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Abstra
tThis text is a non-te
hni
al, elementary introdu
tion to the theory ofglassy phases and their ubiquity. The aim is to provide a guide, and somekind of 
oherent view, to the various topi
s whi
h have been exploredin re
ent years in this very diverse �eld, ranging from spin or stru
turalglasses to protein folding, 
ombinatorial optimization, neural networks,error 
orre
ting 
odes and game theory.

1.1 A few landmarks1.1.1 Stru
tural glassesNature provides for us numerous examples of systems whi
h may 
ondense intoan amorphous solid state. Probably the most 
ommon 
ase is that of stru
turalglasses, of whi
h the window glass has been known for several millennia; re
entreviews 
an be found in Angell (1995) and Benedetti (1997). Stru
tural glasses
onsist of a phase of matter in whi
h atoms or mole
ules are arranged in spa
ein a stru
ture whi
h is frozen in time, apart from some small 
u
tuations. Yet,
ontrarily to the 
ase of 
rystalline solids, the arrangement of these mole
ules isnot a periodi
 one. It is a `random' arrangement: although the system exhibitssome kind of regularity on small enough s
ales (in the range of a few inter-atomi
 distan
es), this regularity is lost on larger length s
ales, as attested fromthe absen
e of sharp peaks in the di�ra
tion pattern.A random arrangement of the degrees of freedom, but one whi
h is frozenand does not evolve in time: these are the basi
 ingredients of what we shall 
allthe random, or amorphous, solid state, and what goes generally under the nameof 'glass phase' (I have preferred the former be
ause the term 'glass' is morespe
ialized and might lead to some misunderstanding when we shall move tothe random solid states of some systems whi
h are more remote from 
ondensedmatter physi
s). Qualitatively this des
ription is �ne, yet the reader should beaware from the beginning of the diÆ
ulty of giving more pre
ise de�nitions. We1



2 THEORY OF RANDOM SOLID STATESused the word 'phase of matter' but it may be (and has been) disputed whetherthis is a really new phase of matter. The glass state might not exist as a trueseparate phase, but just be des
ribing a liquid with an extremely large vis
osity,so that we do not see it 
ow in the limited time s
ale of our experiment. Thefa
t that the stru
ture does not evolve in time should not be thought of asimplying that the positions of ea
h atom is frozen: be
ause of va
an
ies forinstan
e the atoms 
an a
tually drift, although very slowly if the system is atlow temperatures, as they also do in a 
rystalline phase. The relative positionsof the points in spa
e around whi
h an atom is lo
ated, these de�ne this frozenstru
ture. The de�nition of a 'random' arrangement is not a trivial one either,one 
ould have some order whi
h displays no Bragg peaks but 
an be des
ribedwith a little amount of information, or else one 
ould be obliged to des
ribe theglass state by giving the average positions of all atoms, whi
h requires an in�niteamount of information (in the 'thermodynami
 limit' of in�nitely large systems).These are all important subtleties, and we shall partly address them below.Yet it is 
lear that, judging from its relaxation time, the glass state is at least aquantitatively di�erent state of matter. A
tually one very pe
uliar aspe
t of glassforming materials, and one whi
h is so important in their manufa
turing, is howrapidly this relaxation time, or the vis
osity varies with the external 
onditions.Some in
rease by more than twelve orders of magnitude of the relaxation timewhen one diminishes the temperature by 20 per 
ent around the glass transitiontemperature are found in the so-
alled 'fragile' glasses whi
h have the strongestsu
h in
rease (Angell 1995; Benedetti 1997). At temperatures well below theglass transition temperature their life time is essentially in�nite, and some millionyears old samples have been found. In the regimes where the experimental timeis mu
h smaller than the relaxation time the glass state is out of equilibrium andone observes aging phenomena. Inevitably we shall thus need to fa
e the timedependent properties of these systems, whi
h are even more diÆ
ult to des
ribethan their equilibrium 
ounterparts.Beside its spe
ial properties, the glass state is important be
ause of its ubiq-uity. It 
an be rea
hed in virtually all systems, by many di�erent pathways.Cooling from a liquid phase is a 
ommon one. The 
ooling rate should then befast enough for the system to be quen
hed into the glass state, avoiding thusthe 
rystallization (how fast one should quen
h depends enormously on the sys-tem at hand: as we all know, it is mu
h easier to rea
h a glass state in liquidsili
a than in a metal). Probably in most systems the 
rystalline state is themost stable one, although this has not been proven: at zero temperature, thefamous 
onje
ture of Kepler stating that the densest pa
king of hard sphere isthe 
rystalline one (fa
e 
entered 
ubi
 or hexagonal 
losed pa
ked) has resisteda proof for four 
enturies (Hales 1998). Showing that the 
rystalline state is themost stable one at some �nite temperature, is thus likely to be a very hard task.The existen
e of a 
rystal state is annoying both for experimentalists who must`beat the 
rystallization trap', and for theorists, who must �nd a proper wayof studying a metastable state. But this is not more troublesome than studying



A FEW LANDMARKS 3super-
ooled water, or diamond. A more subtle point, to whi
h we shall return, isthe fa
t that it is extremely diÆ
ult to prepare a glass in one given `glass state'.From the mathemati
al point of view the idea of a glass at thermal equilibriumis a useful 
on
ept, and it turns out to be a very useful starting point in order tostart a study, but the last word will deal with out of equilibrium dynami
s. Aswe shall see, there are some indi
ations that these two approa
hes (thermody-nami
 equilibrium and out of equilibrium dynami
s) are intimately related, butthe deep reason for this is not so 
lear, and its sear
h will be a major 
hallengefor the near future.1.1.2 From rubber to spin glass and proteinsAnother te
hnologi
ally important glassy material is rubber (Goldbart et al . 1996;Zippelius and Goldbart 1998). There, the basi
 mi
ros
opi
 
onstituents are longpolymeri
 
hains, and the amorphous solid state is obtained by adding 
ross-linkswhi
h glue together permanently these 
hains- a pro
ess 
alled vul
anisationwhi
h was dis
overed by Goodyear one and a half 
enturies ago.There exists thus a fundamental 
on
eptual di�eren
e with the simpler stru
-tural glasses des
ribed above: vul
anisation has 
reated some permanent linksbetween the polymers, whi
h are lo
ated at random positions. Therefore the de-s
ription of the vul
anised rubber involves some random variables- the positionsof the 
rosslinks. These random variables are given a priori, they depend on thesample whi
h one is studying, and their number is extensive, i.e. it grows lin-early with the volume of the sample. This is very di�erent from our previous
ase. In simple stru
tural glasses one 
an work with a system of N mole
ulesintera
ting by pairs (higher order intera
tions 
an be added easily without mod-ifying the argument) through a simple potential V (ri; rj). The energy fun
tion(the Hamiltonian) is very easily des
ribed, being just the sum of the pair in-tera
tions. What is 
ompli
ated to des
ribe and study is the amorphous stateadopted by the system under fast 
ooling. On the 
ontrary in rubber, writingdown the Hamiltonian for a given sample requires the knowledge of the positionsof all the 
rosslinks, a very long list whi
h you 
annot determine, nor store onyour hard disk, and whi
h will be di�erent if you move to a new sample. Thistype of system, where the Hamiltonian depends on an extensive set of randomvariables, is said to have quen
hed disorder. The terminology 
omes from thefa
t that the monomers whi
h are 
rosslinked do not evolve in time, they are notthermalized, 
ontrarily to the other atoms of the polymers whi
h have thermal
u
tuations.Quen
hed disorder is also present in some exoti
 magneti
 alloys 
alled spinglasses (M�ezard et al . 1987; Fis
her and Hertz 1991; Sherrington 2003). Thesesystems are not present in every-day's life, they 
an be found only in somespe
ialized solid state physi
s laboratories, and only in small quantity. Theyhave surreptitiously appeared in various odd 
orners of materials s
ien
e onlya few de
ades ago, and nobody has been able to foresee any type of reasonableappli
ation in the 
lose future, in spite of the strong evolutionary pressure of



4 THEORY OF RANDOM SOLID STATESgrant funding whi
h pushes physi
ist to try and imagine some. Yet, during thelast quarter of the XXth 
entury, there have been many thousands of arti
lesdedi
ated to spin glasses, both experimental and theoreti
al, and the spin glassproblem has been des
ribed as a 
ornu
opia (Anderson 1988). The reason is thatspin glasses provide a (relatively) simple laboratory for the study of glass phases,whi
h themselves appear in many domains, in physi
s and beyond.The ar
hetypi
al 
ase of a spin glass is an alloy su
h as CuMn, with a 
on-
entration of a few per 
ent of the magneti
 manganese atoms diluted in the nonmagneti
 metal, here 
opper. The magneti
 degrees of freedom are the lo
alizedmagneti
 moments of the Mn atoms. They intera
t with ea
h other through a
ompli
ated pro
ess, an indire
t ex
hange with the 
ondu
tion ele
trons, but thenet result is an intera
tion whi
h either tends to align the magneti
 moments-a ferromagneti
 intera
tion, or tends to anti-align them (anti-ferromagneti
).Whether the intera
tion between two magneti
 moments is ferromagneti
 oranti-ferromagneti
 depends on the distan
e between the manganese atoms: the
oupling os
illates with distan
e. But the positions of these atoms are frozenin time, on all a

essible time s
ales, and therefore the 
ouplings between themagneti
 moments form a set of quen
hed variables. Negle
ting quantum me-
hani
al e�e
ts, a good approximation at the temperatures of study, and usinganisotropy to redu
e the spins to a set of Boolean degrees of freedom, the Isingspins whi
h des
ribe the proje
tion of the spin onto one axis, one soon arrivesat a mu
h simpler system indeed, a set of 
lassi
al Ising spins intera
ting withrandom 
ouplings. One 
an guess that this kind of generi
 problem of randomlyintera
ting Boolean variables will provide useful insight into several domains ofs
ien
e and indeed it does, as we shall see. But the ri
hness and diÆ
ulty ofthis problem, whi
h we shall brie
y survey in the next se
tion, will be a sur-prise to any new
omer in the �eld (M�ezard et al . 1987; Fis
her and Hertz 1991;Talagrand 2003b).Another example of an amorphous solid state, and one of the greatest im-portan
e, is o�ered by proteins (Garel et al . 1998). In its native form, a proteinis a long polymer whi
h is folded in su
h a way that the relative positions ofthe various atoms are frozen, apart from some small vibrations. In general thisstru
ture is not a simple periodi
 one, although one may �nd some re
urrentsubstru
tures, `alpha heli
es' and `beta sheets', signaling a degree of lo
al order-ing. In a loose sense proteins thus fall into our broad de�nition of amorphoussolid states. Obviously while in
luding this very ri
h new �eld one is driftingfrom the purest mathemati
al de�nition of glass phases. One reason is the fa
tthat proteins are �nite size obje
ts. Probably the proper level of des
ription todes
ribe protein folding is the one whi
h 
onsiders the amino a
id groups as basi
entities, and the angles along the ba
kbone as the relevant variables (as alwayswhen one 
hooses one level of des
ription, there also exist some e�e
ts whi
hrequire going to a smaller s
ale des
ription). So we typi
ally fa
e a problem of afew hundreds to a few thousands degrees of freedom. This is enough to justify astatisti
al me
hani
s analysis, but it is not Avogadro's number.



A FEW LANDMARKS 5Of more fundamental importan
e is the fa
t that proteins generally have one
onformation whi
h is preferred, the native state. This is the shape that makesthem fun
tion, this is the shape that they adopt in natural 
onditions, and intowhi
h they will refold if denaturated. Although they also possess many othermetastable states, these seem to have rather higher free energies, so that theprotein will be able to avoid these other meta-stable states and fold into itsnative shape, sometimes with the help of some auxiliary, `
haperon' mole
ules.Sometimes the free energy gap must be rather pre
isely tailored in su
h a waythat some 
hange in the external 
onditions (e.g. 
on
entration of other proteins)will lead to some 
hange in shape and properties of the protein, as has beendemonstrated in the 
ase of protein-DNA intera
tions. This dominan
e of thenative state is at odds with the situation of glasses or spin glasses where thesystems 
an freeze into any of the possible meta-stable states. One reason forthis di�eren
e is the fa
t that the proteins are not 
ompletely random obje
ts.Although the primary sequen
e of amino a
ids 
onstituting a protein often looksrandom, one should remember that the sequen
es used in nature 
onstitute a verysmall subset of the very large number of possible sequen
es (20100 for proteinsmade of one hundred amino-a
ids), and a subset whi
h has been 
arefully sele
tedby evolution, pre
isely for the ability to fold into a given shape allowing for somefun
tion. A totally random sequen
e of amino a
ids, with uniform probability ofhaving ea
h of twenty possible ones on ea
h point along the 
hain, has very little
han
e of being a useful protein, or even just a mole
ule able to fold into a wellde�ned native state. One needs some 
onstraints in the sequen
e to a
hieve this,and the most obvious one is to have the right proportion of hydrophobi
 versushydrophili
 amino-a
ids, in su
h a way that the mole
ule, in water, will tendto form a 
ompa
t globule with the hydrophobi
 ones buried inside the globuleso that they avoid the water. The type of 
orrelations whi
h are needed in the
hoi
e of the sequen
e, in order to have a good 
han
e of building a protein froma random heteropolymer, is a very diÆ
ult and open problem. Proteins providesome type of glasses with quen
hed-in disorder (the primary sequen
e of amino-a
ids), but the nature of the probability distribution of this disorder, and hownatural evolution sele
ted it, is still unknown.We shall not attempt an exhaustive enumeration of glassy states of physi
almatter, numerous examples range from other biologi
al polymers like DNA andRNA, to glasses of ele
tri
 dipoles, or of vortex lines in high temperature super-
ondu
tors (Blatter et al . 1994). A very ri
h 
lass to whi
h these vortex systemsbelong is that of elasti
 obje
ts, lines, interfa
es su
h as Blo
h walls, modu-lated phases like 
harge density waves, whi
h have some thermal 
u
tuationsbut are also pinned by some external impurities. The ubiquity of su
h situationsin physi
s is well do
umented (as should be 
lear by now), but in addition glassstates show up also in far out 
ontexts, further enlarging the domain of study.



6 THEORY OF RANDOM SOLID STATES1.1.3 Networks of intera
ting individuals: global equilibriumImagine a group of N s
ientists, 
onsider any two of them, and 
hara
terizetheir relationship at a very 
rude level by stating whether they are friends ornot. These 
olleagues meet at a 
onferen
e and the organizer, a very wise person,wishes to optimize their repartition in the two available hotels. He will thus maketwo groups and try to have as mu
h as possible friends grouped in the same hoteland people who hate ea
h other separated. He �rst 
olle
ts the data on who isfriend with whom. For ea
h pair of people i; j, he assigns a positive intera
tion
onstant Jij = +1, if they are friends, otherwise their intera
tion 
onstant isnegative, say Jij = �1. From this set of intera
tion 
onstants, whi
h buildsup our sample, the organizer tries to optimize the repartition in the followingway: he will allo
ate ea
h person i either in the hotel uphill, in whi
h 
asehe denotes him in his �les by the number Si = +1, or in the hotel downhill,labelled then by Si = �1. Obviously, 
onsidering two 
olleagues i and j, thereare two optimal repartitions for ea
h situation of friendship, putting them in thesame hotel if they are friends or in di�erent hotels if they are not. These aredes
ribed mathemati
ally by �nding the set of values Si, Sj whi
h minimize the`pair intera
tion energy' �JijSiSj . Of 
ourse in a realisti
 
ase it is impossible tosatisfy everybody: often the enemies of my enemies are not ne
essarily my friends,and the situation is then 
alled frustrated, in a sense that it is not possible tosatisfy simultaneously all pairs of people (the degree of frustration is measuredby the fra
tion of triplets i; j; k su
h that the produ
t JijJjkJki is negative).Finding the optimal hotel allo
ation in the set of 2N possible ones turns outto be a very diÆ
ult problem, intra
table by the present 
omputers even forsu
h a small number as N = 200. This problem is a 
ase of a 
ombinatorialoptimization problem whi
h falls into the so 
alled NP-
omplete 
lass: there areno known algorithms so far whi
h are able to solve this optimization problemin a time whi
h grows like a power of the size (N) of the problem. There mayexist better algorithms than the enumeration of the 2N allo
ations, but they allrequire a 
omputer time growing exponentially with N .What is the relationship of this so
iologi
al problem with our glasses? Asone 
an guess from the 
hoi
e of notations, this is just an example of a spinglass problem, the famous 'SK model' (Sherrington and Kirkpatri
k 1975; Kirk-patri
k and Sherrington 1978). Assigning person i to the uphill hotel is equiva-lent to having the Ising spin Si pointing up (Si = +1), a person in the downhillhotel 
orresponds to the spin pointing down (Si = �1), and the aim of the or-ganizer is to �nd a spin 
on�guration whi
h minimizes the intera
tion energyE = �P1<i�j<N JijSiSj : he is seeking the ground state of the spin glass withex
hange intera
tion 
onstants Jij . This is a spe
ial spin glass be
ause every spinintera
ts with every other one: it has in�nite range intera
tions. This a
tuallysimpli�es the mathemati
al study be
ause this in�nite 
onne
tivity of intera
-tions allows for an exa
t mean �eld solution. To be pre
ise the solution of thisproblem, originally due to Parisi (1979, 1980; M�ezard et al . 1987) has re
entlybeen shown to be exa
t by Talagrand (2003a), thanks to the beautiful mathemat-



A FEW LANDMARKS 7i
al developments of Guerra and Toninelli (2002), Guerra (2003), and Talagrand(2003a, 2003b). [Mean �eld spin glasses are the only 
ases for whi
h we havesu
h exa
t solutions; knowledge on spin glasses in �nite dimension with shortrange intera
tions is very poor: nothing is known for sure, not even the existen
eof a phase transition, although the best numeri
al simulations point towards theexisten
e of a spin glass phase, and this phase presents some similarities to whatis found in mean �eld (Marinari et al . 1998; Krzakala and Martin 2000; Palassiniand Young 2000)℄. >From this solution (Parisi 1979, 1980) we 
an learn a fewimportant fa
ts on our original problem. The best assignments has a (`groundstate') energy E0 behaving for large N as �:7633 N3=2, whi
h is very far abovewhat would happen in the simple unfrustrated world where the energy s
ales as�N2: despite all the e�orts of our organizer, and his spending a lot of 
omputertime, most people will be rather unhappy and he will not do a mu
h better jobthan a random assignment of people into the two hotels! The physi
ist looks atthis problem not only at zero temperature (where the problem redu
es to �ndinga ground state), but also at �nite temperature, where the various assignmentsare given a probability de�ned by the Boltzmann weight exp(�E=T ). Then he
an get some information on the stru
ture of the assignments of low energy. Itturns out that there are many su
h meta-stable states, whi
h 
an be very di�er-ent one from another: typi
ally one 
an �nd an assignment whi
h has an energyE1 whi
h is very 
lose to E0 (the di�eren
e between the two remaining �nitewhen N be
omes large), but whi
h is very di�erent, having half of the people
hanged hotel. On top of this, the set of meta-stable states has a fas
inatinghierar
hi
al stru
ture, building what is 
alled an ultrametri
 spa
e (M�ezard etal . 1984a, 1984b).A whole 
lass of '
omplex systems' 
an be studied similarly in the frameworkof equilibrium statisti
al me
hani
s. It 
ontains many 
ombinatorial optimizationproblems, in whi
h one seeks a globally optimal 
on�guration (a ground state)in a very large set of allowed ones (M�ezard et al . 1987). One new idea brought inby physi
s is pre
isely this generalization of the problem to a �nite temperatureone: instead of asking for the ground state, one asks about the properties of thea

essible 
on�gurations with a given energy, allowing for the introdu
tion ofuseful notions su
h as entropy, free energy, phase transitions et
...This turns out to be a fruitful strategy, both as an algorithmi
 devi
e andas a theoreti
al tool. On the algorithmi
 side the idea gave rise to the simulatedannealing algorithm whi
h basi
ally amounts to a Monte Carlo simulation ofthe problem in whi
h one gradually redu
es the temperature in order to try to�nd the ground state (Kirkpatri
k et al . 1983). It is not a pana
ea and it 
anprobably be outperformed by more spe
ialized algorithms on any given problem.But it is a very versatile strategy, and one whi
h 
an be very useful for pra
ti
alproblems be
ause of its 
exibility. In parti
ular it allows to add new 
onstraintsas penalties in the energy fun
tions with a rather small e�ort, where a morededi
ated algorithm would just require a new development from s
rat
h. Pra
ti-
al appli
ations range from 
hip positioning to garbage 
olle
tion s
heduling, to



8 THEORY OF RANDOM SOLID STATESrouting and to �nan
ial market modeling!Apart from trying to get an algorithm in order to �nd the optimal 
on�gu-ration, one aim 
ould be to get some analyti
 predi
tion on this ground state,without ne
essarily 
onstru
ting it. This is what happened to our 
onferen
eorganizer above: from spin glass theory he 
ould get the optimal 'energy' of thebest assignment of his 
olleagues into two hotels (or more pre
isely its large Nlimit), without knowing how to 
onstru
t it, and he 
ould learn about the distri-bution of meta-stable states. This type of knowledge is the �rst step towards theelaboration of a phenomenology of the problem, where one will aim for instan
eat understanding the importan
e of various type of 
orrelations in the friendshipdistribution, et
... It also builds up an interesting 
lass of problems in probabilitytheory. These are the `random' 
ombinatorial problems in whi
h one studies theproperties of ground states of some random systems, given a 
ertain probabilitydistribution of samples. A famous example is the assignment problem: given Npersons and N jobs, and a set of numbers giving the performan
e of ea
h personfor ea
h of the possible jobs, �nd the best assignment of the jobs to the persons.The probabilist 
an ask the question of the performan
e of the best assignmentfor a given set of samples, for instan
e when the individual performan
es areindependent identi
ally distributed random variables taken from a given distri-bution. Very often the large N limit is 'self-averaging', meaning that this optimallength is the same for almost all samples in the set. The statisti
al me
hani
sapproa
h has led to predi
tions 
on
erning this optimal performan
e (M�ezardand Parisi 1985), whi
h have been 
on�rmed re
ently by a rigorous approa
h(Aldous 2001).1.1.4 Networks of intera
ting individuals: dynami
sAlthough the systems whi
h we have just des
ribed already provide a large 
lassof interesting problems, we are still very far from any real situation in so
iology.Our use of equilibrium statisti
al me
hani
s is restri
tive at least on two 
ru
ialpoints. One of them is the fo
us onto an equilibrium situation, the other one is thesear
h of a global equilibrium. Keeping for another while to our toy 
onferen
eproblem, you have noti
ed that human a
tivity is in general not organized inthis totalitarian way of having an 'organizer' trying to optimize everybody's life(as we know su
h attempts are 
atastrophi
, not only be
ause of the pra
ti
alimpossibility of �nding the optimal 
on�guration). The more realisti
 situationof individual strategies where people have a large probability to 
hange hotel ifthey are too unhappy leads to a dynami
al problem, whi
h 
ould be des
ribedagain as the relaxation towards some lo
al equilibrium. We enter the world ofdynami
s, in a 
ase whi
h is still familiar in the sense that we 
an think ofrelaxational dynami
s (the situation 
an be des
ribed by a heat bath). Familiardoes not mean easy: at low temperatures (i.e. when ea
h individual insists alot in 
hanging when this is favorable for him), this is the dynami
s of a spinglass, and the relaxation time will be very large. What is found in spin glasses isthat su
h a system, starting from initial 
onditions, will not �nd an equilibrium



A FEW LANDMARKS 9state, but will wander for ever (Bou
haud 1992). However the more time haselapsed, the longer the 
hara
teristi
 time s
ale for it to di�use further away:su
h a system is aging, meaning that its response to an external stress dependson its age. This property has been observed for instan
e in polyvinyl
hloride, orin spin glasses, and its study has turned out to be an extremely valuable tool(Bou
haud et al . 1998).One step further in 
omplexity is the dynami
al evolution when there is noenergy. At zero temperature the energy is a Lyapunov fun
tion whi
h keepsde
reasing. Without su
h a Lyapunov fun
tion all kinds of behaviors be
omepossible. We are going away from the physi
s of systems 
lose to equilibrium,into mu
h more 
ompli
ated situations whi
h are just beginning to be explored.Progress has been made in some 
ases (Challet et al . 2000a, 2000b; Dubois et al2002), and I would parti
ularly like to mention brie
y one 
ase, taken not fromso
iology, but rather from biology.This is the study of neural networks, and parti
ularly some attempts to buildup a 
onsistent theory of how memory 
an be organized in the brain (Amit 1989;Krogh et al . 1991). Elaborating on de
ades of experiments, it seems plausiblethat one important level of des
ription of the brain, relevant for the treatmentof information, is the level of a
tivity of the neurons, measured as the numberof spikes they emit per se
ond (this is not obvious, and the information may been
oded in more subtle ways, su
h as for instan
e spike 
orrelations). Fo
usingonto the spikes, one 
an take as the relevant elementary variables, either thespiking rate in ea
h neuron, averaged over some time window of some tens ofmillise
onds, or its instantaneous version whi
h is the Boolean variable: 0 if thereis no spike, 1 if there is one. An a
tive (spiking) neuron, through its synapsestowards an other neuron, will either favor the spiking of this other one if thesynapses are ex
itatory, or it may inhibit the other neuron's a
tivity. At a 
ari-
atural level, the neural network might be 
onsidered as a highly inter
onne
tednetwork (there are of the order of 104 synapses per neuron) of variables, either
ontinuous-if one models the a
tivity through �ring rates, or binary-if one usesspikes. The details of when the neuron de
ides to spike 
an be des
ribed bymonitoring the membrane potential (the neuron �res when the potential ex
eedssome threshold), and in the end what su
h a network does is basi
ally governedprimarily by whi
h are the ex
itatory synapses and whi
h are the inhibitory ones.Fifteen years ago, in a typi
al physi
ist's approa
h, John Hop�eld tried tounderstand if su
h a 
ari
atural network 
ould be used as a memory (Hop�eld1982). He studied a network whi
h was trained as follows: one shows it someexternal patterns and one reinfor
es a synapse whenever the two neurons it 
on-ne
ts �re simultaneously. This pro
ess, known as Hebb's rule, builds a set ofsynapses whi
h is su
h that the network memorizes the pattern: when presentedan initial 
on�guration whi
h is a 
orrupted version of the pattern, it will spon-taneously evolve towards the pattern. This way of �xing the synapses a
tuallybuilds a set of symmetri
 synapses: the in
uen
e of neuron i onto neuron j isthe same as that of j onto i. Be
ause of this equality of a
tion and rea
tion,



10 THEORY OF RANDOM SOLID STATESthere exists an energy fun
tion in this problem, and the evolution of the system,taking into a

ount the sto
hasti
 nature of �ring, is just that of a spin glass,where the ex
hange 
ouplings between spins are the strengths of the synapses. Aspin glass whi
h has been tailored in su
h a way that its meta-stable states arethe memorized patterns. It is no surprise that su
h a physi
al spin system, whenevolving from an initial 
on�guration whi
h is not too far from a meta-stablestate (one pattern), will 
ow towards it, and thus re
over the full information onthe pattern. This spin glass problem has been studied in great details: one 
anshow that if too many patterns are memorized then the system 
an no longermemorize them, one 
an 
ompute memory 
apa
ities, one 
an degrade the net-work, destroying a sizeable fra
tion of neurons and/or synapses, without alteringits memory, et
... This was an extremely useful existen
e proof of the existen
e ofasso
iative memory e�e
ts in a very simpli�ed neural network, and it allowed formany interesting quantitative studies. Its starting point was very remote from thereality on one 
ru
ial point: the assumption of symmetri
 synapses. Dropping thisassumption forbids to introdu
e an energy fun
tion, and immediately drives oneaway from any equilibrium statisti
al me
hani
s studies. Yet it has been shownafterwards that many of the key properties of the network still persisted in thepresen
e of some degree of asymmetry. Hop�eld's daring assumption, whi
h wason
e des
ribed by G. Toulouse as a \
lever step ba
kward," allowed to redu
ethe problem to a solvable one, whi
h provided a solid ba
kground that one 
ouldelaborate upon in order to get a more realisti
 model. Several physi
ists startedfrom this point and then added more realisti
 ingredients in order to get 
loserto biologi
al reality. This is of 
ourse a very important elaboration, whi
h isstill moving ahead. One should remember that, even in presen
e of asymmetri
intera
tions, the statisti
al me
hani
s approa
h may be useful in various ways,whether it will provide a solvable limiting 
ase as in Hop�eld's model, or whetherone uses some of the purely dynami
al approa
hes that will be des
ribed in thenext se
tion.
1.2 Tools and 
on
epts1.2.1 Statisti
al des
riptionLet us also step ba
kwards towards the `easy' 
ase of amorphous solid states:glasses. As soon as one tries to go beyond the 
rystal, or the 
rystal with defe
ts,one fa
es the basi
 obsta
le: how to des
ribe an amorphous solid state? As wesaw, it is out of question to try and des
ribe the glass by listing the equilibriumpositions of all the atoms. The point is that, in a given glass state, and evenafter averaging over the thermal 
u
tuations, the environment of ea
h atom dif-fers from that of all the other ones. Furthermore there is a very large numberof long-lived glass states, a number whi
h s
ales exponentially with the size ofthe system and therefore gives a 
ontribution to the entropy, 
alled the 
on�g-urational entropy. In systems with quen
hed disorder, ea
h sample is di�erentfrom all the other ones. All these fa
ts 
all for a statisti
al des
ription of the



TOOLS AND CONCEPTS 11properties of amorphous solid states. We have to give up the idea of des
rib-ing in detail the equilibrium positions of the atoms in a glass state. Instead weshall give a statisti
al des
ription of the relative equilibrium positions. The �rststep is to get rid of the thermal 
u
tuations, de�ning, in a given glass state, thedensity of parti
les at point x by the thermal average �(x) = PihÆ(x � xi)i.Here xi is the position of parti
le i and the bra
kets stand for the average overthermal 
u
tuations in a given glass state, at a given temperature. While thiswould be just a 
onstant in the liquid, it is a 
ompli
ated fun
tion in the glass,with peaks at all the equilibrium positions of the atoms, a mu
h too 
ompli
atedobje
t. Basi
ally what one 
an hope to 
ompute are some 
orrelations su
h as theprobability, given that � has a peak at a point x, that it will have another peakat some point x+ r. This obje
t in turn 
ould depend on the glass state one is
onsidering; in all 
ases studied so far it does not (a property of the large N limit
alled reprodu
ibility), but if it would, one should again 
onsider the probabilitydistribution of the 
orrelation when one 
hanges the glass state. For systems withquen
hed disorder it 
ould also depend on the sample and one would play thesame game, but again this situation has not been en
ountered: most propertiesof a disordered system, in
luding all thermodynami
al properties, are said to be'self-averaging' whi
h means that they are the same for almost all samples (withprobability one in the large N limit).Giving up the idea of de
iphering one parti
ular sample and moving to thestudy of generi
 properties of all samples is a big shift of fo
us whi
h has beendes
ribed as a paradigmati
 shift. It is 
omparable to what was done when peopleintrodu
ed statisti
al physi
s, giving up the idea of following the Newtoniantraje
tory of every parti
le, to 
on
entrate on the probability distributions. Inthe study of glassy phases we have to take this step of a statisti
al modelingtwi
e: �rst in order to deal with the thermal 
u
tuations (the usual statisti
alphysi
s des
ription), se
ondly in order to des
ribe the 
u
tuations in the lo
alenvironments, whi
h exist even after thermal averaging (I shall 
all it the se
ondstatisti
al level). Some of the �rst su

essful implementations of this idea appearin the pioneering works of Sam Edwards and 
ollaborators, both in spin glasses(Edwards and Anderson 1975), and in 
ross-linked ma
romole
ules (Deam andEdwards 1976). The reason for the introdu
tion of statisti
al physi
s �nds itsroots from the 
haoti
 motion of parti
le, leading to sensitive dependen
e oninitial 
onditions and for
ing one to abandon the hope to follow a traje
tory.In our 
ase one reason of the statisti
al des
ription is probably similar. In spinglasses it is well established that there exists some 
haoti
ity, so that 
hangingthe sample slightly (e.g. 
hanging a small fra
tion of the 
oupling 
onstants) willlead to a system in whi
h the metastable states are totally un
orrelated withthe previous ones. In stru
tural glasses the situation is less 
lear but it seemsplausible that by 
hanging slightly the number of parti
les from N to N + ÆNwith 1 << ÆN << N the (zero temperature) metastable states again be
omeun
orrelated.Chaoti
ity in the above sense is thus related to the property of self-averageness.



12 THEORY OF RANDOM SOLID STATESThese are probably important ingredients allowing for the relevan
e of the sta-tisti
al des
ription. Again the 
ase of proteins appears to be rather 
ompli
atedfrom this point of view, partly be
ause of their relatively small size, but mostlybe
ause the proper distribution of disorder in the sequen
e, and the 
orrespond-ing 
haoti
ity properties, have not been found. It is not known whether evolutionhas sele
ted the proteins very spe
i�
ally among all sets of heteropolymers orwhether it has sele
ted a 
lass of sequen
es with some 
orrelations, with sometype of 
haoti
ity property when one 
hanges the sequen
e staying within the
lass. On the other hand a problem like brain modeling would seem to lend itselfto the statisti
al des
ription. Again it does not mean that the 
onne
tions arerandom, but neither are they all preprogrammed (the information ne
essary toen
ode the 1014 synapses is mu
h larger than that 
ontained in DNA). There isan amount of randomness in the wiring, and there also exist generi
 properties
ommon to most brains whi
h one 
an hope to understand in this statisti
alsense, without having to 
are about all details of the wiring. In this respe
t thesituation is very di�erent from the study of a globally optimized devi
e su
h asfor instan
e a 
omputer 
ard.1.2.2 Physi
s without symmetry: equilibrium.The theoreti
al study of glassy phases is a notoriously diÆ
ult problem in physi
s,and one in whi
h the progress has been relatively slow. One key reason is the ab-sen
e of symmetry. All the simple 
omputations on 
rystalline solid states whi
hyou �nd in the �rst pages of the textbooks, di�ra
tion pattern, phonon spe
trum,band stru
ture, rely 
ompletely on the existen
e of a symmetry group. Even thesimplest of these 
omputations 
annot be done in the glass phase. To fa
e thissituation, theorists have invented a number of methods whi
h all amount to usingthe se
ond statisti
al level, and introdu
ing some kind of auxiliary symmetry, aswe will explain below.In usual problems it is relatively easy to understand the type of phase whi
h
an be found, using simple mean �eld arguments. The only more subtle questionswhi
h are not well 
aptured by the mean �eld usually refer to some spe
ial pointsof the phase diagram, where the vi
inity of a se
ond order phase transitionindu
es some long range 
orrelations.In glassy systems it turns out that understanding the gross features of thephase diagram is in itself a 
ompli
ated task. The nature of the solid phase ismu
h ri
her than usual. Mean �eld has naturally been applied to these problems,yielding a rather 
ompli
ated but beautiful solution (M�ezard et al . 1987). Againthe basi
 ideas are simpler to express in the 
ase of Ising spin glasses, with Nspins taking values �1 and intera
ting with random ex
hange 
oupling. Detailedmean �eld 
omputations have established the following pi
ture. Above a 
riti
altemperature T
 the system is paramagneti
 and the lo
al magnetization vanishesin the absen
e of an external magneti
 �eld: < Si >= 0, where < : > denotes anaverage over thermal 
u
tuations. Below T
 we enter the spin glass phase wherean in�nite spin glass will develop spontaneously a non-zero lo
al magnetization:



TOOLS AND CONCEPTS 13< Si >6= 0. Compared to the more usual low temperature `solid' phases, the spinglass phase possesses two distin
tive properties:� The spontaneous magnetization < Si > 
u
tuates widely from site to site;the global magnetization vanishes, and in fa
t all its Fourier 
omponentsalso vanish. Mathemati
ally we fa
e a breakdown of the latti
e translationalinvarian
e to a random state, with no 
onserved symmetry subgroup of thetranslational group. A simple order parameter whi
h 
hara
terizes the on-set of the spin glass phase is the one introdu
ed by Edwards and Anderson(1975): q = (1=N)Pi < Si >2.� There exists an in�nity of glass states. In the state �, the spontaneousmagnetization on site i, < Si >�, varies from state to state. The idea ofseveral states is familiar from the usual 
ase of ferromagnetism: in an Isingferromagnet there are two states, in whi
h the magnetization points eitherup or down. Here there exist many states, and they are not related one tothe other by a symmetry. The order parameter should be written rather asq�� = (1=N)Pi < Si >2�, but it turns out to be � independent.Working within one given state is very diÆ
ult: the spins polarize into `ran-dom' dire
tions, whi
h one does not know how to dedu
e from the original ex-
hange 
ouplings of the system; so one 
annot use a 
onjugate magneti
 �eldto polarize the spin glass into a given state. Even the de�nition of the statesbeyond mean �eld is an open mathemati
al problem. The best one 
an do so faris to postulate that the states exist and have properties similar to those found inmean �eld, and 
he
k if the simulation or experimental results 
an be analyzedin these terms. It turns out that this is the 
ase. For instan
e a simple indi
ator
onsists in using two identi
al repli
as of the system (with the same quen
heddisorder), weakly 
oupled through an in�nitesimal attra
tive intera
tions, su
has the produ
t of the lo
al bond energies in ea
h system. One lets the systemsize go to in�nity �rst, and the 
oupling between repli
as go to zero afterwards.If there remains a non trivial 
orrelation between the two repli
as in this doublelimit, the system is in a glass phase. Basi
ally in this game ea
h system is playingthe role of a small polarizing �eld for the other system.The same method 
an be applied to identify the glass phase in stru
turalglasses (M�ezard 2001). Taking for notational simpli
ity a glass 
omposed onlyof N identi
al atoms, the mi
ros
opi
 degrees of freedom are now the positionsxi of these N parti
les. One 
an introdu
e a se
ond repli
a of the same system,
omposed of N parti
les at positions yj . The x parti
les intera
t with ea
h other,the y parti
les also. The x parti
les are nearly transparent to the y parti
les,ex
ept for a very small attra
tion, whi
h is short range. The order parameter forthe glass phase is then the 
ross 
orrelation fun
tion between these two systems(i.e. the probability, given that there is an x parti
le at one point r1 , thatthere be a y parti
le at a point r1 + r), in the limit where the 
ross attra
tionvanishes. In the liquid phase the x and y parti
les just ignore ea
h other in thislimit, and there is no 
ross 
orrelation. Instead, in the glass phase, the weak
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tion ensures that the two systems polarize in the same glass state. Theydevelop 
orrelations be
ause of the fa
t that they are in a solid phase, and these
orrelations still exist in the limit when the attra
tion vanishes. This provides agood mathemati
al de�nition of any solid phase.1.2.3 Repli
asFor the theorist a 
hoi
e method is the repli
a method (M�ezard et al . 1987).It uses the idea of having some identi
al repli
as of the original problem, buttheir number is not limited to two, but 
an be
ome any real number. The repli
amethod is always presented as a tri
k to deal with quen
hed disorder: in disor-dered systems, the free energy is generally self-averaging in the thermodynami
limit, and therefore one 
an as well try to 
ompute the average of the free en-ergy over quen
hed disorder. This is rather diÆ
ult to 
ompute, in general. Amu
h easier task is to 
ompute the average of the nth power, Zn, of the parti-tion fun
tion, whi
h is nothing but the partition fun
tion of n non intera
tingrepli
as. Taking the n! 0 limit one gets the quen
hed average of the logarithmof the partition fun
tion, whi
h is proportional to the free energy. This tri
k is
ertainly very old (Giorgio Parisi dates it ba
k to at least the fourteenth 
enturywhen the bishop of Lisieux Ni
olas d'Oresme used a similar tri
k in order tode�ne non integral powers!) and has been used many times in the literature. Its�rst non-trivial appli
ation to the statisti
al physi
s of systems with quen
hedrandomness is probably the seminal work of Edwards and Anderson (1975).Going mu
h beyond a simple mathemati
al tri
k, the repli
a method allowsfor a study of the free energy lands
ape, and prin
ipally of the regions of low freeenergy (the notion of a free energy lands
ape, in the very large dimensional spa
edes
ribing the 
on�gurations of a system in statisti
al me
hani
s, requires somethinking; however it is well de�ned in mean �eld, and it helps developing someintuitive pi
ture, whi
h is why I shall use it here for a simple presentation). Therepli
ated partition fun
tion, after averaging over disorder, be
omes a partitionfun
tion for n systems, without disorder, but with an attra
tive intera
tion be-tween the various repli
as: the reason for this attra
tion is simple: Be
ause theyshare the same Hamiltonian, with the same disorder, the various repli
as will beattra
ted towards the same favorable regions of phase spa
e, and repelled fromthe same unfavorable regions. Both e�e
ts tend to group the repli
as together.If one has a simple phase spa
e, with basi
ally one large valley, then the repli
asall fall into this valley, and the order parameter is a number, the typi
al distan
ebetween any two repli
as, whi
h gives dire
tly the size of this valley. But in asystem with several metastable states, the situation 
an be more 
ompli
atedwith some repli
as 
hoosing to fall into one valley, while others fall into othervalleys. This e�e
t has been 
alled `repli
a symmetry breaking'. Te
hni
ally itappears as a standard spontaneous breaking of a symmetry. This symmetry isthe permutation symmetry Sn of the n repli
as. The problem is that this sym-metry is broken only when one 
onsiders some number of repli
as n whi
h is noninteger, and in fa
t smaller than one.



TOOLS AND CONCEPTS 15Based on some remarkable intuition about the permutation group with zerorepli
as, Parisi proposed at the end of the seventies a s
heme of breaking the sym-metry whi
h is 
onsistent, and has been applied su

essfully to many problems(Parisi 1979, 1980). Basi
ally the order parameter turns out to be a fun
tion,whi
h is the disorder averaged probability density, P (q), pi
king up at randomtwo thermalized non-intera
ting repli
as of the system, that their distan
e willtake a given value q. This order parameter 
ould be 
omputed at the mean �eldlevel in a variety of systems. In some 
ases it 
ould be 
he
ked versus some otheranalyti
 
omputations, not involving the repli
a method, it 
ould also be 
om-pared to simulations (a dire
t experimental measurement of P (q) is not possible,but the re
ent developments on out of equilibrium dynami
s, explained below,provide an indire
t a

ess to its measurement). So far it has always been found
orre
t, although a rigorous mathemati
al status is still la
king.The 
avity method (M�ezard et al . 1985; M�ezard et al . 1987) has been de-veloped in order to write down expli
itly the assumptions underlying Parisi'srepli
a symmetry breaking s
heme, and develop a dire
t self-
onsistent proba-bilisti
 approa
h, equivalent to the repli
a method, based on these assumptions.The re
ent proof of the validity of Parisi's solution for the SK model basi
ally fol-lows this kind of 
avity approa
h (Talagrand 2003a; Guerra and Toninelli 2002;Guerra 2003).Fundamentally, three types of solid phases have been found at the momentwith the repli
a method. Speaking in terms of an Ising spin glass system, withspins Si, and de�ning the overlap between two spin 
on�gurations as q = (1=N)PNi=1 SiS0i,we 
an 
hara
terize them from the shape of the overlap distribution P (q). Athigh temperature the system is not in a solid phase and one has P (q) = Æ(q):the thermal 
u
tuations win, there are no 
orrelation between repli
as. At lowtemperatures, in the presen
e of a small magneti
 �eld whi
h breaks the globalspin reversal symmetry, one 
an �nd either:� A repli
a symmetri
 phase with P (q) = Æ(q�q0). This happens for instan
ein a ferromagnet, where q0 is the square of the magnetization.� A situation 
alled `one step repli
a symmetry breaking' where P (q) =xÆ(q � q0) + (1 � x)Æ(q � q1). This des
ribes s system in whi
h there aremany free energy valleys, the width of ea
h valley is measured by q1, andthe valleys are generi
ally equidistant in phase spa
e, their distan
e beingmeasured by q0. Very often q0 = 0 and the valleys are lo
ated in randomdire
tions of the large dimensional 
on�guration spa
e. This situation thuso

urs in a rather generi
al 
ase where the low lying valleys are not 
orre-lated. Some mean �eld spin glasses are known to belong to this 
ategory,whi
h is also thought to be the relevant one for the des
ription of stru
turalglasses of the fragile type.� A situation 
alled `full repli
a symmetry breaking' where P (q) = xp(q) +(1� x)Æ(q� q1), where p(q) is a 
ontinuous fun
tion normalized to one. Inthis 
ase the low lying valleys be
ome 
orrelated. This is the 
ategory towhi
h the standard spin glass systems belong.



16 THEORY OF RANDOM SOLID STATESThe reader may �nd it surprising that, although the repli
a method wasintrodu
ed to handle systems with quen
hed disorder (the whole story aboutapproximating the free energy through Zn is in order to be able to average onvarious realizations of quen
hed disorder), we mentioned the stru
tural glasses,whi
h have no quen
hed disorder, as physi
al systems displaying a one steprepli
a symmetry breaking phenomenon. In fa
t I believe that the repli
a methodis mu
h more general than a tri
k for 
omputing a logarithm. To illustrate thispoint, let me explain brie
y how one 
an use a kind of repli
a method in thestru
tural glass 
ase. Let us assume that the free energy lands
ape of a stru
turalglass is indeed made up of many valleys, su
h that the low lying valleys pointin un
orrelated dire
tions of phase spa
e. Assume further that the number ofvalleys at a given free energy f is exponentially large, so that the entropy ofthe system is the sum of an internal entropy measuring the size of ea
h valley,and of a 
on�gurational entropy S
(f) measuring their number. Proving theseassumptions, purely from the mi
ros
opi
 Hamiltonian, is a task whi
h seemstotally hopeless at the moment, but one a

essible method of approa
h is topostulate this stru
ture, work out its 
onsequen
es, and 
ompare them to whatis observed in experiments and simulations. How 
an one use repli
as in su
h a
ase? The te
hnique is a simple generalization of the two repli
as used in theprevious se
tion to de�ne the order parameter. Take m identi
al repli
as of ourglass, with a small short range attra
tion. In the glass phase this small attra
tionwill polarize the system into the same valley. It is easy to see that the free energyof the repli
ated system F (m), 
onsidered as a fun
tion of m, is the Legendretransform of S
(f). While it is very diÆ
ult to 
ompute dire
tly S
(f), one 
aneasily develop simple approximation s
hemes for F (m), and this gives a

ess tothe thermodynami
 properties of the glass phase (M�ezard and Parisi 1999).1.2.4 Physi
s without symmetry: dynami
sThe glass phase is very diÆ
ult to observe at equilibrium. Experimentally aglass is an out of equilibrium system, at least if the sample is large enough. Theequilibrium properties whi
h we have just dis
ussed 
annot be used in a dire
tquantitative 
omparison with the experiments. They 
an be of dire
t relevan
efor other amorphous solid states like optimization problems, or memory neuralnetworks whi
h are evolving from an initial 
on�guration 
lose to one of thememorized patterns. They 
an be useful to interpret some experimental �ndings,as is the 
ase for the hierar
hi
al stru
ture of metastable states, but a dire
t
omparison is diÆ
ult. The equilibrium studies provides the properties of thefree energy lands
ape, fo
using onto the low lying states. It is doubtful whetherexperimentalist will ever 
ome up with a system prepared in one glass state �(the equivalent of a ferromagneti
 
rystal, uniformly polarized, without domainwalls). Instead their systems age for ever.The point may be illustrated from the dynami
al de�nition of an orderparameter, whi
h we shall formulate again for simpli
ity in a spin glass lan-guage. In its original formulation by Edwards and Anderson (1975), the or-



TOOLS AND CONCEPTS 17der parameter was de�ned as the long time limit of the spin auto
orrelation:q = limt!1 limN!1 < Si(t)Si(0) >, where the bra
kets mean an average overthe thermal noise (some underlying dynami
s, for instan
e of a Langevin type,
an be assumed for this 
lassi
al spin system). This gives a 
orre
t de�nitiononly if the system is thermalized inside one glass state � at time t = 0. Thenit is kind of tautologi
al: the system remains inside the same state, the prob-ability of the spin 
on�gurations de
ouple at large time and we obviously getba
k to the equilibrium de�nition q = limN!1(1=N)Pi < Si >�< Si >�.We are ba
k to our problem: the system 
annot be thermalized at time t = 0,so what should one do? Experiments provide the answer: the glass is aging.Somewhere it keeps a tra
e of the date at whi
h it was born (Bou
haud etal . 1998). Let us 
all t = 0 this time, de�ned as the time at whi
h the sys-tem was quen
hed below the glass transition temperature (if one 
ools slowly astru
tural glass, there are 
ooling rate e�e
ts, whi
h may tell us a lot, but wewon't dis
uss them here). The 
orrelation fun
tion between times tw and tw + �is C(tw + �; tw) = limN!1(1=N)Pi < Si(tw)Si(tw + �) >. As the relaxationtime is in�nite, or in any 
ase mu
h larger than any experimental time s
ale,the system is never thermalized at time tw, whatever its age tw is. One muststudy the dependen
e of the 
orrelation as a fun
tion of the two times: the agetw and the measurement time � . The 
orre
t de�nition of the order parameterbe
omes q = lim�!1 limtw!1 C(tw + �; tw). This turns out to give the sameresult as the equilibrium de�nition, showing that the system in this sense 
omesarbitrarily 
lose to equilibrium, but now this order parameter 
an be measured.One 
an realize the subtlety of the approa
h to equilibrium by noti
ing that, inthe reverse order of limits, lim�!1 C(tw + �; tw) = 0, for any tw. This situa-tion has been 
alled weak ergodi
ity breaking (Bou
haud 1992), and seems to bepresent both in spin glasses and stru
tural glasses. Experimental measurements,done on response fun
tions rather than 
orrelations, have found it for instan
ein systems su
h diverse as PV C (aging in the me
hani
al response: if I measurethe response of your plasti
 ruler to a stress, I 
an dedu
e when the ruler wasfabri
ated -provided I 
an perform a measurement on time s
ale of the orderof its age!) and in spin glasses (aging in the relaxation of the thermoremanentmagnetization).Taking into a

ount properly the aging e�e
t implies thinking in the twotime plane: the e�e
ts one 
an then study are not just the very 
ompli
atedand system dependent transient e�e
t, but they relate to what happens whenboth tw and � go to in�nity, along various paths. It turns out that there seemto exist few universality 
lasses for the behavior of the two times response and
orrelation fun
tions in this limit. This have been �rst found by Cugliandolo andKur
han in mean �eld spin glasses (Cugliandolo and Kur
han 1993). Based onthese relatively simple models for whi
h the dynami
s 
an be solved expli
itly, ageneri
 s
enario of glassy dynami
s has been worked out, implying a well under-stood generalization of the 
u
tuation dissipation theorem, where an e�e
tivetemperature, measurable but distin
t from the bath temperature, 
hara
terizes



18 THEORY OF RANDOM SOLID STATESthe proportionality between the time derivative of the 
orrelation and the instan-taneous response, when these quantities are measured on time s
ales 
omparableto the age of the system. On these time s
ales the new relaxation pro
esses whi
happear are `thermalized' with an e�e
tive temperature whi
h is 
lose to that ofthe glass transition temperature, rather than to that of the room.A proper a

ount of these fas
inating re
ent developments goes mu
h beyondthe s
ope of this paper. What I just want to point out here is that the measure-ment of this new e�e
tive temperature appearing in the generalized 
u
tuationdissipation theorem, whi
h 
an be done by doing response and noise measure-ments, monitoring properly the age of the system, allows for an experimentaldetermination of the type of glassy phase whi
h one en
ounters, in the 
lassi�
a-tion of se
tion 1.2.3 (Cugliandolo and Kur
han 1993; Franz and M�ezard 1994a,1994b; Cugliandolo and Kur
han 1994; Franz et al . 1998).Numeri
al simulations in spin glasses and stru
tural glasses have 
on�rmedthat the P (q) order parameter 
an be measured either from a well equilibratedsmall system, or from the generalized 
u
tuation dissipation theorem in the outof equilibrium dynami
s of large systems (Parisi 1997; Kob and Barrat, 1997);the two pro
edures give results whi
h agree with ea
h other, although this doesnot imply that the asymptoti
 regime has been rea
hed. The results point in thedire
tion of a one step repli
a symmetry breaking in the stru
tural glasses, anda full repli
a symmetry breaking in spin glasses.On the experimental side, a re
ent beautiful experiment in a spin glass mate-rial has managed to measure the 
u
tuation dissipation ratio, and �nds a rathergood qualitative agreement with the predi
tions of the full repli
a symmetrybreaking s
enario (Herisson and O
io 2002), although again it is not 
lear if the`true' asymptoti
 regime 
an be measured. At present it seems that the mean�eld predi
tions provide at least good guidelines to the experimental systems atleast on the time s
ales that 
an be obtained in the laboratory. Similar measure-ments have been attempted in stru
tural glasses (Bellon and Ciliberto 2002) butthe results seem to depend a lot on the observable and the situation is not yet
lear.1.2.5 SimulationsAs we have seen, the theory of amorphous solid states has been developed in
lose 
onne
tion with the progress in numeri
al simulations, and it will 
ontinueto do so. The 
olle
tive behavior of strongly intera
ting systems 
an display very
ompli
ated, and sometimes surprising, behaviors, for whi
h simulations help toprovide some intuition, and to bridge the gap between theory and experiments.Reviewing the progress on the simulations goes beyond my abilities and beyondthe s
ope of this paper, I shall rather refer the reader to Marinari et al . (1998).But one should be aware that in this �eld, the simulations play a very importantrole, on equal footing with theory and experiments, and this three-fold strategyis ne
essary for progress.
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tionsPredi
ting what will be the important developments in the future is bound to fail.I will not risk doing so, but just state a few topi
s whi
h I �nd interesting at themoment. Their importan
e, the stage of their development and the time-s
ale oftheir study is totally uneven. The reader should just take them as some dis
ussiontopi
s su
h as they arise more or less randomly in a 
hat with 
olleagues, a winterevening, around the �repla
e. As always the most interesting developments willbe those that I 
annot think of at this moment.1.3.1 Physi
al glassesThe theory of glasses is still in its early infan
y. The idea that glasses may beexperimental realization of systems with one step repli
a symmetry breaking,although it is more than ten years old, has given shape to an a
tual mi
ros
opi
model only very re
ently. The most obvious open questions 
on
ern the dynami
sin the low temperature phase (we have no mi
ros
opi
 theory of aging in stru
-tural glasses so far), and the whole behavior in the temperature window abovethe glass transition temperature. The mean �eld models with one step repli
asymmetry breaking have two transition temperatures. The thermodynami
 tran-sition temperature, whi
h should be the ideal glass transition temperature (thatof a glass 
ooled in�nitely slowly), and a dynami
al transition temperature whi
his larger, at whi
h the system be
omes non ergodi
, but where there is no ther-modynami
 singularity. This dynami
al transition (whi
h is also the one thatis dete
ted by mode 
oupling theory) is presumably a mean �eld artifa
t: thesystem gets trapped into metastable states whi
h have an extensive free energyex
itation with respe
t to the equilibrium state. One expe
ts that this dynami
altransition will be rounded in any real system by the 'a
tivated pro
esses', i.e.bubble nu
leation. These are not understood at the moment, and their 
orre
tdes
ription is needed in order to understand the rapid in
rease of relaxationtimes upon 
ooling in glasses.Letting aside for a moment all the unsolved mathemati
al questions whi
h Ishall dis
uss later, it is 
lear that the theory of spin glasses is more advan
ed. Yetwe fa
e two diÆ
ult problems 
on
erning the extension of mean �eld theory to thespin glasses in dimensions smaller than six. On the te
hni
al side the standard�eld theory expansion around mean �eld is extremely diÆ
ult. The progresshas been steady but slow, and indeed some of its �rst predi
tions have been
on�rmed numeri
ally re
ently. Getting further along this dire
tion will requiresome better understanding of the mathemati
al stru
tures underlying repli
aalgebra. The physi
al pi
ture is not 
rystal 
lear either. We 
ertainly would liketo understand better how the many states are realized in real spa
e. The physi
aldis
ussion whi
h 
an be given now is at the more abstra
t level of phase spa
e,and it has shown its value in the design and dis
ussion of experiments, but a fullerunderstanding requires going to the level of spins. In spite of many attempts atde�ning length s
ales in glasses, my feeling is that the situation is still ratherun
lear. Let me state a simple illustration: if one has only two states, the out
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s is that of 
oarsening, and, after gauge transformingthe spins one 
an think of it in terms of 
oarsening in an Ising ferromagnet.The generalization of the 
u
tuation dissipation theorem takes then a simpleform, whi
h has a very intuitive interpretation. After a large waiting time tw,the system has developed some domains of ea
h of the two phases, and thetypi
al size of the domain is `(tw) (in a pure ferromagnet it would be ` = ptw,in presen
e of impurities, the growth of the domains will be slower). Then thedynami
s after the time tw is very di�erent depending on whether one 
onsiderstime tw + � with � � tw, or with � � tw. In the �rst 
ase a given spin, whi
his generi
ally far away from the domain walls, sees an environment whi
h isat equilibrium. One thus expe
ts the usual 
u
tuation dissipation theorem tobe valid. On the 
ontrary when � � tw a given spin sees some domain wallssweeping it all the time, and therefore its dynami
s is that of a spin at in�nitetemperature. This is exa
tly what is predi
ted by the generalized 
u
tuationdissipation theorem for a repli
a symmetri
 system. As soon as we have repli
asymmetry breaking, whether it is one step or full repli
a symmetry breaking, weknow the mathemati
al 
hara
terization of the generalized 
u
tuation dissipationtheorem, it is a very ni
e stru
ture whi
h is 
on�rmed by the simulations, butwe 
annot give yet a simple intuitive des
ription of it, similar to the one I justpresented.1.3.2 Random systemsWe seem to be on the way towards some general 
lassi�
ation and 
hara
teriza-tion of the behavior of random systems, both in their equilibrium and non equi-librium behavior. The original fra
ture between the systems with and withoutdisorder (roughly speaking: spin glasses and glasses) has been partially bridged(Bou
haud and M�ezard 1994; Marinari et al . 1994a, 1994b; Chandra et al . 1995):if a system without disorder has a glassy phase, this phase may look very mu
hlike the one of a disordered system. This is kind of reminis
ent of Wigner's su
-
essful step, when he substituted the 
ompli
ated Hamiltonian of a nu
leus by arandom matrix with the same symmetries. In the framework of amorphous solidstates su
h a step has been 
arried through in the 
ase of a few spe
i�
 examples,but we do not have yet any systemati
 equivalen
e, and the symmetry 
lassesare not known.Many of the ideas whi
h I have presented here 
an have a resonan
e withother problems of physi
s. A better 
hara
terization of the low temperaturethermodynami
s of glasses involves the 
omputation of spe
trum and lo
alizationproperties of vibrations in random stru
tures, whi
h is a problem appearing inmany areas of physi
s. The interplay of the amorphous solid state ideas withthe ones developed in ele
tron lo
alization 
ould 
ertainly also be a sour
e ofenri
hment of both �elds. Although I kept here within the s
ope of 
lassi
alstatisti
al me
hani
s, the quantum behavior of amorphous solid states is alsovery interesting: the quantum 
riti
al points appearing at zero temperature havevery interesting properties whi
h have just began to be worked out, but o�er a



DIRECTIONS 21wonderful playground for future developments.On top of all the examples I have mentioned so far, from protein folding tobrain theory, some of the most a
tive areas of glassy physi
s outside of physi
sinvolve problems in 
omputer s
ien
e and information theory (M�ezard 2003) su
has error 
orre
ting 
odes (Nishimori 2001) and the satis�ability problem (Duboiset al . 2002), as well as its appli
ation to game theory and e
onomi
 modeling(Challet et al . 2000a, 2000b; Bou
haud and Potters 2000). At a very basi
 level,the �eld whi
h we have been studying in the last two de
ades is just that of
olle
tive behavior of intera
ting agents whi
h are heterogeneous, whether thisheterogeneity is here from the beginning or is generated by the system through itsdynami
al evolution. Obviously, this is a very general topi
 with many possibleappli
ations. I am thus 
on�dent that the spreading of this ideas will go on fora while.1.3.3 The unreasonable ineÆ
ien
y of mathemati
sIn some sense the equilibrium statisti
al me
hani
s of amorphous solid states is abran
h of probability theory. A dire
t probabilisti
 solution of the mean �eld the-ory of spin glasses has been developed, at the mean �eld level, through the 
avitymethod. After many years of study, and 
lever mathemati
al improvements, itnow o�ers a rigorous solution for the SK model, and in optimization for 'simple'problems like the assignment or random link traveling salesman problem. Clearlythis is a very a
tive line of resear
h and one 
an expe
t that new exa
t resultswill be obtained in this �eld in the forth
oming years.But by far the easiest approa
h, the most 
ompa
t as far as a
tual 
omputa-tion are 
on
erned, the �rst one that one will use on any new random problem,is the repli
a one. It is very strange that nobody has yet 
ome up with a math-emati
al framework to study the permutation group with a real number of ele-ments and provide a justi�
ation to Parisi's repli
a symmetry breaking s
heme,or maybe generalize it. This is a perfe
tly well de�ned s
heme, where the 
om-putations , as well as the underlying probabilisti
 stru
ture (whi
h is exa
tly the
ontain of the 
avity method) are 
ompletely understood.The amorphous solid states are the low lying 
on�gurations of 
ertain hamil-tonians. It is no surprise that these will be related to the theory of extreme eventstatisti
s. If the 
on�gurations of a glassy system have independent random en-ergies, then the extreme event theory tells us the statisti
s of these energies:they are given by Gumbel's law, whi
h is the one relevant for us sin
e we expe
tthe energy distribution to be unbounded in the thermodynami
 limit, but tofall o� rapidly enough, faster than a power law. It turns out to be exa
tly thestatisti
s whi
h is found by the repli
a symmetry breaking method at one steprepli
a symmetry breaking, as was found early on in the 
ase of the random en-ergy model. This provides some very en
ouraging 
onne
tion between standardprobability tools and physi
s. Of 
ourse in any physi
al system the energy of the
on�gurations are 
orrelated random variables. But one may hope that, aftergrouping together the 
on�gurations whi
h are near to ea
h other, one builds up
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h the free energies are un
orrelated (keeping with the lowlying valleys). These systems will form a universality 
lass, 
ontaining the sys-tems where the amorphous solid state is of the type `one step repli
a symmetrybreaking'. The present belief is that the glass phase of simple glasses (for exam-ple hard spheres or soft spheres) 
ould be of this type. A better understandingof the random pa
kings of spheres 
ould help to 
on�rm this 
onje
ture. Butthe spin glass o�er us some other universality 
lasses, in whi
h the low lyingvalleys are not un
orrelated, but possess a very spe
i�
 type of hierar
hi
al 
or-relations: these are the problems where the amorphous solid state is des
ribedby the full repli
a symmetry breaking s
heme. Putting them in the frameworkof extreme events statisti
s is an interesting mathemati
al problem. (In this re-spe
t one 
an draw an analogy with the universal behaviors of sums of randomvariables, rather than extremes, whi
h is mu
h easier. Everyone knows that ifthe variables are only weakly 
orrelated the sum is universally distributed asa Gaussian variable; phantom polymer 
hains o�er a physi
al example. Now if
orrelations are stronger, whi
h means here that they 
an 
ouple very distantvariables, then physi
s o�ers the new universality 
lass of self avoiding polymers,where the typi
al size of the sum is known to s
ale as the number to a power� 6= 1=2, but whi
h is mu
h harder to des
ribe mathemati
ally).The �eld of spin glasses in parti
ular o�ers many examples of fa
ts that everyphysi
ist believes is true, but one 
annot prove rigorously. This is not unusual inother bran
hes of physi
s, and one should not be too worried about it. Howeverit would be very wel
ome to have a proof of the existen
e of a spin glass phasein a �nite dimensional model with short range intera
tions, to just mention themost obvious su
h fa
t.I would not be surprised if the study of random solid states, and the varioustools whi
h have been developed in physi
s for that purpose, would lead in thefuture to interesting new mathemati
s, maybe with 
onne
tions to probabilisti
arithmeti
s.1.3.4 Consilien
eThe statisti
al physi
s pro
ess of building a mi
ros
opi
 theory of amorphoussolid states is a slow and diÆ
ult step of the development of physi
s. Many 
ol-leagues will just not want to make the intelle
tual investment of getting into itand will argue that a phenomenologi
al des
ription is enough. While I under-stand that the investment is hard, and for most people it may be better to waituntil the theory has been understood better so that it 
an be simpli�ed, I dobelieve that the mi
ros
opi
 modeling is an absolutely ne
essary step. We needphenomenologi
al des
riptions, trying to �nd out some des
ription in terms ofthe smallest number of parameters. But we need to be able to relate them to themi
ros
opi
 stru
ture, and show the 
onsisten
y of both. In this respe
t I thinkfor instan
e that an elaboration of the s
aling pi
ture of spin glasses (M
Millan1984; Bray and Moore 1986; Fisher and Huse 1987, 1988), whi
h would take intoa

ount the existen
e of many states, would be a very interesting a
hievement.



DIRECTIONS 23As we saw, the �eld of amorphous solid states is full of 
onne
tions with manyother bran
hes of s
ien
e. This is be
ause of the ri
hness of these amorphousphases, and their ability to have many di�erent states 
oexist. In this respe
t itstheory is a part of the development of a theory of 
omplex systems (in the verybroad sense of many intera
ting agents exhibiting 
omplex 
olle
tive behaviors).This �eld is not well de�ned enough for there to be a unique theory of 
omplexsystems. There are various approa
hes to it, applying to various levels, and ea
hwill be judged both on its own results, and on its 
onsisten
y with the other ones.Of 
ourse statisti
al physi
s is just about �nding out the 
olle
tive behavior,starting from the mi
ros
opi
 des
ription of the atoms. In this vague sense one
ould say it is 
entral to the �eld. On the other hand if one looks at whatstatisti
al physi
s is able to a
hieve, one will rather say that it is not (yet) 
entral.The available te
hniques 
an be judged as rather eÆ
ient to deal with the systemsin whi
h the dynami
al evolution has a property of detailed balan
e, whi
h meansthat they 
an be des
ribed by an energy fun
tion, and the evolution is justrelaxation in some (free) energy lands
ape. This is a very strong restri
tion, and,as we saw on the example of neural networks, most of the interesting problemsin 
omplex systems will not obey it. Although some attempts have been madeto develop some statisti
al me
hani
s study of the dynami
s of systems withoutdetailed balan
e, (in parti
ular in asymmetri
 neural networks, or in randommappings of phase spa
e), this is a very vast �eld whi
h is mu
h less understood.The virtue of the theory of amorphous solid state is that it 
an provide somevery detailed information on some spe
i�
 and oversimpli�ed problems, whi
h
an then serve as solid starting points for further elaboration.It might also be that some interesting problems, parti
ularly in biology, havebeen so well sele
ted by evolution that every single detail of the mi
ros
opi
des
ription is relevant: they are not generi
 at all, and the statisti
al des
rip-tion will have nothing to say about them. I feel relu
tant to a

ept this as ageneral prin
iple, mainly for philosophi
al reasons whi
h I will not bother thereader with. Basi
ally I feel that some level of statisti
al des
ription, and there-fore some degree of generi
ity, is unavoidable in order to build up a theory ofmany intera
ting elements, whatever they are (a simulation of tens of thousandsof 
oupled di�erential equations reprodu
ing some experimental behavior is notwhat I would 
all a theory, although it may be a very useful step in the elabora-tion of a theory). Physi
s has a long tradition of oversimplifying the real worldin order to a
hieve a 
orre
t des
ription, and then rein
orporating the left-outdetails (think of the theory of gases for instan
e). This strategy, whi
h is alsothe one that was followed for instan
e in the physi
al theory of neural networks,is probably the best one that 
an be followed in order to elaborate a theory.I understand that it may seem odd to our 
olleagues in other �elds, parti
u-larly the �elds whi
h are very experimental ones, but I believe that one day oranother their s
ien
e will also bene�t from su
h a strategy. Whi
h �eld the sta-tisti
al physi
s of amorphous solid states is able to help now, I leave the readerto de
ide, hoping that the above 
an provide a few guidelines.
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