Physique Statistique, Amphi 5

J.P. Bouchaud

Plan du cours

- I. Interactions et Gaz Réels
 - Potentiel d'interaction
 - Corrélation de paires
 - Corrections du viriel
- II. Transitions de phases et champ moyen
 - Approximation de Van der Waals
 - Transition Para-Ferro et champ moyen
 - Universalité

I. Gaz réels – Introduction

• N particules dans un volume V

$$\mathcal{H} = \sum_{i} \frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} \sum_{i \neq j} u(|\vec{r}_{i} - \vec{r}_{j}|)$$

- Différents états possibles: gaz, liquides, solides (...) mais sans rien changer au potentiel d'interaction (??)
- Gaz parfait: $u(r) \equiv 0 \rightarrow$ particules indépendantes

$$p(\vec{r})d^{3}\vec{r} = \frac{N}{V}d^{3}\vec{r} = \rho d^{3}\vec{r};$$
 $p(\vec{r}_{2}|\vec{r}_{1} = \vec{r})d^{3}\vec{r}_{2} = \rho d^{3}\vec{r}_{2}$

Probabilité non conditionnelle = probabilité conditionnelle

I. Gaz en interaction – Potentiel d'interaction

- Gaz monoatomique, potentiel isotrope v(r)
- Courtes distance: recouvrement des orbitales electroniques, forte repulsion (coeur dur)
- Distance intermédiaire: attraction $\frac{\xi}{\xi}$ entre dipoles fluctuants en r^{-6}
- Modèle simple: Lennard Jones

$$u(r) \approx u_0 \left[\left(\frac{a}{r} \right)^{12} - 2 \left(\frac{a}{r} \right)^6 \right]$$

Potentiel de Lennard Jones de l'argon

I. Gaz réels – Ordres de grandeur

- Ar: $u_0/k \approx 120$ K et $a \approx 0.35$ nm (Xe: 225K et 0.41nm)
- Pour $\mathcal N$ particules dans 22,4 litres: $d = \rho^{-1/3} \approx 3$ nm
- $\rho a^3 \sim 10^{-3}$ et $u(d) \sim 10^{-6} kT \rightarrow$ interactions *perturbatives*
- Temps entre collision: $\rho \times \pi a^2 \times v^* \tau \sim 1 \to \tau \sim 10^{-9} {\rm sec}$
- Effets quantiques: $\lambda_T = h/\sqrt{2\pi m kT} \approx 0.01$ nm $\ll d$

I. Gaz réels – Corrélations

 Probabilité conditionnelle de trouver une particule a distance r d'une autre:

$$p(\vec{r}|\vec{r}_1 = \vec{0})d^3\vec{r} = \rho g(r)d^3\vec{r}$$

g(r): Fonction de corrélation de paires

- $g(r \gg a) \rightarrow 1$ décorrélation à grande distance
- g(r) est accessible expérimentalement (diffusion de la lumière, rayons X, neutrons...), qui mesure sa transformée de Fourier S(k) – facteur de structure

Corrélation de paires

Fonction de correlation

I. Gaz réels – Corrélations

• Définition formelle:

$$p(\vec{r}|\vec{r_1} = \vec{0}) = V \times (N-1) \times \int_{\vec{r_3}, \dots, \vec{r_N}} \left[\prod_{k \ge 3} d\vec{r_k} \right] P_{eq.} \left(\vec{r_1} = \vec{0}, \vec{r_2} = \vec{r}, \vec{r_3}, \dots, \vec{r_N} \right)$$

• ou, en utilisant le poids de Boltzmann:

$$p(\vec{r}|\vec{r_1} = \vec{0}) \approx \frac{VN}{Z} \int_{\vec{r_3},...,\vec{r_N}} \left[\prod_{k \ge 3} d\vec{r_k} \right] \exp\left[-\frac{\beta}{2} \sum_{ij} u(|\vec{r_i} - \vec{r_j}|) \right] \bigg|_{\vec{r_1} = \vec{0}; \vec{r_2} = \vec{r}}$$

I. Gaz réels – Pression

• On peut exprimer l'énergie totale gràce à g(r):

$$U = N \langle \frac{\vec{p}^2}{2m} \rangle + \frac{N}{2} \left\langle \sum_{j \neq 1} u(|\vec{r}_1 - \vec{r}_j|) \right\rangle$$
$$U = \frac{3}{2} NkT + \frac{N}{2} \int d^3 \vec{r} \rho g(r) u(r)$$

• En travaillant un peu plus, on peut aussi obtenir la pression connaissant g(r):

$$p = \rho kT - \frac{1}{6}\rho^2 \int d^3 \vec{r} g(r) r u'(r)$$

Résultats généraux pour des intéractions à deux corps

I. Gaz réels – Basse densité

- A basse densité, la probabilité d'une interaction "triple" $\sim (\rho a^3)^2$ est petite par rapport à la probabilité d'une interaction de paire ($\sim (\rho a^3)$)
- La corrélation de paires est alors déterminée par l'interaction directe entre particules

$$p(\vec{r}|\vec{r_1} = \vec{0}) = \rho g(r) \approx \rho e^{-\beta u(r)} \longrightarrow g(r) \approx e^{-\beta u(r)}$$

• $u(r < a) \gg kT \rightarrow$ probabilité quasiment nulle de recouvrement des coeurs, et pic de probabilité autour du minimum de u(r)

Corrélation de paires

Fonction de correlation

g(r) du gaz dilué au liquide : apparition de structures locales

I. Gaz réels – Basse densité

•
$$p = \rho kT - \frac{1}{6}\rho^2 \int d^3 \vec{r} g(r) r u'(r)$$

• En utilisant
$$g(r) \approx e^{-\beta u(r)}$$
 on trouve:

$$p = \rho kT + \frac{\rho^2}{6} \int d\vec{r} r \beta^{-1} \frac{\partial}{\partial r} \exp[-\beta u(r)]$$

• Après intégration par partie:

$$\frac{p}{kT} = \rho \left[1 + B_2(T)\rho \right] \qquad B_2(T) = 2\pi \int dr \, r^2 \left[1 - \exp[-\beta u(r)] \right]$$

 B₂(T): "second coefficient du viriel" et première correction à la loi des gaz parfaits

I. Gaz réels – Basse densité

• $B_2(T) = 2\pi \int dr r^2 [1 - \exp[-\beta u(r)]]$

• Analyse dim. :
$$u(r) = u_0 f(r/a) \longrightarrow B_2(T) = a^3 F(kT/u_0)$$

- A très haute température, seul le coeur dur compte: $B_2(T) \approx a^3 > 0$, la pression est augmentée
- A plus basse température, la partie négative du *u* commence à contribuer, et B₂ peut devenir négatif

• Note:
$$p/\rho kT = 1 + \varepsilon F(kT/u_0) + \dots$$
 avec $\varepsilon = \rho a^3$

Correction du viriel

pV/kT fonction de p

Correction du viriel

 $B_2(T)$

 $B_2(T^*) = 0$: température de Boyle

I. Gaz réels – Compressibilité

• Une autre identité remarquable: fluctuations du nombre de particules dans un petit volume V:

$$\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle \left[1 + \rho \int d^3 \vec{r} \left(g(r) - 1 \right) \right]$$

• Or, dans l'ensemble Grand-Canonique (Amphi 4):

$$\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle k T \rho \kappa_T$$

• Et donc, de manière générale:

$$\left| kT \frac{\partial \rho}{\partial p} \right|_T = 1 + \rho \int d^3 \vec{r} \left(g(r) - 1 \right)$$

I. Gaz réels – Compressibilité

$$kT \left. \frac{\partial \rho}{\partial p} \right|_T = 1 + \rho \int d^3 \vec{r} \left(g(r) - 1 \right)$$

- Sans intéractions: $g(r) \equiv 1 \rightarrow kT \frac{\partial \rho}{\partial p} = 1$ (gaz parfait)
- Intéraction de volume exclu: $g(r < a) = 0 \longrightarrow$ compressibilité diminuée
- Au contraire, l'attraction conduit à g(r) > 1 et donc une augmentation de la compressibilité

I. Gaz réels – Développement du viriel

• Plus généralement, on peut écrire:

$$\frac{p}{kT} = \rho + \sum_{n=2}^{\infty} B_n(T)\rho^n$$

où les $B_n(T)$ décrivent les effets à *n*-particules:

- Interactions directes à n-corps (eventuellement)
- Interactions induites
- Par exemple, pour un potentiel à deux corps, $B_3(T)$ décrit la modification du potentiel due à la présence d'une troisième particule à proximité: $g(r) \neq e^{-\beta u(r)}$
- Exemple: interactions de déplétion entre sphères dures

Forces de déplétion: sphères dures

Attraction entropique ! $V_{ex}(1\cup 2) = V_{ex}(1) + V_{ex}(2) - V_{ex}(1\cap 2)$

I. Gaz réels – Développement du viriel

- Calcul systématique des B_n , décrivant des effets d'ordre $(\rho a^3)^{n-1}$: possible mais pénible
- \rightarrow Développement de p en ρa^3 , utile pour comprendre les faibles déviations à la loi du gaz parfait, mais inopérant pour décrire une transition de phase quand le système devient dense ($\rho a^3 \sim 1$)
- Qualitativement: l'attraction conduit à la formation de paires, qui favorisent la formation de triplets, etc. → condensation et formation du liquide ou même du solide !

II. Transitions de phases

- Grand nombre d'exemples
 - Solide Liquide Gaz
 - Ferromagnétique Paramagnétique
 - Cristaux liquides : nématiques, smectiques, cholestériques
 - Phases cristallographiques dans les solides
 - Suprafluide liquide visqueux, etc.

Transition solide-liquide

*H*₂0 à 272K et à 274K!

Critaux liquides

Phases cristallographiques

Volume atomique du Plutonium solide

Diagramme des phases

Transitions discontinues/continues, avec/sans changement de symétrie

II. Transitions de phases

- Brisure de symétrie et effets collectifs
- Effets non perturbatifs: discontinuités et singularités l'interaction change profondément la nature du problème

II. Transitions de phases

- Graal: (1) calcul du diagramme des phases, (2) description du point critique et des singularités
- Méthodes théoriques:
 - approximatives (ex: champ moyen), perturbations resommées
 - modèles exactemant solubles (rares)
 - simulations numériques, etc.

- Premier exemple historique d'un argument approximatif qui prédit une singularité (Prix Nobel 1910)
- Potentiel d'interaction: coeur dur + partie attractive
- Le coeur dur diminue le volume accessible et donc l'entropie de répartition spatiale
- La partie attractive modifie la répartition de l'énergie entre degrés de liberté de translation et de position

- Calcul microcanonique (Amphi 4)
- Rappel: gaz parfait, nb de configurations $\boldsymbol{\Omega}$
 - Répartition spatiale : V^N
 - Répartition énergétique: surface d'une sphère de rayon $P = \sqrt{2mE}$ à 3N dimensions: $S_{3N}P^{3N-1}$
 - Indiscernabilité des particules : $\Omega \rightarrow \Omega/N!$

- Calcul microcanonique approximatif
- Répartition spatiale : volume exclu = $(N-1)a^3 \rightarrow [\text{Apprx 1}]$ $[V - Na^3]^N$
- Répartition énergétique : $E = E_c + \mathcal{U}$, surface d'une sphère de rayon $P = \sqrt{2mE_c}$ à 3N dim. avec [Apprx 2]:

$$\mathcal{U}\approx -\alpha N\rho a^3 u_0$$

Chaque particule a une prob. d'interaction ρa^3 , qui contribue $\sim -u_0$ à \mathcal{U}

• Indiscernabilité des particules : $\Omega \rightarrow \Omega/N!$

• Calcul microcanonique approximatif: $(b = a^3)$

$$S(E,V,N)/k = \ln \Omega(E,V,N) \approx N \ln \frac{V-Nb}{N} + \frac{3N}{2} \ln \frac{2[E-U]}{3N} + N \ln C$$

• Température statistique

$$\frac{1}{T} = \frac{\partial S}{\partial E}\Big|_{V,N} = \frac{3Nk}{2[E - \mathcal{U}]} \qquad E_c = E - \mathcal{U} = \frac{3}{2}NkT$$

• Pression statistique

$$\frac{p}{T} = \frac{\partial S}{\partial V}\Big|_{E,N} = \frac{Nk}{V - Nb} - \frac{3Nk}{2[E - \mathcal{U}]}\frac{\partial \mathcal{U}}{\partial V}$$

• Equation de Van der Waals

$$p = \frac{NkT}{V - Nb} + \alpha b u_0 \frac{N^2}{V^2}$$

• Rq: Expression du coefficient du viriel dans l'approx. de VdW:

$$B_2(T) = b - \frac{\alpha b u_0}{kT},$$

en accord avec les résultats généraux. En particulier, la température de Boyle vaut $kT^* = \alpha u_0$.

- Conséquences de l'équation de Van der Waals: transition liquide-gaz
- $T > T_c$: isothermes regulières, une seule phase
- $T < T_c$: séparation de phases: à pression donnée, 3 intersections:
 - l'une dense (liquide),
 - l'autre diluée (gaz),
 - la troisième instable (compressibilité négative).
- Compétition énergie d'attraction/entropie spatiale

Isothermes de Van der Waals

- Conséquences de l'équation de Van der Waals: transition liquide-gaz
- La température critique T_c est telle que la courbe $p(\rho)$ possède un point d'inflexion:

$$\left(\frac{\partial p}{\partial \rho}\right) = 0, \qquad \left(\frac{\partial^2 p}{\partial \rho^2}\right) = 0$$

• Deux conditions + équation d'état \rightarrow T_c, p_c, ρ_c

$$kT_c = \frac{8}{27}\alpha u_0 = \frac{8}{27}kT^*$$

II. Transitions de phases: Point critique

- En ce point *critique*, les deux phases ont la même densité et la compressibilité isotherme $\rho\kappa_T = \partial \rho/\partial p$ est infinie !
- Donc les fluctuations du nombre de particules N dans un petit volume V divergent !

$$\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle \, kT \rho \kappa_T \to \infty$$

- Densité $\rho = N/V \leftrightarrow$ indice optique: Opalescence critique
- Les fluctuations ne sont plus négligeables et les ensembles non équivalents !! $(\infty \times \sqrt{n})$

Opalescence critique

II. Transitions de phases: Point critique

- Le point *critique* est très particulier: les fluctuations deviennent macroscopiques
- Les corrélations (induites par l'attraction à courte portée) deviennent à longue portée

$$kT_c \left. \frac{\partial \rho}{\partial p} \right|_T = 1 + \rho \int d^3 \vec{r} \left(g(r) - 1 \right) \to \infty$$

• Supposents $g(r) - 1 = A \exp(-(r/\xi))$, alors:

$$\int d^3 \vec{r} \left(g(r) - 1 \right) = 8\pi A \xi^3 \to \infty$$

La longueur de corrélation ξ diverge !

II. Transitions de phases: Point critique

- Derrière l'approximation de VdW, la réalité physique est necessairement *collective* !
- Condensation: formation par fluctuations de gouttes de liquide de plus en plus grandes, qui divergent à T_c (cf. la Ola)

II. Transitions de phases: Universalités

• Universalité (1) : Lois des états correspondants (VdW) – dans les variables réduites $\hat{p} = \frac{p}{p_c}$, $\hat{T} = \frac{T}{T_c}$, $\hat{\rho} = \frac{\rho}{\rho_c}$, l'équation d'état est universelle

$$(\hat{p}+3\hat{\rho}^2)(3-\hat{\rho})=8\hat{T}\hat{\rho}$$

• Universalité (2) : forme parabolique de la "cloche" de coexistence

$$\hat{\rho}_+ - \hat{\rho}_- \propto \sqrt{1 - \hat{T}}$$

Loi des états correspondants

Cloche critique: $\Delta \rho \propto \sqrt[3]{1-\hat{T}}$!?!

Cloche critique: $\Delta \rho \propto \sqrt[3]{1-\hat{T}}$!?!

II. La transition para-ferro

- Fer à haute température : pas d'aimantation moyenne m
- Réponse linéaire à un champ extérieur *B*: $m = \chi(T)B$
- $\chi(T)$ augmente lorsque T baisse et *diverge* à la température de Curie T_c
- Pour $T < T_c$, une aimantation non nulle apparait continûment;

II. La transition para-ferro

• Comme la divergence de κ_T , la divergence de $\chi(T)$ signale l'apparition de corrélation à *longue portée* entre les moments locaux $\vec{S}(\vec{r})$:

$$\chi(T) = \frac{1}{3kT} \left\langle \int d^3 \vec{r} \, \vec{S}(\vec{0}) \cdot \vec{S}(\vec{r}) \right\rangle$$

- Si la fonction de corrélation spatiale de l'aimantation décroit sur une échelle de longueur ξ , on a: * $\chi(T) \propto \frac{\xi^3}{3kT} \to \xi \to \infty$
- Expérimentalement:

$$\chi(T) \propto (T - T_c)^{-\gamma}, \quad \gamma \approx 1.25; \qquad m(T) \propto (T_c - T)^{\beta}, \quad \beta \approx \frac{1}{3}$$

*En fait, $\chi(T) \propto \xi^{d_f}$ avec $d_f < 3$

II. La transition para-ferro

- Comment construire une théorie qui prédit
 - Le diagramme des phases
 - La valeur de T_c
 - La valeur des exposants γ,β
 - La valeur de la longueur $\xi(T) \propto (T T_c)^{-\nu}$

II. Transition para-ferro: modèle d'Ising

II. Transition para-ferro: spin indépendants

• Cas J = 0 (rappel): aimantation par spin m(B)

$$m(B) = \langle S_i \rangle = \mu \tanh\left(\frac{\mu B}{kT}\right)$$

• Susceptibilité (loi de Curie):

$$\chi(T) = \frac{\mu^2}{kT}$$

• Diverge à T = 0, pas de corrélations

• Cas J > 0 – quel est le champ effectif agissant sur S_i ?

$$\mathcal{H}(S_i = -\mu) - \mathcal{H}(S_i = \mu) = 2\mu B + 2\mu J \sum_{j \in V_i} S_j := 2\mu B_{eff}$$

• Champ moyen (Weiss): on remplace $\sum_{j \in V_i} S_j$ par sa valeur moyenne zm [Justifié si $z \gg 1$ (loi des grands nombres)]

•
$$B_{eff} = B + Jzm$$

• Equation auto-consistante:

$$m(B) = \mu \tanh\left(\frac{\mu B + \mu J z m}{kT}\right)$$

- Supposons que B = 0 qu'une petite fluctuation d'aimantation apparaisse: $m_t \ll 1$
- Par effet de rétroaction, on a alors:

$$m_{t+1} = \mu \tanh\left(\frac{\mu J z m_t}{kT}\right) \approx \frac{\mu^2 J z}{kT} m_t$$

- $kT > \mu^2 Jz$: $m_{t+1} < m_t$, les fluctuations s'éteignent
- $kT < \mu^2 Jz$: $m_{t+1} > m_t$, les fluctuations explosent
- Propagation de l'ordre proche en proche: un spin aimanté aimante ses voisins, qui aimantent les leurs, etc. avalanche et corrélations à longue portée pour $T \rightarrow T_c = \mu^2 J z/k$

•
$$T > T_c = \mu^2 z J/k$$
: une solution
 $m_0 = 0$

Analyse à champ nul B = 0 • $T < T_c$: trois solutions, deux stables $\pm m_0(T)$

•
$$m_0(T) \propto \sqrt{T_c - T}$$
, $(\beta = 1/2)$

Brisure spontanée de symétrie

$$m \rightarrow -m$$

• Analyse de $m \ge B \rightarrow 0$:

$$\chi(T) \propto \frac{1}{T - T_c}, \quad (\gamma = 1); \qquad m(T_c) \propto B^{1/3} \, (\gg B)$$

II. Champ moyen: méthode variationnelle

- Argument de Weiss: pas très systématique comment le généraliser à des cas plus compliqués ?
- Méthode universelle: remplacer \mathcal{H} (compliqué) par le "meilleur" Hamiltonien sans interaction \mathcal{H}_0
- Le "meilleur" ? : Principe variationnel $F \leq \mathcal{F}_0$
- Pour le modèle d'Ising, $\mathcal{H}_0 = -B_{eff} \sum_i S_i$
- Permet de retrouver l'équation auto-consistante de champ moyen

II. Champ moyen: énergie libre

 On obtient de plus l'energie libre et la singularité de la capacité calorifique:
(3/2) N k

II. Champ moyen: énergie libre

65'80 9007'90'60

1.001

$$\Delta C = \frac{3}{2}Nk \approx 3$$
cal/K/mol

II. Champ moyen: forces et faiblesses

- Méthode simple, intuitive, qui permet de modéliser un comportement collectif et souvent d'obtenir un diagramme des phases qualitativement correct, $kT_c = z$ ($J\mu^2 = 1$)
- Les fluctuations sont négligées, les prédictions sont donc quantitativement fausses, surtout en basse dimension. Par exemple:
 - Pas de transition à temp. finie pour Ising sur une ligne (d=1)
 - Pour un réseau carré, $kT_c(d=2) = 2.27$ (Onsager) < 4

II. Champ moyen: forces et faiblesses

. . .

- Pour un réseau cubique, $kT_c(d=3) = 4.515$ (num.) < 6

• Il existe des méthodes plus sophistiquées pour obtenir de meilleures approximations pour T_c . Ex: Bethe-Peierls:

$$(z-1) \tanh \frac{J}{kT_c} = 1$$
 $kT_c(d=3) = 4.93 \approx 4.515$...

II. Au dela du champ moyen...

• Mais comme le champ moyen TOUTES ces méthodes prédisent des exposants critiques triviaux:

$$m_0(T) \propto (T_c - T)^{\beta}, \quad \beta = \frac{1}{2}; \qquad \chi(T) \propto (T - T_c)^{-\gamma}, \quad \gamma = 1$$

- Onsager (1944): solution exacte en $d = 2 \rightarrow \beta = \frac{1}{8}, \gamma = \frac{7}{4}$
- Groupe de renormalisation (Wilson 71): champ moyen exact pour d > 4 et méthode de calcul perturbatif en $d = 4 \varepsilon!!$
- Extrapolation pour $\varepsilon = 1$: $\beta \approx 0.32$, $\gamma \approx 1.25$, en très bon accord avec l'expérience

II. Au dela du champ moyen...Universalité

- Une notion cruciale qui émerge du groupe de renormalisation: l'universalité
- A grande distance $\xi \to \infty$, les détails microscopiques disparaissent, et les exposants critiques sont universels. Par exemple: Para-Ferro $(m, \chi) \sim$ Liquide-Gaz $(\Delta \rho, \kappa)$!?

- Présence ou Absence de matière = variable d'Ising $(n_i = \frac{1}{2}(1 + S_i))$
- Attraction entre molécules proches = $-JS_iS_j$

