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We propose a first-principle computation of the equilibrium thermodynamics of simple fragile
glasses starting from the two-body interatomic potential. A replica formulation translates this
problem into that of a gas of interacting molecules, each molecule being built atbms, and
having a gyration radiugrelated to the cage sigevhich vanishes at zero temperature. We use a
small cage expansion, valid at low temperatures, which allows to compute the cage size, the specific
heat(which follows the Dulong and Petit Igwand the configurational entropy. @999 American
Institute of Physicg.S0021-960809)50326-7

I. INTRODUCTION ideal glass transition is the one which should be observed on
infinitely long time scales in fragile glass formér$his tran-
Take a three-dimensional classical system consisting dfition is of an unusual type, since it presents two apparently
many particles, interacting through a short range potentiatontradictory features:
with a repulsive core. Very often this system will undergo,
upon cooling or upon compression, a solidification into an
amorphous solid state—the glass state. The conditions re-
quired for observing this glass phase is the avoidance of
crystallization, which can always be obtained through a fast
enough quenclithe meaning of “fast” depends very much
on the type of systejrt There also exist potentials which
naturally present some kind of frustration with respect to th
crystalline structure. Whether their actual stable state is a In order to make this last statement precise, we shall
crystal or a glass is not known, but they are known to sohave to define an order parameter for the glass phase in the
lidify into glass states, even when cooled slowly—such is theramework of equilibrium statistical mechanics, which in-
case for instance of binary mixtures of hard spheres, soffolves some subtleties and will be addressed below. At this
spheres, or Lennard-Jones particles with appropriately differintroductory stage let us take loosely as an order parameter
ent radii. These have been studied a lot in recent numericahe correlation in the positions of the particles at very large
simulations®=® times. In the liquid, there is no correlation. In the glass, the
Our aim is to compute the equilibrium thermodynamic positions are correlated in time. Clearly, the order parameter
properties of this glass phase, using the statistical mechanicflmps discontinuously between the liquid phase and the
approach, namely, starting from the microscopic Hamil-glass phase. The two properties above are indeed observed in
tonian (an attempt to build up a nonequilibrium thermody- generalized spin glass&sThe problem of the existence or
namic phenomenology can be found in Ref. We shall  not of a diverging correlation length is still an open dfie.
therefore assume that crystallization has been avoided, and This analogy is suggestive, but it also hides some very
consider only the amorphous solid state. The general framésasic differences, like the fact that spin glasses have
work of our approach finds its roots in old ideas of quenched disorder while structural glasses do not. The recent
Kauzmarf Adam and Gibb$,which received a boost when discovery of some generalized spin glass systems without
Kirkpatrick, Thirumalai and Wolynes underlined the analogy quenched disord&t° has given credit to the idea that this
between structural glasses and some generalized spamnalogy is not fortuitous. The problem was to turn this gen-
glasseg? This framework should provide a good description eral idea into a consistent computational scheme allowing for
of fragile glass formers. These are the systems in which theome quantitative predictions. Important steps in this direc-
increase of relaxation time upon decreasing the temperatutéon were invented in Refs. 16 and 17, which showed how
is much faster than Arrhenius often parametrized as aseful it is to study several coupled copies of the same sys-
Vogel—-Fulcher law, displaying a divergence of the relax-tem in order to characterize properly the glass phase. In a
ation time at a finite temperatutdn this approach, the glass previous preliminary study, we used some of these ideas to
transition, measured from dynamical effects, is supposed testimate the glass temperature, arriving from the liquid
be associated with an underlying thermodynamic transitiophase'® However, the approximations we did were not ad-
at the Kauzman or Vogel-Fulcher temperatlig. This  equate for the description of the low temperature phase.

(1) The transition is continuoussecond order from the
thermodynamical point of view: the internal energy is
continuous, and the transition is signalled by a disconti-
nuity of the specific heat which jumps from its liquid
value aboveT to a value very close to that of a crystal
phase below.

e(2) The order parameter is discontinuous at the transition.
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Here, we concentrate instead on the properties of the glass
phase itself and we introduce approximations which are
much more appropriate to describe its properties particularly
at low temperatures. We are now able to construct analytical
tools for doing computations in the glass phase and to test
the results in numericdgbnd eventually reglexperiments. A
brief description of a part of the present work has appeared
in Ref. 19.

In the next section, we shall present in more details the
general physical picture underlying our approach. In Sec. Ill,
we shall explain why and how one can characterize and Slope s0(T)
study the glass phase using a replicated liquid. Section IV
derives the Hamiltonian of the molecular liquid, which is
studied in the next two sections, first of all by a small cage
expansion in Sec. V, then by a molecular HNC closure in
Sec. VI. In Sec. VII, we present the results of these various
approximations concerning the glass transition temperaturgg. 1. Qualitative shape of the configurational entropy vs free energy. The
and the thermodynamic quantities. Section VIl gives a listwhole curve depends on the temperature. The saddle point which dominates
of some directions into which this work could be extended.the partition function, form constrained replicas, is the poifit such that
Two appendices contain the derivation of the moleculaf"® SIope of the curve equate/T (for the usual unreplicated systemn,

. . =1). If the temperature is small enough the saddle point sticks to the mini-
HNC closure on one hand, and its expansion to second ord@f,m . and the system is in its glass phase.
in the small cage parameter on the other hand.

Scif)

Slope m/T

flD £*(T,m) f

II. THE BASIC SCENARIO
min(M<f<f,a{T), and the configurational entrof®.(f,T)

In this section, we want to present some of the generaiL dt t ti | found i
ideas which provide a background to our approach. Thesgnsg)zggﬁg mgdgeﬁstnsgi;sgzn;?guo;sy‘arnm, as found in

have to do with the existence of a configurational entropy, Let us first discuss the properties of the system at ther-

and the identification of the glass transition as a point Wher‘?nal equilibrium: we thus consider the case where each con-
the configurational entropy vanishes. These ideas are pre '

; . . i iguration of the system is assigned a probability given by its
sented in general, without special reference to a specific sy Soltzmann weight. We label the free energy minima by an
tem. They can be derived in great details in some mean fiel dex . To each of them we can associate a free engrgy
spin glass mo_dels. Although the microscopic description o nd a free energy densify,=F ,/N. In the low temperature
these ”_‘Od?'s is somewhat remot_e from the actual glass pro egion, we suppose that the total free energy of the system
lem which interests us, we have included for completeness ) can be well approximated by the sum of the contribu-
shc_)rt summary of some of the resu!ts found in these system ons to the free energy of each particular minimum:

This will help to formulate the basic hypotheses of our ap-

proach. Z=exp— BNd)=>, exp — BNf,). 2

A. Configurational entropy )
) ) o For large values oN, we can write
We consider a system of particles moving in a volume

V of a d-dimensional space, and interacting by some short eXp(_ng(p)%ffmaxdf exp{—N[Bf—S.(f. )]} (3

range potential. These could be for instance hard spheres or frmin

Lennard-Jones particles. We can thus use the saddle point method and approximate
Let us introduce the free energy functioriglp] which  the integral with the integrand evaluated at its maximum. We

depends on the local particle densjiyx) and on the tem- find that

perature. We suppose that at sufficiently low temperature this ¢, _ min®(f)=f* —TS(f*,T) (4)

functional has an exponentially large number of minftha. ¢ Y

More precisely, the number of free energy minima with free

energy densitf =F/N is supposed to be exponentially large

in some region of free energief,,(T)<f<fa{T):
This formula is quite similar to the usual formula for the free

N TN)~exi NS(f, T)]. @ energy, i.e..f=ming E-TYE)], whereS(E) is the entropy
Exactly at zero temperature these minima coincide with thalensity as a function of the energy dens{f). The main
minima of the potential energy as function of the coordinatedlifference is the fact that the total entropy of the system has
of the patrticles. The functioB; is called the complexity or been decomposed into the contribution due to small fluctua-
the configurational entropgit is the contribution to the en- tions around a given configuratigithis piece has been in-
tropy coming from the existence of an exponentially largecluded intof), and the contribution due to the existence of a
number of locally stable configurationsThe number of lo- large number of locally stable configurations, the configura-
cal minima is supposed to vanish outside of the regiortional entropy.

here
O(f)=f-TS(f,T). (5)
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Calling f* the value off which minimize®(f), we have to Tp other minima?®?® but their total contribution has a
two possibilities: higher free energy than the uniform solutioffthe system is
o S ) _ obviously in the fluid phase.

e The minimum I|e§ inside the |n.terval and it can be « In the region wherd p>T>T, the minimum of the
found as the solution of the equati@ 7S, /df. In this function®(f ) is within the interval (1), fmadT)]. There-
case, we have fore, the system can stay in one of many different states. The
O=-TS, =S 7. (6)  entropy of the equilibrium system receives a contribution

from the configurational entropy, which is nonzero. A very
The system may stay in one of the many possiblesyrprising result, found in all generalized mean field spin
minima. The number of accessible minima is &&).  glasses with discontinuous transition so far, is that the total
The entropy of the system is thus the sum of the entropyree energy of the system including the configurational en-
of a typical minimum and o7 , which is the contri-  ropy contribution®(f*), is equalto the free energy of the
bution to the entropy coming from the exponentially fjyig solution with uniform p.X617 This result has not re-
large number of metastable configurations. ceived a general explanation beyond the simple idea of the

* The minimum is at the extreme value of the range oftransition atT, being a fragmentation of accessible phase
variability of f: it sticks atf*=f,, and the total free gpace into many separated pockets, the total volume of
energy is®=f,. In this case, the contribution of the \yhich should be continuous &, . Although the thermody-
configurational entropy to the free energy is zero. Thenamics s still given by the usual expressions of the liquid
different states which contribute to the free energy have,, <o an the free energy is analytidrat, below this tem-

a difference in free energy density which is of order . ' .
perature the system, at each given moment of time, may stay

N"* (a difference in total free energy of ordey. This in one of the exponentially large number of minima
situation is often encountered in spin glasses, both il P y larg e
* In the region whereT<Ty, the saddle point ofb

usual cases of spin glasses with quenched disétdér, he regt : _
and also in some spin glass systems without quenche‘éF'CkS at its minimum and the free energy is dominated by
disordert3-1° the contribution of a few minima having the lowest possible

One aim of the theory of glasses at equilibrium could bevaluefmm('l'). Here, the free energy is no more the analytic

to demonstrate from first principles the existence of a conontinuation of the free energy in the fluid phase. A phase

figurational entropy function such as depicted in Fig. 1, an(}ransition is present &ty and the specific heat is discontinu-
to compute it. This is difficult to achieve. For instance, Ke-OUS herg. i ) , ,

pler's conjecture, a simple zero temperature statement saying | ¢ intermediate phasg,>T>Ty is particularly inter-
that there is no denser packing of hard spheres in three dfStng- In the mean field systems, an exact solution of the
mensions than the fcc lattice, has resisted a proof for mork@ng€evin dynamics indicates a dynamical phase transition at
than three centuriéd. Here, we shall take a more modest |0+ the System being trapped in some states with a free
starting point: we shall assume the existence of the locaf"€"9y Whigh is extensively higher than that of the equilib-
minima and of the configurational entropy function with the "4M state”® For the realistic finite dimensional problems
general properties depicted above, and within this assump¥hich we want to study, the situation is much less clear, but
tion we shall show how to computapproximately but with  ©n€ can speculate 0that the syst_em will equnlbra_tg in this
a rather good accuracy, and one which can be improved sy§¢9!/Me, Very slowly” The time to jump from one minimum

tematically the various properties of the system, including {© @nother minimum is quite large: it is an activated process
the configurational entropy function itself. which is controlled by the height of the barriers which sepa-

rate the different minima. The correlation time will become
very large belowTp and for this reasod is called the
dynamical transition point. The correlation timgvhich
should be proportional to the viscositgtiverges only at the
So far, the only systems for which the above programtrue thermodynamic transition temperature, sometimes called
could be carried out in all details are some type of mean fieldhe ideal glass temperatufg (see Fig. 2 The precise form
spin glasses with a discontinuous jump of the order paramef this divergence is not well understood. It is natural to
eter at the transitioft-19-24-27 suppose that one should get a divergence of the form
Although we will not need all the ingredients that have exd A/(T—Tx)"] for an appropriate value af, but a reliable
been found in these other problems, it is useful to recallnalytic computation of is lacking®3® Experiments can
some of them; later on, we will mention how this picture often be fitted by this law with various values mafincluding
might be modified in a realistic—nonmean field—system.the Vogel—Fulcher fit withv=1. The equilibrium configura-
The configurational entropy function is convex, and previougional entropy is different from zer¢and it is a number of
work indicates that it depends smoothly on the temperaturegrder ) when the temperature is smaller th@g, it de-
the main effect of a temperature change being a global shiftreases with the temperature and it vanishes linearly at
of the free energies. Starting from high temperatures, we thus Ty . At this temperature, the entropy of a single minimum
encounter the following temperature regidng& use here the becomes equal to the total entropy and the contribution of
language of liquids and glasges the configurational entropy to the total free energy vanishes.
* ForT>Tp, the free energy functional is dominated by Therefore, the total entropy and the internal energy are con-
the uniform density solutiorp(x) = p (there may exist close tinuous at the transition.

B. Mean field situation
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tau | the dynamical temperature beyond mean field approximation
is not so clear-see Ref. 5; probably the best definition is that
Tp is the temperature where the mode-coupling theory pre-
dicts a transition Therefore, one expects that the mode cou-
pling description will give good results in the region largely
above Ty, a fact that has been checked accurately in
experiment®’ and numerical simulatior¥.
A last point which is predicted within the basic scenario,
and has been checked numerically, is a specific type of aging
\ and modification of the fluctuation-dissipation relation. The
aging behavior, which has been seen many years ago already
in some polymeric glassé3can be studied in details in spin
glasses® These studies, initiated by the works36£° have
T led to some well-defined generalization of the basic equilib-
rium properties such as time translation invariance and
FIG. 2. Relaxation time vs temperature in discontinuous spin glasses. Thfuctuation-dissipation theorerﬁ:DT)_30*38'39 This generali-
ri_g_ht hand curve is the mean-field predigtion, whi_ch gives a dynamical tran- ation is not limited to the narrow scope of some special
sition at a temperatur€, above the static transition temperatdrg. The . . .
left curve is a conjecture on the behavior in finite dimensional systems.mean field spin glasses, but seems to prowde a general de-
activated processes smear the dynamic transition. The relaxation time dscription of glassy dynamics in many systems, including
verges only at the static temperatdig, but becomes experimentally large structural glasses. The modification of the fluctuation-
already around the glass temperatlige dissipation relation can be measured directly, although the
experiments are not simple. On the other hand, numerical
simulations for a binary mixture of soft sphefes Lennard-
C. Relationship to experiments Jones particléshave found exactly the nontrivial modifica-

The above scenario is appealing in that it puts into Jion which is predicted by the general scenario, providing

unified framework a number of experimental facts Onf[heref_ore a confirmation of its validity at least on theim-
glasses, as well as some general theoretical ideas. ited) time scales.

Experimentally, the system falls out of equilibrium when
iFs relaxation time beqqmes larger than the. experimenth”' A STATIC ORDER PARAMETER EOR THE GLASS
time. The “glass transition temperature,” defined conven-pyasp
tionally as the temperature where the typical relaxation time
reaches a value of order one hour, falls somewhere between In this section, we wish to explain the general strategy
Tk andTp . By considering slower and slower quenches, ongor describing and computing properties of an amorphous
can equilibrate the system at lower temperatures. Howevegolid state. We are particularly interested in systems with
in this scenario, there exists an underlying thermodynamignany metastable states, having a nonzero configurational en-
transition at the temperatuf¢, which is the ideal glass tropy. We shall explain the general strategy trying to keep
transition temperature. This temperature is also the onaway as much as possible from any specific model, the more
where the viscosity would diverge in the Vogel—Fulcher typeprecise formulation for our problem will be given in the next
fitting of the viscosity versus temperature. Clearly, it alsosection. Let us consider a systemNfparticles, interacting
corresponds to the Kauzman temperature: the excess entropy @ two-body potential with a Hamiltonian
of the supercooled liquid with respect to the crystal is basi-
cally equal to the configurational entropy, which vanishes H= 2 v (X —Xj), (7)
precisely atT,. The experimental fact that the Kauzman 1=i=j=N
temperature and the Vogel-Fulcher one are close to eadhhere the particles move in a volunveof a d-dimensional
other has been noted many times, and is also found in thepace, and is an arbitrary short range potential with a short
Adam-Gibbs relatiofi. range repulsion, like a ¥ potential or a Lennard-Jones

The dynamical temperaturé, also receives a natural one. We shall take the thermodynamic linNt V—oo at
interpretation. In mean field, therefore neglecting activatedixed densityp=N/V. For simplicity, we do not consider
processes, the relaxation time diverges with a power law diere the description of mixtures of different types of par-
Tp, and the autocorrelation function develops an infinitelyticles. The generalization to mixtures is necessary if one
long plateau. This slowing down is described precisely bywants to compare more precisely to simulations, which are
the mode coupling theor§:*?In the mean field approxima- performed on mixtures in order to avoid crystallization. This
tion, the height of the barriers separating the differentgeneralization, together with a detailed comparison, will be
minima is infinite and the temperatulg is sharply defined presented in a forthcoming papg@r.Some general back-
as the point where the correlation time diverges. In the reaground is provided by the review pap@r.
world, activated processéwhich are neglected in the mean A Time persistent correlations
field approximation and consequently in the mode coupling ™ P
theory have the effect of producing a finiteut large cor- Before going to a purely static description of the order
relation time also at and beloW, (the precise meaning of parameter, let us first discuss a dynamical one. At an atomic

1000 s
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level one often tends to associate the glass transition with the In the case of glasses, we can thus consider two identical
divergence of the time scale on which a labeled particle casystems of particledx;} and{y;}, with a total energy func-
get out of its trap. While this is an intuitive picture, it is not tion:
possible to translate it into a good definition of the solid

phase: because of the excitation and movements of vacancies E= > [w(x =) +o(yi—y) 1+ €, W(X; -V,
and other defects, this individual trapping time scale is al- I=i<j=N L

ways finite, although it will increase exponentially when the (10
temperature gets small. In order to get a proper definition ofvhere we have introduced a small attractive potenig)
the solid, it has been propogéd?to use a generalization of between the two systems. The precise shapes i irrel-

=

the Edwards Anderson order parameter of the type: evant, insofar as we shall be interested in the lignit O, but
its range should be of order or smaller than the typical inter-
Qea(p) = lim “mEE <eip.(xj(0)7xk(t))>, ®) partic_:le distance. The order parameter is then the correlation
t—oN_olN JK function between the two systems:

where p is an arbitrary nonzero wave vector, the order of 1
magnitude of which is one over the typical interparticle dis- ~ Ixy(") = lim lim —NE (8(xi—y;—r)). (11)
tance. When the system is in the liquid phase, the above € ON—ee P01
order parameter is zero and when it is in the glass phase thi§ the liquid phase, this correlation function is identically
order parameter is nonzefeven in the presence of single equal to one, while it has a nontrivial structure in the glass
particle diffusion. phase, reminiscent of the pair correlation of a dense liquid,
This definition would hold for the equilibrium dynamics, but with an extra peak around=0. Let us notice that we
i.e., assuming that the system is in equilibrium at time €xpect a discontinuous jump of this order parameter at the
=0. As we know the glass never reaches equilibrium andransition, in spite of its being second order in the thermody-
therefore it ages: correlations are not stationary in time. Th&amic sense. The existence of a nontrivial order parameter is
proper generalization of the previous correlation taking into@ssociated with the spontaneous breaking of a symmetry: For

account the aging effect takes the slightly more complicated =0, with periodic boundary conditions, the system is sym-
form (where the order of limits is crucial metric under a global translation of theparticles with re-

spect to they particles. This symmetry is spontaneously bro-
Qea(p)=lim lim “mEE (elP (4t =Xt D)) (Q) ken in the low temperature phase, where the particles of each
oty —mN— N K subsystem tend to sit in front of each other. One could
This gives a sensible dynamical definition of the glass phas€dually use the Fourier transform of this crosscorrelation,
which then gives back, but in an equilibrium framework, the
Edwards Anderson order parameter defined in Ejy.
B. Correlations between two copies

We would like a purely static description of the solid C Th d ics bel 7o i
phase in the framework of equilibrium statistical mechanics,™ ermodynamics below [ - repiicas
in a case where there are no Bragg peaks. As soon as we The previous method is a reasonable definition of an
have a solid phase the translational symmetry is broken anequilibrium order parameter which can be used in simula-
the system can be in many states. For crystalline order, thesiens or in analytic studies in order to identify the phase
many states just differ from each other by rotations or transtransition arriving from the liquid phase. However, this tech-
lations which can be easily taken care of by appropriatsique can be improved in order to study quantitatively the
boundary terms. In the glass case, in order to choose a statgass phase itself.
one should first know the average position of each atom in  Let us assume that in the glass phase there exists a non-
the solid, which requires an infinite amount of information. zero configurational entropy, as introduced above. Clearly,
Had we known this information, we could have added to thehe knowledge of this configurational entropy as a function
Hamiltonian an infinitesimal but extensive pinning field of free energy and temperaturg,(f,T), will allow us to
which attracts each particle to its equilibrium position, send+econstruct all the interesting thermodynamic properties of
ing N to infinity first, before taking the limit of zero pinning the system. It has been realized by Monas&dmat the con-
field. This is the usual way of identifying the phase transi-figurational entropy can be reconstructed from a study of an
tion. arbitrary numberm, of copies of the system, when they are

In order to get around the problem of the description ofconstrained to be in the same state. As we will need to ana-
the amorphous solid phase, a simple method has been devéftically continue the results im, we shall call the copies
oped in the spin glass context. Pictorially, one could say thatreplicas.” An alternative and related method is to introduce
although we do not know the conjugate field, the systena real coupling of the system to another system which is
itself knows it. The idea, borrowed from spin glass thermalized’ this has been used recently in order to study
theory?*#4is then to consider two copies of the system, withthe glass phas&*® The formulation which we present here is
an infinitesimal extensive attraction. One then identifies theslightly different from, but equivalent to, that of Ref. 16.
transition temperature from the fact that the two replicas re- The basic idea is extremely simple. Instead of two copies
main close to each other in the limit of vanishing coupling of the system, let us considercopies which are constrained
(having sentN to infinity first). to stay in the same minimum. We shall discuss below how
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one can achieve this constraint, but let us first discuss the 08 v v
physics of this constrained system. Its partition function is:

f
ZmZJ MdfeiN[meisc(f’T)]. (12) 0.60 b
fm
The dependence on the numipepf replicas of the total free
energy, O |
1
d(m,T)=——=

AN Iogzmwmfin[mf—TSc(f,T)], (13

allows to compute the configurational entrofy(f,T) as a
function of the free energy, using:

ad(m,T) 0.00 v

—=f, 0.0 1.0 20 3.0
am m

m? dp(m,T) (14 FIG. 3. Sketch of the typical phase diagram in the temperatupéane, for

a system withm weakly coupled replicas. In the whole high temperature
region above the full line, the system is in a liquid phase. There are two
liquid phases, above the horizontal lifie= Ty the various replicas are not
correlated in the limit of the coupling going to zero. On the contrary, the
d(m,T) liquid state am<(1, in the region between the full line and the dashed line,
d(M,T)= ——. (15 is a molecular liquid where the various replicas form molecular bound
m states. The low temperature region below the full licharacterized by

.. . . _m=m*(T)) is the glass phase. In this glass phase, for a given temperature,
If the glass transition is due to the entropy crisis de the free energy per replica s independent. Therefore, one can deduce the

scribed in the previous sectidand this is our main hypoth-  free energy of the glassvith m=1 andT<Ty) from the knowledge of the
esi9, then the crucial quantity is the value of the slapéT) free energy in the molecular liquid.

of the configurational entropy at the lowest free energy:

T am €’

where ¢(m,T) is the free energy per particle:

S,
so(T)=—<[fo(T)]. (16) &1, T)=0 18
The usual glass transition is determined Bys,(Tx)=1. and it isindependenbn m.
For the replicated and constrained system, the phase transi- Let us now look at the phase diagram at a fixed tempera-
tion temperaturél™ depends on the numben of replicas  ture T<Ty, varying m (see Fig. 3 The free energy per
and is determined bysee Fig. 1 particle ¢(m,T) of the molecular liquid is an increasing
(m) (M) — function of m at smallm, which reaches a maximum at a

Tso(T)=m. 17 point m* <1 where the glass transition takes pldodvi-
It is very natural to assume tha§(T) is a smooth function ously m* is the solution of: Tsy(T)=m*]. As the free en-
of temperature, going to a constant at zero temperdtuee ergy in the glass phase i® independent, the liquid free
shall check this hypothesis self-consistently [atdhen we  energy at the transitiogp(m* ,T) (which is equal to the glass
see that, whemm is continued analytically to real values, free energy at the transitipis equal, forT<Ty, to the free
smallerthan unity, one can hav@™<T, . The replicated energy ¢(m=1T) of the glass at the temperatuile We
and constrained system can thus be in the liquid phase fdrave thus shown that the knowledge of the free energy of the
temperaturesmaller than the glass transition temperature molecular liquid,so(m,T), allows to compute the free energy
Tx=TW: it is then made up of molecules, each of which of the glass.
contains one atom of each replica, but these molecules are in These basic observations are at the heart of our strategy
a liquid state. The basic reason for this crucial fact is that foffor computing properties of the glass phase. We shall write
m<1, the effective interaction potentiéhssuming for sim- down more explicit formulas in our case below. We would
plicity molecules of very small radidiss decreased from like first to make three comments on this approach:
v(r) to mou(r), thus displacing the glass transition to lower * For T<Tx andm>m*, the free energyp(m) is con-
temperatures. stant andlarger than the analytic continuation of the free

We are interested in the free energy in the glass phasenergy ¢(m) of the molecular liquid. If one would have
therefore in the regiom=1 andT<Ty. This free energy followed this molecular liquid in the regiom>m*, one
cannot be computed from that of the liquid with=1, T would have found that¢/dm<0, predicting a negative con-
>Tg because of the phase transitionTgt. However, we figurational entropy. Instead, the glass transition occurs and
shall now show that one can deduce it from the free energyhe configurational entropy sticks to zero in the whole glass
of the molecular fluid amm<<1. This molecular fluid withm phase. The fact that the free energy in the glass phase is
<1 has a transition to a glass state at the temperakure larger than the analytic continuation from the high tempera-
=T(M<T,. Inside the glass phase, thus o T(™, the ture phase explains why the specific heat has a discontinuity
free energy of the replicated and constrained system is givedownward when we decrease the temperature. This is in
by the condition variance with what happens generally in other transiti@is
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least in the mean field approximatiowhere the free energy whereW is an attractive interaction. The precise forn\dfs
in the low temperature phase snaller than the analytic unimportant: it should be a short range attraction respecting
continuation from the high temperature phase and the spé¢he replica permutation symmetry, and its strength which
cific heat has a discontinuitypward when we decrease the will be sent to zero in the end. For instance, one could take
temperature.
« In practice, in order to try to constrain the systems to ~ W(r',...,rm= 61<a§b<m w(ra—r®) 21
be in the same state, one introduces some small attractive.
with w(r) a smooth short range two-body attraction.

coupling, of ordere, between the replicas. It is thus impor- Th it f t £ th licated ;
tant to understand when this coupling leads to a molecular € par ition function of the replicated system is
liquid. The phase dlggram shown in Fig. 3 can be conjec- 7 = H 1—[ (ddxa)e BH,, 22)
tured from the following elementary study of the free energy, NI™
confirmed by exact computations of mean field discontinu-  The order parameter is the generalized cross correlation:
ous spin glasses:t"5?" There area priori four possible 1
cases. If themreplicas are in the same state, the free energy  p(rl, ... r™m== > <5(le =1 80" —r™),
is ® =min{mf-TS(f,T)]-m(m—1)e. If they are in different Nip i ! "
states, the free energy d=mmin f—TS(f,T)]. On top of . _ (23?
this, the free energy minimum can either stickftp (glass where the average is the Boltzmann—Gibbs average with the
phasg or be at a valug larger thanf, (liquid). One just Measure proportional to expHy,).
needs to find out which situation actually minimizes the free
energy, for given values of and T. The solution is dis- B- Molecular bound states
played in Fig. 3, showing that there is an intermediate mo- At low enough temperature, we expect that the particles
lecular liquid phase an<1. in the different replicas will stay close to each other due to

* The “replicas” which we introduce here play a slightly the joint effect of the small inter-replica attraction and the
different role compared to the ones used in disordered sysntra-replica interactions: when the system is in the glass
tems: there is no quenched disorder here, and no need fhase, the role of the attractive tebwill be to insure that
average a logarithm of the partition function. Replicas areall replicas fall into the same glass state, so that the particles
introduced to handle the problem of the absence of descrign different replicas stay at the same place, apart from some
tion of the amorphous state. We do not know of any othethermal fluctuations: A vanishingly small interaction be-
procedure to characterize an amorphous solid state in thveen replicas will give rise to a strong correlation. As the
framework of equilibrium statistical mechanics. There is nothermal fluctuations are relatively small throughout the solid
“zero replica” limit, but there is, as in disordered systems, phase(one can see this for instance from the Lindeman cri-
an analytic continuation in the number of replicas. We shalkerior), one can identify the molecules and relabel all the
see that this continuation looks rather innocuous. particles in the various replicas in such a way that the par-

ticlej in replicaa always stays close to partiglén replicab.

IV. THE REPLICA APPROACH TO STRUCTURAL All the other relabelings are equivalent to this one, producing

a1 " )
GLASSES: GENERAL EORMALISM a global factorN! in the partition function.
We therefore need to study a system of molecules, each

In this section, we write down the formulas correspond-of them consisting ofn atoms(one atom from each repliga
ing to the replica approach introduced in the previous sech is natural to write the partition function in terms of the
tion. We keep here to the case of simple glass formers conrariablesr; which describe the centers of masses of the mol-
sisting ofN particles interacting by a pair potentia{r) ina  ecules, and the relative coordinatés, with x?=r;+u? and

space of dimensiod. Eauf'"=0:
A. The partition function ) N m . N
a
The usual partition function, used, e.g., in the liquid Zm= NI H d’r .Hl al;[ (d"u 1:[ ( (Ea: ))
phase, is
1 ¢ N xexp —B > v(ri—r;+uf—ud)
zlz—f [T (d)e#". (19 <ia
N! ) =1
We wish to study the transition to the glass phase through the —Bzi (T ,Uim)>- (24)

onset of an off-diagonal correlation in replica space. We use
Srzlsr;aep:rl]cas and introduce the Hamiltonian of the rephcate% THE SMALL CAGE EXPANSION
m In order to transform these ideas into a tool for doing

H. = 2 v (x3—x2) explicit computations of the thermodynamic properties of a

" b glass, we have to use an explicit method for computing the
free energy as function of the temperature amdAs is usu-
+ > W(le o 'X;n ), (20)  ally the case, in the liquid phase exact analytic computations
j j ! m are not possible and we have to do some approximations. In
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this section, we shall use the fact that the thermal fluctuationB. Zeroth-order term
of the particles in the glass are small at low enough tempera-

X s We use the equivalent form:
ture: the size of the “cage” seen by each particle is therefore g

small, allowing for a systematic expansion. What we will be 2\ ~92
describing here are the thermal fluctuations around the mngm(a)— H H (ddua)l_[ {ddx ( ) }
mum of the potential of each particle, in the spirit of the =1a=1
Einstein model for vibrations of a crystal. m
xw%BZ u?@——Eu?&ﬂ.
i<j,a 2a ia

A. Legendre transform (28)

We start from the replicated partition functichy, de-  For a—0, the identity
scribed in molecular coordinates {24). Assuming that the 5 a2
relative coordina?exatia are small, we can expand to lead- exp{ - E(x?— .)2) z(_wa) (x2—X;) (29)
ing order and write: 2a m

1 N . N m . N . glves
Zo=— dor; d%? m?s a
mON! fﬂl( I)Bl a[[1( ul)iljl( (z u')) 0 27a\INM2( 277\ ~IN2Z 1
Zn(@)=|—— — fﬂ dX
xexpg —B 2 v(ri—rj+uf-u®
i<j,a
Xexpg —BmY, v(X—X; )) (30)
1 i<j
——ZEw%mﬁ (25 . _ _ _
a7 &b In this expression, we recognize the integral overXtie as

the partition functionZ;(T*) of the liquid at the effective

In the end we are interested in the limit )/~ 0. We would .
@ temperaturel*, defined by

like first to define the sizé\ of the molecular bound state,
which is also a measure of the size of the cage seen by each T*=T/m. (31)

atom in the glass, by
Therefore the free energy, at this leading order, can be writ-

(7|0me_ m(l_m)dNA:_ %Z ;) <(uia_uib)2> (26) ten as

(Ua) 2

. ' ' _ . 0 dil-m) 27a d
(d is the dimensionN is the number of particléesWe Leg- B (m,a)=—— log — ﬁlog(m)
endre transform the free energy(m,a)= —(T/m)logZ,,,

introducing the thermodynamic potential per particle 1 .
y(m,A): ~ N'09Zia(T*)- (32)
(1-m) A
PpmA)=¢(ma)+Td—F——. (27 c. First-order term
What we want to see is whether there exists a minimum of In order to expand to next order, we start from the rep-
at a finite value ofA. resentatior(25) and expand the interaction term to quadratic

At low temperatures, this minimum should be at small ~ order in the relative coordinates:
and so we shall seek an expansiongoin powers ofA. It
turns out that this can be found by an expansiongoin Zm=j IT ddr;adu] | (md5<2 uf‘))
powers ofa, used as an intermediate bookkeeping in order to ! a

generate the low temperature expansion. This may look

confusing since we are eventually going to seadto Xex;{—ﬁmE v(ri—rj))

«. However, this method is nothing but a usual low tempera- =)

ture expansion in the presence of an infinitesimal breaking

field. For instance, if one wants to compute the low temp- XeXF{ 5 2 gy (ud—u)*(u—uf)”

erature expansion of the magnetization ird-dimensional
Ising model in an infinitesimal positive magnetic fi¢idthe 1 2 buo

main point is that the magnetization is close to one. One can X3, v(ri—rj)— @% (ui—uy) )

organize the expansion by studying first the case of a large '

magnetic field, performing the expansion in powers of(The indicesu and v, running from 1 tod, denote space
exp(=2h), and in the end lettinch—0. A little thought directions) Notice that in order to carry this step, we need to
shows that the intermediate—larde—expansion is just a assume that the interaction potentigl) is smooth enough,
bookkeeping device to keep the leading terms in the lowexcluding hard cores. To expand at smallwe need the
temperature expansion. What we do here is exactly similaproperties of the set ah random variables? living on one
the role ofh being played by ¥. site  with measure P(u)x8(Zu?)exd —(1/4a) = p(u?
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—uP)?]. It turns out that these are gaussian random variables d1-m)1 d 1
with a first moment which vanishes and a second moment A=AmaxEWE= B Td%g* (Ao’ (40)

which is equal to
whereg* is the pair correlation of the liquid at the tempera-
(uaub>0= Sab_ i) 35 . 33 ture T*. A study_of the potentiaw(m,Am_ax), which equals
my m/ m #” #(m), as a function ofn then allows to find all the thermo-
dynamic properties which we seek, using the formulas of the
previous section. This step and the results will be explained

below in Sec. VII, where we shall also compare the results to

Expanding(33) to first order ina, we have

logZ, IogZO— —2 E ((u —ua)" those of other approximations.
I<j apy
X(UF=UuP)")o(d,d,0(ri—r)))*, (34 D. Higher order
where the averageg.), is that for theu variables with the The systematic expansion of the thermodynamic poten-

Gaussian measu(@3), and the averagg)* is over the cen- tial  in powers of A can be carried out easily to higher
ter of mass positions;, which are those of a liquid phase orders. However, the result involves some more detailed

thermalized at the temperatufé =T/m. properties of the liquid at the effective temperatiife For
The free energy to first order is equal to instance, at second order one needs to know not only the free
energy and pair correlation of the liquid at temperafiife
Bd(m,a)= M,Ogl — afBC+ Mmgzl but also the three points correlation. It is certainly interesting
2m a 2m m to try to push this expansion further, taking the information
d 1 on the liquid at temperatur€* from some numerical simu-
2mIog m— NIog Zjg(T*), (350 lations. In this paper, we have decided to stay within some

relatively simple schemes which require only the knowledge
where the constar@ is proportional to the expectation value Of the pair-correlatiorg* (r). Therefore, we shall not pursue
of the Laplacian of the potential, in the liquid phase at thethis higher order expansion here, leaving it for future work.
temperaturel™* :

1 1—-m E. Harmonic resummation

2 (Av(zi—2z))*. (36) One can obtain a partial resummation of the small cage
expansion described above by integrating exactly over the
Differentiation with respect to #/gives the size of the cage: relative vibration modes of the molecules. We shall use such
¢ (1—m) (1—m) a procgdure here, which is a kind of harmonic expansion in
B =— da+a?BC=— dA. (370 the solid phase.
d(1la) 2m 2 We work directly with 14=0 and start from the repli-
cated partition functior{33), within the quadratic expansion
of the interaction potential in the relative coordinates?.
(Clearly, it is assumed that the d/~0" limit has been
taken, and that its effect is to build up molecular bound

. . . states. The exact integration over the Gaussian relative vari-
The Legendre transform is then easily expanded to first ordegples gives.

in A N
mNd/zﬂNd(m— 1)

Expanding this equation in perturbation theoryAinwe have

28meC
a=mA— mAZ. (38)

(1 —m)A Zn= N [T ad,
Byp(m,A)=B¢(m,a)+d ! i1
d(1—m) d(1—m) Xe p( BmS. o(ri—r)— LTt log(BM)
_ — _ — Xp — ~ u(Iri—Tr; _T ’
= "om log(27A)— BMAC+ T i<
d 1 (41)
2mIog m=- N Iog Zjig(T). (399  where the matriXM, of dimensionNdX Nd, is given by
This very simple expression gives the free energy as a M= 5”2 U u(Fi =) =0 (1= 1)) (42

function of the number of replicasy, and the cage sizA.
We need to study it ain<1, where we should maximize it and vW(r)=&2v/&r#ﬁry. We have thus found an effective
with respect toA andm. The fact that we seek a maximum Hamiltonian for the centers of massesof the molecules,
whenm<1 instead of the usual procedure of minimizing the which basically looks like the original problem at the effec-
free energy is a well established fact of the replica methodtive temperaturd™ =T/m, complicated by the contribution
appearing as soon as the number of replicas is less than 1of vibration modes which give the “trace log” term. We
As a function ofA, the thermodynamic potentighhas a  expect that this should be a rather good approximation for
maximum at: the glass phase. Unfortunately, even within this approxima-
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tion, we have not been able to compute the partition functiorpair correlation. This chain approximation consists in replac-
exactly. The density of eigenstates of the mallixs a rather  ing, for p>2, the full correlation by a product of pair corre-
complicated object and we have developed a simple approxlations. It selects those contributions which survive in the
mation scheme in order to estimate it. high density limit; systematic corrections could probably be

We thus proceed by using a “quenched approximation,”computed in the framework of the approach of Ref. 47, we
i.e., neglecting the feedback of vibration modes onto the cenleave this for future work. Within the chain approximation,
ters of masses. This approximation becomes exact close @, is approximated by

the Kauzman temperature wheme— 1. The free energy is ( 1)p 1
then 7, = E dxg .. dXpG* (Xg, - -+ Xp)
125
d d(im—1)
Bp(m,T)=— 5 log(m)— — ——log(2m) X[v Ml#z(xl Xz) Vg ymp(Xp-1

1 L . XV g, X))
—Ne9Z(TH)+ — —(Trlog(BM))* (43

(—1)P~t D q dx
which involves again the free energy and correlations of the 0 s f X - A%[g7 (Xg
liquid at the temperaturé*. Computing the spectrum éfl N
is an interesting problem of random matrix theory, in a subtle _XZ)Uuluz(Xl_XZ)] [ (%
case where the matrix elements are correlated. Some efforts X, (X X])] 47)
have been devoted to such computations in the liquid phase VP ppug e S

where the eigenmodes are called instantaneous norm#i this last form, we need to compute a convolution which
modes*® It might be possible to extend these approaches téan be factorized through the introduction of the Fourier
our case. Here, we shall rather propose a simple resummé&ansform of the pair correlation function. We thus introduce
tion scheme which should be reasonable at high densitieghe Fourier transformed functioresandb which are defined
low temperatures. from the pair correlatiom™ (r) by:

Considering first the diagonal elementsMf we notice
that in this high density regime there are many neighbors to] dg*(r)v,,,(r)e
each point, and thus a good approximation is to neglect thé
fluctuations of these diagonal terms and substitute them by _
their average value. We thus write: B

|kr

kk, 1
5,u.va(k)+ k2 d “mv b(k) (48)

1 ; In terms of these Fourier transforms, thth order term in
; vM,,(ri—rk)zéwaJ ddrg* (r)Auv(r)=ry. (44)  the 1f, expansion is simply

(—1)P1 ddk
Here and in what follows, we have not written explicitly the 1,= [P 2m)°
density. We choose to work with density unity in order to 0
simplify the formulas: this value can always be obtained by
using an appropriate scale of length. In the approximation ﬂd_l)f (2m)3
(44), the diagonal matrix elements are all equal and can be
factorized, leading to:

d-1 P
a(k)+ Tb(k))

dy 1
a(k)— gb(k)

p
} . (49

and the summation of the series oyds easily done, so that
the free energy per particle within the chain approximation

(Trlog(BM))* =Ndlog(Br) of the harmonic resummation is
1 * d d(m-1)
<Trlog 810 ; vw(ri—rk)> o Be(MT)=— 5 log(m)— — = log(2m)
0
(45 1 d(m-1)

— —5log Z(T*) + ———10g(Bro)
This form lends itself to a perturbative expansion in powers mN 2m
of 1/ry. The computation of the@th order term in this ex- d-1
a(k)+ Tb(k)

pansion, (m 1) d%
- 2 n | ol :
=(-1)° ! r_p< ) 2 v,ul,uz(ril_riz)--- ( 0
0\ i1.--ip 1
M- a(k)—ab(k)
+(d—1)L,
le”pfllu’p(ripfl_rip)v”’p/’“l(rip_ril) (46) o
(m—1) o7 )2
. . . . - fdd()E“ (50
still involves thepth order correlation functions of the liquid

at T*. We have approximated this full correlation by intro- where the functiori. 5 is defined as

ducing a simple “chain” approximation involving only the La(x) =log(1—x)+ X+ x2/2. (51)
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We can thus compute the replicated free endfgy only 1

from the knowledge of the free energy and the pair correla= §f d™xd™ Yy d™zh(x,y) p(y)h(y.2) p(2)N(z,X) p(X).
tion of the liquid at the effective temperatufé. The results (56)
will be discussed in Sec. VII.

We would like to optimize the thermodynamic potential
¢ with respect to the molecular densip(x) and the two

VI. A SYSTEMATIC APPROACH: MOLECULAR HNC point functiong(x,y). We shall work at low temperatures
CLOSURE for which p should be nearly gaussian. We thus choose an
A. Density functional Ansatz forp of the type(always with a choice of average

density equal to one
As we have seen before, one can choose as an order y €q n

parameter the generalized inter-replica correlation, deduced
from the original partition function by the functional deriva- m

tive: p(x)= f ddXH

1 élogZz,,

exd — (x3—X)?/(2A)]
27 Al

p(rt, . M= —————. (52) 2mA\ 92 - 1
OW(r=, ... r == mad/2 = a_ yby2
B SW( ) p- (27A) ex 4Am% (x2—xP)? ],
In order to study the free energy at fixed order param-
eter, one can perform the functional Legendre transform: (57)
T
pl=— E|og Z[b] where the molecular density is parametrized by the single

parameteiA.
The ideal gas contributioflast term in(55) gives

1
_Ej dri...drMe(rt o r™mWr oo™

X
(53 J 1T danp(X)|Og¥
and the aim is to optimize this new function with respect to a
p- d d d
In the ideal case where there are no interactions, this ZN(E(l—m)Iog(ZwA)Jr 5(1—m)— Elog m—1].

thermodynamic potential is
p(rl ..M 8

(54) The interaction term is more complicated, and we have

only succeeded in optimizing it in the small cage regime.
We need to add to this piece the part which comes from the

interactions. This is nontrivial; in the next section, we shall
use the HNC approximation for this function.

) T
J9pl= EJ dri...dr™p(rt, ... rMlog

C. Second-order small cage expansion

B. Molecular HNC equations Here, we shall solve in general fgiin the limit of small

The free energy in the HNC approximation is derived inc@ge radius, expanding in powers oA.
the Appendix A. It is a functional of the molecular density  AS usual we go to molecular coordinates, introducing
p(x) and the two point correlatiog(x,y)=1+h(x,y). Here ~ X*=X+u? and y*=Y+v? with the constraints:Z,u®
and in the following, the letters, y andz without any index = =av”=0. The molecular densit{s7) depends only on the
denote md-dimensional vectorde.g., x=x%, ... x™). The relative coordinates:
molecular density is our order parameter. The result/fis

dr2
1 ™ .
W:ﬁfdxdyp(X)p(y)[g(x,y)logg(x,y)—g(x,y) p(W)=poms (E u )( m ) (2mA)~em
1 1 a by2
+14 Bu(xY)9(y)]= 5-Tr| log(1-+hp) —hp Xexl ~zam 2y (U2 (59
1 1 p(X
+5hphp |+ EJ dxp(x)log——, (39 Theus are thus gaussian distributed with a second moment:

where the potential i® (X,y)=2,v(X,—Ya). In the trace
term, all prqducts are convolutlpns. For instance, the lowest (Utul) =A _ s (60)
order term in the smalp expansion of the trace is a i
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We shall expand the two point correlation in powers of ,m-1 )
the relative coordinates, using the notations: BFa=A"— J G(r) E [Suu(r)“+2S,,(r)T,,(r)

g({X+ut{Y+v?})

m—1
+2Tw(r)2]+AZTJ ddr
=G(X—Y)+> sﬂv(x—v)(E [udud+v3vd]

v a

,(m=1)?
X2 (Sul(1)+ 2T (1) B0l 1)+ AP
Y mx—v)(E (U~ ) (U= 0]
v a -1
fder(r)E BU (1) — a2l 2
—2Kw), (61)
% [ gma S (ST s (68
where the constarK ,, is chosen in such a way that, for any 2w )3 mr wy 1+H(K)
A
The stationarity conditions o8andT are easily solved. One
1 finds
dup(u) [ dvp(v)g(X+u-, ... X+u™
1
T,.=—5G(r r), 69
Yol Y +u™=G(X-Y). 62 wr= = 2N LT) 69
The constant turns out to be while S+T is the solution of the linear equation:
_ SutT, 1 &
K#V—A(m—l) 5[4“;- (63) /LVG my o= :J (277)36”«[8/“,('()
It is not difficult to see that, thanks to the constraid),
the knowledge of the functior8andT is enough to compute K H(k) 70
the free energy to ordek®. This computation is done in the 01T 00 1+H(k)" (70

Appendix B. Here we just give the result. We write the free

energy to second order in the form: The equation folG is also easily found. ExpandinG= G,

+AG;, one sees thab, is the pair correlatiorg* of the

Bi=BFo+ BF{+ BF .+ BF,. (64)  liquid at temperaturel/m, while the correctionG; is the
solution of the linear equation:

The zeroth-order terms are

1- -2)1 d Gl(r)
m|09(27TA)+( > )Tm—z—logm 65  Golr)

d BM—1)> v,,(r)
BFo=5 e

d% ., Ho(k)(2+Ho(k))

1 ddk = 3€ 2
BFi=m | sl 1001+ H() + H(K (2m™ (1+H(k)
The solution of these equations and the physical conse-
quences are discussed in the next section.

G,(K). (72)

1
k)2/2]+ ﬁf d9r[G(r)logG(r)—G(r)

+1+B8mu(nG(n)], (66) VIl. RESULTS

In this section, we indicate how to obtain the thermody-
namic properties of the glass within each of the previous
approximation scheme, and we give the results.

whereH (r)=G(r) —1, andH(K) is the Fourier transform of
H(r). It is clear from(66) that the zeroth-order correlation
function G(r) is exactly the pair correlation of the liquid at
the effective temperatur€* = T/m in the HNC approxima- A. Methodology
tion, we thus recover our previous results.

The first-order correction is We have developed in this paper three approximation

schemes.
m—1 The small cage expansion has been carried out directly
ﬂF1=BAWJ dUG(r) > v,.(r). (67)  to first order in Sec. VC, and agrees with the first order
. expansion within the molecular HNC approach. Within this
At this order, we can easily optimize the free energy withfirst-order approximation, the cage size is given explicitly in
respect taG(r), and with respect to the cage sizeWe get  (40) and the corresponding free energyfm) is given in
back the same result fék and the free energy as we had in (39). We need to study thex dependance of. Clearly the
the direct first order small cage expansi@0). only ingredients we need are the free energy and pair corre-
The advantage of this molecular HNC approach is thatations of the liquid at the temperatufé = T/m, which is a
we can compute the second-order term without needing ttemperature which lies in the range of the glass transition
solve for three point correlations in the liquid. The second-temperature, as we shall see. These properties of the liquid
order correction is could be obtained by various means; here we have used the
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HNC closure for the pair correlation and the corresponding 4, (m)=yy— y3+ y3log(— y3/v1),
free energy in order to get therfObviously one could try to -
use better schemes of approximation for the liquid, depend- (M) = y2v5/ v1,

ing on the form ofv(r), in order to improve the results; our \yhere ¥, is the correction term. This is a function of
point here is not to try to get the most precise results, but tQynich we maximize in order to find the critical valug* .
show the feasibility of a quantitative computation of 9|355Writing m* =m;+m,, wherem; is the critical value com-

properties using the simplest approximationGiven the  pyted to first order andh, is the correction, these numbers
temperatureT, the procedure is the following: we vary the gaiisfy the equations:

value ofm, and for each value, we can compute the cage size

A and the free energg(m). As expected on general grounds 0= ‘9_‘%(m )

(see Sec. I, we find a free energy which increases with om- 7

until it reaches the critical valuen*(T) (such that(17) P pr 1
holds, which is the phase transition boundary. This critical = — ﬂ(ml)(_lpzl(ml)) ]
value is defined by¢/dm=0. The configurational entropy am am

is given by the solution of the two general equatidfid),  For consistency of this perturbative expansion, one should

and the free energy of the glass is nothing $0m*,T). We  then compute the saddle point valuefohs
get the internal energy and specific heat by differentiating the )
free energy. The criticalKauzman temperatureTy is de-  5_ _ y3(My) y2(my) ya(my) o y3(mMy) (77)
fined by m* (Ty) = 1. y1(my) yi(my)® 2omy yi(my)

The second approximation scheme is the harmonic r
summation method. Again we have an explicit fofB@) for

the free energy per particks(m) only from the knowledge = hr(My) + (). (78)

of the free energy and the pair correlation of the liquidat  Haying the free energy as a function of we proceed as

Having thism dependance the procedure to get the thermopefore by maximizing it, following exactly the same steps as
dynamic results is entirely the same as that of the first ordef the first-order computation.

result.
The third approximation scheme is obtained by the ex- )
pansion of the molecular HNC free energy to second order if8- Numerical procedure
the cage Size, as described in Sec. VI. For given values of the We have studied the case of soft Spheres in three dimen-
temperaturel and the number of replicas, we first solve  sjons interacting through a potentia{r) = 1/r2 We work
the standard HNC equations giving the pair correlationfor instance at unit density, since the only relevant parameter
G(r)=g*(r) at the temperaturd* =T/m. Then we can s the usual combinatiofi =pT~ Y4
Compute the functi0n§, T and the correction to the correla- For each of the three approximation schemes mentioned
tion G, by solving the set of linear equatio(B9), (70), (71).  above, we need to compute the free energy and the pair
The free energy is then computed to second order 84N correlation of the liquid in a temperature range close to the
We use the results of the second-order term in the eXglass transition. We have used the HNC approximation to get
pansion in a perturbative way which we shall now describepoth g(r) and the free energy. We have solved the HNC
One might be tempted to use the free energy computed tglosure equations numerically. For spherically symmetric
order A? without expanding the solution to ordéf. How-  functions in dimension three, we use the Fourier transform
ever, this procedure is not useful because the equations trufyr the radial dependance, in the following form:
cated at the ordek? do not have a solution. One must do the

(79

(76)

€and the free energy of the glass as

computation fully perturbatively in a consistent way, which qh(q)=27-rfoodr sin(gr)rh(r). (79

we now explain. Let us define the various terms in this free 0

energy as We discretize this formula introducing inspace a cut-
BU(AM)=yo+ Ay, +AZy,+ 73 l0gA, (72) off R and a mesh size. In this way, we have a simple

formula for the inverse Fourier transform and we can also

where theys are functions ofm that we can compute. We Use the fast Fourier transform algorithm. In most of the com-
suppose that they, term is small and write the valua,,,  Putations, we have takem=1/32.5 andL=128a~4. We

which maximize® the free energy as have checked that dividing by 2 and multiplyingL by two
(thus going up to 512 poinksioes not alter the results. The
Ys 727% solution of the equations can be found either by using a
Amax= — 7_1_ ¥ (73 library minimization program, or a program which solves
1

nonlinear equations. We have found first the solution at low
gnough density and then followed it by continuity while

giving a free energy on this maximum approximately equa , ; ;
gradually increasing the density.

© The second-order expansion of the molecular HNC
P(Amax, M) = 1 (M) + ¢h(M) (74)  theory requires some more work, because we need to com-
pute the various tensos,,, T,,, and the correction tG&.
with After decomposing the tensors in their various irreducible
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FIG. 4. Effective temperature of the molecular liquid at the transitioh, ~ F!G. 5. Parameted/T vs the temperature, computed in an expansion to first
=T/m*, vs the temperaturd, computed in an expansion to first order prder(dashed-dotted lineand second ordéfull line) in the cage sizé, and

(dashed-dotted lineand second ordefull line) in the cage sizé\, and in " the harmonic resummatiofashed ling
the harmonic resummatioashed ling

in a harmonic potential in the neighborhood of a local mini-
mum of the energy. The typical square size of the displace-

components, using rotation invariance, these components arrﬁrent is given by

discretized on the same grid gér) and the linear equations 5

are solved by a standard library routine. A=((ri=(ri))) (80)
which is the physical definition of the square size. The cage
size is plotted versus temperature in Fig. 5.

C. Critical temperature and effective temperature The cage size is nearly linear in temperature, as it would

We plot in Fig. 4 the effective temperatufé, equal to b_e in aT-independent quadr_aFic confinin_g potenti_al. This in-

T/m*, versus the temperatufieof the thermostat. The tran- dicates that the local confln_mg potential has little depen-

sition temperature is given by* =T. This gives the ideal dance on the temperature in the whole low temperature

glass transition temperature. Within the first-order expanPhase.

sion, we findTx=.14; the harmonic resummation givég

~.19 and the second order perturbation theor{is=.18.  E. Free energy and specific heat

We see that the two best methods, the second-order and har- | Fig. 6, we plot the free energy versus the temperature

monic resummation, are in good agreement and give a Critior each of our three approximations. The strong consistency
cal value ofl" aroundI’=1.52. This value of’" is in good  of the second-order small cage expansion and the harmonic
agreement with the published values of the glass transition gesymmation are clearly seen. The data extrapolates at zero
the soft sphere system, which range around™l.6. temperature to a ground state energy of order 1.95. This is

~ We also notice that the effective temperature stays relare|ated to the typical energy of the amorphous packings of
tively constant when the actual temperature varies. Our re-

sults are not so far from a situation in which one would have
T*=T,, independently from the value of the temperafiire 35
which means thatn=T/T, . A nearly linear variation om

versusT is often found in discontinuous spin glasses, where

it is characteristic of a free energy landscape which is totally
frozen in the whole low temperature phadddt is worth a0k
noticing that such a relation has also been found for the
temperature dependance of the fluctuation dissipation ratio_
(although, as this ratio is a dynamical quantity, it rather
equalsT/Tp, whereTp is the dynamicalmode-coupling
transition temperatuye 25 r

D. Cage size

In replica space, the cage size characterizes the size o' 29 = — - i ~0

the molecular bound state, in the approximation of quadratic ' T

fluctuations, as defined i26). Its physical meaning is easily FIG. 6. Free energy vs the temperature, computed in an expansion to first

EStabliS.hEd: In the glass phase at low temperatures,' ON€ C8fder(dashed-dotted lineand second ordéfull line) in the cage sizé, and
approximate the movement of each atom as some vibrations the harmonic resummatioashed ling
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FIG. 7. The internal energy vs the temperature, computed in an expansion {1G. 8. Specific heat of the glass vs the temperature, computed in an ex-
first order(dashed-dotted lineand second ordgfull line) in the cage size  pansion to first orde(dashed-dotted lineand second ordefull line) in the

A, and in the harmonic resummati¢giashed ling Also shown is the inter-  cage sizeA, and in the harmonic resummati¢ashed ling The dotted line

nal energy of the liquiddotted ling. is the specific heat of the liquid.

] ) ] phase, with a liquid pair correlation, etc. The fact of finding
soft spheres. More precisely, if we consider all the amory,e pylong—Petit law is an indication that our whole scheme
phous packings of soft spheres at unit density, we can couRjt computation gives reasonable results for a solid phase. At
them through the zero temperature configurational entropy, |ter stage, we would like to go beyond the Dulong—Petit
The lowest energy at which one can find an exponentially,,, and get a better computation of the spectrum of soft

large number of such packings is the ground state energy Qfipration modes in order to get a Debye-like law. This is left
the glass state which we find within our approximationssq, fture work.

equal to 1.95. This could be amenable to some numerical

test>*-52 However, in order to do such a test, one must re- confiqurational entropy

member that we have not taken into account the existence of

a crystal: therefore, one must first remove all crystal like  In Fig. 9, we show the configurational entropy versus the
solutions, i.e., solutions which correspond to a crystal withffee energy at various temperatures, including the zero tem-
some local defects. These solutions can be characterized Igrature case. We have included here for simplicity only the
the presence of delta functions at the appropriate values d¢gsult from the harmonic resummation procedure.

the momenta. This procedure of identifying crystal like so- ~ We notice that the various curves corresponding to dif-
lutions has been explicitly done numerically in Ref. 52. Gen-ferent temperatures are not far from being just shifted one

eralizing the present result to hard spheres would allow for &0om another by adding a constant to the free energy. This
computation of random close packing density, a notionindicates that the main effect of temperature amounts to an

which is often used in granular materiafs. additive constant in the energies of all amorphous packings.
In F|g 7, we p|0t the internal energy of the g|ass VersusThiS would be the case if the states at finite temperature

temperature, computed in each of our approximation
schemes. Also shown is the internal energy of the liquid. The 15
internal energy is continuous at the transition.

In Fig. 8, we plot the specific heat versus temperature. It
is basically constant and equal to 3/2. The fluctuations are
numerical errors due to the extraction of the specific heat
through the numerical second derivative of the free energy.
A specific healC=3/2 is nothing but the Dulong—Petit law
(we have not included the kinetic energy of the particles,
which would give an extra contribution of 3/2This result is
very welcome: in fact, if we had treated the crystal at the osr 1
same level of approximation as we considered here for the
glass, we would get the Einstein model for which the specific
heat is also given by the Dulong—Petit law. Thus, we have
found that the specific heat of the glass is equal to that of the oo - 2 Y = 35
crystal, which is a good approximation of the existing data. f
Notice that it was not obvious at &l priori that _We WO_UId FIG. 9. Configurational entrop¥.(f ) vs the free energy, computed within
be able to get such a result from our computations, since Wge harmonic resummation, at temperatufs 0.,0.05,.1 (from left to
are performing some computations purely in the liquidright).
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could be deduced continuously from the zero temperaturéon. If this is true (and this is known to happen in many
amorphous packings, with an extra contribution to the freemodels, the situation is rather simple and corresponds to
energy coming from the vibrations, if the vibration spectrumwhat is called in the literaturene step replica symmetry

is more or less state independent. breaking This situation corresponds to the case in which the
deep minima of the free energy are completely
G. Dynamical transition uncorrelated® One could think of checking this hypothesis

numerically by computing for small systems all the meta-

I ,IAshwe dls_cusseoclj in the |Intr0du_c_t|on, at the mean fieldgpje states at zero temperature, and studying the distribu-
evel there exists a dynamical transition at a temperalye o, of their energies. Let us mention for completeness that

larger than the thermodynamic transition temperatlie there exist models in which the deep minima of the free

This phas.e IS chgractenzeq by the dynamic stateme-nt thate&ﬁergy are partially correlatdthis is very probably the case
system will remain forever in the same valley, and its free

) ter than th b b i of spin glasses). In such a case, any path in tme—T
tehnergy t|s.bgrt<.ea erf than ef_eqw;_ r|ur|n ort1e ecl?gs$h| MISS&hace which connects the poinh(TM) to the high tem-
q € fct)rr: rtl tl;}.'or:jo gcor;]|gure} |qnaten ropy. f_'sld US V- herature region crosses a phase transition, and one would
ent that this dynamic phase IS Just a mean leld CONCePL oy 14 jntroduce a more complex construction in order to
which should disappear when corrections, such as activate oid this singularity
processes, due to the short range naturg of the pote_n'gal, are 1o approach described in this paper opens the way to
taken into account. However, if the barriers are sufﬂuentlythe

: - computation of the thermodynamic properties of glasses
high, metastable states have a very large lifetime and thegt all temperatures using the generalization of the standard

strongly affect the dy‘r)am|cs._ It woulq _be thus |nterest|Pg_ totools of liquid theory. Although it is not explicitly discussed
try to compute the “dynamic transition temperature” in . . . .
in this paper, this approach allows also the computation of

these systems. the density correlation functiog(r) in the glassy phase; we
In the framework of the harmonic resummation, one y ) unctioy glassy p '
plan to address this point in the next future.

finds that the approximation breaks down at small but posi* It is clear that the results presented here just use the

tive e if the matrix of second derivatives has negative eigen- . . o Co
. ; : . simplest possible nontrivial approximations. Nevertheless,

values. From this point of view, the appearance of negativé . " . L
. Within these simple approximations, we have shown that a

eigenvalues signals the dynamic transition. Unfortunately, in
9 g y y easonable value of the Kauzman temperature can be de-

our chain approximation, all the eigenvalues are positive ar'ved as well as several thermodvnamic broperties of the
all temperatures and no dynamic phase transition can ba’ oo y prop

seen: the free energy is always well defined for snaaflhis glass phase: the internal energy, free energy, configurational
L I;?ntropy and specific heat, and the cage radius. Obviously,

we use may be reasonable at low temperature but it is cel! study S0 far'has t?eeq res:tricted t(.) gquilibrium propertigs,
tainly not good at high temperatures. This problem will diS_and the equilibrium situation is very difficult to reach experi-

appear if one uses a better method to compute the spectru ’entally. HOW.eVeT’ one can thm!( of measuring each OT the
giving reasonable results also at higher temperatures. On t ove properties in numerical simulations, where the joint

other hand, in the framework of the small cage expansion':Ise of smart algorithms and small enough system can allow

the perturbative method assumes that there is always a bouﬁ%_therma_llze. Thie;](tensmn ct))f tr:je pre_sent(;nethodlf to tf)lnary
state. Although this should not be true at high temperaturd"Xtures Is a work that must be done in order to allow for a

the breakdown of this assumption cannot be seen in a peFgore precise comparison with the results of numerical simu-
turbative approach lations. Some steps have already been done in this

i 40
It is clear that a study of the dynamical phase transitiorp'recm_)n' . . _ .
should be done using some different tools than the one we 1 1iS equilibrium study is to be considered as a first step
have developed here. This is not surprising: the dynamicapefore dealing with the out of equilibrium dynamics. Beside
phase transition is present at a temperature higher than tf8€ dynamics in the low temperature phase, a very interesting

static one and the approximations which we have been usingd 0Pen problem is the computation of the time dependent
are low temperature ones. correlation functiongand as a by-product the viscogitin

the region abovel,. However, a better understanding of
activated processes in this framework is a crucial prerequi-
site.

Deducing the thermodynamic properties of the glass Within the equilibrium framework, we have imple-
from those of a liquid may look crazy. Of course, the mainmented so far our general strategy using rather crude meth-
trick is that we use a molecular liquid, with a variable num-ods. These should be improved, which means that one must
ber m of atoms per molecule, which will have a glass tran-perform a more careful study of the molecular liquid. There
sition at a temperature lower thary wheneverm<1. We  are many directions in which one could move:
wish to underline again what is the basic hypothesis of our ¢ Improve the computation of the spectrum in the har-
approach. We assume that there exists a thermodynaminonic approximation. This harmonic approximation should
glass transition, which is of the general type described in oube excellent and allow to study from first principles all the
“basic scenario.” This assumption means that there exists fow temperature anomalies which have been observed in
path in them, T space which connects the poims<1, T(™ glasses. Within this approximation one just needs to study
to the high temperature region without crossing any transithe liquid of the centers of masses of the molecules, which

VIIl. DISCUSSION AND PERSPECTIVES
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interact through the effective interaction described4d). where we have also defined the pair correlation function
Of course the interaction term coming from the Tr log termg(Xx,y), which goes to one at largeenter of magsdistance.

is not easy to deal with, but still this is a very well-defined The connected pair correlation is

problem of liquid theory for which precise approximation h(x,y)=g(x,y)— 1. (Ad)
scheme should be developed.

. Use approximations different from HNC, which may Elementary functional differentiation gives

work better in the liquid phase. Obviously this will depend ap(X) B
on the interaction potential, and a detailed study of several J[ —Bu(y)] P()SX=y)+pOINOGY)IP(Y). (AS)
different types of potentials would be very interesting. One can also introduce the direct correlation functiéx, y)

* Use numerical simulation in the liquid phase in order tothrough:
get some higher order coefficients of theexpansion: these
are given by higher order correlation functions which could L= U] = ! S(X—Yy)—c(X,y). A

y)—c(xy) (A6)
be measured in simulations. ap(y) p(x)

« Introduce resummation techniques that are more effiThe direct correlation is thus related to the connected pair
cient than the harmonic one. correlation through the Ornstein—Zernike equatios (1

Some of the previous described techniques could also bé hp) ~*h which reads more explicitly:
used to understand better the properties of the dynamical
phase transition. c(x,y)=h(x,y)+f dx1h(X,X1)p(X1)h(X1,Y)

To summarize, our approach transforms the problem of
the thermodynamics of the glass phase into a problem of a
(complicated liquid state. We hope that the sophisticated +f dx;dxzh(X,X1) p(X) (X1, X2 )h(Xp,y) +- - .
methods developed in liquid state theory will be brought to (A7)
bear on the study of glasses.

The idea of Percus is to compute the pair correlation by
considering the one point density with a molecule fixed at
one point. Let us consider a problem in which we have added
one extra molecule, fixed at a poiat={z},...,z"}. This

It is a pleasure to thank David Dean andnitdonasson  €xtra molecule creates an external potentigt) =V(x,z).
for useful discussions. The work of MM has been supported he one point density in the presence of this external poten-
in part by the National Science Foundation under Grant Notial, py(X), is related to the density(x) and pair correlation

ACKNOWLEDGMENTS

PHY94-07194. g(x,z) in the absence of an external potential through the
conditional probability equation:
pu(x)=pB(x,2)/p(2) = p(X)g(X,2). (A8)
APPENDIX A In order to try to build a successful approximation scheme,

let us introduce two quantitieR,(x) and S,(x) which we

‘ For comglgtefness, we gllve rere alc_jerlve(litlon (t)f the(')_H\Iccan calculate in presence of the external potential, or when
ree energy(55) for our molecular replicated system. One this potential is turned off (=0). If their variations are

could use the s‘t‘and.arfj, Q|agrammat|c metﬁ’okié,n here we smooth enough, one can approximate their variations by the
shall follow the “cavity” like method of Percus® We study first-order term:

N molecules with coordinates ,i € {1,..N}. Eachx; stands SR(X)
for the coordinates of all atoms in molecutex;={x7}, a R \\~Rr (x +j d X _ A9
e{1,... m}. The energy of the system is given by uX)=Ru=o() y5$(y)u:0[8“(y) Su-o(¥)]- (A9)
_ . . The standard perturbation theory would be obtained by tak-
E .2<, VX ’X')+Z uex), (AD) ing R,(X)=p,(x) and S,(x)=u(x). However, the linear
where v is the intermolecular potentiiin our case, we truncation (A9) can be better behaved with some better
would haveV(x,y) =S 0 (x2—y?) but we shall keep a gen- choices of the function® and S. The HNC closure corre-

i 86
eralV in this Appendiy, and the external potentialr) has ~ SPONds to taking’

been introduced for future use. R,(X) =10g(py(X)€PUM):  S,(X)=py(X). (A10)
We shall need the following definitions. The one mol-
ecule density is Then, we have
SR(x)
p0)=2 (11 80¢-x) ), (A2) (u=0)=c(x,y) (A1)
T\ a o3(y)

where the averagg) is with respect to the Boltzmann mea- gnd the linear equatiof9) becomes
sure expt BE). The two molecules correlation is

p(z)(x,y):; <1;[ 5(X?—Xa)1_b[ 5(Xib_xb)> Iogg(x,z)+BV(x,z)=fdyC(x,y)p(y)h(y,z)- (A12)
. Together with the inversion relatiofA7), this defines a
=p(X)g(x,y)p(y), (A3) closed set of equations for the one and two point molecular
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densities which are the HNC closure. It is easy to show that 1
these equations express the stationarity of the free energy v(x®—yH)=mu(X-Y)+ EE U un(X=Y)
functional ¢{ p,g] defined in(55), with respect to variations 2 e
of g.
The result for the free energy can be deduced if we as- X; (Up—op)(u—v5)+---. (B3
sume that:

and expand the correlation according(6d). Thanks to the

* There exists a variational principle where the free en-constraint(62), the term inmv (X —Y) contributes exactly as
ergy is a functional ofy and p.

« The potential3V(x) enters in the free energy in such a mf dXdYG@X-Y)v(X-Y) (B4)
way that the internal energy takes the exact form
12 dydx(x)p(Y)9(x,y)V(X.Y). to all orders inu,v. The term inv,,(X—Y) contributes a

* The free energy functional aj=1 andv =0, which  piece of orderA which is
depends only om is given by the exact form

gJ];[ ddxap(x)mgiex)_ (A13) f dX dYp(u)dup(v)dv G(X-Y)

These three conditions fix in a unique way the free en-
ergy functional and are satisfied in the previous approach.

Indeed, the second condition implies that the free energy
can be written as and a piece of ordeA? which is:

X2 v, (X=Y) X (ud—v?)(ud—v?) (B5)
2% a

B¢=B/2f dydxo(X)p(Y)g(x,y)V(x,y)+x[g,p], (Al4) f dXde(u>dup<v>dv§V v,w<X—Y>§ (u3—v)

wherey does not depends explicitly g If we differentiate
the previous equation with respectdpwe find X (ud—v?)

oy
89(x,y)”

If we identify the previous equation with E¢B5) [after mul-
tiplication by p(x)p(y)], we find that the proposed free en- (B6)
ergy[Eq. (A12)] has the same derivative with respecgtof g a5t piece of ordeA? comes from the fourth derivative
the exact one. Now the only ambiguity that remains in theof v in (B3):

free energy is its value at=1 andv =0, which is fixed from
the third condition.

S, (X— Y)( ; [uub+vb0h]— ZKM)

BI2p(x)p(Y)V(X,y) + (A15)

+T,W<X—Y)(§ [(uz—vb(ui’—v';)]—zm)

f dXdYp(u)dup(v)dvG(X=Y) X v,ppe(X—Y)

nvpo
APPENDIX B

X (-2 (-2 (Ud-v2)(ud—0vd). (B7)

Here, we carry out the small cage expansion of the mo- a
lecular HNC equations to second order. We start from thei\lotice that the use of62) allows us to find the ordeA?
HNC free energy(55), we introduce the center of mass and expression without ever introducing the ord€rterm in the

relatl\{e coordlnate_sgaz X.+ u® andy®=Y+u?, and we ex- expansion of the pair correlation. This will also be true for

pand in the cage Siz8, using the m'olecular.dens'|(ﬁ9) and the other contributions below. This strategy is crucial for

the decomposition qf the correlgtlon function .g|ven(6'ii). eeping the computation not too big. The various pieces are
We shall examine successively the various pieces Oléow easily computed using the fact theandv variables are

2mpy. The form of the simplest piece is deduced trivially gaussian distributed with the second moment givef6).
from the constraint$62): We get:

(we remind that herex andy stand for all the molecular
coordinates and are therefarel-dimensional vectors, while =Vj dXG(X)< mo(X)+A(m—1) >, UW(X)>
the center of mass coordinatésandY are d-dimensional. "
We go next to the piece involving the potential:
+VA2(m—1)f dx>, (ZSW(X)UW(X)
Bg f dx dyp(X) p(y)v(x* =y g(Xx,y). (B2) :

m—1
We expand the potential as FAT (X0 (X) + 2m U’““’V(X))' (B8)
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We now turn to the ‘§logg” term in the free energy &h8¢. Expanding as before, we get

f dx dyp(x)p(y)g(x,y)logg(x,y)

:J dx dYG(X—Y)IogG(X—Y)+J dX de(U)dUp(v)dv—ZG(i_y)

x

mpo

S, (X~ Y)( % [uoud+vbvd]-2K,,

+TMV(X—Y)(% [(ug—vg)(uS—UB)]—sz)

X

S,o(X— Y)( % [ubud+vPob]-2K,,

+Tpg(x—Y)(§ [(ug—vg)(ug—vg)]—zKM” (B9)

which gives after performing the gaussiamndv integrals: H H 2
Xi Xi+1)=h(X;—Xj 1)+
4A2(m—1) ( j j+l) ( j ]+1) et

G(X)

S;LV(XJ - XJ +1)
Vf dx( G(X)logG(X)+

X

1 Eb [ujk”ﬂuf”ﬁ uf’ﬂ‘ﬂufﬂvy]—ZKW)
ES,W(X)S,W(X)+S,“,(X)T,W(X)

x>
%

+T/.1,V(XJ_XJ+1)( % [(UF,M_uj!JJrl,M)

+TW(X)TM(X) . (B10)
b _ b _
We now study the last piece o283, namely, the convo- X(Uj,, = U 1,)] 2KW) ' (B12)
lution term
S (—1P f dxy . . . dxop(X)h(Xq %) p(Xy) We notice again that higher order terms do not contribute to
p=3 P P ’ order A%. The second-order terms generated by the expan-
sion (B12) when it is inserted intdB11) are obtained b
XN(X2,X3) . - - p(Xp)N(Xp X1). (B12) (B12) aBLY Y

picking up theh(X;—X; ) contribution in all but two val-
Here again eack; is amad-dimensional vector including all ues ofj. In order for the result not to vanisfbecause of

molecular coordinate, which we decompose into the centef62)], we need that these two special valueg e neigh-
of massX; and the relative coordinates}‘. Therefore, each bors. We thus get the following ordé? contribution to the
pieceh(X;,X;+1) in the above product is expanded as convolution term:

> (—1)Pf dX; ...dX,p(up)duy . .. p(up)du, >

p=3 HVpo

s,w(xl—xz)( Eb [u} uf,+ ug#ugyy]—ZKW)

+Tw<x1—x2>(§ [(u?,ﬂ—uB@(u?,y—uS,»]—ZKw)

S,o(X1— x2)< % [uf uf,+ud,uf,1- 2K,,(,)

+T,w<x1—x2>( ; [(u?,p—u2,9>(u2,(,—u2,(,>]—2r<po)}h(xs—xo o h(Xpo 1= X h(Xp—Xy). (B13)

After performing the Gaussiamanduv integrals, we find an Grouping together all the pieces of the free energy
expression in terms of the Fourier transformed functionswvhich we have considered, we obtain the second-order ex-
h(k), S,.(k), andS,,(k): pression of the free energy used(8v)—(68).
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