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Motivations Example: bridge lattice random walk
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Free random walks
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Bridge random walks P .
5 Generalisation to run-and-tumble particles

Bridge random walks X, evolve locally as in (1) but are

constrained to return to the origin after a fixed number of steps: The position of a free run-and-tumble particle x(#) evolves

according to the Langevin equation

Xn=2X0=0. (2) x(t) = wo(t), (8)
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Backward propagator of a free random walk
The effective process, that automatically takes care of the bridge

A useful tool is the probability density Q(x, m) that the free constraints
random walk started at x given that it reaches the origin in m B o _ . ~
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. x107?
where the effective jump distribution is given by 2.51 I
=
~ O(Y+nn-m-1) 0.0 1 £ /\
FalYom=1m) = f(n) =] . © ", ) .
Q(Y,n—m) —25 + 2 —— theoretical
¥ X numerical
This effective jump distribution is well suited to be sampled using 501 . . 2 04 "2/ . . \&"
0 20 40 10 -5 0 5 10

the acceptance-rejection method [1]. ; .

Generalisations and future perspectives

The effective jump distribution (6) and effective equation of motion (10) can be generalised to other constrained processes such as excursions and
meanders [1,2], as well as non-intersecting walks [3]. In a recent work [4], a reinforced learning approach was developed to generate rare atypical
trajectories, with a given statistical weight and we hope that the method developed in our work will also be useful in such applications.
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