Lattice Path Conference 21-25 June 2021 Presentation times for this poster:

Wednesday 1:30-2:30 pm 1:30-2:30 pm Friday

Motivations

Random walks appear in a wide range of phenomena ranging from ecology to finance. In many applications, one is interested in particular trajectories that satisfy some conditions. These trajectories are sometimes rare and atypical. One would like an efficient way to sample them.

Free random walks

A free one-dimensional discrete-time random walk x_m evolves according to the Markov rule

$$\mathbf{x}_m = \mathbf{x}_{m-1} + \eta_m \,,$$

where η_m are *i.i.d.* random variables drawn from a jump distribution $f(\eta)$ and $x_0 = 0$.

Propagators of free random walks

The probability density P(x, m) that the free random walk reaches x in m steps given that it started at the origin evolves according to the *forward* equation

$$P(x,m) = \int_{-\infty}^{\infty} dy P(y,m-1)f(x-y),$$

with $P(x,0) = \delta(x)$.

The probability density Q(x, m) that the free random walk started at x given that it reaches the origin in m steps evolves according to the *backward* equation

$$Q(x,m) = \int_{-\infty}^{\infty} dy f(y-x)Q(y,m-1),$$

with $Q(x,0) = \delta(x)$.

The forward and backward equations can be solved explicitly by taking a Fourier transform. For the backward equation (3), we get $\tilde{Q}(k,m) = \hat{f}(k)\tilde{Q}(k,m-1) = \hat{f}(k)^m,$ (4)

which after inversion gives

$$Q(x,m) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \hat{f}(k)^m e^{-ikx}.$$

Generating discrete-time constrained random walks

^aLPTMS, CNRS, Universite Paris-Saclay, 91405 Orsay, France ^bSorbonne Universite, Laboratoire de Physique Theorique et Hautes Energies, CNRS, UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France

Bridge random walks

Propagator of bridge random walks

The probability density $P_{\text{bridge}}(X, m \mid n)$ that the bridge random walk of n steps reaches X in m steps can be written as a simple product

$$P_{\text{bridge}}(X, m \mid n) = \frac{P(X, m) Q(X, n - m)}{P(X = 0, n)}, \quad (7)$$

m) accounts for the left part on $[0, m]$ and
) accounts for the right part on $[m, n]$.

where P(X,Q(X, n-m)

Generating bridge random walks

One can easily show that the bridge propagator (7) satisfies the forward equation

$$P_{\text{bridge}}(X, m \mid n) = \int_{-\infty}^{\infty} dY P_{\text{bridge}}(Y, m - 1 \mid n) \times \tilde{f}(X - Y \mid Y, m - 1, n), \quad (8)$$

the effective iump distribution is given by

where the effective jump distribution is given by

$$\tilde{f}(\eta \mid Y, m-1, n) = f(\eta) \frac{Q(Y + \eta, n - m - 1)}{Q(Y, n - m)}.$$
 (9)

This effective jump distribution is well suited to be sampled using the acceptance-rejection method [1].

(1)

(2)

(3)

(5)

Benjamin De Bruyne^a Satya N. Majumdar^a Grégory Schehr^b

Example: bridge lattice random walk

effective jump distribution (9) becomes

$$\widetilde{f}(\eta \mid Y, m-1, n) = \frac{1}{2}$$

The effective distribution can be sampled directly and is shown to be very efficient in practice.

Generalisations and future perspectives

The effective dynamics be generalised to other constrained walks such as excursions and meander [1], non-intersecting walks [2,3] (see Satya N. Majumdar's talk) as well as to some non-Markovian processes [4]. In a recent work [5], a reinforced learning approach was developed to generate rare atypical trajectories, with a given statistical weight and we hope that the method developed in our work will also be useful in such applications.

References

- applications Theo. Comp. Sci. 307 241, 2003.
- the flat-to-flat geometry. arXiv:2103.02545, 2021.
- *run-and-tumble trajectories.* arXiv:2106.03385, 2021.
- to rare trajectory sampling. N. J. Phys. 23 013013, 2021.

[1] De Bruyne, B.; Majumdar, S. N.; Schehr, G.: *Generating discrete-time* constrained random walks and Lévy flights. arXiv:2104.06145, 2021.

[2] Bonichon, N.; Mosbah, M.: Watermelon uniform random generation with

[3] Grela, J.; Majumdar, S. N.; Schehr, G.: Non-intersecting Brownian bridges in

[4] De Bruyne, B.; Majumdar, S. N.; Schehr, G.: *Generating constrained*

[5] Rose, D. C.; Mair, J. F.; Garrahan, J. P.: A reinforcement learning approach