d Ik université
21-25 June 2021 ranaom walks

Presentation times for this poster Benjamin De Bruyne?*  Satya N. Majumdar Grégory Schehr m

Wednesday 1:30-2:30 pm S L O ‘LPTMS, CNRS, Universite Paris-Saclay, 91405 Orsay, France
Friday 1:30-2:30 pm _ bSorbonne Universite, Laboratoire de Physique Theorique et Hautes Energies, CNRS, UMR
7589, 4 Place Jussieu, 75252 Paris Cedex 05, France

Bridge random walks Example: bridge lattice random walk

Lattice Path . Generating discrete-time constrained -

Conference

Random walks appear in a wide range of phenomena ranging from Bridge random walks X, evolve locally as in (1) but are For a lattice walk, with f(n) =34d(n — 1) + 36(n + 1), the
ecology to finance. In many applications, one is interested in constrained to return to the origin after a fixed number of steps: effective jump distribution (9) becomes

particular trajectories that satisfy some conditions. These X — X.—0. (6) . v

trajectories are sometimes rare and atypical. One would like an " ’ 7?(77| Y. m—1,n) == (1 > 6(n — 1)
efficient way to sample them. | position 2 = m

2 n—m
steps The effective distribution can be sampled directly and is shown to
" be very efficient in practice.
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Free random walks

A free one-dimensional discrete-time random walk x,,, evolves

x 1071
according to the Markov rule 2 - —4- " ——
Xm = Xm—1+ Mm ; (1) g 1- 3 BN theoretical
. . . Z = 2
where 1), are i.i.d. random variables drawn from a jump 2 0- E
oy

distribution f(7n) and xy = 0.

|
p—d
O

Propagator of bridge random walks

The probability density Pyyigge(X, m | n) that the bridge random
walk of n steps reaches X in m steps can be written as a simple

Propagators of free random walks

Generalisations and future perspectives

The probability density I.D(X’ m) that the fr.ee- random walk ree_aches product P(X, m) Q(X,n— m) The effective dynamics be generalised to other constrained walks
X mhm fStePS S'Ven that it started at the origin evolves according Poridge(X, m| n) = 7P(X — 07 ™ , (7) such as excursions and meander [1], non-intersecting walks [2,3]
to the forward equation - here P(X. m) s B 7[0 | and (see Satya N. Majumdar’s talk) as well as to some non-Markovian
where , m) accounts tor the lert part on |U, m| an : :
P(x, m) = / dy P(y. m— 1)f(x — y). (2) O(X 1 ) accounts for the right I'Jart on [m processes [4]. In a recent work [5], : remforced I.earnm_g apprf)ach
— 0 ’ sht P T was developed to generate rare atypical trajectories, with a given
with P(x,0) = d(x). statistical weight and we hope that the method developed in our

The probability density Q(x, m) that the free random walk started
at x given that it reaches the origin in m steps evolves according

] ] work will also be useful in such applications.
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to the backward equation . . -
| o One can easily show that the bridge propagator (7) satisfies the References
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