en
of the supercooled liquid with respect to the crystal is ba
cally equal to the configurational entropy, which vanish
precisely atTK . The experimental fact that the Kauzma
temperature and the Vogel–Fulcher one are close to e
other has been noted many times, and is also found in
Adam–Gibbs relation.9

The dynamical temperatureTD also receives a natura
interpretation. In mean field, therefore neglecting activa
processes, the relaxation time diverges with a power law
TD , and the autocorrelation function develops an infinite
long plateau. This slowing down is described precisely
the mode coupling theory.31,32 In the mean field approxima
tion, the height of the barriers separating the differe
minima is infinite and the temperatureTD is sharply defined
as the point where the correlation time diverges. In the r
world, activated processes~which are neglected in the mea
field approximation and consequently in the mode coupl
theory! have the effect of producing a finite~but large! cor-
relation time also at and belowTD ~the precise meaning o

FIG. 2. Relaxation time vs temperature in discontinuous spin glasses.
right hand curve is the mean-field prediction, which gives a dynamical t
sition at a temperatureTD above the static transition temperatureTK . The
left curve is a conjecture on the behavior in finite dimensional syste
activated processes smear the dynamic transition. The relaxation tim
verges only at the static temperatureTK , but becomes experimentally larg
already around the glass temperatureTg .
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the dynamical temperature beyond mean field approxima
is not so clear-see Ref. 5; probably the best definition is t
TD is the temperature where the mode-coupling theory p
dicts a transition!. Therefore, one expects that the mode co
pling description will give good results in the region large
above TD , a fact that has been checked accurately
experiments33 and numerical simulations.34

A last point which is predicted within the basic scenar
and has been checked numerically, is a specific type of ag
and modification of the fluctuation-dissipation relation. T
aging behavior, which has been seen many years ago alr
in some polymeric glasses,35 can be studied in details in spi
glasses.36 These studies, initiated by the works of,37,29 have
led to some well-defined generalization of the basic equi
rium properties such as time translation invariance a
fluctuation-dissipation theorem~FDT!.30,38,39 This generali-
zation is not limited to the narrow scope of some spec
mean field spin glasses, but seems to provide a genera
scription of glassy dynamics in many systems, includi
structural glasses. The modification of the fluctuatio
dissipation relation can be measured directly, although
experiments are not simple. On the other hand, numer
simulations for a binary mixture of soft spheres2 or Lennard-
Jones particles4 have found exactly the nontrivial modifica
tion which is predicted by the general scenario, providi
therefore a confirmation of its validity at least on their~lim-
ited! time scales.

III. A STATIC ORDER PARAMETER FOR THE GLASS
PHASE

In this section, we wish to explain the general strate
for describing and computing properties of an amorpho
solid state. We are particularly interested in systems w
many metastable states, having a nonzero configurationa
tropy. We shall explain the general strategy trying to ke
away as much as possible from any specific model, the m
precise formulation for our problem will be given in the ne
section. Let us consider a system ofN particles, interacting
by a two-body potential with a Hamiltonian

H5 (
1< i< j <N

v~xi2xj !, ~7!

where the particles move in a volumeV of a d-dimensional
space, andv is an arbitrary short range potential with a sho
range repulsion, like a 1/r 12 potential or a Lennard-Jone
one. We shall take the thermodynamic limitN, V→` at
fixed densityr5N/V. For simplicity, we do not conside
here the description of mixtures of different types of pa
ticles. The generalization to mixtures is necessary if o
wants to compare more precisely to simulations, which
performed on mixtures in order to avoid crystallization. Th
generalization, together with a detailed comparison, will
presented in a forthcoming paper.40 Some general back
ground is provided by the review paper.36

A. Time persistent correlations

Before going to a purely static description of the ord
parameter, let us first discuss a dynamical one. At an ato
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level one often tends to associate the glass transition with
divergence of the time scale on which a labeled particle
get out of its trap. While this is an intuitive picture, it is n
possible to translate it into a good definition of the so
phase: because of the excitation and movements of vaca
and other defects, this individual trapping time scale is
ways finite, although it will increase exponentially when t
temperature gets small. In order to get a proper definition
the solid, it has been proposed41,42 to use a generalization o
the Edwards Anderson order parameter of the type:

QEA~p!5 lim
t→`

lim
N→`

1

N (
jk

^eip•(xj (0)2xk(t))&, ~8!

where p is an arbitrary nonzero wave vector, the order
magnitude of which is one over the typical interparticle d
tance. When the system is in the liquid phase, the ab
order parameter is zero and when it is in the glass phase
order parameter is nonzero~even in the presence of sing
particle diffusion!.

This definition would hold for the equilibrium dynamics
i.e., assuming that the system is in equilibrium at timet
50. As we know the glass never reaches equilibrium a
therefore it ages: correlations are not stationary in time. T
proper generalization of the previous correlation taking i
account the aging effect takes the slightly more complica
form ~where the order of limits is crucial!:

QEA~p!5 lim
t→`

lim
tw→`

lim
N→`

1

N (
jk

^eip•(xj (tw)2xk(tw1t))&. ~9!

This gives a sensible dynamical definition of the glass pha

B. Correlations between two copies

We would like a purely static description of the sol
phase in the framework of equilibrium statistical mechani
in a case where there are no Bragg peaks. As soon a
have a solid phase the translational symmetry is broken
the system can be in many states. For crystalline order, t
many states just differ from each other by rotations or tra
lations which can be easily taken care of by appropri
boundary terms. In the glass case, in order to choose a s
one should first know the average position of each atom
the solid, which requires an infinite amount of informatio
Had we known this information, we could have added to
Hamiltonian an infinitesimal but extensive pinning fie
which attracts each particle to its equilibrium position, sen
ing N to infinity first, before taking the limit of zero pinning
field. This is the usual way of identifying the phase tran
tion.

In order to get around the problem of the description
the amorphous solid phase, a simple method has been d
oped in the spin glass context. Pictorially, one could say
although we do not know the conjugate field, the syst
itself knows it. The idea, borrowed from spin gla
theory,43,44 is then to consider two copies of the system, w
an infinitesimal extensive attraction. One then identifies
transition temperature from the fact that the two replicas
main close to each other in the limit of vanishing coupli
~having sentN to infinity first!.
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In the case of glasses, we can thus consider two iden
systems of particles,$xj% and$yj%, with a total energy func-
tion:

E5 (
1< i< j <N

@v~xi2xj !1v~yi2yj !#1e(
i , j

w~xi2yj !,

~10!

where we have introduced a small attractive potentialw(r )
between the two systems. The precise shape ofw is irrel-
evant, insofar as we shall be interested in the limite→0, but
its range should be of order or smaller than the typical int
particle distance. The order parameter is then the correla
function between the two systems:

gxy~r !5 lim
e→0

lim
N→`

1

rN (
i j

^d~xi2yj2r !&. ~11!

In the liquid phase, this correlation function is identical
equal to one, while it has a nontrivial structure in the gla
phase, reminiscent of the pair correlation of a dense liqu
but with an extra peak aroundr .0. Let us notice that we
expect a discontinuous jump of this order parameter at
transition, in spite of its being second order in the thermo
namic sense. The existence of a nontrivial order paramet
associated with the spontaneous breaking of a symmetry:
e50, with periodic boundary conditions, the system is sy
metric under a global translation of thex particles with re-
spect to they particles. This symmetry is spontaneously br
ken in the low temperature phase, where the particles of e
subsystem tend to sit in front of each other. One co
equally use the Fourier transform of this crosscorrelati
which then gives back, but in an equilibrium framework, t
Edwards Anderson order parameter defined in Eq.~9!.

C. Thermodynamics below TK : replicas

The previous method is a reasonable definition of
equilibrium order parameter which can be used in simu
tions or in analytic studies in order to identify the pha
transition arriving from the liquid phase. However, this tec
nique can be improved in order to study quantitatively t
glass phase itself.

Let us assume that in the glass phase there exists a
zero configurational entropy, as introduced above. Clea
the knowledge of this configurational entropy as a funct
of free energy and temperature,Sc( f ,T), will allow us to
reconstruct all the interesting thermodynamic properties
the system. It has been realized by Monasson16 that the con-
figurational entropy can be reconstructed from a study of
arbitrary number,m, of copies of the system, when they a
constrained to be in the same state. As we will need to a
lytically continue the results inm, we shall call the copies
‘‘replicas.’’ An alternative and related method is to introdu
a real coupling of the system to another system which
thermalized;17 this has been used recently in order to stu
the glass phase.5,45 The formulation which we present here
slightly different from, but equivalent to, that of Ref. 16.

The basic idea is extremely simple. Instead of two cop
of the system, let us considerm copies which are constraine
to stay in the same minimum. We shall discuss below h
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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one can achieve this constraint, but let us first discuss
physics of this constrained system. Its partition function

Zm5E
f m

f M
d f e2N[mb f 2Sc( f ,T)] . ~12!

The dependence on the numberm of replicas of the total free
energy,

F~m,T!52
1

bN
logZm'min

f
@m f2TSc~ f ,T!#, ~13!

allows to compute the configurational entropySc( f ,T) as a
function of the free energy, using:

]F~m,T!

]m
5 f ,

~14!m2

T

]f~m,T!

]m
5Sc ,

wheref(m,T) is the free energy per particle:

f~m,T!5
F~m,T!

m
. ~15!

If the glass transition is due to the entropy crisis d
scribed in the previous section~and this is our main hypoth
esis!, then the crucial quantity is the value of the slopes0(T)
of the configurational entropy at the lowest free energy:

s0~T![
]Sc

] f
@ f 0~T!#. ~16!

The usual glass transition is determined byTKs0(TK)51.
For the replicated and constrained system, the phase tr
tion temperatureT(m) depends on the numberm of replicas
and is determined by~see Fig. 1!:

T(m)s0~T(m)!5m. ~17!

It is very natural to assume thats0(T) is a smooth function
of temperature, going to a constant at zero temperature~we
shall check this hypothesis self-consistently later!. Then we
see that, whenm is continued analytically to real values
smaller than unity, one can haveT(m),TK . The replicated
and constrained system can thus be in the liquid phase
temperaturessmaller than the glass transition temperatu
TK5T(1): it is then made up of molecules, each of whi
contains one atom of each replica, but these molecules a
a liquid state. The basic reason for this crucial fact is that
m,1, the effective interaction potential~assuming for sim-
plicity molecules of very small radius! is decreased from
v(r ) to mv(r ), thus displacing the glass transition to low
temperatures.

We are interested in the free energy in the glass ph
therefore in the regionm51 andT,TK . This free energy
cannot be computed from that of the liquid withm51, T
.TK because of the phase transition atTK . However, we
shall now show that one can deduce it from the free ene
of the molecular fluid atm,1. This molecular fluid withm
,1 has a transition to a glass state at the temperaturT
5T(m),TK . Inside the glass phase, thus forT,T(m), the
free energy of the replicated and constrained system is g
by the condition
Downloaded 06 Mar 2009 to 129.175.97.14. Redistribution subject to AIP
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Sc~ f ,T!50 ~18!

and it is independenton m.
Let us now look at the phase diagram at a fixed tempe

ture T,TK , varying m ~see Fig. 3!. The free energy per
particle f(m,T) of the molecular liquid is an increasin
function of m at small m, which reaches a maximum at
point m* ,1 where the glass transition takes place@obvi-
ously m* is the solution of:Ts0(T)5m* #. As the free en-
ergy in the glass phase ism independent, the liquid free
energy at the transitionf(m* ,T) ~which is equal to the glass
free energy at the transition! is equal, forT,TK , to the free
energyf(m51,T) of the glass at the temperatureT. We
have thus shown that the knowledge of the free energy of
molecular liquid,f(m,T), allows to compute the free energ
of the glass.

These basic observations are at the heart of our stra
for computing properties of the glass phase. We shall w
down more explicit formulas in our case below. We wou
like first to make three comments on this approach:

• For T,TK andm.m* , the free energyf(m) is con-
stant andlarger than the analytic continuation of the fre
energy f(m) of the molecular liquid. If one would have
followed this molecular liquid in the regionm.m* , one
would have found that]f/]m,0, predicting a negative con
figurational entropy. Instead, the glass transition occurs
the configurational entropy sticks to zero in the whole gla
phase. The fact that the free energy in the glass phas
larger than the analytic continuation from the high tempe
ture phase explains why the specific heat has a discontin
downward when we decrease the temperature. This is
variance with what happens generally in other transitions~at

FIG. 3. Sketch of the typical phase diagram in the temperature-m plane, for
a system withm weakly coupled replicas. In the whole high temperatu
region above the full line, the system is in a liquid phase. There are
liquid phases, above the horizontal lineT5TK the various replicas are no
correlated in the limit of the couplinge going to zero. On the contrary, the
liquid state atm,1, in the region between the full line and the dashed lin
is a molecular liquid where the various replicas form molecular bou
states. The low temperature region below the full line~characterized by
m5m* (T)! is the glass phase. In this glass phase, for a given tempera
the free energy per replica ism independent. Therefore, one can deduce
free energy of the glass~with m51 andT,TK! from the knowledge of the
free energy in the molecular liquid.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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least in the mean field approximation! where the free energy
in the low temperature phase issmaller than the analytic
continuation from the high temperature phase and the
cific heat has a discontinuityupwardwhen we decrease th
temperature.

• In practice, in order to try to constrain the systems
be in the same state, one introduces some small attra
coupling, of ordere, between the replicas. It is thus impo
tant to understand when this coupling leads to a molec
liquid. The phase diagram shown in Fig. 3 can be conj
tured from the following elementary study of the free ener
confirmed by exact computations of mean field disconti
ous spin glasses.25,17,5,27 There area priori four possible
cases. If them replicas are in the same state, the free ene
is F5minf@mf2TSc(f,T)#2m(m21)e. If they are in different
states, the free energy isF5m minf@f2TSc(f,T)#. On top of
this, the free energy minimum can either stick tof 0 ~glass
phase! or be at a valuef larger thanf 0 ~liquid!. One just
needs to find out which situation actually minimizes the fr
energy, for given values ofm and T. The solution is dis-
played in Fig. 3, showing that there is an intermediate m
lecular liquid phase atm,1.

• The ‘‘replicas’’ which we introduce here play a slightl
different role compared to the ones used in disordered
tems: there is no quenched disorder here, and no nee
average a logarithm of the partition function. Replicas
introduced to handle the problem of the absence of desc
tion of the amorphous state. We do not know of any ot
procedure to characterize an amorphous solid state in
framework of equilibrium statistical mechanics. There is
‘‘zero replica’’ limit, but there is, as in disordered system
an analytic continuation in the number of replicas. We sh
see that this continuation looks rather innocuous.

IV. THE REPLICA APPROACH TO STRUCTURAL
GLASSES: GENERAL FORMALISM

In this section, we write down the formulas correspon
ing to the replica approach introduced in the previous s
tion. We keep here to the case of simple glass formers c
sisting ofN particles interacting by a pair potentialv(r ) in a
space of dimensiond.

A. The partition function

The usual partition function, used, e.g., in the liqu
phase, is

Z1[
1

N! E )
i 51

N

~ddxi !e
2bH. ~19!

We wish to study the transition to the glass phase through
onset of an off-diagonal correlation in replica space. We
m replicas and introduce the Hamiltonian of the replica
system:

Hm5 (
1< i , j <N

(
a51

m

v~xi
a2xj

a!

1 (
j 1 . . . j mP$1, . . . ,N%

W~xj 1

1 , . . . ,xj m

m !, ~20!
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whereW is an attractive interaction. The precise form ofW is
unimportant: it should be a short range attraction respec
the replica permutation symmetry, and its strength wh
will be sent to zero in the end. For instance, one could ta

W~r 1, . . . ,r m!5e (
1<a,b<m

w~r a2r b! ~21!

with w(r ) a smooth short range two-body attraction.
The partition function of the replicated system is

Zm[
1

N! m E )
i 51

N

)
a51

m

~ddxi
a!e2bHm. ~22!

The order parameter is the generalized cross correlat

r~r 1, . . . ,r m!5
1

N (
j 1 . . . j m

^d~xj 1

1 2r 1! . . . d~xj m

m 2r m!&,

~23!
where the average is the Boltzmann–Gibbs average with
measure proportional to exp(2bHm).

B. Molecular bound states

At low enough temperature, we expect that the partic
in the different replicas will stay close to each other due
the joint effect of the small inter-replica attraction and t
intra-replica interactions: when the system is in the gl
phase, the role of the attractive termW will be to insure that
all replicas fall into the same glass state, so that the parti
in different replicas stay at the same place, apart from so
thermal fluctuations: A vanishingly small interaction b
tween replicas will give rise to a strong correlation. As t
thermal fluctuations are relatively small throughout the so
phase~one can see this for instance from the Lindeman c
terion!, one can identify the molecules and relabel all t
particles in the various replicas in such a way that the p
ticle j in replicaa always stays close to particlej in replicab.
All the other relabelings are equivalent to this one, produc
a global factorN! m21 in the partition function.

We therefore need to study a system of molecules, e
of them consisting ofm atoms~one atom from each replica!.
It is natural to write the partition function in terms of th
variablesr i which describe the centers of masses of the m
ecules, and the relative coordinatesui

a , with xi
a5r i1ui

a and
(aui

a50:

Zm5
1

N! E )
i 51

N

~ddr i !)
i 51

N

)
a51

m

~ddui
a!)

i 51

N S mddS (
a

ui
aD D

3expS 2b (
i , j ,a

v~r i2r j1ui
a2uj

a!

2b(
i

W~ui
1 , . . . ,ui

m! D . ~24!

V. THE SMALL CAGE EXPANSION

In order to transform these ideas into a tool for doi
explicit computations of the thermodynamic properties o
glass, we have to use an explicit method for computing
free energy as function of the temperature andm. As is usu-
ally the case, in the liquid phase exact analytic computati
are not possible and we have to do some approximations
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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this section, we shall use the fact that the thermal fluctuati
of the particles in the glass are small at low enough temp
ture: the size of the ‘‘cage’’ seen by each particle is theref
small, allowing for a systematic expansion. What we will
describing here are the thermal fluctuations around the m
mum of the potential of each particle, in the spirit of th
Einstein model for vibrations of a crystal.

A. Legendre transform

We start from the replicated partition functionZm de-
scribed in molecular coordinates in~24!. Assuming that the
relative coordinatesui

a are small, we can expandW to lead-
ing order and write:

Zm5
1

N! E )
i 51

N

~ddr i !)
i 51

N

)
a51

m

~ddui
a!)

i 51

N S mddS (
a

ui
aD D

3expS 2b (
i , j ,a

v~r i2r j1ui
a2uj

a!

2
1

4a (
i

(
a,b

~ui
a2ui

b!2D . ~25!

In the end we are interested in the limit (1/a)→0. We would
like first to define the sizeA of the molecular bound state
which is also a measure of the size of the cage seen by
atom in the glass, by

] logZm

]~1/a!
[

m~12m!

2
dNA52

1

4 (
i

(
a,b

^~ui
a2ui

b!2& ~26!

~d is the dimension,N is the number of particles!. We Leg-
endre transform the free energyf(m,a)52(T/m)logZm,
introducing the thermodynamic potential per partic
c(m,A):

c~m,A!5f~m,a!1Td
~12m!

2

A

a
. ~27!

What we want to see is whether there exists a minimum oc
at a finite value ofA.

At low temperatures, this minimum should be at smallA,
and so we shall seek an expansion ofc in powers ofA. It
turns out that this can be found by an expansion off in
powers ofa, used as an intermediate bookkeeping in orde
generate the low temperature expansion. This may l
confusing since we are eventually going to senda to
`. However, this method is nothing but a usual low tempe
ture expansion in the presence of an infinitesimal break
field. For instance, if one wants to compute the low tem
erature expansion of the magnetization in ad-dimensional
Ising model in an infinitesimal positive magnetic fieldh, the
main point is that the magnetization is close to one. One
organize the expansion by studying first the case of a la
magnetic field, performing the expansion in powers
exp(22h), and in the end lettingh→0. A little thought
shows that the intermediate—largeh—expansion is just a
bookkeeping device to keep the leading terms in the
temperature expansion. What we do here is exactly sim
the role ofh being played by 1/a.
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B. Zeroth-order term

We use the equivalent form:

Zm~a!5
1

N!
E )

i 51

N

)
a51

m

~ddui
a!)

i
FddXiS 2pa

m2 D 2d/2G
3expS 2b (

i , j ,a
v~xi

a2xj
a!2

m

2a
(
i ,a

~xi
a2Xi !

2D .

~28!

For a→0, the identity

expS 2
m

2a
~xi

a2Xi !
2D.S 2pa

m D d/2

dd~xi
a2Xi ! ~29!

gives

Zm
0 ~a!5S 2pa

m D dNm/2S 2pa

m2 D 2dN/2 1

N! E )
i

dXi

3expS 2bm(
i , j

v~Xi2Xj ! D . ~30!

In this expression, we recognize the integral over theXi ’s as
the partition functionZliq(T* ) of the liquid at the effective
temperatureT* , defined by

T* [T/m. ~31!

Therefore the free energy, at this leading order, can be w
ten as

bf0~m,a!5
d~12m!

2m
log

2pa

m
2

d

2m
log~m!

2
1

mN
logZliq~T* !. ~32!

C. First-order term

In order to expand to next order, we start from the re
resentation~25! and expand the interaction term to quadra
order in the relative coordinates:

Zm5E ) ddr id
dui

a)
i

S mddS (
a

ui
aD D

3expS 2bm(
i , j

v~r i2r j ! D
3expS 2

b

2 (
i , j

(
amn

~ui
a2uj

a!m~ui
a2uj

a!n

3]m]n v~r i2r j !2
1

4a (
a,b

~ui
a2ui

b!2D .

~The indicesm and n, running from 1 tod, denote space
directions.! Notice that in order to carry this step, we need
assume that the interaction potentialv(r ) is smooth enough,
excluding hard cores. To expand at smalla we need the
properties of the set ofm random variablesua living on one
site with measure P(u)}d((aua)exp@2(1/4a)(ab(u

a
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2ub)2#. It turns out that these are gaussian random varia
with a first moment which vanishes and a second mom
which is equal to

^um
a un

b&05S dab2
1

mD a

m
dmn . ~33!

Expanding~33! to first order ina, we have

logZm5 logZm
0 2

b

2 (
i , j

(
amn

^~ui
a2uj

a!m

3~ui
a2uj

a!n&0^]m]nv~r i2r j !&* , ~34!

where the averagê.&0 is that for theu variables with the
Gaussian measure~33!, and the averagê.&* is over the cen-
ter of mass positionsr i , which are those of a liquid phas
thermalized at the temperatureT* 5T/m.

The free energy to first order is equal to

bf~m,a!5
d~m21!

2m
log

1

a
2abC1

d~12m!

2m
log

2p

m

2
d

2m
logm2

1

mN
logZliq~T* !, ~35!

where the constantC is proportional to the expectation valu
of the Laplacian of the potential, in the liquid phase at t
temperatureT* :

C[
1

2

12m

m2 (
j (Þ i )

^Dv~zi2zj !&* . ~36!

Differentiation with respect to 1/a gives the size of the cage

b
]f

]~1/a!
52

~12m!

2m
da1a2bC52

~12m!

2
dA. ~37!

Expanding this equation in perturbation theory inA, we have

a5mA2
2bm3C

d~m21!
A2. ~38!

The Legendre transform is then easily expanded to first o
in A:

bc~m,A!5bf~m,a!1d
~12m!

2

A

a

5
d~12m!

2m
log~2pA!2bmAC1

d~12m!

2m

2
d

2m
logm2

1

mN
logZliq~T* !. ~39!

This very simple expression gives the free energy a
function of the number of replicas,m, and the cage sizeA.
We need to study it atm<1, where we should maximize i
with respect toA andm. The fact that we seek a maximum
whenm,1 instead of the usual procedure of minimizing t
free energy is a well established fact of the replica meth
appearing as soon as the number of replicas is less than21

As a function ofA, the thermodynamic potentialc has a
maximum at:
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A5Amax[
d~12m!

2bm2

1

C
5

d

b

1

*ddrg* ~r !Dv~r !
, ~40!

whereg* is the pair correlation of the liquid at the temper
ture T* . A study of the potentialc(m,Amax), which equals
f(m), as a function ofm then allows to find all the thermo
dynamic properties which we seek, using the formulas of
previous section. This step and the results will be explain
below in Sec. VII, where we shall also compare the results
those of other approximations.

D. Higher order

The systematic expansion of the thermodynamic pot
tial c in powers ofA can be carried out easily to highe
orders. However, the result involves some more deta
properties of the liquid at the effective temperatureT* . For
instance, at second order one needs to know not only the
energy and pair correlation of the liquid at temperatureT* ,
but also the three points correlation. It is certainly interest
to try to push this expansion further, taking the informati
on the liquid at temperatureT* from some numerical simu
lations. In this paper, we have decided to stay within so
relatively simple schemes which require only the knowled
of the pair-correlationg* (r ). Therefore, we shall not pursu
this higher order expansion here, leaving it for future wo

E. Harmonic resummation

One can obtain a partial resummation of the small ca
expansion described above by integrating exactly over
relative vibration modes of the molecules. We shall use s
a procedure here, which is a kind of harmonic expansion
the solid phase.

We work directly with 1/a50 and start from the repli-
cated partition function~33!, within the quadratic expansion
of the interaction potentialv in the relative coordinatesui

a .
~Clearly, it is assumed that the 1/a→01 limit has been
taken, and that its effect is to build up molecular bou
states.! The exact integration over the Gaussian relative va
ables gives.

Zm5
mNd/2A2pNd(m21)

N! E )
i 51

N

ddr i

3expS 2bm(
i , j

v~r i2r j !2
m21

2
Tr log~bM ! D ,

~41!

where the matrixM, of dimensionNd3Nd, is given by

M ( im)( j n)5d i j (
k

vmn~r i2r k!2vmn~r i2r j ! ~42!

andvmn(r )5]2v/]r m]r n . We have thus found an effectiv
Hamiltonian for the centers of massesr i of the molecules,
which basically looks like the original problem at the effe
tive temperatureT* 5T/m, complicated by the contribution
of vibration modes which give the ‘‘trace log’’ term. W
expect that this should be a rather good approximation
the glass phase. Unfortunately, even within this approxim
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tion, we have not been able to compute the partition funct
exactly. The density of eigenstates of the matrixM is a rather
complicated object and we have developed a simple appr
mation scheme in order to estimate it.

We thus proceed by using a ‘‘quenched approximation
i.e., neglecting the feedback of vibration modes onto the c
ters of masses. This approximation becomes exact clos
the Kauzman temperature wherem→1. The free energy is
then

bf~m,T!52
d

2m
log~m!2

d~m21!

2m
log~2p!

2
1

mN
logZ~T* !1

m21

2m
^Tr log~bM !&* ~43!

which involves again the free energy and correlations of
liquid at the temperatureT* . Computing the spectrum ofM
is an interesting problem of random matrix theory, in a sub
case where the matrix elements are correlated. Some ef
have been devoted to such computations in the liquid ph
where the eigenmodes are called instantaneous no
modes.46 It might be possible to extend these approache
our case. Here, we shall rather propose a simple resum
tion scheme which should be reasonable at high densi
low temperatures.

Considering first the diagonal elements ofM, we notice
that in this high density regime there are many neighbor
each point, and thus a good approximation is to neglect
fluctuations of these diagonal terms and substitute them
their average value. We thus write:

(
k

vmn~r i2r k!.dmn

1

d E ddrg* ~r !Dv~r ![r 0 . ~44!

Here and in what follows, we have not written explicitly th
density. We choose to work with density unity in order
simplify the formulas: this value can always be obtained
using an appropriate scale of length. In the approximat
~44!, the diagonal matrix elements are all equal and can
factorized, leading to:

^Tr log~bM !&* 5Nd log~br 0!

1 K Tr logFd i j dmn2
1

r 0
vmn~r i2r k!G L *

.

~45!

This form lends itself to a perturbative expansion in pow
of 1/r 0 . The computation of thepth order term in this ex-
pansion,

Tp[ ~21!p21
1

r 0
p K (

i 1 . . . i p
m1 . . . mp

vm1m2
~r i 1

2r i 2
! . . .

3vmp21mp
~r i p21

2r i p
!vmpm1

~r i p
2r i 1

!L ~46!

still involves thepth order correlation functions of the liqui
at T* . We have approximated this full correlation by intr
ducing a simple ‘‘chain’’ approximation involving only th
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pair correlation. This chain approximation consists in repla
ing, for p.2, the full correlation by a product of pair corre
lations. It selects those contributions which survive in th
high density limit; systematic corrections could probably b
computed in the framework of the approach of Ref. 47, w
leave this for future work. Within the chain approximation
Tp is approximated by

Tp 5
~21!p21

r 0
p (

m1 . . . mp

E dx1 . . . dxpg* ~x1 , . . . .,xp!

3@vm1m2
~x12x2! . . . vmp21mp

~xp21

2xp!vmpm1
~xp2x1!#

.
~21!p21

r 0
p (

m1 . . . mp

E dx1 . . . dxp@g* ~x1

2x2!vm1m2
~x12x2!# . . . @g* ~xp

2x1!vmpm1
~xp2x1!#. ~47!

In this last form, we need to compute a convolution whic
can be factorized through the introduction of the Fouri
transform of the pair correlation function. We thus introduc
the Fourier transformed functionsa andb which are defined
from the pair correlationg* (r ) by:

E ddrg* ~r !vmn~r !eikr

[dmna~k!1S kmkn

k2 2
1

d
dmnDb~k!. ~48!

In terms of these Fourier transforms, thepth order term in
the 1/r 0 expansion is simply

Tp5
~21!p21

r 0
p F E ddk

~2p!3 S a~k!1
d21

d
b~k! D p

1~d21!E ddk

~2p!3 S a~k!2
1

d
b~k! D pG , ~49!

and the summation of the series overp is easily done, so that
the free energy per particle within the chain approximatio
of the harmonic resummation is

bf~m,T!52
d

2m
log~m!2

d~m21!

2m
log~2p!

2
1

mN
logZ~T* !1

d~m21!

2m
log~br 0!

1
~m21!

2m E ddk

~2p!3
F L3

S a~k!1
d21

d
b~k!

r 0

D
1~d21!L3

S a~k!2
1

d
b~k!

r 0

D G
2

~m21!

4m E ddrg~r !(
mn

vmn~r !2

r 0
2 , ~50!

where the functionL3 is defined as

L3~x!5 log~12x!1x1x2/2. ~51!
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We can thus compute the replicated free energyFm only
from the knowledge of the free energy and the pair corre
tion of the liquid at the effective temperatureT* . The results
will be discussed in Sec. VII.

VI. A SYSTEMATIC APPROACH: MOLECULAR HNC
CLOSURE

A. Density functional

As we have seen before, one can choose as an o
parameter the generalized inter-replica correlation, dedu
from the original partition function by the functional deriva
tive:

r~r 1, . . . ,r m!52
1

b

d logZm

dW~r 1, . . . ,r m!
. ~52!

In order to study the free energy at fixed order para
eter, one can perform the functional Legendre transform

c@r#52
T

m
logZm@f#

2
1

m E dr1 . . . drmr~r 1, . . . ,r m!W~r 1, . . . ,r m!

~53!

and the aim is to optimize this new function with respect
r.

In the ideal case where there are no interactions,
thermodynamic potential is

c id@r#5
T

m E dr1 . . . drmr~r 1, . . . ,r m!log
r~r 1, . . . ,r m!

e
.

~54!

We need to add to this piece the part which comes from
interactions. This is nontrivial; in the next section, we sh
use the HNC approximation for this function.

B. Molecular HNC equations

The free energy in the HNC approximation is derived
the Appendix A. It is a functional of the molecular densi
r(x) and the two point correlationg(x,y)[11h(x,y). Here
and in the following, the lettersx, y andz without any index
denote md-dimensional vectors~e.g., x5x1, . . . ,xm!. The
molecular density is our order parameter. The result forc is

bc5
1

2m E dxdyr~x!r~y!@g~x,y!logg~x,y!2g~x,y!

111bv~x,y!g~x,y!#2
1

2m
TrS log~11hr!2hr

1
1

2
hrhr D1

1

m E dxr~x!log
r~x!

e
, ~55!

where the potential isv(x,y)5(av(xa2ya). In the trace
term, all products are convolutions. For instance, the low
order term in the smallr expansion of the trace is
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1

3 E dmdxdmdydmdzh~x,y!r~y!h~y,z!r~z!h~z,x!r~x!.

~56!

We would like to optimize the thermodynamic potenti
c with respect to the molecular densityr(x) and the two
point functiong(x,y). We shall work at low temperature
for which r should be nearly gaussian. We thus choose
Ansatz forr of the type~always with a choice of averag
density equal to one!:

r~x!5E ddX)
a51

m S exp@2~xa2X!2/~2A!#

A2pAd D
5S 2pA

m D d/2

~2pA!2md/2 expS 2
1

4Am(
ab

~xa2xb!2D ,

~57!

where the molecular density is parametrized by the sin
parameterA.

The ideal gas contribution~last term in~55! gives

E )
a

ddxar~x!log
r~x!

e

5NS d

2
~12m!log~2pA!1

d

2
~12m!2

d

2
logm21D .

~58!

The interaction term is more complicated, and we ha
only succeeded in optimizing it in the small cage regime

C. Second-order small cage expansion

Here, we shall solve in general forg in the limit of small
cage radiusA, expanding in powers ofA.

As usual we go to molecular coordinates, introduci
xa5X1ua and ya5Y1va, with the constraints:(aua

5(ava50. The molecular density~57! depends only on the
relative coordinates:

r~u![r0mddS (
a

uaD S 2pA

m D d/2

~2pA!2dm/2

3expS 2
1

4Am(
ab

~ua2ub!2D . ~59!

Theu’s are thus gaussian distributed with a second mom

^ua
mub

n&5AS dab2
1

mD dmn . ~60!
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We shall expand the two point correlation in powers
the relative coordinates, using the notations:

g~$X1ua%,$Y1va%!

5G~X2Y!1(
mn

Smn~X2Y!S (
a

@um
a un

a1vm
a vn

a#

22KmnD 1(
mn

Tmn~X2Y!S (
a

@~um
a 2vm

a !~un
a2vn

a!#

22KmnD , ~61!

where the constantKmn is chosen in such a way that, for an
A:

E dur~u!E dvr~v !g~X1u1, . . . ,X1um;

Y1v1, . . . ,Y1vm)5G~X2Y!. ~62!

The constant turns out to be

Kmn5A~m21!dmn . ~63!

It is not difficult to see that, thanks to the constraint~62!,
the knowledge of the functionsSandT is enough to compute
the free energy to orderA2. This computation is done in th
Appendix B. Here we just give the result. We write the fr
energy to second order in the form:

bc5bF01bF081bF11bF2 . ~64!

The zeroth-order terms are

bF05
d

2

12m

m
log~2pA!1

~d22!

2

12m

m
2

d

2m
logm, ~65!

bF085
1

2m E ddk

~2p!3 @2 log~11H~k!!1H~k!

2H~k!2/2#1
1

2m E ddr @G~r !logG~r !2G~r !

111bmv~r !G~r !#, ~66!

whereH(r )[G(r )21, andH(k) is the Fourier transform o
H(r ). It is clear from~66! that the zeroth-order correlatio
function G(r ) is exactly the pair correlation of the liquid a
the effective temperatureT* 5T/m in the HNC approxima-
tion, we thus recover our previous results.

The first-order correction is

bF15bA
m21

2m E ddrG~r !(
m

vmm~r !. ~67!

At this order, we can easily optimize the free energy w
respect toG(r ), and with respect to the cage sizeA. We get
back the same result forA and the free energy as we had
the direct first order small cage expansion~40!.

The advantage of this molecular HNC approach is t
we can compute the second-order term without needing
solve for three point correlations in the liquid. The secon
order correction is
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f

t
to
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bF25A2
m21

m E ddr
1

G~r ! (mn
@Smn~r !212Smn~r !Tmn~r !

12Tmn~r !2#1A2
m21

m E ddr

3(
mn

~Smn~r !12Tmn~r !!bvmn~r !1A2
~m21!2

4m2

3E ddrG~r !(
mn

bvmmnn~r !2A2
m21

m

3E ddk

~2p!3 (
mn

~Smn~k!1Tmn~k!!2
H~k!

11H~k!
. ~68!

The stationarity conditions onSandT are easily solved. One
finds

Tmn52
1

2
G~r !bvmn~r !, ~69!

while S1T is the solution of the linear equation:

Smn1Tmn

G
1

1

2
bvmn5E ddk

~2p!3 eikr@Smn~k!

1Tmn~k!#
H~k!

11H~k!
. ~70!

The equation forG is also easily found. ExpandingG5G0

1AG1 , one sees thatG0 is the pair correlationg* of the
liquid at temperatureT/m, while the correctionG1 is the
solution of the linear equation:

G1~r !

G0~r !
1b~m21!(

m
vmm~r !

5E ddk

~2p!3 eikr
H0~k!~21H0~k!!

~11H0~k!!2 G1~k!. ~71!

The solution of these equations and the physical con
quences are discussed in the next section.

VII. RESULTS

In this section, we indicate how to obtain the thermod
namic properties of the glass within each of the previo
approximation scheme, and we give the results.

A. Methodology

We have developed in this paper three approximat
schemes.

The small cage expansion has been carried out dire
to first order in Sec. V C, and agrees with the first ord
expansion within the molecular HNC approach. Within th
first-order approximation, the cage size is given explicitly
~40! and the corresponding free energyf(m) is given in
~39!. We need to study them dependance off. Clearly the
only ingredients we need are the free energy and pair co
lations of the liquid at the temperatureT* 5T/m, which is a
temperature which lies in the range of the glass transit
temperature, as we shall see. These properties of the li
could be obtained by various means; here we have used
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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HNC closure for the pair correlation and the correspond
free energy in order to get them.~Obviously one could try to
use better schemes of approximation for the liquid, depe
ing on the form ofv(r ), in order to improve the results; ou
point here is not to try to get the most precise results, bu
show the feasibility of a quantitative computation of gla
properties using the simplest approximations!. Given the
temperatureT, the procedure is the following: we vary th
value ofm, and for each value, we can compute the cage
A and the free energyf(m). As expected on general ground
~see Sec. III!, we find a free energy which increases withm
until it reaches the critical valuem* (T) ~such that~17!
holds!, which is the phase transition boundary. This critic
value is defined by]f/]m50. The configurational entropy
is given by the solution of the two general equations~14!,
and the free energy of the glass is nothing butf(m* ,T). We
get the internal energy and specific heat by differentiating
free energy. The critical~Kauzman! temperatureTK is de-
fined bym* (TK)51.

The second approximation scheme is the harmonic
summation method. Again we have an explicit form~50! for
the free energy per particlef(m) only from the knowledge
of the free energy and the pair correlation of the liquid atT* .
Having thism dependance the procedure to get the therm
dynamic results is entirely the same as that of the first or
result.

The third approximation scheme is obtained by the
pansion of the molecular HNC free energy to second orde
the cage size, as described in Sec. VI. For given values o
temperatureT and the number of replicasm, we first solve
the standard HNC equations giving the pair correlat
G(r )5g* (r ) at the temperatureT* 5T/m. Then we can
compute the functionsS, T and the correction to the correla
tion G1 by solving the set of linear equations~69!, ~70!, ~71!.
The free energy is then computed to second order as in~64!.

We use the results of the second-order term in the
pansion in a perturbative way which we shall now descri
One might be tempted to use the free energy compute
orderA2 without expanding the solution to orderA2. How-
ever, this procedure is not useful because the equations
cated at the orderA2 do not have a solution. One must do th
computation fully perturbatively in a consistent way, whi
we now explain. Let us define the various terms in this f
energy as

bc~A,m![g01Ag11A2g21g3 logA, ~72!

where theg’s are functions ofm that we can compute. We
suppose that theg2 term is small and write the valueAmax

which maximizes48 the free energy as

Amax52
g3

g1
22

g2g3
2

g1
3 ~73!

giving a free energy on this maximum approximately eq
to

c~Amax,m!5c1~m!1c2~m! ~74!

with
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c1~m!5g02g31g3 log~2g3 /g1!,
~75!

c2~m!5g2g3
2/g1

2,

where c2 is the correction term. This is a function ofm
which we maximize in order to find the critical valuem* .
Writing m* 5m11m2 , wherem1 is the critical value com-
puted to first order andm2 is the correction, these numbe
satisfy the equations:

05
]c1

]m
~m1!,

~76!

m252
]c2

]m
~m1!S ]2c1

]m2 ~m1! D 21

.

For consistency of this perturbative expansion, one sho
then compute the saddle point value ofA as

A52
g3~m1!

g1~m1!
22

g2~m1!g3~m1!2

g1~m1!3 2m2

]

]m1

g3~m1!

g1~m1!
~77!

and the free energy of the glass as

c5c1~m1!1c2~m1!. ~78!

Having the free energy as a function ofm we proceed as
before by maximizing it, following exactly the same steps
for the first-order computation.

B. Numerical procedure

We have studied the case of soft spheres in three dim
sions interacting through a potentialv(r )51/r 12. We work
for instance at unit density, since the only relevant param
is the usual combinationG5rT21/4.

For each of the three approximation schemes mentio
above, we need to compute the free energy and the
correlation of the liquid in a temperature range close to
glass transition. We have used the HNC approximation to
both g(r ) and the free energy. We have solved the HN
closure equations numerically. For spherically symme
functions in dimension three, we use the Fourier transfo
for the radial dependance, in the following form:

qh~q!52pE
0

`

dr sin~qr !rh~r !. ~79!

We discretize this formula introducing inr space a cut-
off R and a mesh sizea. In this way, we have a simple
formula for the inverse Fourier transform and we can a
use the fast Fourier transform algorithm. In most of the co
putations, we have takena51/32.5 andL5128* a'4. We
have checked that dividinga by 2 and multiplyingL by two
~thus going up to 512 points! does not alter the results. Th
solution of the equations can be found either by using
library minimization program, or a program which solve
nonlinear equations. We have found first the solution at l
enough density and then followed it by continuity whi
gradually increasing the density.

The second-order expansion of the molecular HN
theory requires some more work, because we need to c
pute the various tensorsSmn , Tmn , and the correction toG.
After decomposing the tensors in their various irreduci
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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components, using rotation invariance, these component
discretized on the same grid asg(r ) and the linear equation
are solved by a standard library routine.

C. Critical temperature and effective temperature

We plot in Fig. 4 the effective temperatureT* , equal to
T/m* , versus the temperatureT of the thermostat. The tran
sition temperature is given byT* 5T. This gives the ideal
glass transition temperature. Within the first-order exp
sion, we findTK..14; the harmonic resummation givesTK

..19 and the second order perturbation theory isTK..18.
We see that the two best methods, the second-order and
monic resummation, are in good agreement and give a c
cal value ofG aroundG.1.52. This value ofG is in good
agreement with the published values of the glass transitio
the soft sphere system, which range around 1.6.49

We also notice that the effective temperature stays r
tively constant when the actual temperature varies. Our
sults are not so far from a situation in which one would ha
T* .TK , independently from the value of the temperatureT,
which means thatm.T/TK . A nearly linear variation ofm
versusT is often found in discontinuous spin glasses, wh
it is characteristic of a free energy landscape which is tot
frozen in the whole low temperature phase.11 It is worth
noticing that such a relation has also been found for
temperature dependance of the fluctuation dissipation r
~although, as this ratio is a dynamical quantity, it rath
equalsT/TD , whereTD is the dynamical~mode-coupling!
transition temperature!.

D. Cage size

In replica space, the cage size characterizes the siz
the molecular bound state, in the approximation of quadr
fluctuations, as defined in~26!. Its physical meaning is easil
established: In the glass phase at low temperatures, one
approximate the movement of each atom as some vibrat

FIG. 4. Effective temperature of the molecular liquid at the transition,T*
5T/m* , vs the temperatureT, computed in an expansion to first orde
~dashed-dotted line! and second order~full line! in the cage sizeA, and in
the harmonic resummation~dashed line!.
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in a harmonic potential in the neighborhood of a local mi
mum of the energy. The typical square size of the displa
ment is given by

A5^~r i2^r i&!2& ~80!

which is the physical definition of the square size. The ca
size is plotted versus temperature in Fig. 5.

The cage size is nearly linear in temperature, as it wo
be in aT-independent quadratic confining potential. This i
dicates that the local confining potential has little depe
dance on the temperature in the whole low temperat
phase.

E. Free energy and specific heat

In Fig. 6, we plot the free energy versus the temperat
for each of our three approximations. The strong consiste
of the second-order small cage expansion and the harm
resummation are clearly seen. The data extrapolates at
temperature to a ground state energy of order 1.95. Thi
related to the typical energy of the amorphous packings

FIG. 5. ParameterA/T vs the temperature, computed in an expansion to fi
order~dashed-dotted line! and second order~full line! in the cage sizeA, and
in the harmonic resummation~dashed line!.

FIG. 6. Free energy vs the temperature, computed in an expansion to
order~dashed-dotted line! and second order~full line! in the cage sizeA, and
in the harmonic resummation~dashed line!.
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soft spheres. More precisely, if we consider all the am
phous packings of soft spheres at unit density, we can co
them through the zero temperature configurational entro
The lowest energy at which one can find an exponenti
large number of such packings is the ground state energ
the glass state which we find within our approximatio
equal to 1.95. This could be amenable to some numer
test.50–52 However, in order to do such a test, one must
member that we have not taken into account the existenc
a crystal: therefore, one must first remove all crystal l
solutions, i.e., solutions which correspond to a crystal w
some local defects. These solutions can be characterize
the presence of delta functions at the appropriate value
the momenta. This procedure of identifying crystal like s
lutions has been explicitly done numerically in Ref. 52. Ge
eralizing the present result to hard spheres would allow fo
computation of random close packing density, a not
which is often used in granular materials.53

In Fig. 7, we plot the internal energy of the glass vers
temperature, computed in each of our approximat
schemes. Also shown is the internal energy of the liquid. T
internal energy is continuous at the transition.

In Fig. 8, we plot the specific heat versus temperature
is basically constant and equal to 3/2. The fluctuations
numerical errors due to the extraction of the specific h
through the numerical second derivative of the free ene
A specific heatC53/2 is nothing but the Dulong–Petit law
~we have not included the kinetic energy of the particl
which would give an extra contribution of 3/2!. This result is
very welcome: in fact, if we had treated the crystal at t
same level of approximation as we considered here for
glass, we would get the Einstein model for which the spec
heat is also given by the Dulong–Petit law. Thus, we ha
found that the specific heat of the glass is equal to that of
crystal, which is a good approximation of the existing da
Notice that it was not obvious at alla priori that we would
be able to get such a result from our computations, since
are performing some computations purely in the liqu

FIG. 7. The internal energy vs the temperature, computed in an expansi
first order~dashed-dotted line! and second order~full line! in the cage size
A, and in the harmonic resummation~dashed line!. Also shown is the inter-
nal energy of the liquid~dotted line!.
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phase, with a liquid pair correlation, etc. The fact of findin
the Dulong–Petit law is an indication that our whole sche
of computation gives reasonable results for a solid phase
a later stage, we would like to go beyond the Dulong–P
law and get a better computation of the spectrum of s
vibration modes in order to get a Debye-like law. This is le
for future work.

F. Configurational entropy

In Fig. 9, we show the configurational entropy versus
free energy at various temperatures, including the zero t
perature case. We have included here for simplicity only
result from the harmonic resummation procedure.

We notice that the various curves corresponding to d
ferent temperatures are not far from being just shifted o
from another by adding a constant to the free energy. T
indicates that the main effect of temperature amounts to
additive constant in the energies of all amorphous packin
This would be the case if the states at finite temperat

toFIG. 8. Specific heat of the glass vs the temperature, computed in an
pansion to first order~dashed-dotted line! and second order~full line! in the
cage sizeA, and in the harmonic resummation~dashed line!. The dotted line
is the specific heat of the liquid.

FIG. 9. Configurational entropyS( f ) vs the free energy, computed withi
the harmonic resummation, at temperaturesT50.,0.05,.1 ~from left to
right!.
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could be deduced continuously from the zero tempera
amorphous packings, with an extra contribution to the f
energy coming from the vibrations, if the vibration spectru
is more or less state independent.

G. Dynamical transition

As we discussed in the introduction, at the mean fi
level there exists a dynamical transition at a temperatureTD

larger than the thermodynamic transition temperatureTK .
This phase is characterized by the dynamic statement th
system will remain forever in the same valley, and its fr
energy is greater than the equilibrium one because it mi
the contribution of the configurational entropy. It is thus e
dent that this dynamic phase is just a mean field conc
which should disappear when corrections, such as activ
processes, due to the short range nature of the potentia
taken into account. However, if the barriers are sufficien
high, metastable states have a very large lifetime and t
strongly affect the dynamics. It would be thus interesting
try to compute the ‘‘dynamic transition temperature’’
these systems.

In the framework of the harmonic resummation, o
finds that the approximation breaks down at small but po
tive e if the matrix of second derivatives has negative eig
values. From this point of view, the appearance of nega
eigenvalues signals the dynamic transition. Unfortunately
our chain approximation, all the eigenvalues are positive
all temperatures and no dynamic phase transition can
seen: the free energy is always well defined for smalle. This
negative result is due to the fact that the chain approxima
we use may be reasonable at low temperature but it is
tainly not good at high temperatures. This problem will d
appear if one uses a better method to compute the spect
giving reasonable results also at higher temperatures. On
other hand, in the framework of the small cage expans
the perturbative method assumes that there is always a b
state. Although this should not be true at high temperat
the breakdown of this assumption cannot be seen in a
turbative approach.

It is clear that a study of the dynamical phase transit
should be done using some different tools than the one
have developed here. This is not surprising: the dynam
phase transition is present at a temperature higher than
static one and the approximations which we have been u
are low temperature ones.

VIII. DISCUSSION AND PERSPECTIVES

Deducing the thermodynamic properties of the gla
from those of a liquid may look crazy. Of course, the ma
trick is that we use a molecular liquid, with a variable num
ber m of atoms per molecule, which will have a glass tra
sition at a temperature lower thanTK wheneverm,1. We
wish to underline again what is the basic hypothesis of
approach. We assume that there exists a thermodyna
glass transition, which is of the general type described in
‘‘basic scenario.’’ This assumption means that there exis
path in them, T space which connects the pointsm,1, T(m)

to the high temperature region without crossing any tran
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tion. If this is true ~and this is known to happen in man
models!, the situation is rather simple and corresponds
what is called in the literatureone step replica symmetr
breaking. This situation corresponds to the case in which
deep minima of the free energy are complete
uncorrelated.21 One could think of checking this hypothes
numerically by computing for small systems all the me
stable states at zero temperature, and studying the dist
tion of their energies. Let us mention for completeness t
there exist models in which the deep minima of the fr
energy are partially correlated~this is very probably the cas
of spin glasses.54!. In such a case, any path in them2T
space which connects the point (m,T(m)) to the high tem-
perature region crosses a phase transition, and one w
need to introduce a more complex construction in order
avoid this singularity.

The approach described in this paper opens the wa
the computation of the thermodynamic properties of glas
at all temperatures using the generalization of the stand
tools of liquid theory. Although it is not explicitly discusse
in this paper, this approach allows also the computation
the density correlation functiong(r ) in the glassy phase; we
plan to address this point in the next future.

It is clear that the results presented here just use
simplest possible nontrivial approximations. Neverthele
within these simple approximations, we have shown tha
reasonable value of the Kauzman temperature can be
rived, as well as several thermodynamic properties of
glass phase: the internal energy, free energy, configurati
entropy and specific heat, and the cage radius. Obviou
our study so far has been restricted to equilibrium propert
and the equilibrium situation is very difficult to reach expe
mentally. However, one can think of measuring each of
above properties in numerical simulations, where the jo
use of smart algorithms and small enough system can a
to thermalize. The extension of the present methods to bin
mixtures is a work that must be done in order to allow fo
more precise comparison with the results of numerical sim
lations. Some steps have already been done in
direction.40

This equilibrium study is to be considered as a first s
before dealing with the out of equilibrium dynamics. Besi
the dynamics in the low temperature phase, a very interes
and open problem is the computation of the time depend
correlation functions~and as a by-product the viscosity! in
the region aboveTK . However, a better understanding
activated processes in this framework is a crucial prereq
site.

Within the equilibrium framework, we have imple
mented so far our general strategy using rather crude m
ods. These should be improved, which means that one m
perform a more careful study of the molecular liquid. The
are many directions in which one could move:

• Improve the computation of the spectrum in the h
monic approximation. This harmonic approximation shou
be excellent and allow to study from first principles all th
low temperature anomalies which have been observed
glasses. Within this approximation one just needs to st
the liquid of the centers of masses of the molecules, wh
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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interact through the effective interaction described in~41!.
Of course the interaction term coming from the Tr log te
is not easy to deal with, but still this is a very well-define
problem of liquid theory for which precise approximatio
scheme should be developed.

• Use approximations different from HNC, which ma
work better in the liquid phase. Obviously this will depen
on the interaction potential, and a detailed study of sev
different types of potentials would be very interesting.

• Use numerical simulation in the liquid phase in order
get some higher order coefficients of theA expansion: these
are given by higher order correlation functions which cou
be measured in simulations.

• Introduce resummation techniques that are more e
cient than the harmonic one.

Some of the previous described techniques could als
used to understand better the properties of the dynam
phase transition.

To summarize, our approach transforms the problem
the thermodynamics of the glass phase into a problem
~complicated! liquid state. We hope that the sophisticat
methods developed in liquid state theory will be brought
bear on the study of glasses.
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APPENDIX A

For completeness, we give here a derivation of the H
free energy~55! for our molecular replicated system. On
could use the standard diagrammatic method,55 but here we
shall follow the ‘‘cavity’’ like method of Percus.56 We study
N molecules with coordinatesxi ,i P$1,..,N%. Eachxi stands
for the coordinates of all atoms in moleculei: xi5$xi

a%, a
P$1, . . . ,m%. The energy of the system is given by

E5(
i , j

V~xi ,xj !1(
i

u~xi !, ~A1!

where v is the intermolecular potential~in our case, we
would haveV(x,y)5(av(xa2ya) but we shall keep a gen
eralV in this Appendix!, and the external potentialu(r ) has
been introduced for future use.

We shall need the following definitions. The one mo
ecule density is

r~x!5(
i

K)
a

d~xi
a2xa!L , ~A2!

where the averagê.& is with respect to the Boltzmann mea
sure exp(2bE). The two molecules correlation is

r (2)~x,y!5(
iÞ j

K)
a

d~xi
a2xa!)

b
d~xi

b2xb!L
[r~x!g~x,y!r~y!, ~A3!
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where we have also defined the pair correlation funct
g(x,y), which goes to one at large~center of mass! distance.
The connected pair correlation is

h~x,y![g~x,y!21. ~A4!

Elementary functional differentiation gives

]r~x!

]@2bu~y!#
5r~x!d~x2y!1r~x!h~x,y!r~y!. ~A5!

One can also introduce the direct correlation functionc(x,y)
through:

]@2bu~x!#

]r~y!
5

1

r~x!
d~x2y!2c~x,y!. ~A6!

The direct correlation is thus related to the connected p
correlation through the Ornstein–Zernike equationc5(1
1hr)21h which reads more explicitly:

c~x,y!5h~x,y!1E dx1h~x,x1!r~x1!h~x1 ,y!

1E dx1dx2h~x,x1!r~x1!h~x1 ,x2!h~x2 ,y!1¯ .

~A7!

The idea of Percus is to compute the pair correlation
considering the one point density with a molecule fixed
one point. Let us consider a problem in which we have ad
one extra molecule, fixed at a pointz5$z1, . . . ,zm%. This
extra molecule creates an external potentialu(x)5V(x,z).
The one point density in the presence of this external po
tial, ru(x), is related to the densityr(x) and pair correlation
g(x,z) in the absence of an external potential through
conditional probability equation:

ru~x!5r (2)~x,z!/r~z!5r~x!g~x,z!. ~A8!

In order to try to build a successful approximation schem
let us introduce two quantitiesRu(x) and Su(x) which we
can calculate in presence of the external potential, or w
this potential is turned off (u50). If their variations are
smooth enough, one can approximate their variations by
first-order term:

Ru~x!.Ru50~x!1E dy
dR~x!

dS~y!u50
@Su~y!2Su50~y!#. ~A9!

The standard perturbation theory would be obtained by t
ing Ru(x)5ru(x) and Su(x)5u(x). However, the linear
truncation ~A9! can be better behaved with some bet
choices of the functionsR and S. The HNC closure corre-
sponds to taking:56

Ru~x!5 log~ru~x!ebu(x)!; Su~x!5ru~x!. ~A10!

Then, we have

dR~x!

dS~y!
~u50!5c~x,y! ~A11!

and the linear equation~A9! becomes

logg~x,z!1bV~x,z!5E dyc~x,y!r~y!h~y,z!. ~A12!

Together with the inversion relation~A7!, this defines a
closed set of equations for the one and two point molecu
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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densities which are the HNC closure. It is easy to show t
these equations express the stationarity of the free en
functionalc@r,g# defined in~55!, with respect to variations
of g.

The result for the free energy can be deduced if we
sume that:

• There exists a variational principle where the free e
ergy is a functional ofg andr.

• The potentialbV(x) enters in the free energy in such
way that the internal energy takes the exact fo
1/2*dydxr(x)r(y)g(x,y)V(x,y).

• The free energy functional atg51 and v50, which
depends only onr is given by the exact form
b

mE)
a

ddxar~x!log
r~x!

e
. ~A13!

These three conditions fix in a unique way the free
ergy functional and are satisfied in the previous approa
Indeed, the second condition implies that the free energc
can be written as

bc5b/2E dydxr~x!r~y!g~x,y!V~x,y!1x@g,r#, ~A14!

wherex does not depends explicitly onb. If we differentiate
the previous equation with respect tog, we find

b/2r~x!r~y!V~x,y!1
dc

dg~x,y!
. ~A15!

If we identify the previous equation with Eq.~55! @after mul-
tiplication by r(x)r(y)#, we find that the proposed free en
ergy @Eq. ~A12!# has the same derivative with respect tog of
the exact one. Now the only ambiguity that remains in
free energy is its value atg51 andv50, which is fixed from
the third condition.

APPENDIX B

Here, we carry out the small cage expansion of the m
lecular HNC equations to second order. We start from
HNC free energy~55!, we introduce the center of mass an
relative coordinates,xa5X1ua andya5Y1ua, and we ex-
pand in the cage sizeA, using the molecular density~59! and
the decomposition of the correlation function given in~61!.

We shall examine successively the various pieces
2mbc. The form of the simplest piece is deduced trivia
from the constraints~62!:

E dx dyr~x!r~y!@12g~x,y!#5E dX dY@12G~X,Y!#

~B1!

~we remind that herex and y stand for all the molecula
coordinates and are thereforemd-dimensional vectors, while
the center of mass coordinatesX andY ared-dimensional!.

We go next to the piece involving the potential:

b(
a
E dx dyr~x!r~y!v~xa2ya!g~x,y!. ~B2!

We expand the potential as
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(
a

v~xa2ya!5mv~X2Y!1
1

2 (
mn

vmn~X2Y!

3(
a

~um
a 2vm

a !~un
a2vn

a!1¯ . ~B3!

and expand the correlation according to~61!. Thanks to the
constraint~62!, the term inmv(X2Y) contributes exactly as

mE dXdYG~X2Y!v~X2Y! ~B4!

to all orders inu,v. The term invmn(X2Y) contributes a
piece of orderA which is

E dX dYr~u!dur~v !dv G~X2Y!

3(
mn

vmn~X2Y!(
a

~um
a 2vm

a !~un
a2vn

a! ~B5!

and a piece of orderA2 which is:

E dX dYr~u!dur~v !dv(
mn

vmn~X2Y!(
a

~um
a 2vm

a !

3~un
a2vn

a!FSmn~X2Y!S (
b

@um
b un

b1vm
b vn

b#22KmnD
1Tmn~X2Y!S (

b
@~um

b 2vm
b !~un

b2vn
b!#22KmnD G .

~B6!

The last piece of orderA2 comes from the fourth derivative
of v in ~B3!:

E dXdYr~u!dur~v !dvG~X2Y! (
mnrs

vmnrs~X2Y!

3(
a

~um
a 2vm

a !~un
a2vn

a!~ur
a2vr

a!~us
a2vs

a !. ~B7!

Notice that the use of~62! allows us to find the orderA2

expression without ever introducing the orderA2 term in the
expansion of the pair correlation. This will also be true f
the other contributions below. This strategy is crucial f
keeping the computation not too big. The various pieces
now easily computed using the fact thatu andv variables are
gaussian distributed with the second moment given in~60!.
We get:

b(
a
E dxdyr~x!r~y!v~xa2ya!g~x,y!

5VE dXG~X!S mv~X!1A~m21!(
m

vmm~X! D
1VA2~m21!E dX(

mn
S 2Smn~X!vmn~X!

14Tmn~X!vmn~X!1
m21

2m
vmmnn~X! D . ~B8!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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We now turn to the ‘‘g logg’’ term in the free energy 2mbc. Expanding as before, we get

E dx dyr~x!r~y!g~x,y!logg~x,y!

5E dX dYG~X2Y!logG~X2Y!1E dX dYr~u!dur~v !dv
1

2G~X2Y!

3 (
mnrs

FSmn~X2Y!S (
b

@um
b un

b1vm
b vn

b#22KmnD 1Tmn~X2Y!S (
b

@~um
b 2vm

b !~un
b2vn

b!#22KmnD G
3FSrs~X2Y!S (

b
@ur

bus
b1vr

bvs
b #22KrsD 1Trs~X2Y!S (

b
@~ur

b2vr
b!~us

b2vs
b !#22KrsD G ~B9!
l
nt

to
an-
which gives after performing the gaussianu andv integrals:

VE dXS G~X!logG~X!1
4A2~m21!

G~X!

3(
mn

F1

2
Smn~X!Smn~X!1Smn~X!Tmn~X!

1Tmn~X!Tmn~X!G . ~B10!

We now study the last piece of 2mbc, namely, the convo-
lution term

(
p53

`
~21!p

p E dx1 . . . dxpr~x1!h~x1 ,x2!r~x2!

3h~x2 ,x3! . . . r~xp!h~xp ,x1!. ~B11!

Here again eachxj is a md-dimensional vector including al
molecular coordinate, which we decompose into the ce
of massXj and the relative coordinatesuj

a . Therefore, each
pieceh(xj ,xj 11) in the above product is expanded as
n
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h~xj ,xj 11!5h~Xj2Xj 11!1(
mn

FSmn~Xj2Xj 11!

3S (
b

@uj ,m
b uj ,n

b 1uj 11,m
b uj 11,n

b #22KmnD
1Tmn~Xj2Xj 11!S (

b
@~uj ,m

b 2uj 11,m
b !

3~uj ,n
b 2uj 11,n

b !#22KmnD G . ~B12!

We notice again that higher order terms do not contribute
order A2. The second-order terms generated by the exp
sion ~B12! when it is inserted into~B11! are obtained by
picking up theh(Xj2Xj 11) contribution in all but two val-
ues of j. In order for the result not to vanish@because of
~62!#, we need that these two special values ofj be neigh-
bors. We thus get the following orderA2 contribution to the
convolution term:
(
p53

`

~21!pE dX1 . . . dXpr~u1!du1 . . . r~up!dup (
mnrs

FSmn~X12X2!S (
b

@u1,m
b u1,n

b 1u2,m
b u2,n

b #22KmnD
1Tmn~X12X2!S (

b
@~u1,m

b 2u2,m
b !~u1,n

b 2u2,n
b !#22KmnD GFSrs~X12X2!S (

b
@u1,r

b u1,s
b 1u2,r

b u2,s
b #22KrsD

1Trs~X12X2!S (
b

@~u1,r
b 2u2,r

b !~u1,s
b 2u2,s

b !#22KrsD Gh~X32X4! . . . h~Xp212Xp!h~Xp2X1!. ~B13!
ex-

-

ts
After performing the Gaussianu andv integrals, we find an
expression in terms of the Fourier transformed functio
h(k), Smn(k), andSmn(k):

2VA2~m21! (
p53

`

~21!p(
mn

E ddk

~2p!3 h~k!p22

3@Smn~k!1Tmn~k!#2 ~B14!

involving a simple geometric series.
s
Grouping together all the pieces of the free energyc

which we have considered, we obtain the second-order
pression of the free energy used in~64!–~68!.

1Recent reviews can be found in: C. A. Angell, Science267, 1924~1995!
and P. De Benedetti,Metastable Liquids~Princeton University Press, Prin
ceton, NJ, 1997!. An introduction to the theory is: J. Ja¨ckle, Rep. Prog.
Phys.49, 171 ~1986!. Some introduction to the very recent developmen
in connection with the spin glass ideas is given in: G. Parisi,Proceedings
of the ACS Meeting, Orlando, 1996, cond-mat/9701068,Lecture given at
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