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Motivations
Random walks appear in a wide range of phenomena ranging
from ecology to finance. In many applications, one is interested
in particular trajectories that satisfy some conditions. These
trajectories are sometimes rare and atypical. One would like an
e�icient way to sample them.

Free random walks
A free one-dimensional discrete-time random walk xm evolves
according to the Markov rule

xm = xm−1 + [m , (1)

where [m are i.i.d. random variables drawn from a jump
distribution f ([) and x0 = 0.

Propagators of free random walks

The probability density P (x,m) that the free random walk is
reaches x in m steps given that it started at the origin evolves
according to the forward equation

P (x,m) =
∫ ∞

−∞
dy P (y,m − 1)f (x − y) , (2)

with P (x, 0) = X (x).
The probability density Q(x,m) that the free random walk
started at x given that it reaches the origin in m steps evolves
according to the backward equation

Q(x,m) =
∫ ∞

−∞
dy f (y − x)Q(y,m − 1) , (3)

with Q(x, 0) = X (x).
The forward and backward equations can be solved explicitly by
taking a Fourier transform. For the backward equation (3), we get

Q̃(k,m) = f̂ (k)Q̃(k,m − 1) = f̂ (k)m , (4)

which a�er inversion gives

Q(x,m) =
∫ ∞

−∞

dk
2c

f̂ (k)m e−i k x . (5)

Bridge random walks

Bridge random walks Xm evolve locally as in (1) but are
constrained to return to the origin a�er a fixed number of steps:

Xn = X0 = 0 . (6)
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Propagator of bridge random walks

The probability density Pbridge(X ,m | n) that the bridge random
walk of n steps reaches X in m steps can be wri�en as a simple
product

Pbridge(X ,m | n) =
P (X ,m) Q(X , n −m)

P (X = 0, n) , (7)

where P (X ,m) accounts for the le� part on [0,m] and
Q(X , n −m) accounts for the right part on [m, n].

Generating bridge random walks

One can easily show that the bridge propagator (7) satisfies the
forward equation

Pbridge(X ,m | n) =
∫ ∞

−∞
dY Pbridge(Y ,m − 1 | n) ×

f̃ (X − Y | Y ,m − 1, n) , (8)

where the e�ective jump distribution is given by

f̃ ([ | Y ,m − 1, n) = f ([) Q(Y + [, n −m − 1)
Q(Y , n −m) . (9)

This e�ective jump distribution is well suited to be sampled
using the acceptance-rejection method [1].

Example: bridge la�ice random walk

For a la�ice walk, with f ([) = 1
2X ([ − 1) + 1

2X ([ + 1), the e�ective jump distribution (9) becomes

f̃ ([ | Y ,m − 1, n) = 1
2

(
1 − Y

n −m

)
X ([ − 1) + 1

2

(
1 + Y

n −m

)
X ([ + 1) . (10)

The e�ective distribution can be sampled directly and is shown to be very e�icient in practice.
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Generalisations and future perspectives

The e�ective jump distribution (9) can be generalised to other constrained discrete-time random walks such as excursions and meander [1] as
well as to some non-Markovian processes [2]. In a recent work [3], a reinforced learning approach was developed to generate rare atypical
trajectories, with a given statistical weight and we hope that the method developed in our work will also be useful in such applications.
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