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AbstratThis text is a non-tehnial, elementary introdution to the theory ofglassy phases and their ubiquity. The aim is to provide a guide, and somekind of oherent view, to the various topis whih have been exploredin reent years in this very diverse �eld, ranging from spin or struturalglasses to protein folding, ombinatorial optimization, neural networks,error orreting odes and game theory.

1.1 A few landmarks1.1.1 Strutural glassesNature provides for us numerous examples of systems whih may ondense intoan amorphous solid state. Probably the most ommon ase is that of struturalglasses, of whih the window glass has been known for several millennia; reentreviews an be found in Angell (1995) and Benedetti (1997). Strutural glassesonsist of a phase of matter in whih atoms or moleules are arranged in spaein a struture whih is frozen in time, apart from some small utuations. Yet,ontrarily to the ase of rystalline solids, the arrangement of these moleules isnot a periodi one. It is a `random' arrangement: although the system exhibitssome kind of regularity on small enough sales (in the range of a few inter-atomi distanes), this regularity is lost on larger length sales, as attested fromthe absene of sharp peaks in the di�ration pattern.A random arrangement of the degrees of freedom, but one whih is frozenand does not evolve in time: these are the basi ingredients of what we shall allthe random, or amorphous, solid state, and what goes generally under the nameof 'glass phase' (I have preferred the former beause the term 'glass' is morespeialized and might lead to some misunderstanding when we shall move tothe random solid states of some systems whih are more remote from ondensedmatter physis). Qualitatively this desription is �ne, yet the reader should beaware from the beginning of the diÆulty of giving more preise de�nitions. We1



2 THEORY OF RANDOM SOLID STATESused the word 'phase of matter' but it may be (and has been) disputed whetherthis is a really new phase of matter. The glass state might not exist as a trueseparate phase, but just be desribing a liquid with an extremely large visosity,so that we do not see it ow in the limited time sale of our experiment. Thefat that the struture does not evolve in time should not be thought of asimplying that the positions of eah atom is frozen: beause of vaanies forinstane the atoms an atually drift, although very slowly if the system is atlow temperatures, as they also do in a rystalline phase. The relative positionsof the points in spae around whih an atom is loated, these de�ne this frozenstruture. The de�nition of a 'random' arrangement is not a trivial one either,one ould have some order whih displays no Bragg peaks but an be desribedwith a little amount of information, or else one ould be obliged to desribe theglass state by giving the average positions of all atoms, whih requires an in�niteamount of information (in the 'thermodynami limit' of in�nitely large systems).These are all important subtleties, and we shall partly address them below.Yet it is lear that, judging from its relaxation time, the glass state is at least aquantitatively di�erent state of matter. Atually one very peuliar aspet of glassforming materials, and one whih is so important in their manufaturing, is howrapidly this relaxation time, or the visosity varies with the external onditions.Some inrease by more than twelve orders of magnitude of the relaxation timewhen one diminishes the temperature by 20 per ent around the glass transitiontemperature are found in the so-alled 'fragile' glasses whih have the strongestsuh inrease (Angell 1995; Benedetti 1997). At temperatures well below theglass transition temperature their life time is essentially in�nite, and some millionyears old samples have been found. In the regimes where the experimental timeis muh smaller than the relaxation time the glass state is out of equilibrium andone observes aging phenomena. Inevitably we shall thus need to fae the timedependent properties of these systems, whih are even more diÆult to desribethan their equilibrium ounterparts.Beside its speial properties, the glass state is important beause of its ubiq-uity. It an be reahed in virtually all systems, by many di�erent pathways.Cooling from a liquid phase is a ommon one. The ooling rate should then befast enough for the system to be quenhed into the glass state, avoiding thusthe rystallization (how fast one should quenh depends enormously on the sys-tem at hand: as we all know, it is muh easier to reah a glass state in liquidsilia than in a metal). Probably in most systems the rystalline state is themost stable one, although this has not been proven: at zero temperature, thefamous onjeture of Kepler stating that the densest paking of hard sphere isthe rystalline one (fae entered ubi or hexagonal losed paked) has resisteda proof for four enturies (Hales 1998). Showing that the rystalline state is themost stable one at some �nite temperature, is thus likely to be a very hard task.The existene of a rystal state is annoying both for experimentalists who must`beat the rystallization trap', and for theorists, who must �nd a proper wayof studying a metastable state. But this is not more troublesome than studying



A FEW LANDMARKS 3super-ooled water, or diamond. A more subtle point, to whih we shall return, isthe fat that it is extremely diÆult to prepare a glass in one given `glass state'.From the mathematial point of view the idea of a glass at thermal equilibriumis a useful onept, and it turns out to be a very useful starting point in order tostart a study, but the last word will deal with out of equilibrium dynamis. Aswe shall see, there are some indiations that these two approahes (thermody-nami equilibrium and out of equilibrium dynamis) are intimately related, butthe deep reason for this is not so lear, and its searh will be a major hallengefor the near future.1.1.2 From rubber to spin glass and proteinsAnother tehnologially important glassy material is rubber (Goldbart et al . 1996;Zippelius and Goldbart 1998). There, the basi mirosopi onstituents are longpolymeri hains, and the amorphous solid state is obtained by adding ross-linkswhih glue together permanently these hains- a proess alled vulanisationwhih was disovered by Goodyear one and a half enturies ago.There exists thus a fundamental oneptual di�erene with the simpler stru-tural glasses desribed above: vulanisation has reated some permanent linksbetween the polymers, whih are loated at random positions. Therefore the de-sription of the vulanised rubber involves some random variables- the positionsof the rosslinks. These random variables are given a priori, they depend on thesample whih one is studying, and their number is extensive, i.e. it grows lin-early with the volume of the sample. This is very di�erent from our previousase. In simple strutural glasses one an work with a system of N moleulesinterating by pairs (higher order interations an be added easily without mod-ifying the argument) through a simple potential V (ri; rj). The energy funtion(the Hamiltonian) is very easily desribed, being just the sum of the pair in-terations. What is ompliated to desribe and study is the amorphous stateadopted by the system under fast ooling. On the ontrary in rubber, writingdown the Hamiltonian for a given sample requires the knowledge of the positionsof all the rosslinks, a very long list whih you annot determine, nor store onyour hard disk, and whih will be di�erent if you move to a new sample. Thistype of system, where the Hamiltonian depends on an extensive set of randomvariables, is said to have quenhed disorder. The terminology omes from thefat that the monomers whih are rosslinked do not evolve in time, they are notthermalized, ontrarily to the other atoms of the polymers whih have thermalutuations.Quenhed disorder is also present in some exoti magneti alloys alled spinglasses (M�ezard et al . 1987; Fisher and Hertz 1991; Sherrington 2003). Thesesystems are not present in every-day's life, they an be found only in somespeialized solid state physis laboratories, and only in small quantity. Theyhave surreptitiously appeared in various odd orners of materials siene onlya few deades ago, and nobody has been able to foresee any type of reasonableappliation in the lose future, in spite of the strong evolutionary pressure of



4 THEORY OF RANDOM SOLID STATESgrant funding whih pushes physiist to try and imagine some. Yet, during thelast quarter of the XXth entury, there have been many thousands of artilesdediated to spin glasses, both experimental and theoretial, and the spin glassproblem has been desribed as a ornuopia (Anderson 1988). The reason is thatspin glasses provide a (relatively) simple laboratory for the study of glass phases,whih themselves appear in many domains, in physis and beyond.The arhetypial ase of a spin glass is an alloy suh as CuMn, with a on-entration of a few per ent of the magneti manganese atoms diluted in the nonmagneti metal, here opper. The magneti degrees of freedom are the loalizedmagneti moments of the Mn atoms. They interat with eah other through aompliated proess, an indiret exhange with the ondution eletrons, but thenet result is an interation whih either tends to align the magneti moments-a ferromagneti interation, or tends to anti-align them (anti-ferromagneti).Whether the interation between two magneti moments is ferromagneti oranti-ferromagneti depends on the distane between the manganese atoms: theoupling osillates with distane. But the positions of these atoms are frozenin time, on all aessible time sales, and therefore the ouplings between themagneti moments form a set of quenhed variables. Negleting quantum me-hanial e�ets, a good approximation at the temperatures of study, and usinganisotropy to redue the spins to a set of Boolean degrees of freedom, the Isingspins whih desribe the projetion of the spin onto one axis, one soon arrivesat a muh simpler system indeed, a set of lassial Ising spins interating withrandom ouplings. One an guess that this kind of generi problem of randomlyinterating Boolean variables will provide useful insight into several domains ofsiene and indeed it does, as we shall see. But the rihness and diÆulty ofthis problem, whih we shall briey survey in the next setion, will be a sur-prise to any newomer in the �eld (M�ezard et al . 1987; Fisher and Hertz 1991;Talagrand 2003b).Another example of an amorphous solid state, and one of the greatest im-portane, is o�ered by proteins (Garel et al . 1998). In its native form, a proteinis a long polymer whih is folded in suh a way that the relative positions ofthe various atoms are frozen, apart from some small vibrations. In general thisstruture is not a simple periodi one, although one may �nd some reurrentsubstrutures, `alpha helies' and `beta sheets', signaling a degree of loal order-ing. In a loose sense proteins thus fall into our broad de�nition of amorphoussolid states. Obviously while inluding this very rih new �eld one is driftingfrom the purest mathematial de�nition of glass phases. One reason is the fatthat proteins are �nite size objets. Probably the proper level of desription todesribe protein folding is the one whih onsiders the amino aid groups as basientities, and the angles along the bakbone as the relevant variables (as alwayswhen one hooses one level of desription, there also exist some e�ets whihrequire going to a smaller sale desription). So we typially fae a problem of afew hundreds to a few thousands degrees of freedom. This is enough to justify astatistial mehanis analysis, but it is not Avogadro's number.



A FEW LANDMARKS 5Of more fundamental importane is the fat that proteins generally have oneonformation whih is preferred, the native state. This is the shape that makesthem funtion, this is the shape that they adopt in natural onditions, and intowhih they will refold if denaturated. Although they also possess many othermetastable states, these seem to have rather higher free energies, so that theprotein will be able to avoid these other meta-stable states and fold into itsnative shape, sometimes with the help of some auxiliary, `haperon' moleules.Sometimes the free energy gap must be rather preisely tailored in suh a waythat some hange in the external onditions (e.g. onentration of other proteins)will lead to some hange in shape and properties of the protein, as has beendemonstrated in the ase of protein-DNA interations. This dominane of thenative state is at odds with the situation of glasses or spin glasses where thesystems an freeze into any of the possible meta-stable states. One reason forthis di�erene is the fat that the proteins are not ompletely random objets.Although the primary sequene of amino aids onstituting a protein often looksrandom, one should remember that the sequenes used in nature onstitute a verysmall subset of the very large number of possible sequenes (20100 for proteinsmade of one hundred amino-aids), and a subset whih has been arefully seletedby evolution, preisely for the ability to fold into a given shape allowing for somefuntion. A totally random sequene of amino aids, with uniform probability ofhaving eah of twenty possible ones on eah point along the hain, has very littlehane of being a useful protein, or even just a moleule able to fold into a wellde�ned native state. One needs some onstraints in the sequene to ahieve this,and the most obvious one is to have the right proportion of hydrophobi versushydrophili amino-aids, in suh a way that the moleule, in water, will tendto form a ompat globule with the hydrophobi ones buried inside the globuleso that they avoid the water. The type of orrelations whih are needed in thehoie of the sequene, in order to have a good hane of building a protein froma random heteropolymer, is a very diÆult and open problem. Proteins providesome type of glasses with quenhed-in disorder (the primary sequene of amino-aids), but the nature of the probability distribution of this disorder, and hownatural evolution seleted it, is still unknown.We shall not attempt an exhaustive enumeration of glassy states of physialmatter, numerous examples range from other biologial polymers like DNA andRNA, to glasses of eletri dipoles, or of vortex lines in high temperature super-ondutors (Blatter et al . 1994). A very rih lass to whih these vortex systemsbelong is that of elasti objets, lines, interfaes suh as Bloh walls, modu-lated phases like harge density waves, whih have some thermal utuationsbut are also pinned by some external impurities. The ubiquity of suh situationsin physis is well doumented (as should be lear by now), but in addition glassstates show up also in far out ontexts, further enlarging the domain of study.



6 THEORY OF RANDOM SOLID STATES1.1.3 Networks of interating individuals: global equilibriumImagine a group of N sientists, onsider any two of them, and haraterizetheir relationship at a very rude level by stating whether they are friends ornot. These olleagues meet at a onferene and the organizer, a very wise person,wishes to optimize their repartition in the two available hotels. He will thus maketwo groups and try to have as muh as possible friends grouped in the same hoteland people who hate eah other separated. He �rst ollets the data on who isfriend with whom. For eah pair of people i; j, he assigns a positive interationonstant Jij = +1, if they are friends, otherwise their interation onstant isnegative, say Jij = �1. From this set of interation onstants, whih buildsup our sample, the organizer tries to optimize the repartition in the followingway: he will alloate eah person i either in the hotel uphill, in whih asehe denotes him in his �les by the number Si = +1, or in the hotel downhill,labelled then by Si = �1. Obviously, onsidering two olleagues i and j, thereare two optimal repartitions for eah situation of friendship, putting them in thesame hotel if they are friends or in di�erent hotels if they are not. These aredesribed mathematially by �nding the set of values Si, Sj whih minimize the`pair interation energy' �JijSiSj . Of ourse in a realisti ase it is impossible tosatisfy everybody: often the enemies of my enemies are not neessarily my friends,and the situation is then alled frustrated, in a sense that it is not possible tosatisfy simultaneously all pairs of people (the degree of frustration is measuredby the fration of triplets i; j; k suh that the produt JijJjkJki is negative).Finding the optimal hotel alloation in the set of 2N possible ones turns outto be a very diÆult problem, intratable by the present omputers even forsuh a small number as N = 200. This problem is a ase of a ombinatorialoptimization problem whih falls into the so alled NP-omplete lass: there areno known algorithms so far whih are able to solve this optimization problemin a time whih grows like a power of the size (N) of the problem. There mayexist better algorithms than the enumeration of the 2N alloations, but they allrequire a omputer time growing exponentially with N .What is the relationship of this soiologial problem with our glasses? Asone an guess from the hoie of notations, this is just an example of a spinglass problem, the famous 'SK model' (Sherrington and Kirkpatrik 1975; Kirk-patrik and Sherrington 1978). Assigning person i to the uphill hotel is equiva-lent to having the Ising spin Si pointing up (Si = +1), a person in the downhillhotel orresponds to the spin pointing down (Si = �1), and the aim of the or-ganizer is to �nd a spin on�guration whih minimizes the interation energyE = �P1<i�j<N JijSiSj : he is seeking the ground state of the spin glass withexhange interation onstants Jij . This is a speial spin glass beause every spininterats with every other one: it has in�nite range interations. This atuallysimpli�es the mathematial study beause this in�nite onnetivity of intera-tions allows for an exat mean �eld solution. To be preise the solution of thisproblem, originally due to Parisi (1979, 1980; M�ezard et al . 1987) has reentlybeen shown to be exat by Talagrand (2003a), thanks to the beautiful mathemat-



A FEW LANDMARKS 7ial developments of Guerra and Toninelli (2002), Guerra (2003), and Talagrand(2003a, 2003b). [Mean �eld spin glasses are the only ases for whih we havesuh exat solutions; knowledge on spin glasses in �nite dimension with shortrange interations is very poor: nothing is known for sure, not even the existeneof a phase transition, although the best numerial simulations point towards theexistene of a spin glass phase, and this phase presents some similarities to whatis found in mean �eld (Marinari et al . 1998; Krzakala and Martin 2000; Palassiniand Young 2000)℄. >From this solution (Parisi 1979, 1980) we an learn a fewimportant fats on our original problem. The best assignments has a (`groundstate') energy E0 behaving for large N as �:7633 N3=2, whih is very far abovewhat would happen in the simple unfrustrated world where the energy sales as�N2: despite all the e�orts of our organizer, and his spending a lot of omputertime, most people will be rather unhappy and he will not do a muh better jobthan a random assignment of people into the two hotels! The physiist looks atthis problem not only at zero temperature (where the problem redues to �ndinga ground state), but also at �nite temperature, where the various assignmentsare given a probability de�ned by the Boltzmann weight exp(�E=T ). Then hean get some information on the struture of the assignments of low energy. Itturns out that there are many suh meta-stable states, whih an be very di�er-ent one from another: typially one an �nd an assignment whih has an energyE1 whih is very lose to E0 (the di�erene between the two remaining �nitewhen N beomes large), but whih is very di�erent, having half of the peoplehanged hotel. On top of this, the set of meta-stable states has a fasinatinghierarhial struture, building what is alled an ultrametri spae (M�ezard etal . 1984a, 1984b).A whole lass of 'omplex systems' an be studied similarly in the frameworkof equilibrium statistial mehanis. It ontains many ombinatorial optimizationproblems, in whih one seeks a globally optimal on�guration (a ground state)in a very large set of allowed ones (M�ezard et al . 1987). One new idea brought inby physis is preisely this generalization of the problem to a �nite temperatureone: instead of asking for the ground state, one asks about the properties of theaessible on�gurations with a given energy, allowing for the introdution ofuseful notions suh as entropy, free energy, phase transitions et...This turns out to be a fruitful strategy, both as an algorithmi devie andas a theoretial tool. On the algorithmi side the idea gave rise to the simulatedannealing algorithm whih basially amounts to a Monte Carlo simulation ofthe problem in whih one gradually redues the temperature in order to try to�nd the ground state (Kirkpatrik et al . 1983). It is not a panaea and it anprobably be outperformed by more speialized algorithms on any given problem.But it is a very versatile strategy, and one whih an be very useful for pratialproblems beause of its exibility. In partiular it allows to add new onstraintsas penalties in the energy funtions with a rather small e�ort, where a moredediated algorithm would just require a new development from srath. Prati-al appliations range from hip positioning to garbage olletion sheduling, to



8 THEORY OF RANDOM SOLID STATESrouting and to �nanial market modeling!Apart from trying to get an algorithm in order to �nd the optimal on�gu-ration, one aim ould be to get some analyti predition on this ground state,without neessarily onstruting it. This is what happened to our onfereneorganizer above: from spin glass theory he ould get the optimal 'energy' of thebest assignment of his olleagues into two hotels (or more preisely its large Nlimit), without knowing how to onstrut it, and he ould learn about the distri-bution of meta-stable states. This type of knowledge is the �rst step towards theelaboration of a phenomenology of the problem, where one will aim for instaneat understanding the importane of various type of orrelations in the friendshipdistribution, et... It also builds up an interesting lass of problems in probabilitytheory. These are the `random' ombinatorial problems in whih one studies theproperties of ground states of some random systems, given a ertain probabilitydistribution of samples. A famous example is the assignment problem: given Npersons and N jobs, and a set of numbers giving the performane of eah personfor eah of the possible jobs, �nd the best assignment of the jobs to the persons.The probabilist an ask the question of the performane of the best assignmentfor a given set of samples, for instane when the individual performanes areindependent identially distributed random variables taken from a given distri-bution. Very often the large N limit is 'self-averaging', meaning that this optimallength is the same for almost all samples in the set. The statistial mehanisapproah has led to preditions onerning this optimal performane (M�ezardand Parisi 1985), whih have been on�rmed reently by a rigorous approah(Aldous 2001).1.1.4 Networks of interating individuals: dynamisAlthough the systems whih we have just desribed already provide a large lassof interesting problems, we are still very far from any real situation in soiology.Our use of equilibrium statistial mehanis is restritive at least on two ruialpoints. One of them is the fous onto an equilibrium situation, the other one is thesearh of a global equilibrium. Keeping for another while to our toy onfereneproblem, you have notied that human ativity is in general not organized inthis totalitarian way of having an 'organizer' trying to optimize everybody's life(as we know suh attempts are atastrophi, not only beause of the pratialimpossibility of �nding the optimal on�guration). The more realisti situationof individual strategies where people have a large probability to hange hotel ifthey are too unhappy leads to a dynamial problem, whih ould be desribedagain as the relaxation towards some loal equilibrium. We enter the world ofdynamis, in a ase whih is still familiar in the sense that we an think ofrelaxational dynamis (the situation an be desribed by a heat bath). Familiardoes not mean easy: at low temperatures (i.e. when eah individual insists alot in hanging when this is favorable for him), this is the dynamis of a spinglass, and the relaxation time will be very large. What is found in spin glasses isthat suh a system, starting from initial onditions, will not �nd an equilibrium



A FEW LANDMARKS 9state, but will wander for ever (Bouhaud 1992). However the more time haselapsed, the longer the harateristi time sale for it to di�use further away:suh a system is aging, meaning that its response to an external stress dependson its age. This property has been observed for instane in polyvinylhloride, orin spin glasses, and its study has turned out to be an extremely valuable tool(Bouhaud et al . 1998).One step further in omplexity is the dynamial evolution when there is noenergy. At zero temperature the energy is a Lyapunov funtion whih keepsdereasing. Without suh a Lyapunov funtion all kinds of behaviors beomepossible. We are going away from the physis of systems lose to equilibrium,into muh more ompliated situations whih are just beginning to be explored.Progress has been made in some ases (Challet et al . 2000a, 2000b; Dubois et al2002), and I would partiularly like to mention briey one ase, taken not fromsoiology, but rather from biology.This is the study of neural networks, and partiularly some attempts to buildup a onsistent theory of how memory an be organized in the brain (Amit 1989;Krogh et al . 1991). Elaborating on deades of experiments, it seems plausiblethat one important level of desription of the brain, relevant for the treatmentof information, is the level of ativity of the neurons, measured as the numberof spikes they emit per seond (this is not obvious, and the information may beenoded in more subtle ways, suh as for instane spike orrelations). Fousingonto the spikes, one an take as the relevant elementary variables, either thespiking rate in eah neuron, averaged over some time window of some tens ofmilliseonds, or its instantaneous version whih is the Boolean variable: 0 if thereis no spike, 1 if there is one. An ative (spiking) neuron, through its synapsestowards an other neuron, will either favor the spiking of this other one if thesynapses are exitatory, or it may inhibit the other neuron's ativity. At a ari-atural level, the neural network might be onsidered as a highly interonnetednetwork (there are of the order of 104 synapses per neuron) of variables, eitherontinuous-if one models the ativity through �ring rates, or binary-if one usesspikes. The details of when the neuron deides to spike an be desribed bymonitoring the membrane potential (the neuron �res when the potential exeedssome threshold), and in the end what suh a network does is basially governedprimarily by whih are the exitatory synapses and whih are the inhibitory ones.Fifteen years ago, in a typial physiist's approah, John Hop�eld tried tounderstand if suh a ariatural network ould be used as a memory (Hop�eld1982). He studied a network whih was trained as follows: one shows it someexternal patterns and one reinfores a synapse whenever the two neurons it on-nets �re simultaneously. This proess, known as Hebb's rule, builds a set ofsynapses whih is suh that the network memorizes the pattern: when presentedan initial on�guration whih is a orrupted version of the pattern, it will spon-taneously evolve towards the pattern. This way of �xing the synapses atuallybuilds a set of symmetri synapses: the inuene of neuron i onto neuron j isthe same as that of j onto i. Beause of this equality of ation and reation,



10 THEORY OF RANDOM SOLID STATESthere exists an energy funtion in this problem, and the evolution of the system,taking into aount the stohasti nature of �ring, is just that of a spin glass,where the exhange ouplings between spins are the strengths of the synapses. Aspin glass whih has been tailored in suh a way that its meta-stable states arethe memorized patterns. It is no surprise that suh a physial spin system, whenevolving from an initial on�guration whih is not too far from a meta-stablestate (one pattern), will ow towards it, and thus reover the full information onthe pattern. This spin glass problem has been studied in great details: one anshow that if too many patterns are memorized then the system an no longermemorize them, one an ompute memory apaities, one an degrade the net-work, destroying a sizeable fration of neurons and/or synapses, without alteringits memory, et... This was an extremely useful existene proof of the existene ofassoiative memory e�ets in a very simpli�ed neural network, and it allowed formany interesting quantitative studies. Its starting point was very remote from thereality on one ruial point: the assumption of symmetri synapses. Dropping thisassumption forbids to introdue an energy funtion, and immediately drives oneaway from any equilibrium statistial mehanis studies. Yet it has been shownafterwards that many of the key properties of the network still persisted in thepresene of some degree of asymmetry. Hop�eld's daring assumption, whih wasone desribed by G. Toulouse as a \lever step bakward," allowed to reduethe problem to a solvable one, whih provided a solid bakground that one ouldelaborate upon in order to get a more realisti model. Several physiists startedfrom this point and then added more realisti ingredients in order to get loserto biologial reality. This is of ourse a very important elaboration, whih isstill moving ahead. One should remember that, even in presene of asymmetriinterations, the statistial mehanis approah may be useful in various ways,whether it will provide a solvable limiting ase as in Hop�eld's model, or whetherone uses some of the purely dynamial approahes that will be desribed in thenext setion.
1.2 Tools and onepts1.2.1 Statistial desriptionLet us also step bakwards towards the `easy' ase of amorphous solid states:glasses. As soon as one tries to go beyond the rystal, or the rystal with defets,one faes the basi obstale: how to desribe an amorphous solid state? As wesaw, it is out of question to try and desribe the glass by listing the equilibriumpositions of all the atoms. The point is that, in a given glass state, and evenafter averaging over the thermal utuations, the environment of eah atom dif-fers from that of all the other ones. Furthermore there is a very large numberof long-lived glass states, a number whih sales exponentially with the size ofthe system and therefore gives a ontribution to the entropy, alled the on�g-urational entropy. In systems with quenhed disorder, eah sample is di�erentfrom all the other ones. All these fats all for a statistial desription of the



TOOLS AND CONCEPTS 11properties of amorphous solid states. We have to give up the idea of desrib-ing in detail the equilibrium positions of the atoms in a glass state. Instead weshall give a statistial desription of the relative equilibrium positions. The �rststep is to get rid of the thermal utuations, de�ning, in a given glass state, thedensity of partiles at point x by the thermal average �(x) = PihÆ(x � xi)i.Here xi is the position of partile i and the brakets stand for the average overthermal utuations in a given glass state, at a given temperature. While thiswould be just a onstant in the liquid, it is a ompliated funtion in the glass,with peaks at all the equilibrium positions of the atoms, a muh too ompliatedobjet. Basially what one an hope to ompute are some orrelations suh as theprobability, given that � has a peak at a point x, that it will have another peakat some point x+ r. This objet in turn ould depend on the glass state one isonsidering; in all ases studied so far it does not (a property of the large N limitalled reproduibility), but if it would, one should again onsider the probabilitydistribution of the orrelation when one hanges the glass state. For systems withquenhed disorder it ould also depend on the sample and one would play thesame game, but again this situation has not been enountered: most propertiesof a disordered system, inluding all thermodynamial properties, are said to be'self-averaging' whih means that they are the same for almost all samples (withprobability one in the large N limit).Giving up the idea of deiphering one partiular sample and moving to thestudy of generi properties of all samples is a big shift of fous whih has beendesribed as a paradigmati shift. It is omparable to what was done when peopleintrodued statistial physis, giving up the idea of following the Newtoniantrajetory of every partile, to onentrate on the probability distributions. Inthe study of glassy phases we have to take this step of a statistial modelingtwie: �rst in order to deal with the thermal utuations (the usual statistialphysis desription), seondly in order to desribe the utuations in the loalenvironments, whih exist even after thermal averaging (I shall all it the seondstatistial level). Some of the �rst suessful implementations of this idea appearin the pioneering works of Sam Edwards and ollaborators, both in spin glasses(Edwards and Anderson 1975), and in ross-linked maromoleules (Deam andEdwards 1976). The reason for the introdution of statistial physis �nds itsroots from the haoti motion of partile, leading to sensitive dependene oninitial onditions and foring one to abandon the hope to follow a trajetory.In our ase one reason of the statistial desription is probably similar. In spinglasses it is well established that there exists some haotiity, so that hangingthe sample slightly (e.g. hanging a small fration of the oupling onstants) willlead to a system in whih the metastable states are totally unorrelated withthe previous ones. In strutural glasses the situation is less lear but it seemsplausible that by hanging slightly the number of partiles from N to N + ÆNwith 1 << ÆN << N the (zero temperature) metastable states again beomeunorrelated.Chaotiity in the above sense is thus related to the property of self-averageness.



12 THEORY OF RANDOM SOLID STATESThese are probably important ingredients allowing for the relevane of the sta-tistial desription. Again the ase of proteins appears to be rather ompliatedfrom this point of view, partly beause of their relatively small size, but mostlybeause the proper distribution of disorder in the sequene, and the orrespond-ing haotiity properties, have not been found. It is not known whether evolutionhas seleted the proteins very spei�ally among all sets of heteropolymers orwhether it has seleted a lass of sequenes with some orrelations, with sometype of haotiity property when one hanges the sequene staying within thelass. On the other hand a problem like brain modeling would seem to lend itselfto the statistial desription. Again it does not mean that the onnetions arerandom, but neither are they all preprogrammed (the information neessary toenode the 1014 synapses is muh larger than that ontained in DNA). There isan amount of randomness in the wiring, and there also exist generi propertiesommon to most brains whih one an hope to understand in this statistialsense, without having to are about all details of the wiring. In this respet thesituation is very di�erent from the study of a globally optimized devie suh asfor instane a omputer ard.1.2.2 Physis without symmetry: equilibrium.The theoretial study of glassy phases is a notoriously diÆult problem in physis,and one in whih the progress has been relatively slow. One key reason is the ab-sene of symmetry. All the simple omputations on rystalline solid states whihyou �nd in the �rst pages of the textbooks, di�ration pattern, phonon spetrum,band struture, rely ompletely on the existene of a symmetry group. Even thesimplest of these omputations annot be done in the glass phase. To fae thissituation, theorists have invented a number of methods whih all amount to usingthe seond statistial level, and introduing some kind of auxiliary symmetry, aswe will explain below.In usual problems it is relatively easy to understand the type of phase whihan be found, using simple mean �eld arguments. The only more subtle questionswhih are not well aptured by the mean �eld usually refer to some speial pointsof the phase diagram, where the viinity of a seond order phase transitionindues some long range orrelations.In glassy systems it turns out that understanding the gross features of thephase diagram is in itself a ompliated task. The nature of the solid phase ismuh riher than usual. Mean �eld has naturally been applied to these problems,yielding a rather ompliated but beautiful solution (M�ezard et al . 1987). Againthe basi ideas are simpler to express in the ase of Ising spin glasses, with Nspins taking values �1 and interating with random exhange oupling. Detailedmean �eld omputations have established the following piture. Above a ritialtemperature T the system is paramagneti and the loal magnetization vanishesin the absene of an external magneti �eld: < Si >= 0, where < : > denotes anaverage over thermal utuations. Below T we enter the spin glass phase wherean in�nite spin glass will develop spontaneously a non-zero loal magnetization:



TOOLS AND CONCEPTS 13< Si >6= 0. Compared to the more usual low temperature `solid' phases, the spinglass phase possesses two distintive properties:� The spontaneous magnetization < Si > utuates widely from site to site;the global magnetization vanishes, and in fat all its Fourier omponentsalso vanish. Mathematially we fae a breakdown of the lattie translationalinvariane to a random state, with no onserved symmetry subgroup of thetranslational group. A simple order parameter whih haraterizes the on-set of the spin glass phase is the one introdued by Edwards and Anderson(1975): q = (1=N)Pi < Si >2.� There exists an in�nity of glass states. In the state �, the spontaneousmagnetization on site i, < Si >�, varies from state to state. The idea ofseveral states is familiar from the usual ase of ferromagnetism: in an Isingferromagnet there are two states, in whih the magnetization points eitherup or down. Here there exist many states, and they are not related one tothe other by a symmetry. The order parameter should be written rather asq�� = (1=N)Pi < Si >2�, but it turns out to be � independent.Working within one given state is very diÆult: the spins polarize into `ran-dom' diretions, whih one does not know how to dedue from the original ex-hange ouplings of the system; so one annot use a onjugate magneti �eldto polarize the spin glass into a given state. Even the de�nition of the statesbeyond mean �eld is an open mathematial problem. The best one an do so faris to postulate that the states exist and have properties similar to those found inmean �eld, and hek if the simulation or experimental results an be analyzedin these terms. It turns out that this is the ase. For instane a simple indiatoronsists in using two idential replias of the system (with the same quenheddisorder), weakly oupled through an in�nitesimal attrative interations, suhas the produt of the loal bond energies in eah system. One lets the systemsize go to in�nity �rst, and the oupling between replias go to zero afterwards.If there remains a non trivial orrelation between the two replias in this doublelimit, the system is in a glass phase. Basially in this game eah system is playingthe role of a small polarizing �eld for the other system.The same method an be applied to identify the glass phase in struturalglasses (M�ezard 2001). Taking for notational simpliity a glass omposed onlyof N idential atoms, the mirosopi degrees of freedom are now the positionsxi of these N partiles. One an introdue a seond replia of the same system,omposed of N partiles at positions yj . The x partiles interat with eah other,the y partiles also. The x partiles are nearly transparent to the y partiles,exept for a very small attration, whih is short range. The order parameter forthe glass phase is then the ross orrelation funtion between these two systems(i.e. the probability, given that there is an x partile at one point r1 , thatthere be a y partile at a point r1 + r), in the limit where the ross attrationvanishes. In the liquid phase the x and y partiles just ignore eah other in thislimit, and there is no ross orrelation. Instead, in the glass phase, the weak



14 THEORY OF RANDOM SOLID STATESattration ensures that the two systems polarize in the same glass state. Theydevelop orrelations beause of the fat that they are in a solid phase, and theseorrelations still exist in the limit when the attration vanishes. This provides agood mathematial de�nition of any solid phase.1.2.3 RepliasFor the theorist a hoie method is the replia method (M�ezard et al . 1987).It uses the idea of having some idential replias of the original problem, buttheir number is not limited to two, but an beome any real number. The repliamethod is always presented as a trik to deal with quenhed disorder: in disor-dered systems, the free energy is generally self-averaging in the thermodynamilimit, and therefore one an as well try to ompute the average of the free en-ergy over quenhed disorder. This is rather diÆult to ompute, in general. Amuh easier task is to ompute the average of the nth power, Zn, of the parti-tion funtion, whih is nothing but the partition funtion of n non interatingreplias. Taking the n! 0 limit one gets the quenhed average of the logarithmof the partition funtion, whih is proportional to the free energy. This trik isertainly very old (Giorgio Parisi dates it bak to at least the fourteenth enturywhen the bishop of Lisieux Niolas d'Oresme used a similar trik in order tode�ne non integral powers!) and has been used many times in the literature. Its�rst non-trivial appliation to the statistial physis of systems with quenhedrandomness is probably the seminal work of Edwards and Anderson (1975).Going muh beyond a simple mathematial trik, the replia method allowsfor a study of the free energy landsape, and prinipally of the regions of low freeenergy (the notion of a free energy landsape, in the very large dimensional spaedesribing the on�gurations of a system in statistial mehanis, requires somethinking; however it is well de�ned in mean �eld, and it helps developing someintuitive piture, whih is why I shall use it here for a simple presentation). Therepliated partition funtion, after averaging over disorder, beomes a partitionfuntion for n systems, without disorder, but with an attrative interation be-tween the various replias: the reason for this attration is simple: Beause theyshare the same Hamiltonian, with the same disorder, the various replias will beattrated towards the same favorable regions of phase spae, and repelled fromthe same unfavorable regions. Both e�ets tend to group the replias together.If one has a simple phase spae, with basially one large valley, then the repliasall fall into this valley, and the order parameter is a number, the typial distanebetween any two replias, whih gives diretly the size of this valley. But in asystem with several metastable states, the situation an be more ompliatedwith some replias hoosing to fall into one valley, while others fall into othervalleys. This e�et has been alled `replia symmetry breaking'. Tehnially itappears as a standard spontaneous breaking of a symmetry. This symmetry isthe permutation symmetry Sn of the n replias. The problem is that this sym-metry is broken only when one onsiders some number of replias n whih is noninteger, and in fat smaller than one.



TOOLS AND CONCEPTS 15Based on some remarkable intuition about the permutation group with zeroreplias, Parisi proposed at the end of the seventies a sheme of breaking the sym-metry whih is onsistent, and has been applied suessfully to many problems(Parisi 1979, 1980). Basially the order parameter turns out to be a funtion,whih is the disorder averaged probability density, P (q), piking up at randomtwo thermalized non-interating replias of the system, that their distane willtake a given value q. This order parameter ould be omputed at the mean �eldlevel in a variety of systems. In some ases it ould be heked versus some otheranalyti omputations, not involving the replia method, it ould also be om-pared to simulations (a diret experimental measurement of P (q) is not possible,but the reent developments on out of equilibrium dynamis, explained below,provide an indiret aess to its measurement). So far it has always been foundorret, although a rigorous mathematial status is still laking.The avity method (M�ezard et al . 1985; M�ezard et al . 1987) has been de-veloped in order to write down expliitly the assumptions underlying Parisi'sreplia symmetry breaking sheme, and develop a diret self-onsistent proba-bilisti approah, equivalent to the replia method, based on these assumptions.The reent proof of the validity of Parisi's solution for the SK model basially fol-lows this kind of avity approah (Talagrand 2003a; Guerra and Toninelli 2002;Guerra 2003).Fundamentally, three types of solid phases have been found at the momentwith the replia method. Speaking in terms of an Ising spin glass system, withspins Si, and de�ning the overlap between two spin on�gurations as q = (1=N)PNi=1 SiS0i,we an haraterize them from the shape of the overlap distribution P (q). Athigh temperature the system is not in a solid phase and one has P (q) = Æ(q):the thermal utuations win, there are no orrelation between replias. At lowtemperatures, in the presene of a small magneti �eld whih breaks the globalspin reversal symmetry, one an �nd either:� A replia symmetri phase with P (q) = Æ(q�q0). This happens for instanein a ferromagnet, where q0 is the square of the magnetization.� A situation alled `one step replia symmetry breaking' where P (q) =xÆ(q � q0) + (1 � x)Æ(q � q1). This desribes s system in whih there aremany free energy valleys, the width of eah valley is measured by q1, andthe valleys are generially equidistant in phase spae, their distane beingmeasured by q0. Very often q0 = 0 and the valleys are loated in randomdiretions of the large dimensional on�guration spae. This situation thusours in a rather generial ase where the low lying valleys are not orre-lated. Some mean �eld spin glasses are known to belong to this ategory,whih is also thought to be the relevant one for the desription of struturalglasses of the fragile type.� A situation alled `full replia symmetry breaking' where P (q) = xp(q) +(1� x)Æ(q� q1), where p(q) is a ontinuous funtion normalized to one. Inthis ase the low lying valleys beome orrelated. This is the ategory towhih the standard spin glass systems belong.



16 THEORY OF RANDOM SOLID STATESThe reader may �nd it surprising that, although the replia method wasintrodued to handle systems with quenhed disorder (the whole story aboutapproximating the free energy through Zn is in order to be able to average onvarious realizations of quenhed disorder), we mentioned the strutural glasses,whih have no quenhed disorder, as physial systems displaying a one stepreplia symmetry breaking phenomenon. In fat I believe that the replia methodis muh more general than a trik for omputing a logarithm. To illustrate thispoint, let me explain briey how one an use a kind of replia method in thestrutural glass ase. Let us assume that the free energy landsape of a struturalglass is indeed made up of many valleys, suh that the low lying valleys pointin unorrelated diretions of phase spae. Assume further that the number ofvalleys at a given free energy f is exponentially large, so that the entropy ofthe system is the sum of an internal entropy measuring the size of eah valley,and of a on�gurational entropy S(f) measuring their number. Proving theseassumptions, purely from the mirosopi Hamiltonian, is a task whih seemstotally hopeless at the moment, but one aessible method of approah is topostulate this struture, work out its onsequenes, and ompare them to whatis observed in experiments and simulations. How an one use replias in suh aase? The tehnique is a simple generalization of the two replias used in theprevious setion to de�ne the order parameter. Take m idential replias of ourglass, with a small short range attration. In the glass phase this small attrationwill polarize the system into the same valley. It is easy to see that the free energyof the repliated system F (m), onsidered as a funtion of m, is the Legendretransform of S(f). While it is very diÆult to ompute diretly S(f), one aneasily develop simple approximation shemes for F (m), and this gives aess tothe thermodynami properties of the glass phase (M�ezard and Parisi 1999).1.2.4 Physis without symmetry: dynamisThe glass phase is very diÆult to observe at equilibrium. Experimentally aglass is an out of equilibrium system, at least if the sample is large enough. Theequilibrium properties whih we have just disussed annot be used in a diretquantitative omparison with the experiments. They an be of diret relevanefor other amorphous solid states like optimization problems, or memory neuralnetworks whih are evolving from an initial on�guration lose to one of thememorized patterns. They an be useful to interpret some experimental �ndings,as is the ase for the hierarhial struture of metastable states, but a diretomparison is diÆult. The equilibrium studies provides the properties of thefree energy landsape, fousing onto the low lying states. It is doubtful whetherexperimentalist will ever ome up with a system prepared in one glass state �(the equivalent of a ferromagneti rystal, uniformly polarized, without domainwalls). Instead their systems age for ever.The point may be illustrated from the dynamial de�nition of an orderparameter, whih we shall formulate again for simpliity in a spin glass lan-guage. In its original formulation by Edwards and Anderson (1975), the or-



TOOLS AND CONCEPTS 17der parameter was de�ned as the long time limit of the spin autoorrelation:q = limt!1 limN!1 < Si(t)Si(0) >, where the brakets mean an average overthe thermal noise (some underlying dynamis, for instane of a Langevin type,an be assumed for this lassial spin system). This gives a orret de�nitiononly if the system is thermalized inside one glass state � at time t = 0. Thenit is kind of tautologial: the system remains inside the same state, the prob-ability of the spin on�gurations deouple at large time and we obviously getbak to the equilibrium de�nition q = limN!1(1=N)Pi < Si >�< Si >�.We are bak to our problem: the system annot be thermalized at time t = 0,so what should one do? Experiments provide the answer: the glass is aging.Somewhere it keeps a trae of the date at whih it was born (Bouhaud etal . 1998). Let us all t = 0 this time, de�ned as the time at whih the sys-tem was quenhed below the glass transition temperature (if one ools slowly astrutural glass, there are ooling rate e�ets, whih may tell us a lot, but wewon't disuss them here). The orrelation funtion between times tw and tw + �is C(tw + �; tw) = limN!1(1=N)Pi < Si(tw)Si(tw + �) >. As the relaxationtime is in�nite, or in any ase muh larger than any experimental time sale,the system is never thermalized at time tw, whatever its age tw is. One muststudy the dependene of the orrelation as a funtion of the two times: the agetw and the measurement time � . The orret de�nition of the order parameterbeomes q = lim�!1 limtw!1 C(tw + �; tw). This turns out to give the sameresult as the equilibrium de�nition, showing that the system in this sense omesarbitrarily lose to equilibrium, but now this order parameter an be measured.One an realize the subtlety of the approah to equilibrium by notiing that, inthe reverse order of limits, lim�!1 C(tw + �; tw) = 0, for any tw. This situa-tion has been alled weak ergodiity breaking (Bouhaud 1992), and seems to bepresent both in spin glasses and strutural glasses. Experimental measurements,done on response funtions rather than orrelations, have found it for instanein systems suh diverse as PV C (aging in the mehanial response: if I measurethe response of your plasti ruler to a stress, I an dedue when the ruler wasfabriated -provided I an perform a measurement on time sale of the orderof its age!) and in spin glasses (aging in the relaxation of the thermoremanentmagnetization).Taking into aount properly the aging e�et implies thinking in the twotime plane: the e�ets one an then study are not just the very ompliatedand system dependent transient e�et, but they relate to what happens whenboth tw and � go to in�nity, along various paths. It turns out that there seemto exist few universality lasses for the behavior of the two times response andorrelation funtions in this limit. This have been �rst found by Cugliandolo andKurhan in mean �eld spin glasses (Cugliandolo and Kurhan 1993). Based onthese relatively simple models for whih the dynamis an be solved expliitly, ageneri senario of glassy dynamis has been worked out, implying a well under-stood generalization of the utuation dissipation theorem, where an e�etivetemperature, measurable but distint from the bath temperature, haraterizes



18 THEORY OF RANDOM SOLID STATESthe proportionality between the time derivative of the orrelation and the instan-taneous response, when these quantities are measured on time sales omparableto the age of the system. On these time sales the new relaxation proesses whihappear are `thermalized' with an e�etive temperature whih is lose to that ofthe glass transition temperature, rather than to that of the room.A proper aount of these fasinating reent developments goes muh beyondthe sope of this paper. What I just want to point out here is that the measure-ment of this new e�etive temperature appearing in the generalized utuationdissipation theorem, whih an be done by doing response and noise measure-ments, monitoring properly the age of the system, allows for an experimentaldetermination of the type of glassy phase whih one enounters, in the lassi�a-tion of setion 1.2.3 (Cugliandolo and Kurhan 1993; Franz and M�ezard 1994a,1994b; Cugliandolo and Kurhan 1994; Franz et al . 1998).Numerial simulations in spin glasses and strutural glasses have on�rmedthat the P (q) order parameter an be measured either from a well equilibratedsmall system, or from the generalized utuation dissipation theorem in the outof equilibrium dynamis of large systems (Parisi 1997; Kob and Barrat, 1997);the two proedures give results whih agree with eah other, although this doesnot imply that the asymptoti regime has been reahed. The results point in thediretion of a one step replia symmetry breaking in the strutural glasses, anda full replia symmetry breaking in spin glasses.On the experimental side, a reent beautiful experiment in a spin glass mate-rial has managed to measure the utuation dissipation ratio, and �nds a rathergood qualitative agreement with the preditions of the full replia symmetrybreaking senario (Herisson and Oio 2002), although again it is not lear if the`true' asymptoti regime an be measured. At present it seems that the mean�eld preditions provide at least good guidelines to the experimental systems atleast on the time sales that an be obtained in the laboratory. Similar measure-ments have been attempted in strutural glasses (Bellon and Ciliberto 2002) butthe results seem to depend a lot on the observable and the situation is not yetlear.1.2.5 SimulationsAs we have seen, the theory of amorphous solid states has been developed inlose onnetion with the progress in numerial simulations, and it will ontinueto do so. The olletive behavior of strongly interating systems an display veryompliated, and sometimes surprising, behaviors, for whih simulations help toprovide some intuition, and to bridge the gap between theory and experiments.Reviewing the progress on the simulations goes beyond my abilities and beyondthe sope of this paper, I shall rather refer the reader to Marinari et al . (1998).But one should be aware that in this �eld, the simulations play a very importantrole, on equal footing with theory and experiments, and this three-fold strategyis neessary for progress.



DIRECTIONS 191.3 DiretionsPrediting what will be the important developments in the future is bound to fail.I will not risk doing so, but just state a few topis whih I �nd interesting at themoment. Their importane, the stage of their development and the time-sale oftheir study is totally uneven. The reader should just take them as some disussiontopis suh as they arise more or less randomly in a hat with olleagues, a winterevening, around the �replae. As always the most interesting developments willbe those that I annot think of at this moment.1.3.1 Physial glassesThe theory of glasses is still in its early infany. The idea that glasses may beexperimental realization of systems with one step replia symmetry breaking,although it is more than ten years old, has given shape to an atual mirosopimodel only very reently. The most obvious open questions onern the dynamisin the low temperature phase (we have no mirosopi theory of aging in stru-tural glasses so far), and the whole behavior in the temperature window abovethe glass transition temperature. The mean �eld models with one step repliasymmetry breaking have two transition temperatures. The thermodynami tran-sition temperature, whih should be the ideal glass transition temperature (thatof a glass ooled in�nitely slowly), and a dynamial transition temperature whihis larger, at whih the system beomes non ergodi, but where there is no ther-modynami singularity. This dynamial transition (whih is also the one thatis deteted by mode oupling theory) is presumably a mean �eld artifat: thesystem gets trapped into metastable states whih have an extensive free energyexitation with respet to the equilibrium state. One expets that this dynamialtransition will be rounded in any real system by the 'ativated proesses', i.e.bubble nuleation. These are not understood at the moment, and their orretdesription is needed in order to understand the rapid inrease of relaxationtimes upon ooling in glasses.Letting aside for a moment all the unsolved mathematial questions whih Ishall disuss later, it is lear that the theory of spin glasses is more advaned. Yetwe fae two diÆult problems onerning the extension of mean �eld theory to thespin glasses in dimensions smaller than six. On the tehnial side the standard�eld theory expansion around mean �eld is extremely diÆult. The progresshas been steady but slow, and indeed some of its �rst preditions have beenon�rmed numerially reently. Getting further along this diretion will requiresome better understanding of the mathematial strutures underlying repliaalgebra. The physial piture is not rystal lear either. We ertainly would liketo understand better how the many states are realized in real spae. The physialdisussion whih an be given now is at the more abstrat level of phase spae,and it has shown its value in the design and disussion of experiments, but a fullerunderstanding requires going to the level of spins. In spite of many attempts atde�ning length sales in glasses, my feeling is that the situation is still ratherunlear. Let me state a simple illustration: if one has only two states, the out



20 THEORY OF RANDOM SOLID STATESof equilibrium dynamis is that of oarsening, and, after gauge transformingthe spins one an think of it in terms of oarsening in an Ising ferromagnet.The generalization of the utuation dissipation theorem takes then a simpleform, whih has a very intuitive interpretation. After a large waiting time tw,the system has developed some domains of eah of the two phases, and thetypial size of the domain is `(tw) (in a pure ferromagnet it would be ` = ptw,in presene of impurities, the growth of the domains will be slower). Then thedynamis after the time tw is very di�erent depending on whether one onsiderstime tw + � with � � tw, or with � � tw. In the �rst ase a given spin, whihis generially far away from the domain walls, sees an environment whih isat equilibrium. One thus expets the usual utuation dissipation theorem tobe valid. On the ontrary when � � tw a given spin sees some domain wallssweeping it all the time, and therefore its dynamis is that of a spin at in�nitetemperature. This is exatly what is predited by the generalized utuationdissipation theorem for a replia symmetri system. As soon as we have repliasymmetry breaking, whether it is one step or full replia symmetry breaking, weknow the mathematial haraterization of the generalized utuation dissipationtheorem, it is a very nie struture whih is on�rmed by the simulations, butwe annot give yet a simple intuitive desription of it, similar to the one I justpresented.1.3.2 Random systemsWe seem to be on the way towards some general lassi�ation and harateriza-tion of the behavior of random systems, both in their equilibrium and non equi-librium behavior. The original frature between the systems with and withoutdisorder (roughly speaking: spin glasses and glasses) has been partially bridged(Bouhaud and M�ezard 1994; Marinari et al . 1994a, 1994b; Chandra et al . 1995):if a system without disorder has a glassy phase, this phase may look very muhlike the one of a disordered system. This is kind of reminisent of Wigner's su-essful step, when he substituted the ompliated Hamiltonian of a nuleus by arandom matrix with the same symmetries. In the framework of amorphous solidstates suh a step has been arried through in the ase of a few spei� examples,but we do not have yet any systemati equivalene, and the symmetry lassesare not known.Many of the ideas whih I have presented here an have a resonane withother problems of physis. A better haraterization of the low temperaturethermodynamis of glasses involves the omputation of spetrum and loalizationproperties of vibrations in random strutures, whih is a problem appearing inmany areas of physis. The interplay of the amorphous solid state ideas withthe ones developed in eletron loalization ould ertainly also be a soure ofenrihment of both �elds. Although I kept here within the sope of lassialstatistial mehanis, the quantum behavior of amorphous solid states is alsovery interesting: the quantum ritial points appearing at zero temperature havevery interesting properties whih have just began to be worked out, but o�er a



DIRECTIONS 21wonderful playground for future developments.On top of all the examples I have mentioned so far, from protein folding tobrain theory, some of the most ative areas of glassy physis outside of physisinvolve problems in omputer siene and information theory (M�ezard 2003) suhas error orreting odes (Nishimori 2001) and the satis�ability problem (Duboiset al . 2002), as well as its appliation to game theory and eonomi modeling(Challet et al . 2000a, 2000b; Bouhaud and Potters 2000). At a very basi level,the �eld whih we have been studying in the last two deades is just that ofolletive behavior of interating agents whih are heterogeneous, whether thisheterogeneity is here from the beginning or is generated by the system through itsdynamial evolution. Obviously, this is a very general topi with many possibleappliations. I am thus on�dent that the spreading of this ideas will go on fora while.1.3.3 The unreasonable ineÆieny of mathematisIn some sense the equilibrium statistial mehanis of amorphous solid states is abranh of probability theory. A diret probabilisti solution of the mean �eld the-ory of spin glasses has been developed, at the mean �eld level, through the avitymethod. After many years of study, and lever mathematial improvements, itnow o�ers a rigorous solution for the SK model, and in optimization for 'simple'problems like the assignment or random link traveling salesman problem. Clearlythis is a very ative line of researh and one an expet that new exat resultswill be obtained in this �eld in the forthoming years.But by far the easiest approah, the most ompat as far as atual omputa-tion are onerned, the �rst one that one will use on any new random problem,is the replia one. It is very strange that nobody has yet ome up with a math-ematial framework to study the permutation group with a real number of ele-ments and provide a justi�ation to Parisi's replia symmetry breaking sheme,or maybe generalize it. This is a perfetly well de�ned sheme, where the om-putations , as well as the underlying probabilisti struture (whih is exatly theontain of the avity method) are ompletely understood.The amorphous solid states are the low lying on�gurations of ertain hamil-tonians. It is no surprise that these will be related to the theory of extreme eventstatistis. If the on�gurations of a glassy system have independent random en-ergies, then the extreme event theory tells us the statistis of these energies:they are given by Gumbel's law, whih is the one relevant for us sine we expetthe energy distribution to be unbounded in the thermodynami limit, but tofall o� rapidly enough, faster than a power law. It turns out to be exatly thestatistis whih is found by the replia symmetry breaking method at one stepreplia symmetry breaking, as was found early on in the ase of the random en-ergy model. This provides some very enouraging onnetion between standardprobability tools and physis. Of ourse in any physial system the energy of theon�gurations are orrelated random variables. But one may hope that, aftergrouping together the on�gurations whih are near to eah other, one builds up



22 THEORY OF RANDOM SOLID STATESsome valleys for whih the free energies are unorrelated (keeping with the lowlying valleys). These systems will form a universality lass, ontaining the sys-tems where the amorphous solid state is of the type `one step replia symmetrybreaking'. The present belief is that the glass phase of simple glasses (for exam-ple hard spheres or soft spheres) ould be of this type. A better understandingof the random pakings of spheres ould help to on�rm this onjeture. Butthe spin glass o�er us some other universality lasses, in whih the low lyingvalleys are not unorrelated, but possess a very spei� type of hierarhial or-relations: these are the problems where the amorphous solid state is desribedby the full replia symmetry breaking sheme. Putting them in the frameworkof extreme events statistis is an interesting mathematial problem. (In this re-spet one an draw an analogy with the universal behaviors of sums of randomvariables, rather than extremes, whih is muh easier. Everyone knows that ifthe variables are only weakly orrelated the sum is universally distributed asa Gaussian variable; phantom polymer hains o�er a physial example. Now iforrelations are stronger, whih means here that they an ouple very distantvariables, then physis o�ers the new universality lass of self avoiding polymers,where the typial size of the sum is known to sale as the number to a power� 6= 1=2, but whih is muh harder to desribe mathematially).The �eld of spin glasses in partiular o�ers many examples of fats that everyphysiist believes is true, but one annot prove rigorously. This is not unusual inother branhes of physis, and one should not be too worried about it. Howeverit would be very welome to have a proof of the existene of a spin glass phasein a �nite dimensional model with short range interations, to just mention themost obvious suh fat.I would not be surprised if the study of random solid states, and the varioustools whih have been developed in physis for that purpose, would lead in thefuture to interesting new mathematis, maybe with onnetions to probabilistiarithmetis.1.3.4 ConsilieneThe statistial physis proess of building a mirosopi theory of amorphoussolid states is a slow and diÆult step of the development of physis. Many ol-leagues will just not want to make the intelletual investment of getting into itand will argue that a phenomenologial desription is enough. While I under-stand that the investment is hard, and for most people it may be better to waituntil the theory has been understood better so that it an be simpli�ed, I dobelieve that the mirosopi modeling is an absolutely neessary step. We needphenomenologial desriptions, trying to �nd out some desription in terms ofthe smallest number of parameters. But we need to be able to relate them to themirosopi struture, and show the onsisteny of both. In this respet I thinkfor instane that an elaboration of the saling piture of spin glasses (MMillan1984; Bray and Moore 1986; Fisher and Huse 1987, 1988), whih would take intoaount the existene of many states, would be a very interesting ahievement.



DIRECTIONS 23As we saw, the �eld of amorphous solid states is full of onnetions with manyother branhes of siene. This is beause of the rihness of these amorphousphases, and their ability to have many di�erent states oexist. In this respet itstheory is a part of the development of a theory of omplex systems (in the verybroad sense of many interating agents exhibiting omplex olletive behaviors).This �eld is not well de�ned enough for there to be a unique theory of omplexsystems. There are various approahes to it, applying to various levels, and eahwill be judged both on its own results, and on its onsisteny with the other ones.Of ourse statistial physis is just about �nding out the olletive behavior,starting from the mirosopi desription of the atoms. In this vague sense oneould say it is entral to the �eld. On the other hand if one looks at whatstatistial physis is able to ahieve, one will rather say that it is not (yet) entral.The available tehniques an be judged as rather eÆient to deal with the systemsin whih the dynamial evolution has a property of detailed balane, whih meansthat they an be desribed by an energy funtion, and the evolution is justrelaxation in some (free) energy landsape. This is a very strong restrition, and,as we saw on the example of neural networks, most of the interesting problemsin omplex systems will not obey it. Although some attempts have been madeto develop some statistial mehanis study of the dynamis of systems withoutdetailed balane, (in partiular in asymmetri neural networks, or in randommappings of phase spae), this is a very vast �eld whih is muh less understood.The virtue of the theory of amorphous solid state is that it an provide somevery detailed information on some spei� and oversimpli�ed problems, whihan then serve as solid starting points for further elaboration.It might also be that some interesting problems, partiularly in biology, havebeen so well seleted by evolution that every single detail of the mirosopidesription is relevant: they are not generi at all, and the statistial desrip-tion will have nothing to say about them. I feel relutant to aept this as ageneral priniple, mainly for philosophial reasons whih I will not bother thereader with. Basially I feel that some level of statistial desription, and there-fore some degree of generiity, is unavoidable in order to build up a theory ofmany interating elements, whatever they are (a simulation of tens of thousandsof oupled di�erential equations reproduing some experimental behavior is notwhat I would all a theory, although it may be a very useful step in the elabora-tion of a theory). Physis has a long tradition of oversimplifying the real worldin order to ahieve a orret desription, and then reinorporating the left-outdetails (think of the theory of gases for instane). This strategy, whih is alsothe one that was followed for instane in the physial theory of neural networks,is probably the best one that an be followed in order to elaborate a theory.I understand that it may seem odd to our olleagues in other �elds, partiu-larly the �elds whih are very experimental ones, but I believe that one day oranother their siene will also bene�t from suh a strategy. Whih �eld the sta-tistial physis of amorphous solid states is able to help now, I leave the readerto deide, hoping that the above an provide a few guidelines.
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