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Abstract
This text is a non-technical, elementary introduction to the theory of
glassy phases and their ubiquity. The aim is to provide a guide, and some
kind of coherent view, to the various topics which have been explored
in recent years in this very diverse field, ranging from spin or structural
glasses to protein folding, combinatorial optimization, neural networks,
error correcting codes and game theory.

1.1 A few landmarks
1.1.1  Structural glasses

Nature provides for us numerous examples of systems which may condense into
an amorphous solid state. Probably the most common case is that of structural
glasses, of which the window glass has been known for several millennia; recent
reviews can be found in Angell (1995) and Benedetti (1997). Structural glasses
consist of a phase of matter in which atoms or molecules are arranged in space
in a structure which is frozen in time, apart from some small fluctuations. Yet,
contrarily to the case of crystalline solids, the arrangement of these molecules is
not a periodic one. It is a ‘random’ arrangement: although the system exhibits
some kind of regularity on small enough scales (in the range of a few inter-
atomic distances), this regularity is lost on larger length scales, as attested from
the absence of sharp peaks in the diffraction pattern.

A random arrangement of the degrees of freedom, but one which is frozen
and does not evolve in time: these are the basic ingredients of what we shall call
the random, or amorphous, solid state, and what goes generally under the name
of ’glass phase’ (I have preferred the former because the term ’glass’ is more
specialized and might lead to some misunderstanding when we shall move to
the random solid states of some systems which are more remote from condensed
matter physics). Qualitatively this description is fine, yet the reader should be
aware from the beginning of the difficulty of giving more precise definitions. We
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used the word ’'phase of matter’ but it may be (and has been) disputed whether
this is a really new phase of matter. The glass state might not exist as a true
separate phase, but just be describing a liquid with an extremely large viscosity,
so that we do not see it flow in the limited time scale of our experiment. The
fact that the structure does not evolve in time should not be thought of as
implying that the positions of each atom is frozen: because of vacancies for
instance the atoms can actually drift, although very slowly if the system is at
low temperatures, as they also do in a crystalline phase. The relative positions
of the points in space around which an atom is located, these define this frozen
structure. The definition of a 'random’ arrangement is not a trivial one either,
one could have some order which displays no Bragg peaks but can be described
with a little amount of information, or else one could be obliged to describe the
glass state by giving the average positions of all atoms, which requires an infinite
amount of information (in the ’thermodynamic limit’ of infinitely large systems).

These are all important subtleties, and we shall partly address them below.
Yet it is clear that, judging from its relaxation time, the glass state is at least a
quantitatively different state of matter. Actually one very peculiar aspect of glass
forming materials, and one which is so important in their manufacturing, is how
rapidly this relaxation time, or the viscosity varies with the external conditions.
Some increase by more than twelve orders of magnitude of the relaxation time
when one diminishes the temperature by 20 per cent around the glass transition
temperature are found in the so-called ’fragile’ glasses which have the strongest
such increase (Angell 1995; Benedetti 1997). At temperatures well below the
glass transition temperature their life time is essentially infinite, and some million
years old samples have been found. In the regimes where the experimental time
is much smaller than the relaxation time the glass state is out of equilibrium and
one observes aging phenomena. Inevitably we shall thus need to face the time
dependent properties of these systems, which are even more difficult to describe
than their equilibrium counterparts.

Beside its special properties, the glass state is important because of its ubig-
uity. It can be reached in virtually all systems, by many different pathways.
Cooling from a liquid phase is a common one. The cooling rate should then be
fast enough for the system to be quenched into the glass state, avoiding thus
the crystallization (how fast one should quench depends enormously on the sys-
tem at hand: as we all know, it is much easier to reach a glass state in liquid
silica than in a metal). Probably in most systems the crystalline state is the
most stable one, although this has not been proven: at zero temperature, the
famous conjecture of Kepler stating that the densest packing of hard sphere is
the crystalline one (face centered cubic or hexagonal closed packed) has resisted
a proof for four centuries (Hales 1998). Showing that the crystalline state is the
most stable one at some finite temperature, is thus likely to be a very hard task.
The existence of a crystal state is annoying both for experimentalists who must
‘beat the crystallization trap’, and for theorists, who must find a proper way
of studying a metastable state. But this is not more troublesome than studying
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super-cooled water, or diamond. A more subtle point, to which we shall return, is
the fact that it is extremely difficult to prepare a glass in one given ‘glass state’.
From the mathematical point of view the idea of a glass at thermal equilibrium
is a useful concept, and it turns out to be a very useful starting point in order to
start a study, but the last word will deal with out of equilibrium dynamics. As
we shall see, there are some indications that these two approaches (thermody-
namic equilibrium and out of equilibrium dynamics) are intimately related, but
the deep reason for this is not so clear, and its search will be a major challenge
for the near future.

1.1.2  From rubber to spin glass and proteins

Another technologically important glassy material is rubber (Goldbart et al. 1996;
Zippelius and Goldbart 1998). There, the basic microscopic constituents are long
polymeric chains, and the amorphous solid state is obtained by adding cross-links
which glue together permanently these chains- a process called vulcanisation
which was discovered by Goodyear one and a half centuries ago.

There exists thus a fundamental conceptual difference with the simpler struc-
tural glasses described above: vulcanisation has created some permanent links
between the polymers, which are located at random positions. Therefore the de-
scription of the vulcanised rubber involves some random variables- the positions
of the crosslinks. These random variables are given a priori, they depend on the
sample which one is studying, and their number is extensive, i.e. it grows lin-
early with the volume of the sample. This is very different from our previous
case. In simple structural glasses one can work with a system of N molecules
interacting by pairs (higher order interactions can be added easily without mod-
ifying the argument) through a simple potential V' (r;,r;). The energy function
(the Hamiltonian) is very easily described, being just the sum of the pair in-
teractions. What is complicated to describe and study is the amorphous state
adopted by the system under fast cooling. On the contrary in rubber, writing
down the Hamiltonian for a given sample requires the knowledge of the positions
of all the crosslinks, a very long list which you cannot determine, nor store on
your hard disk, and which will be different if you move to a new sample. This
type of system, where the Hamiltonian depends on an extensive set of random
variables, is said to have quenched disorder. The terminology comes from the
fact that the monomers which are crosslinked do not evolve in time, they are not
thermalized, contrarily to the other atoms of the polymers which have thermal
fluctuations.

Quenched disorder is also present in some exotic magnetic alloys called spin
glasses (Mézard et al. 1987; Fischer and Hertz 1991; Sherrington 2003). These
systems are not present in every-day’s life, they can be found only in some
specialized solid state physics laboratories, and only in small quantity. They
have surreptitiously appeared in various odd corners of materials science only
a few decades ago, and nobody has been able to foresee any type of reasonable
application in the close future, in spite of the strong evolutionary pressure of
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grant funding which pushes physicist to try and imagine some. Yet, during the
last quarter of the XXth century, there have been many thousands of articles
dedicated to spin glasses, both experimental and theoretical, and the spin glass
problem has been described as a cornucopia (Anderson 1988). The reason is that
spin glasses provide a (relatively) simple laboratory for the study of glass phases,
which themselves appear in many domains, in physics and beyond.

The archetypical case of a spin glass is an alloy such as CuMn, with a con-
centration of a few per cent of the magnetic manganese atoms diluted in the non
magnetic metal, here copper. The magnetic degrees of freedom are the localized
magnetic moments of the Mn atoms. They interact with each other through a
complicated process, an indirect exchange with the conduction electrons, but the
net result is an interaction which either tends to align the magnetic moments-
a ferromagnetic interaction, or tends to anti-align them (anti-ferromagnetic).
Whether the interaction between two magnetic moments is ferromagnetic or
anti-ferromagnetic depends on the distance between the manganese atoms: the
coupling oscillates with distance. But the positions of these atoms are frozen
in time, on all accessible time scales, and therefore the couplings between the
magnetic moments form a set of quenched variables. Neglecting quantum me-
chanical effects, a good approximation at the temperatures of study, and using
anisotropy to reduce the spins to a set of Boolean degrees of freedom, the Ising
spins which describe the projection of the spin onto one axis, one soon arrives
at a much simpler system indeed, a set of classical Ising spins interacting with
random couplings. One can guess that this kind of generic problem of randomly
interacting Boolean variables will provide useful insight into several domains of
science and indeed it does, as we shall see. But the richness and difficulty of
this problem, which we shall briefly survey in the next section, will be a sur-
prise to any newcomer in the field (Mézard et al. 1987; Fischer and Hertz 1991;
Talagrand 2003b).

Another example of an amorphous solid state, and one of the greatest im-
portance, is offered by proteins (Garel et al. 1998). In its native form, a protein
is a long polymer which is folded in such a way that the relative positions of
the various atoms are frozen, apart from some small vibrations. In general this
structure is not a simple periodic one, although one may find some recurrent
substructures, ‘alpha helices’ and ‘beta sheets’, signaling a degree of local order-
ing. In a loose sense proteins thus fall into our broad definition of amorphous
solid states. Obviously while including this very rich new field one is drifting
from the purest mathematical definition of glass phases. One reason is the fact
that proteins are finite size objects. Probably the proper level of description to
describe protein folding is the one which considers the amino acid groups as basic
entities, and the angles along the backbone as the relevant variables (as always
when one chooses one level of description, there also exist some effects which
require going to a smaller scale description). So we typically face a problem of a
few hundreds to a few thousands degrees of freedom. This is enough to justify a
statistical mechanics analysis, but it is not Avogadro’s number.
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Of more fundamental importance is the fact that proteins generally have one
conformation which is preferred, the native state. This is the shape that makes
them function, this is the shape that they adopt in natural conditions, and into
which they will refold if denaturated. Although they also possess many other
metastable states, these seem to have rather higher free energies, so that the
protein will be able to avoid these other meta-stable states and fold into its
native shape, sometimes with the help of some auxiliary, ‘chaperon’ molecules.
Sometimes the free energy gap must be rather precisely tailored in such a way
that some change in the external conditions (e.g. concentration of other proteins)
will lead to some change in shape and properties of the protein, as has been
demonstrated in the case of protein-DNA interactions. This dominance of the
native state is at odds with the situation of glasses or spin glasses where the
systems can freeze into any of the possible meta-stable states. One reason for
this difference is the fact that the proteins are not completely random objects.
Although the primary sequence of amino acids constituting a protein often looks
random, one should remember that the sequences used in nature constitute a very
small subset of the very large number of possible sequences (20'°° for proteins
made of one hundred amino-acids), and a subset which has been carefully selected
by evolution, precisely for the ability to fold into a given shape allowing for some
function. A totally random sequence of amino acids, with uniform probability of
having each of twenty possible ones on each point along the chain, has very little
chance of being a useful protein, or even just a molecule able to fold into a well
defined native state. One needs some constraints in the sequence to achieve this,
and the most obvious one is to have the right proportion of hydrophobic versus
hydrophilic amino-acids, in such a way that the molecule, in water, will tend
to form a compact globule with the hydrophobic ones buried inside the globule
so that they avoid the water. The type of correlations which are needed in the
choice of the sequence, in order to have a good chance of building a protein from
a random heteropolymer, is a very difficult and open problem. Proteins provide
some type of glasses with quenched-in disorder (the primary sequence of amino-
acids), but the nature of the probability distribution of this disorder, and how
natural evolution selected it, is still unknown.

We shall not attempt an exhaustive enumeration of glassy states of physical
matter, numerous examples range from other biological polymers like DNA and
RNA, to glasses of electric dipoles, or of vortex lines in high temperature super-
conductors (Blatter et al. 1994). A very rich class to which these vortex systems
belong is that of elastic objects, lines, interfaces such as Bloch walls, modu-
lated phases like charge density waves, which have some thermal fluctuations
but are also pinned by some external impurities. The ubiquity of such situations
in physics is well documented (as should be clear by now), but in addition glass
states show up also in far out contexts, further enlarging the domain of study.
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1.1.3 Networks of interacting individuals: global equilibrium

Imagine a group of N scientists, consider any two of them, and characterize
their relationship at a very crude level by stating whether they are friends or
not. These colleagues meet at a conference and the organizer, a very wise person,
wishes to optimize their repartition in the two available hotels. He will thus make
two groups and try to have as much as possible friends grouped in the same hotel
and people who hate each other separated. He first collects the data on who is
friend with whom. For each pair of people i, j, he assigns a positive interaction
constant J;; = +1, if they are friends, otherwise their interaction constant is
negative, say J;; = —1. From this set of interaction constants, which builds
up our sample, the organizer tries to optimize the repartition in the following
way: he will allocate each person i either in the hotel uphill, in which case
he denotes him in his files by the number S; = +1, or in the hotel downhill,
labelled then by S; = —1. Obviously, considering two colleagues i and j, there
are two optimal repartitions for each situation of friendship, putting them in the
same hotel if they are friends or in different hotels if they are not. These are
described mathematically by finding the set of values S;, S; which minimize the
‘pair interaction energy’ —J;;5;S5;. Of course in a realistic case it is impossible to
satisfy everybody: often the enemies of my enemies are not necessarily my friends,
and the situation is then called frustrated, in a sense that it is not possible to
satisfy simultaneously all pairs of people (the degree of frustration is measured
by the fraction of triplets i, j,k such that the product J;;J;Jk; is negative).
Finding the optimal hotel allocation in the set of 2V possible ones turns out
to be a very difficult problem, intractable by the present computers even for
such a small number as N = 200. This problem is a case of a combinatorial
optimization problem which falls into the so called NP-complete class: there are
no known algorithms so far which are able to solve this optimization problem
in a time which grows like a power of the size (V) of the problem. There may
exist better algorithms than the enumeration of the 2%V allocations, but they all
require a computer time growing exponentially with V.

What is the relationship of this sociological problem with our glasses? As
one can guess from the choice of notations, this is just an example of a spin
glass problem, the famous 'SK model’ (Sherrington and Kirkpatrick 1975; Kirk-
patrick and Sherrington 1978). Assigning person ¢ to the uphill hotel is equiva-
lent to having the Ising spin S; pointing up (S; = +1), a person in the downhill
hotel corresponds to the spin pointing down (S; = —1), and the aim of the or-
ganizer is to find a spin configuration which minimizes the interaction energy
E = -3 _icj<n JijSiS;: he is seeking the ground state of the spin glass with
exchange interaction constants J;;. This is a special spin glass because every spin
interacts with every other one: it has infinite range interactions. This actually
simplifies the mathematical study because this infinite connectivity of interac-
tions allows for an exact mean field solution. To be precise the solution of this
problem, originally due to Parisi (1979, 1980; Mézard et al. 1987) has recently
been shown to be exact by Talagrand (2003a), thanks to the beautiful mathemat-
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ical developments of Guerra and Toninelli (2002), Guerra (2003), and Talagrand
(2003a, 2003b). [Mean field spin glasses are the only cases for which we have
such exact solutions; knowledge on spin glasses in finite dimension with short
range interactions is very poor: nothing is known for sure, not even the existence
of a phase transition, although the best numerical simulations point towards the
existence of a spin glass phase, and this phase presents some similarities to what
is found in mean field (Marinari et al. 1998; Krzakala and Martin 2000; Palassini
and Young 2000)]. ;From this solution (Parisi 1979, 1980) we can learn a few
important facts on our original problem. The best assignments has a (‘ground
state’) energy Fy behaving for large N as —.7633 N2, which is very far above
what would happen in the simple unfrustrated world where the energy scales as
— N?2: despite all the efforts of our organizer, and his spending a lot of computer
time, most people will be rather unhappy and he will not do a much better job
than a random assignment of people into the two hotels! The physicist looks at
this problem not only at zero temperature (where the problem reduces to finding
a ground state), but also at finite temperature, where the various assignments
are given a probability defined by the Boltzmann weight exp(—F/T). Then he
can get some information on the structure of the assignments of low energy. It
turns out that there are many such meta-stable states, which can be very differ-
ent one from another: typically one can find an assignment which has an energy
E; which is very close to Ey (the difference between the two remaining finite
when N becomes large), but which is very different, having half of the people
changed hotel. On top of this, the set of meta-stable states has a fascinating
hierarchical structure, building what is called an ultrametric space (Mézard et
al. 1984a, 1984D).

A whole class of ’complex systems’ can be studied similarly in the framework
of equilibrium statistical mechanics. It contains many combinatorial optimization
problems, in which one seeks a globally optimal configuration (a ground state)
in a very large set of allowed ones (Mézard et al. 1987). One new idea brought in
by physics is precisely this generalization of the problem to a finite temperature
one: instead of asking for the ground state, one asks about the properties of the
accessible configurations with a given energy, allowing for the introduction of
useful notions such as entropy, free energy, phase transitions etc...

This turns out to be a fruitful strategy, both as an algorithmic device and
as a theoretical tool. On the algorithmic side the idea gave rise to the simulated
annealing algorithm which basically amounts to a Monte Carlo simulation of
the problem in which one gradually reduces the temperature in order to try to
find the ground state (Kirkpatrick et al. 1983). It is not a panacea and it can
probably be outperformed by more specialized algorithms on any given problem.
But it is a very versatile strategy, and one which can be very useful for practical
problems because of its flexibility. In particular it allows to add new constraints
as penalties in the energy functions with a rather small effort, where a more
dedicated algorithm would just require a new development from scratch. Practi-
cal applications range from chip positioning to garbage collection scheduling, to
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routing and to financial market modeling!

Apart from trying to get an algorithm in order to find the optimal configu-
ration, one aim could be to get some analytic prediction on this ground state,
without necessarily constructing it. This is what happened to our conference
organizer above: from spin glass theory he could get the optimal ’energy’ of the
best assignment of his colleagues into two hotels (or more precisely its large N
limit), without knowing how to construct it, and he could learn about the distri-
bution of meta-stable states. This type of knowledge is the first step towards the
elaboration of a phenomenology of the problem, where one will aim for instance
at understanding the importance of various type of correlations in the friendship
distribution, etc... It also builds up an interesting class of problems in probability
theory. These are the ‘random’ combinatorial problems in which one studies the
properties of ground states of some random systems, given a certain probability
distribution of samples. A famous example is the assignment problem: given N
persons and N jobs, and a set of numbers giving the performance of each person
for each of the possible jobs, find the best assignment of the jobs to the persons.
The probabilist can ask the question of the performance of the best assignment
for a given set of samples, for instance when the individual performances are
independent identically distributed random variables taken from a given distri-
bution. Very often the large N limit is 'self-averaging’, meaning that this optimal
length is the same for almost all samples in the set. The statistical mechanics
approach has led to predictions concerning this optimal performance (Mézard
and Parisi 1985), which have been confirmed recently by a rigorous approach
(Aldous 2001).

1.1.4 Networks of interacting individuals: dynamics

Although the systems which we have just described already provide a large class
of interesting problems, we are still very far from any real situation in sociology.
Our use of equilibrium statistical mechanics is restrictive at least on two crucial
points. One of them is the focus onto an equilibrium situation, the other one is the
search of a global equilibrium. Keeping for another while to our toy conference
problem, you have noticed that human activity is in general not organized in
this totalitarian way of having an ’organizer’ trying to optimize everybody’s life
(as we know such attempts are catastrophic, not only because of the practical
impossibility of finding the optimal configuration). The more realistic situation
of individual strategies where people have a large probability to change hotel if
they are too unhappy leads to a dynamical problem, which could be described
again as the relaxation towards some local equilibrium. We enter the world of
dynamics, in a case which is still familiar in the sense that we can think of
relaxational dynamics (the situation can be described by a heat bath). Familiar
does not mean easy: at low temperatures (i.e. when each individual insists a
lot in changing when this is favorable for him), this is the dynamics of a spin
glass, and the relaxation time will be very large. What is found in spin glasses is
that such a system, starting from initial conditions, will not find an equilibrium
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state, but will wander for ever (Bouchaud 1992). However the more time has
elapsed, the longer the characteristic time scale for it to diffuse further away:
such a system is aging, meaning that its response to an external stress depends
on its age. This property has been observed for instance in polyvinylchloride, or
in spin glasses, and its study has turned out to be an extremely valuable tool
(Bouchaud et al. 1998).

One step further in complexity is the dynamical evolution when there is no
energy. At zero temperature the energy is a Lyapunov function which keeps
decreasing. Without such a Lyapunov function all kinds of behaviors become
possible. We are going away from the physics of systems close to equilibrium,
into much more complicated situations which are just beginning to be explored.
Progress has been made in some cases (Challet et al. 2000a, 2000b; Dubois et al
2002), and T would particularly like to mention briefly one case, taken not from
sociology, but rather from biology.

This is the study of neural networks, and particularly some attempts to build
up a consistent theory of how memory can be organized in the brain (Amit 1989;
Krogh et al. 1991). Elaborating on decades of experiments, it seems plausible
that one important level of description of the brain, relevant for the treatment
of information, is the level of activity of the neurons, measured as the number
of spikes they emit per second (this is not obvious, and the information may be
encoded in more subtle ways, such as for instance spike correlations). Focusing
onto the spikes, one can take as the relevant elementary variables, either the
spiking rate in each neuron, averaged over some time window of some tens of
milliseconds, or its instantaneous version which is the Boolean variable: 0 if there
is no spike, 1 if there is one. An active (spiking) neuron, through its synapses
towards an other neuron, will either favor the spiking of this other one if the
synapses are excitatory, or it may inhibit the other neuron’s activity. At a cari-
catural level, the neural network might be considered as a highly interconnected
network (there are of the order of 10* synapses per neuron) of variables, either
continuous-if one models the activity through firing rates, or binary-if one uses
spikes. The details of when the neuron decides to spike can be described by
monitoring the membrane potential (the neuron fires when the potential exceeds
some threshold), and in the end what such a network does is basically governed
primarily by which are the excitatory synapses and which are the inhibitory ones.

Fifteen years ago, in a typical physicist’s approach, John Hopfield tried to
understand if such a caricatural network could be used as a memory (Hopfield
1982). He studied a network which was trained as follows: one shows it some
external patterns and one reinforces a synapse whenever the two neurons it con-
nects fire simultaneously. This process, known as Hebb’s rule, builds a set of
synapses which is such that the network memorizes the pattern: when presented
an initial configuration which is a corrupted version of the pattern, it will spon-
taneously evolve towards the pattern. This way of fixing the synapses actually
builds a set of symmetric synapses: the influence of neuron ¢ onto neuron j is
the same as that of j onto i. Because of this equality of action and reaction,
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there exists an energy function in this problem, and the evolution of the system,
taking into account the stochastic nature of firing, is just that of a spin glass,
where the exchange couplings between spins are the strengths of the synapses. A
spin glass which has been tailored in such a way that its meta-stable states are
the memorized patterns. It is no surprise that such a physical spin system, when
evolving from an initial configuration which is not too far from a meta-stable
state (one pattern), will flow towards it, and thus recover the full information on
the pattern. This spin glass problem has been studied in great details: one can
show that if too many patterns are memorized then the system can no longer
memorize them, one can compute memory capacities, one can degrade the net-
work, destroying a sizeable fraction of neurons and/or synapses, without altering
its memory, etc... This was an extremely useful existence proof of the existence of
associative memory effects in a very simplified neural network, and it allowed for
many interesting quantitative studies. Its starting point was very remote from the
reality on one crucial point: the assumption of symmetric synapses. Dropping this
assumption forbids to introduce an energy function, and immediately drives one
away from any equilibrium statistical mechanics studies. Yet it has been shown
afterwards that many of the key properties of the network still persisted in the
presence of some degree of asymmetry. Hopfield’s daring assumption, which was
once described by G. Toulouse as a “clever step backward] allowed to reduce
the problem to a solvable one, which provided a solid background that one could
elaborate upon in order to get a more realistic model. Several physicists started
from this point and then added more realistic ingredients in order to get closer
to biological reality. This is of course a very important elaboration, which is
still moving ahead. One should remember that, even in presence of asymmetric
interactions, the statistical mechanics approach may be useful in various ways,
whether it will provide a solvable limiting case as in Hopfield’s model, or whether
one uses some of the purely dynamical approaches that will be described in the
next section.

1.2 Tools and concepts
1.2.1 Statistical description

Let us also step backwards towards the ‘easy’ case of amorphous solid states:
glasses. As soon as one tries to go beyond the crystal, or the crystal with defects,
one faces the basic obstacle: how to describe an amorphous solid state? As we
saw, it is out of question to try and describe the glass by listing the equilibrium
positions of all the atoms. The point is that, in a given glass state, and even
after averaging over the thermal fluctuations, the environment of each atom dif-
fers from that of all the other ones. Furthermore there is a very large number
of long-lived glass states, a number which scales exponentially with the size of
the system and therefore gives a contribution to the entropy, called the config-
urational entropy. In systems with quenched disorder, each sample is different
from all the other ones. All these facts call for a statistical description of the
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properties of amorphous solid states. We have to give up the idea of describ-
ing in detail the equilibrium positions of the atoms in a glass state. Instead we
shall give a statistical description of the relative equilibrium positions. The first
step is to get rid of the thermal fluctuations, defining, in a given glass state, the
density of particles at point x by the thermal average p(z) = >,(6(z — z;)).
Here x; is the position of particle i and the brackets stand for the average over
thermal fluctuations in a given glass state, at a given temperature. While this
would be just a constant in the liquid, it is a complicated function in the glass,
with peaks at all the equilibrium positions of the atoms, a much too complicated
object. Basically what one can hope to compute are some correlations such as the
probability, given that p has a peak at a point x, that it will have another peak
at some point & + r. This object in turn could depend on the glass state one is
considering; in all cases studied so far it does not (a property of the large N limit
called reproducibility), but if it would, one should again consider the probability
distribution of the correlation when one changes the glass state. For systems with
quenched disorder it could also depend on the sample and one would play the
same game, but again this situation has not been encountered: most properties
of a disordered system, including all thermodynamical properties, are said to be
‘self-averaging’ which means that they are the same for almost all samples (with
probability one in the large N limit).

Giving up the idea of deciphering one particular sample and moving to the
study of generic properties of all samples is a big shift of focus which has been
described as a paradigmatic shift. It is comparable to what was done when people
introduced statistical physics, giving up the idea of following the Newtonian
trajectory of every particle, to concentrate on the probability distributions. In
the study of glassy phases we have to take this step of a statistical modeling
twice: first in order to deal with the thermal fluctuations (the usual statistical
physics description), secondly in order to describe the fluctuations in the local
environments, which exist even after thermal averaging (I shall call it the second
statistical level). Some of the first successful implementations of this idea appear
in the pioneering works of Sam Edwards and collaborators, both in spin glasses
(Edwards and Anderson 1975), and in cross-linked macromolecules (Deam and
Edwards 1976). The reason for the introduction of statistical physics finds its
roots from the chaotic motion of particle, leading to sensitive dependence on
initial conditions and forcing one to abandon the hope to follow a trajectory.
In our case one reason of the statistical description is probably similar. In spin
glasses it is well established that there exists some chaoticity, so that changing
the sample slightly (e.g. changing a small fraction of the coupling constants) will
lead to a system in which the metastable states are totally uncorrelated with
the previous ones. In structural glasses the situation is less clear but it seems
plausible that by changing slightly the number of particles from N to N 4+ 6NV
with 1 << N << N the (zero temperature) metastable states again become
uncorrelated.

Chaoticity in the above sense is thus related to the property of self-averageness.
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These are probably important ingredients allowing for the relevance of the sta-
tistical description. Again the case of proteins appears to be rather complicated
from this point of view, partly because of their relatively small size, but mostly
because the proper distribution of disorder in the sequence, and the correspond-
ing chaoticity properties, have not been found. It is not known whether evolution
has selected the proteins very specifically among all sets of heteropolymers or
whether it has selected a class of sequences with some correlations, with some
type of chaoticity property when one changes the sequence staying within the
class. On the other hand a problem like brain modeling would seem to lend itself
to the statistical description. Again it does not mean that the connections are
random, but neither are they all preprogrammed (the information necessary to
encode the 10! synapses is much larger than that contained in DNA). There is
an amount of randomness in the wiring, and there also exist generic properties
common to most brains which one can hope to understand in this statistical
sense, without having to care about all details of the wiring. In this respect the
situation is very different from the study of a globally optimized device such as
for instance a computer card.

1.2.2  Physics without symmetry: equilibrium.

The theoretical study of glassy phases is a notoriously difficult problem in physics,
and one in which the progress has been relatively slow. One key reason is the ab-
sence of symmetry. All the simple computations on crystalline solid states which
you find in the first pages of the textbooks, diffraction pattern, phonon spectrum,
band structure, rely completely on the existence of a symmetry group. Even the
simplest of these computations cannot be done in the glass phase. To face this
situation, theorists have invented a number of methods which all amount to using
the second statistical level, and introducing some kind of auxiliary symmetry, as
we will explain below.

In usual problems it is relatively easy to understand the type of phase which
can be found, using simple mean field arguments. The only more subtle questions
which are not well captured by the mean field usually refer to some special points
of the phase diagram, where the vicinity of a second order phase transition
induces some long range correlations.

In glassy systems it turns out that understanding the gross features of the
phase diagram is in itself a complicated task. The nature of the solid phase is
much richer than usual. Mean field has naturally been applied to these problems,
yielding a rather complicated but beautiful solution (Mézard et al. 1987). Again
the basic ideas are simpler to express in the case of Ising spin glasses, with NV
spins taking values +1 and interacting with random exchange coupling. Detailed
mean field computations have established the following picture. Above a critical
temperature 7, the system is paramagnetic and the local magnetization vanishes
in the absence of an external magnetic field: < S; >= 0, where < . > denotes an
average over thermal fluctuations. Below T, we enter the spin glass phase where
an infinite spin glass will develop spontaneously a non-zero local magnetization:
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< S; >=# 0. Compared to the more usual low temperature ‘solid’ phases, the spin
glass phase possesses two distinctive properties:

e The spontaneous magnetization < S; > fluctuates widely from site to site;
the global magnetization vanishes, and in fact all its Fourier components
also vanish. Mathematically we face a breakdown of the lattice translational
invariance to a random state, with no conserved symmetry subgroup of the
translational group. A simple order parameter which characterizes the on-
set of the spin glass phase is the one introduced by Edwards and Anderson
(1975): ¢ = (1/N) Y, < S; >2.

e There exists an infinity of glass states. In the state «, the spontaneous
magnetization on site i, < S; >,, varies from state to state. The idea of
several states is familiar from the usual case of ferromagnetism: in an Ising
ferromagnet there are two states, in which the magnetization points either
up or down. Here there exist many states, and they are not related one to
the other by a symmetry. The order parameter should be written rather as
dae = (1/N) >, < S; >2, but it turns out to be a independent.

Working within one given state is very difficult: the spins polarize into ‘ran-
dom’ directions, which one does not know how to deduce from the original ex-
change couplings of the system; so one cannot use a conjugate magnetic field
to polarize the spin glass into a given state. Even the definition of the states
beyond mean field is an open mathematical problem. The best one can do so far
is to postulate that the states exist and have properties similar to those found in
mean field, and check if the simulation or experimental results can be analyzed
in these terms. It turns out that this is the case. For instance a simple indicator
consists in using two identical replicas of the system (with the same quenched
disorder), weakly coupled through an infinitesimal attractive interactions, such
as the product of the local bond energies in each system. One lets the system
size go to infinity first, and the coupling between replicas go to zero afterwards.
If there remains a non trivial correlation between the two replicas in this double
limit, the system is in a glass phase. Basically in this game each system is playing
the role of a small polarizing field for the other system.

The same method can be applied to identify the glass phase in structural
glasses (Mézard 2001). Taking for notational simplicity a glass composed only
of N identical atoms, the microscopic degrees of freedom are now the positions
x; of these N particles. One can introduce a second replica of the same system,
composed of N particles at positions y;. The = particles interact with each other,
the y particles also. The x particles are nearly transparent to the y particles,
except for a very small attraction, which is short range. The order parameter for
the glass phase is then the cross correlation function between these two systems
(i.e. the probability, given that there is an z particle at one point 71 , that
there be a y particle at a point ry 4+ ), in the limit where the cross attraction
vanishes. In the liquid phase the z and y particles just ignore each other in this
limit, and there is no cross correlation. Instead, in the glass phase, the weak
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attraction ensures that the two systems polarize in the same glass state. They
develop correlations because of the fact that they are in a solid phase, and these
correlations still exist in the limit when the attraction vanishes. This provides a
good mathematical definition of any solid phase.

1.2.3 Replicas

For the theorist a choice method is the replica method (Mézard et al. 1987).
It uses the idea of having some identical replicas of the original problem, but
their number is not limited to two, but can become any real number. The replica
method is always presented as a trick to deal with quenched disorder: in disor-
dered systems, the free energy is generally self-averaging in the thermodynamic
limit, and therefore one can as well try to compute the average of the free en-
ergy over quenched disorder. This is rather difficult to compute, in general. A
much easier task is to compute the average of the nth power, Z", of the parti-
tion function, which is nothing but the partition function of n non interacting
replicas. Taking the n — 0 limit one gets the quenched average of the logarithm
of the partition function, which is proportional to the free energy. This trick is
certainly very old (Giorgio Parisi dates it back to at least the fourteenth century
when the bishop of Lisieux Nicolas d’Oresme used a similar trick in order to
define non integral powers!) and has been used many times in the literature. Its
first non-trivial application to the statistical physics of systems with quenched
randomness is probably the seminal work of Edwards and Anderson (1975).

Going much beyond a simple mathematical trick, the replica method allows
for a study of the free energy landscape, and principally of the regions of low free
energy (the notion of a free energy landscape, in the very large dimensional space
describing the configurations of a system in statistical mechanics, requires some
thinking; however it is well defined in mean field, and it helps developing some
intuitive picture, which is why T shall use it here for a simple presentation). The
replicated partition function, after averaging over disorder, becomes a partition
function for n systems, without disorder, but with an attractive interaction be-
tween the various replicas: the reason for this attraction is simple: Because they
share the same Hamiltonian, with the same disorder, the various replicas will be
attracted towards the same favorable regions of phase space, and repelled from
the same unfavorable regions. Both effects tend to group the replicas together.
If one has a simple phase space, with basically one large valley, then the replicas
all fall into this valley, and the order parameter is a number, the typical distance
between any two replicas, which gives directly the size of this valley. But in a
system with several metastable states, the situation can be more complicated
with some replicas choosing to fall into one valley, while others fall into other
valleys. This effect has been called ‘replica symmetry breaking’. Technically it
appears as a standard spontaneous breaking of a symmetry. This symmetry is
the permutation symmetry S,, of the n replicas. The problem is that this sym-
metry is broken only when one considers some number of replicas n which is non
integer, and in fact smaller than one.
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Based on some remarkable intuition about the permutation group with zero
replicas, Parisi proposed at the end of the seventies a scheme of breaking the sym-
metry which is consistent, and has been applied successfully to many problems
(Parisi 1979, 1980). Basically the order parameter turns out to be a function,
which is the disorder averaged probability density, P(q), picking up at random
two thermalized non-interacting replicas of the system, that their distance will
take a given value ¢. This order parameter could be computed at the mean field
level in a variety of systems. In some cases it could be checked versus some other
analytic computations, not involving the replica method, it could also be com-
pared to simulations (a direct experimental measurement of P(q) is not possible,
but the recent developments on out of equilibrium dynamics, explained below,
provide an indirect access to its measurement). So far it has always been found
correct, although a rigorous mathematical status is still lacking.

The cavity method (Mézard et al. 1985; Mézard et al. 1987) has been de-
veloped in order to write down explicitly the assumptions underlying Parisi’s
replica symmetry breaking scheme, and develop a direct self-consistent proba-
bilistic approach, equivalent to the replica method, based on these assumptions.
The recent proof of the validity of Parisi’s solution for the SK model basically fol-
lows this kind of cavity approach (Talagrand 2003a; Guerra and Toninelli 2002;
Guerra 2003).

Fundamentally, three types of solid phases have been found at the moment
with the replica method. Speaking in terms of an Ising spin glass system, with
spins S;, and defining the overlap between two spin configurations as ¢ = (1/N) vazl S;S:,
we can characterize them from the shape of the overlap distribution P(g). At
high temperature the system is not in a solid phase and one has P(q) = §(q):
the thermal fluctuations win, there are no correlation between replicas. At low
temperatures, in the presence of a small magnetic field which breaks the global
spin reversal symmetry, one can find either:

e A replica symmetric phase with P(q) = §(¢—go). This happens for instance
in a ferromagnet, where ¢ is the square of the magnetization.

e A situation called ‘one step replica symmetry breaking’ where P(q) =
28(q — qo) + (1 — 2)8(q¢ — g1). This describes s system in which there are
many free energy valleys, the width of each valley is measured by ¢1, and
the valleys are generically equidistant in phase space, their distance being
measured by gqg. Very often gy = 0 and the valleys are located in random
directions of the large dimensional configuration space. This situation thus
occurs in a rather generical case where the low lying valleys are not corre-
lated. Some mean field spin glasses are known to belong to this category,
which is also thought to be the relevant one for the description of structural
glasses of the fragile type.

e A situation called ‘full replica symmetry breaking’ where P(q) = zp(q) +
(1—2)8(¢— q1), where p(q) is a continuous function normalized to one. In
this case the low lying valleys become correlated. This is the category to
which the standard spin glass systems belong.
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The reader may find it surprising that, although the replica method was
introduced to handle systems with quenched disorder (the whole story about
approximating the free energy through Z" is in order to be able to average on
various realizations of quenched disorder), we mentioned the structural glasses,
which have no quenched disorder, as physical systems displaying a one step
replica symmetry breaking phenomenon. In fact I believe that the replica method
is much more general than a trick for computing a logarithm. To illustrate this
point, let me explain briefly how one can use a kind of replica method in the
structural glass case. Let us assume that the free energy landscape of a structural
glass is indeed made up of many valleys, such that the low lying valleys point
in uncorrelated directions of phase space. Assume further that the number of
valleys at a given free energy f is exponentially large, so that the entropy of
the system is the sum of an internal entropy measuring the size of each valley,
and of a configurational entropy S.(f) measuring their number. Proving these
assumptions, purely from the microscopic Hamiltonian, is a task which seems
totally hopeless at the moment, but one accessible method of approach is to
postulate this structure, work out its consequences, and compare them to what
is observed in experiments and simulations. How can one use replicas in such a
case? The technique is a simple generalization of the two replicas used in the
previous section to define the order parameter. Take m identical replicas of our
glass, with a small short range attraction. In the glass phase this small attraction
will polarize the system into the same valley. It is easy to see that the free energy
of the replicated system F(m), considered as a function of m, is the Legendre
transform of S.(f). While it is very difficult to compute directly S.(f), one can
easily develop simple approximation schemes for F(m), and this gives access to
the thermodynamic properties of the glass phase (Mézard and Parisi 1999).

1.2.4  Physics without symmetry: dynamics

The glass phase is very difficult to observe at equilibrium. Experimentally a
glass is an out of equilibrium system, at least if the sample is large enough. The
equilibrium properties which we have just discussed cannot be used in a direct
quantitative comparison with the experiments. They can be of direct relevance
for other amorphous solid states like optimization problems, or memory neural
networks which are evolving from an initial configuration close to one of the
memorized patterns. They can be useful to interpret some experimental findings,
as is the case for the hierarchical structure of metastable states, but a direct
comparison is difficult. The equilibrium studies provides the properties of the
free energy landscape, focusing onto the low lying states. It is doubtful whether
experimentalist will ever come up with a system prepared in one glass state o
(the equivalent of a ferromagnetic crystal, uniformly polarized, without domain
walls). Instead their systems age for ever.

The point may be illustrated from the dynamical definition of an order
parameter, which we shall formulate again for simplicity in a spin glass lan-
guage. In its original formulation by Edwards and Anderson (1975), the or-
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der parameter was defined as the long time limit of the spin autocorrelation:
g = limy, oo limy 00 < S;(t)S;(0) >, where the brackets mean an average over
the thermal noise (some underlying dynamics, for instance of a Langevin type,
can be assumed for this classical spin system). This gives a correct definition
only if the system is thermalized inside one glass state a at time ¢ = 0. Then
it is kind of tautological: the system remains inside the same state, the prob-
ability of the spin configurations decouple at large time and we obviously get
back to the equilibrium definition ¢ = limy_,(1/N) >, < S; >o< S; >a.
We are back to our problem: the system cannot be thermalized at time t = 0,
so what should one do? Experiments provide the answer: the glass is aging.
Somewhere it keeps a trace of the date at which it was born (Bouchaud et
al. 1998). Let us call ¢ = 0 this time, defined as the time at which the sys-
tem was quenched below the glass transition temperature (if one cools slowly a
structural glass, there are cooling rate effects, which may tell us a lot, but we
won’t discuss them here). The correlation function between times t,, and t,, + 7
is Ctw + Tytw) = Imy 0o (1/N) D0, < Si(tw)Si(tw + 7) >. As the relaxation
time is infinite, or in any case much larger than any experimental time scale,
the system is never thermalized at time t,,, whatever its age t,, is. One must
study the dependence of the correlation as a function of the two times: the age
t,, and the measurement time 7. The correct definition of the order parameter
becomes ¢ = lim,_, o lim;,, 00 C(ty + T,%w). This turns out to give the same
result as the equilibrium definition, showing that the system in this sense comes
arbitrarily close to equilibrium, but now this order parameter can be measured.
One can realize the subtlety of the approach to equilibrium by noticing that, in
the reverse order of limits, lim, o, C(t, + 7,t,) = 0, for any ¢,,. This situa-
tion has been called weak ergodicity breaking (Bouchaud 1992), and seems to be
present both in spin glasses and structural glasses. Experimental measurements,
done on response functions rather than correlations, have found it for instance
in systems such diverse as PV C' (aging in the mechanical response: if I measure
the response of your plastic ruler to a stress, I can deduce when the ruler was
fabricated -provided I can perform a measurement on time scale of the order
of its age!) and in spin glasses (aging in the relaxation of the thermoremanent
magnetization).

Taking into account properly the aging effect implies thinking in the two
time plane: the effects one can then study are not just the very complicated
and system dependent transient effect, but they relate to what happens when
both ¢,, and 7 go to infinity, along various paths. It turns out that there seem
to exist few universality classes for the behavior of the two times response and
correlation functions in this limit. This have been first found by Cugliandolo and
Kurchan in mean field spin glasses (Cugliandolo and Kurchan 1993). Based on
these relatively simple models for which the dynamics can be solved explicitly, a
generic scenario of glassy dynamics has been worked out, implying a well under-
stood generalization of the fluctuation dissipation theorem, where an effective
temperature, measurable but distinct from the bath temperature, characterizes
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the proportionality between the time derivative of the correlation and the instan-
taneous response, when these quantities are measured on time scales comparable
to the age of the system. On these time scales the new relaxation processes which
appear are ‘thermalized’ with an effective temperature which is close to that of
the glass transition temperature, rather than to that of the room.

A proper account of these fascinating recent developments goes much beyond
the scope of this paper. What I just want to point out here is that the measure-
ment of this new effective temperature appearing in the generalized fluctuation
dissipation theorem, which can be done by doing response and noise measure-
ments, monitoring properly the age of the system, allows for an experimental
determination of the type of glassy phase which one encounters, in the classifica-
tion of section 1.2.3 (Cugliandolo and Kurchan 1993; Franz and Mézard 1994a,
1994b; Cugliandolo and Kurchan 1994; Franz et al. 1998).

Numerical simulations in spin glasses and structural glasses have confirmed
that the P(q) order parameter can be measured either from a well equilibrated
small system, or from the generalized fluctuation dissipation theorem in the out
of equilibrium dynamics of large systems (Parisi 1997; Kob and Barrat, 1997);
the two procedures give results which agree with each other, although this does
not imply that the asymptotic regime has been reached. The results point in the
direction of a one step replica symmetry breaking in the structural glasses, and
a full replica symmetry breaking in spin glasses.

On the experimental side, a recent beautiful experiment in a spin glass mate-
rial has managed to measure the fluctuation dissipation ratio, and finds a rather
good qualitative agreement with the predictions of the full replica symmetry
breaking scenario (Herisson and Ocio 2002), although again it is not clear if the
‘true’ asymptotic regime can be measured. At present it seems that the mean
field predictions provide at least good guidelines to the experimental systems at
least on the time scales that can be obtained in the laboratory. Similar measure-
ments have been attempted in structural glasses (Bellon and Ciliberto 2002) but
the results seem to depend a lot on the observable and the situation is not yet
clear.

1.2.5 Simulations

As we have seen, the theory of amorphous solid states has been developed in
close connection with the progress in numerical simulations, and it will continue
to do so. The collective behavior of strongly interacting systems can display very
complicated, and sometimes surprising, behaviors, for which simulations help to
provide some intuition, and to bridge the gap between theory and experiments.
Reviewing the progress on the simulations goes beyond my abilities and beyond
the scope of this paper, I shall rather refer the reader to Marinari et al. (1998).
But one should be aware that in this field, the simulations play a very important
role, on equal footing with theory and experiments, and this three-fold strategy
is necessary for progress.
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1.3 Directions

Predicting what will be the important developments in the future is bound to fail.
I will not risk doing so, but just state a few topics which I find interesting at the
moment. Their importance, the stage of their development and the time-scale of
their study is totally uneven. The reader should just take them as some discussion
topics such as they arise more or less randomly in a chat with colleagues, a winter
evening, around the fireplace. As always the most interesting developments will
be those that I cannot think of at this moment.

1.3.1  Physical glasses

The theory of glasses is still in its early infancy. The idea that glasses may be
experimental realization of systems with one step replica symmetry breaking,
although it is more than ten years old, has given shape to an actual microscopic
model only very recently. The most obvious open questions concern the dynamics
in the low temperature phase (we have no microscopic theory of aging in struc-
tural glasses so far), and the whole behavior in the temperature window above
the glass transition temperature. The mean field models with one step replica
symmetry breaking have two transition temperatures. The thermodynamic tran-
sition temperature, which should be the ideal glass transition temperature (that
of a glass cooled infinitely slowly), and a dynamical transition temperature which
is larger, at which the system becomes non ergodic, but where there is no ther-
modynamic singularity. This dynamical transition (which is also the one that
is detected by mode coupling theory) is presumably a mean field artifact: the
system gets trapped into metastable states which have an extensive free energy
excitation with respect to the equilibrium state. One expects that this dynamical
transition will be rounded in any real system by the ’activated processes’, i.e.
bubble nucleation. These are not understood at the moment, and their correct
description is needed in order to understand the rapid increase of relaxation
times upon cooling in glasses.

Letting aside for a moment all the unsolved mathematical questions which I
shall discuss later, it is clear that the theory of spin glasses is more advanced. Yet
we face two difficult problems concerning the extension of mean field theory to the
spin glasses in dimensions smaller than six. On the technical side the standard
field theory expansion around mean field is extremely difficult. The progress
has been steady but slow, and indeed some of its first predictions have been
confirmed numerically recently. Getting further along this direction will require
some better understanding of the mathematical structures underlying replica
algebra. The physical picture is not crystal clear either. We certainly would like
to understand better how the many states are realized in real space. The physical
discussion which can be given now is at the more abstract level of phase space,
and it has shown its value in the design and discussion of experiments, but a fuller
understanding requires going to the level of spins. In spite of many attempts at
defining length scales in glasses, my feeling is that the situation is still rather
unclear. Let me state a simple illustration: if one has only two states, the out
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of equilibrium dynamics is that of coarsening, and, after gauge transforming
the spins one can think of it in terms of coarsening in an Ising ferromagnet.
The generalization of the fluctuation dissipation theorem takes then a simple
form, which has a very intuitive interpretation. After a large waiting time t,,,
the system has developed some domains of each of the two phases, and the
typical size of the domain is £(t,,) (in a pure ferromagnet it would be £ = \/%,,,
in presence of impurities, the growth of the domains will be slower). Then the
dynamics after the time ¢,, is very different depending on whether one considers
time t,, + 7 with 7 < t,,, or with 7 > t,,. In the first case a given spin, which
is generically far away from the domain walls, sees an environment which is
at equilibrium. One thus expects the usual fluctuation dissipation theorem to
be valid. On the contrary when 7 < t,, a given spin sees some domain walls
sweeping it all the time, and therefore its dynamics is that of a spin at infinite
temperature. This is exactly what is predicted by the generalized fluctuation
dissipation theorem for a replica symmetric system. As soon as we have replica
symmetry breaking, whether it is one step or full replica symmetry breaking, we
know the mathematical characterization of the generalized fluctuation dissipation
theorem, it is a very nice structure which is confirmed by the simulations, but
we cannot give yet a simple intuitive description of it, similar to the one I just
presented.

1.3.2 Random systems

We seem to be on the way towards some general classification and characteriza-
tion of the behavior of random systems, both in their equilibrium and non equi-
librium behavior. The original fracture between the systems with and without
disorder (roughly speaking: spin glasses and glasses) has been partially bridged
(Bouchaud and Mézard 1994; Marinari et al. 1994a, 1994b; Chandra et al. 1995):
if a system without disorder has a glassy phase, this phase may look very much
like the one of a disordered system. This is kind of reminiscent of Wigner’s suc-
cessful step, when he substituted the complicated Hamiltonian of a nucleus by a
random matrix with the same symmetries. In the framework of amorphous solid
states such a step has been carried through in the case of a few specific examples,
but we do not have yet any systematic equivalence, and the symmetry classes
are not known.

Many of the ideas which I have presented here can have a resonance with
other problems of physics. A better characterization of the low temperature
thermodynamics of glasses involves the computation of spectrum and localization
properties of vibrations in random structures, which is a problem appearing in
many areas of physics. The interplay of the amorphous solid state ideas with
the ones developed in electron localization could certainly also be a source of
enrichment of both fields. Although I kept here within the scope of classical
statistical mechanics, the quantum behavior of amorphous solid states is also
very interesting: the quantum critical points appearing at zero temperature have
very interesting properties which have just began to be worked out, but offer a
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wonderful playground for future developments.

On top of all the examples I have mentioned so far, from protein folding to
brain theory, some of the most active areas of glassy physics outside of physics
involve problems in computer science and information theory (Mézard 2003) such
as error correcting codes (Nishimori 2001) and the satisfiability problem (Dubois
et al. 2002), as well as its application to game theory and economic modeling
(Challet et al. 2000a, 2000b; Bouchaud and Potters 2000). At a very basic level,
the field which we have been studying in the last two decades is just that of
collective behavior of interacting agents which are heterogeneous, whether this
heterogeneity is here from the beginning or is generated by the system through its
dynamical evolution. Obviously, this is a very general topic with many possible
applications. I am thus confident that the spreading of this ideas will go on for
a while.

1.3.3  The unreasonable inefficiency of mathematics

In some sense the equilibrium statistical mechanics of amorphous solid states is a
branch of probability theory. A direct probabilistic solution of the mean field the-
ory of spin glasses has been developed, at the mean field level, through the cavity
method. After many years of study, and clever mathematical improvements, it
now offers a rigorous solution for the SK model, and in optimization for ’simple’
problems like the assignment or random link traveling salesman problem. Clearly
this is a very active line of research and one can expect that new exact results
will be obtained in this field in the forthcoming years.

But by far the easiest approach, the most compact as far as actual computa-
tion are concerned, the first one that one will use on any new random problem,
is the replica one. It is very strange that nobody has yet come up with a math-
ematical framework to study the permutation group with a real number of ele-
ments and provide a justification to Parisi’s replica symmetry breaking scheme,
or maybe generalize it. This is a perfectly well defined scheme, where the com-
putations , as well as the underlying probabilistic structure (which is exactly the
contain of the cavity method) are completely understood.

The amorphous solid states are the low lying configurations of certain hamil-
tonians. It is no surprise that these will be related to the theory of extreme event
statistics. If the configurations of a glassy system have independent random en-
ergies, then the extreme event theory tells us the statistics of these energies:
they are given by Gumbel’s law, which is the one relevant for us since we expect
the energy distribution to be unbounded in the thermodynamic limit, but to
fall off rapidly enough, faster than a power law. It turns out to be exactly the
statistics which is found by the replica symmetry breaking method at one step
replica symmetry breaking, as was found early on in the case of the random en-
ergy model. This provides some very encouraging connection between standard
probability tools and physics. Of course in any physical system the energy of the
configurations are correlated random variables. But one may hope that, after
grouping together the configurations which are near to each other, one builds up
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some valleys for which the free energies are uncorrelated (keeping with the low
lying valleys). These systems will form a universality class, containing the sys-
tems where the amorphous solid state is of the type ‘one step replica symmetry
breaking’. The present belief is that the glass phase of simple glasses (for exam-
ple hard spheres or soft spheres) could be of this type. A better understanding
of the random packings of spheres could help to confirm this conjecture. But
the spin glass offer us some other universality classes, in which the low lying
valleys are not uncorrelated, but possess a very specific type of hierarchical cor-
relations: these are the problems where the amorphous solid state is described
by the full replica symmetry breaking scheme. Putting them in the framework
of extreme events statistics is an interesting mathematical problem. (In this re-
spect one can draw an analogy with the universal behaviors of sums of random
variables, rather than extremes, which is much easier. Everyone knows that if
the variables are only weakly correlated the sum is universally distributed as
a Gaussian variable; phantom polymer chains offer a physical example. Now if
correlations are stronger, which means here that they can couple very distant
variables, then physics offers the new universality class of self avoiding polymers,
where the typical size of the sum is known to scale as the number to a power
v # 1/2, but which is much harder to describe mathematically).

The field of spin glasses in particular offers many examples of facts that every
physicist believes is true, but one cannot prove rigorously. This is not unusual in
other branches of physics, and one should not be too worried about it. However
it would be very welcome to have a proof of the existence of a spin glass phase
in a finite dimensional model with short range interactions, to just mention the
most obvious such fact.

I would not be surprised if the study of random solid states, and the various
tools which have been developed in physics for that purpose, would lead in the
future to interesting new mathematics, maybe with connections to probabilistic
arithmetics.

1.3.4 Consilience

The statistical physics process of building a microscopic theory of amorphous
solid states is a slow and difficult step of the development of physics. Many col-
leagues will just not want to make the intellectual investment of getting into it
and will argue that a phenomenological description is enough. While T under-
stand that the investment is hard, and for most people it may be better to wait
until the theory has been understood better so that it can be simplified, I do
believe that the microscopic modeling is an absolutely necessary step. We need
phenomenological descriptions, trying to find out some description in terms of
the smallest number of parameters. But we need to be able to relate them to the
microscopic structure, and show the consistency of both. In this respect I think
for instance that an elaboration of the scaling picture of spin glasses (McMillan
1984; Bray and Moore 1986; Fisher and Huse 1987, 1988), which would take into
account the existence of many states, would be a very interesting achievement.
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As we saw, the field of amorphous solid states is full of connections with many
other branches of science. This is because of the richness of these amorphous
phases, and their ability to have many different states coexist. In this respect its
theory is a part of the development of a theory of complex systems (in the very
broad sense of many interacting agents exhibiting complex collective behaviors).
This field is not well defined enough for there to be a unique theory of complex
systems. There are various approaches to it, applying to various levels, and each
will be judged both on its own results, and on its consistency with the other ones.
Of course statistical physics is just about finding out the collective behavior,
starting from the microscopic description of the atoms. In this vague sense one
could say it is central to the field. On the other hand if one looks at what
statistical physics is able to achieve, one will rather say that it is not (yet) central.
The available techniques can be judged as rather efficient to deal with the systems
in which the dynamical evolution has a property of detailed balance, which means
that they can be described by an energy function, and the evolution is just
relaxation in some (free) energy landscape. This is a very strong restriction, and,
as we saw on the example of neural networks, most of the interesting problems
in complex systems will not obey it. Although some attempts have been made
to develop some statistical mechanics study of the dynamics of systems without
detailed balance, (in particular in asymmetric neural networks, or in random
mappings of phase space), this is a very vast field which is much less understood.
The virtue of the theory of amorphous solid state is that it can provide some
very detailed information on some specific and oversimplified problems, which
can then serve as solid starting points for further elaboration.

It might also be that some interesting problems, particularly in biology, have
been so well selected by evolution that every single detail of the microscopic
description is relevant: they are not generic at all, and the statistical descrip-
tion will have nothing to say about them. I feel reluctant to accept this as a
general principle, mainly for philosophical reasons which I will not bother the
reader with. Basically I feel that some level of statistical description, and there-
fore some degree of genericity, is unavoidable in order to build up a theory of
many interacting elements, whatever they are (a simulation of tens of thousands
of coupled differential equations reproducing some experimental behavior is not
what I would call a theory, although it may be a very useful step in the elabora-
tion of a theory). Physics has a long tradition of oversimplifying the real world
in order to achieve a correct description, and then reincorporating the left-out
details (think of the theory of gases for instance). This strategy, which is also
the one that was followed for instance in the physical theory of neural networks,
is probably the best one that can be followed in order to elaborate a theory.
I understand that it may seem odd to our colleagues in other fields, particu-
larly the fields which are very experimental ones, but I believe that one day or
another their science will also benefit from such a strategy. Which field the sta-
tistical physics of amorphous solid states is able to help now, I leave the reader
to decide, hoping that the above can provide a few guidelines.
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