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Motivations

Random walks appear in a wide range of phenomena ranging from
ecology to finance. In many applications, one is interested in
particular trajectories that satisfy some conditions. These
trajectories are sometimes rare and atypical. One would like an
efficient way to sample them.

Free random walks

A free one-dimensional discrete-time random walk xm evolves
according to the Markov rule

xm = xm−1 + ηm , (1)

where ηm are i.i.d. random variables drawn from a jump
distribution f (η) and x0 = 0.

Propagators of free random walks

The probability density P(x ,m) that the free random walk reaches
x in m steps given that it started at the origin evolves according
to the forward equation

P(x ,m) =

∫ ∞
−∞

dy P(y ,m − 1)f (x − y) , (2)

with P(x , 0) = δ(x).
The probability density Q(x ,m) that the free random walk started
at x given that it reaches the origin in m steps evolves according
to the backward equation

Q(x ,m) =

∫ ∞
−∞

dy f (y − x)Q(y ,m − 1) , (3)

with Q(x , 0) = δ(x).
The forward and backward equations can be solved explicitly by
taking a Fourier transform. For the backward equation (3), we get

Q̃(k,m) = f̂ (k)Q̃(k,m − 1) = f̂ (k)m , (4)

which after inversion gives

Q(x ,m) =

∫ ∞
−∞

dk

2π
f̂ (k)m e−i k x . (5)

Bridge random walks

Bridge random walks Xm evolve locally as in (1) but are
constrained to return to the origin after a fixed number of steps:

Xn = X0 = 0 . (6)
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Propagator of bridge random walks

The probability density Pbridge(X ,m | n) that the bridge random
walk of n steps reaches X in m steps can be written as a simple
product

Pbridge(X ,m | n) =
P(X ,m)Q(X , n −m)

P(X = 0, n)
, (7)

where P(X ,m) accounts for the left part on [0,m] and
Q(X , n −m) accounts for the right part on [m, n].

Generating bridge random walks

One can easily show that the bridge propagator (7) satisfies the
forward equation

Pbridge(X ,m | n) =

∫ ∞
−∞

dY Pbridge(Y ,m − 1 | n)×

f̃ (X − Y |Y ,m − 1, n) , (8)

where the effective jump distribution is given by

f̃ (η |Y ,m − 1, n) = f (η)
Q(Y + η, n −m − 1)

Q(Y , n −m)
. (9)

This effective jump distribution is well suited to be sampled using
the acceptance-rejection method [1].

Example: bridge lattice random walk

For a lattice walk, with f (η) = 1
2 δ(η − 1) + 1

2δ(η + 1), the
effective jump distribution (9) becomes

f̃ (η |Y ,m − 1, n) =
1

2

(
1− Y

n −m

)
δ(η − 1)

+
1

2

(
1 +

Y

n −m

)
δ(η + 1) . (10)

The effective distribution can be sampled directly and is shown to
be very efficient in practice.
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Generalisations and future perspectives

The effective dynamics be generalised to other constrained walks
such as excursions and meander [1], non-intersecting walks [2,3]
(see Satya N. Majumdar’s talk) as well as to some non-Markovian
processes [4]. In a recent work [5], a reinforced learning approach
was developed to generate rare atypical trajectories, with a given
statistical weight and we hope that the method developed in our
work will also be useful in such applications.
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