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Abstract

This review is devoted to the theory of collective and local pinning effects
in various disordered nonlinear driven systems. A common feature of both
approaches is the emergence of metastability. Although the emphasis is put on
charge and spin density waves and magnetic domain walls, the theory also has
applications to flux lines and lattices thereof, dislocation lines, adsorbed mono-
layers and related systems. In the first part of the article we focus on the theory
of collective pinning which includes the equilibrium properties of elastic systems
with frozen-in disorder as well as the features close to the dynamic depinning transi-
tion enforced by an external driving force. At zero temperature and for adiabatic
changes of the force, the dynamic depinning transition is continuous, the
correlation length is large, the behaviour is dominated by scaling laws with non-
trivial static and dynamical critical indices. The application of functional
renormalization group methods allows for the detailed description of both
equilibrium as well as non-equilibrium properties. The depinning transition is
also characterized by the appearance of new scaling laws. Thermal fluctuations
smear out this transition and allow for a creep motion of the elastic objects even
at small forces. The application of an ac-driving force also destroys the sharp
transition which is replaced by a velocity hysteresis.
The second part of the review is devoted to the picture of local pinning and its

applications. Local theories apply in the region where correlation effects are less
important, i.e. not too close to the depinning transition, at low temperatures, at
high enough frequencies or velocities. The inclusion of plastic deformations results
in a rich cross-over behaviour of the force–velocity relation as well as of the
frequency dependence of the dynamic response. Being easily affected at higher
frequencies or velocities, the local pinning becomes an easily accessed source of
dispersion, relaxation and dissipation. The picture of the local pinning can be
effectively used to explain experimental data: qualitatively and even quantitatively.
The advantages come from the explicit treatment of metastable states, their
creation and relaxation, and their relation to plasticity and topological defects.
The local pinning recovers and exploits new elements of the energy landscape such
as termination points of some branches or irreversibility of other ones related
to generation of topological defects in the course of sliding. It also provides a clue
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to quantum effects describing quantum creep as tunnelling between retarded and
advanced configurations.
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1. Introduction

Many ordering phenomena in solids are connected with the emergence of a
modulated structure. Examples are charge or spin density waves [1–8], Wigner
crystals [9–12], flux-line lattices [13, 14], incommensurate phases of adsorbed
monolayers [15], etc. These structures often interact with imperfections frozen in
the solid leading to pinning phenomena which change drastically the statics and
dynamics of the modulated structure.

In other cases topological defects like isolated flux lines in superfluids or
superconductors, dislocation lines in solids, domain walls in magnets, etc. appear
as a result of competing interactions, external fields, or in the process of fabricating
the material. Pinning of the motion of these objects is often required if one wants
to exploit physical properties of the condensed structure. The pinning of flux lines
prevents dissipation from their frictional motion in superconductors, pinning of
dislocations prevents plastic deformations of a solid, etc. [16–18]. The generality of
this approach was anticipated a long time ago [19], but strong similarities between
the different systems mentioned above were worked out in detail only later.

The goal of the present article is to give a presentation of unifying concepts in
the theory of pinning phenomena. To make the ideas more clear, we will not go
too much into the details of specific systems but we shall stress the generality of the
approach. Some aspects of pinning have been considered in the past in great detail
for type-II superconductors and we refer the reader to these articles for more details
[13, 14].

A perfectly rigid object of any dimension, e.g. a straight flux line, a planar
domain wall or an undistorted charge density wave, will never be pinned—the
pinning forces acting on different parts of the object cancel each other. More
accurately: the resulting total pinning force is of the order of the square root of
the volume of the object. It is therefore necessary to consider the distortions of these
objects under the influence of pinning centres which are often of elastic type. We will
therefore speak about ‘elastic systems’ if we refer to arguments which are essentially
correct for all systems mentioned above.

The delicate question of pinning by randomness remains after almost three
decades since the earliest proposals of Larkin [20], through theories of vortex lattices
[21] and density waves [22–24]. The last decade has brought new insights, largely
provoked by the studies of vortices in high-Tc superconductors [13, 14]. In particular
new understanding was reached in detecting the possibility of a quasi-long-range
ordered (Bragg) glass phase with an algebraic decay of structural correlations in a
disordered system [25–28] and by the understanding of the role of metastable states
in non-stationary effects. Essential progress was due to new advanced methods like
the functional renormalization group method [29, 30] for the collective pinning
problem. Still, full details are not completely accessible and applications are not
always straightforward. The picture of local or weak pinning was also revised and
developed through the last decade in conjunction with plasticity and the role of
topological defects.

The indisputable domain of the collective pinning approach are the effects
occurring on large length- and time-scales. These are recovered e.g. in studies of
long-time evolution, the low-frequency response to external forces, the creep below
the zero-temperature depinning threshold, and the region around the threshold field.
The collective or weak pinning forces come from elastic interference of many
impurities [21–24]. Their characteristic features are: large correlation volumes, of
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the order or beyond the Larkin length, high energy barriers between metastable
states, huge relaxation times and small pinning forces. The collective pinning
determines the threshold fc of the driving force to initiate the sliding quite similar
to conventional rest friction [31]. The comprehensive picture of the collective pinning
will be given in the first part of this review in Sections 2–5.

Complementary insight can be obtained within the framework of the so-called
strong or local pinning which takes into account only a few metastable states. This
will be the topic of the second part of this review (Sections 6–12). This simple
but transparent approach offers some effects which have not yet been noticed—and
still are not fully accessible—within the very complicated picture of collective
pinning. The local or strong pinning comes from rare metastable pinning centres
which provide finite barriers, hence reachable relaxation times. Being easily affected
at higher frequencies or velocities, the local pinning becomes an easily accessed
source of dispersion, relaxation and dissipation. This part will summarize the local
pinning approach to time-dependent properties of sliding superstructures. We shall
follow the scheme of [32–36] for the theory of pinning-induced metastable plastic
deformations partly due to creation of dislocation loops or lines. Depending on the
pinning potential strength, we shall find several regimes of the behaviour of local
deformations in the course of a displacement with respect to the impurity site. The
key observation is that the local state at the pinning centre—the impurity—may be
either unique or bistable. The bistability can be either restricted or unrestricted
(i.e. preserved throughout the whole period of sliding). In the latter case this leads
to the generation of diverging pairs of dislocation loops—or 2p-solitons in a quasi-
one-dimensional picture. On this basis we can obtain contributions to the pinning
force resulting in the sliding velocity-driving force characteristics and in the
frequency-dependent response.

Special applications will be devoted to the best studied examples of domain walls
and charge density waves (CDW) where we shall particularly address two commonly
observed experimental features: the totally nonlinear current–voltage curve and the
anomalous low-frequency, low-temperature behaviour of the dielectric susceptibility.

2. Equilibrium properties of elastic objects in random environments

In this section we summarize the equilibrium properties of elastic objects in
a random environment. There are two main classes of systems. The first one refers to
non-periodic objects like isolated domain walls, flux or dislocation lines. These can
be generalized to the so-called elastic manifolds models. The second class of models
is periodic, like charge density waves, flux-line lattices or Wigner crystals. These are
subsumed under the expression periodic media.

To make the notation simple, we will describe the distortions of the elastic
systems from perfect order by a scalar displacement field u(x); its generalization to
N-vector or more complicated fields is straightforward. Correspondingly we will
mostly use the terminology of domain walls and charge density waves, respectively.
Where peculiarities in systems with N>1 may occur we will mention them, however.

2.1. Models
We consider a D-dimensional elastic object embedded in a host medium of

dimension d. Since the medium includes quenched disorder, the energy can be
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written in the form

H ¼

Z
dDx

1

2
CðJuÞ2 þ VRðx, uÞ � fu

� �
: ð1Þ

Here D denotes the internal dimension of the object (D ¼ 1 for isolated flux or
dislocation lines, D¼ d� 1 for isolated domain walls, D ¼ d for charge density
waves, flux-line lattices and Wigner crystals, etc.). Note that D is in general different
from the space dimension d (D� d ). (The dimension N denotes the number of
components of the displacement field u. For isolated flux lines or domain walls
N¼ d�D whereas for flux-line lattices N ¼ 2, and N ¼ 1 for CDWs.) C is an elastic
constant and in general a tensor, e.g., in flux-line lattices at least three elastic con-
stants are necessary for the description. In some cases the elasticity is non-local on
intermediate length-scales—as for flux-line lattices on scales smaller then the London
penetration length—or even at all length-scales as for dislocation lines. The elastic
constants will also show a temperature dependence since they have to vanish at
the transition where the structure melts, e.g. at the Peierls transition for CDWs.
f denotes an external force density which acts on the object.

The random potential VR(x, u) results from the coupling of the elastic object
to the impurity potential vR(x, z), which is generated by the frozen impurities,
fluctuating exchange constants, etc.

VRðx, uÞ ¼
Z

dd�Dz vRðx, zÞ �ðx, z, uÞ: ð2Þ

�ðx, z, uÞ represents the density of the elastic object and will be specified below.
x ¼ ðx1, . . . , xDÞ and z ¼ ðxDþ1, . . . , xdÞ denote D- and (d�D)-dimensional position
vectors parallel and perpendicular to the main orientation of the object (e.g. the
domain wall or the flux line), respectively. For density waves and flux-line lattices
D ¼ d and hence there is no perpendicular coordinate z.

The average over disorder—which replaces the average over the (infinite)
sample—will be denoted h. . .iR. Without restricting the generality we will assume
that hvRðx, zÞiR ¼ 0, in other words, we incorporate the effect of the averaged
disorder potential into the bare parameters of our model and consider only its
fluctuations. A less general but still reasonable choice is that vRðx, zÞ is Gaussian-
distributed and short-range correlated (with a correlation length l ) such that it is
characterized by its second moment:

hvRðx1, z1Þ vRðx2, z2ÞiR ¼ v2R�ðx1 � x2Þ�ðz1 � z2Þ: ð3Þ

If we rewrite the random potential vRðx, zÞ as a sum of impurity potentials

vRðx, zÞ ¼
XNimp

i¼1

Vi�ðx� xiÞ�ðz� ziÞ � �ViVinimp ð4Þ

then the disorder average is defined as

h. . .iR ¼
YNimp

i¼1

Z
dDxi dd�Dzi

V

Z 1

�1

dVipðViÞ . . . ð5Þ
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Here Nimp, V and nimp denote the total number of impurities, the volume of the
sample and the impurity concentration, respectively. p(Vi) is the normalized

probability distribution of the potential strength Vi with Vk
i ¼

R
dVi � Vk

i � pðViÞ

and v2R ¼ V2
i nimp.

The correlations of the random potential vR are always short ranged provided
the impurities are short-range correlated. �ðxÞ, �ðzÞ are �-functions which may be
smeared out over a length-scale of order l. Since we will use it later we introduce here
also the correlation function

hVRðx1, u1ÞVRðx2, u2ÞiR ¼ Rðu1, u2Þ�ðx1 � x2Þ: ð6Þ

Because of the Gaussian nature of the disorder correlations the disorder averaged
physical quantities like the free energy depend only on the correlation function
R(u1, u2). The relevant contributions of R(u1, u2) are those which depend only on
the difference u1 � u2 on which we will concentrate in the following. For juj � l, R(u)
is quadratic in u (with Ruuð0Þ < 0), and for larger u different cases have to be
distinguished (see below).

In the following we consider some specific examples:

1. Domain walls in magnets: Here u(x) describes the displacement of the domain
wall from a planar reference configuration, D¼ d� 1 and N ¼ 1. The stiffness
constant C is finite only above the roughening transition temperature TR; for
T<TR the elastic description breaks down in the absence of disorder.
But’disorder always leads to roughening of the interface, even at T ¼ 0
[37–40]. The driving force density is directly related to the magnetic field B
by f ¼ 2�BB. If the random potential results from fluctuations of exchange
coupling between the spins (this is the so-called random bond case), which
couple only to the domain wall, then �ðx, z, uÞ � �ðz� uðxÞÞ. In some cases
the width of the domain wall may be large compared to the lattice spacing and
the �-function has to be replaced correspondingly by a smeared-out profile
function. The correlations of VR(x, u) are then short range in x and have
a correlation length corresponding to the maximum of l and the domain wall
width in the u-direction. To keep the notation simple we will denote this
maximum in the following also by l. R(u) is then a �-function of finite width of
order s l. The extension of this model to arbitrary D and N (i.e. DþN is not
longer equal to d ) is called the random manifold model.
If disorder comes from random field impurities then the domain wall couples
to the disorder in the domains. In this case �ðx, z, uÞ � �ðuðxÞ � zÞ which
gives the Zeeman energy with a constant magnetization in each domain,
vRðx, zÞ now represents an uncorrelated random magnetic field. In this case
of a non-local coupling to the disorder it can be shown that RðuÞ � �juj for
juj � l [41].

2. Isolated magnetic flux lines or dislocation lines: uðxÞ ! uðxÞ now denotes an
N¼ d� 1 component displacement field and D ¼ 1. The random potential
VRðx, zÞ is short-range correlated both in x and u and hence RðuÞ is again a
smeared out �-function. For flux lines, f is given by the Lorentz force
f ¼ 1

c j � b�0, where j denotes the transport current. �0 ¼ hc=2e is the flux
quantum and b̂b the local direction of the magnetic field. In the case of
dislocation and vortex lines the elastic energy is non-local [13]. In particular,
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for dislocation lines one finds after Fourier transformation a weakly
momentum-dependent elastic modulus CðkÞ ¼ �C logða0kÞ. a0 is of the order
of the lattice constant. The force acting on the dislocation line is the Peach–
Köhler force [42].

3. Charge density waves: The condensed charge density can be written as

�ðx, ’Þ ¼ �0ð1þQ�1:J’Þ þ �1 cos Q:xþ ’ðxÞð Þ þ � � � ð7Þ

where Q denotes the wavevector of the charge density wave modulation and the dots
stand for higher harmonics. The first factor describes the density change due to an
applied strain. The phase field ’ðxÞ is related to a displacement u(x) of the maximum
of the density by

’ðxÞ ¼ �uðxÞQ, ð8Þ

which we will use from now on as the relation between u and ’.
Since charge density waves carry an electric charge, the stiffness constant C shows

in general a strong dispersion due to the long-range Coulomb interaction

Ck2 ! Ckk2k þ C?k2? þ Cdip
ðkk�=a0Þ2

1þ k2�2
, ð9Þ

which we will ignore except for special applications. Here � denotes the screening
length. If � diverges, the system may be considered effectively as a four-dimensional
one with kk=k playing the role of a fourth dimension [43].

Corresponding to the two ’-dependent contributions proportional to �0 and �1 in
(7) there are two contributions in (2) which are sometimes referred to as forward and
backward scattering, respectively. The resulting correlator R(u) is periodic in
u ¼ �’=Q with periodicity 2p/Q. Indeed, for charge density waves we obtain from
equations (6) and (7)

Rð’Þ / �
1

2
�20
�
Q�1:J’

�2
þ
1

2
�21 cos ’: ð10Þ

Here we have neglected strongly oscillating terms (which average to zero) as well as
terms which can be included into the elastic energy. Finally, the external force f is
given by the applied electric field, fsE.

For a more detailed discussion of other systems like flux-line lattices, Wigner
crystals, etc. we refer the reader to the appropriate literature [13, 14, 44–46].

2.2. Basic properties of disordered systems
To get preliminary information about the influence of disorder on the elastic

object and the relevant length-scales we consider first small distortions u(x) around
the state of perfect order uðxÞ 	 0. The energy can then be written as a series
expansion in u(x):

H ¼

Z
dDx

1

2
CðJuÞ2 þ VRðx, 0Þ þ VR, uðx, 0Þuþ � � �

� �
, VR, u ¼

@VR

@u
: ð11Þ

Here we assume that the distortions are small such that we can neglect for the
moment higher-order terms in the expansion of VR(x, u).
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The necessary condition for the ground state of the Hamiltonian follows from
the variation of H with respect to u

�H

�u
¼ �CJ

2uþ VR, uðx, 0Þ ¼ 0 , ð12Þ

which is the Poisson equation known from electrostatics (u and VR, uðx, 0Þ=C playing
the role of the electrostatic potential and the charge distribution, respectively).

Its solution is given by

uðxÞ �
Z

dDx0
VR, uðx

0, 0Þ

Cjx� x0jD�2
: ð13Þ

From (13) we obtain with the help of (6)

w2
R

�
jxj
����

T¼0
	

�
uðxÞ � uð0Þ

�2D E
R
�

ð�Ruuð0ÞÞ

ð4� DÞC2
jxj4�D ð14Þ

where Ruu(0) denotes the second derivative of the correlator at u ¼ 0. At this point
we want to mention already one problem with the use of the approximation (12):
since the random forces VR, uðx, 0Þ do not depend on u, any constant can be added
to the solution (13). In other words, the object could be moved through the random
environment without any change in energy. Thus the linear approximation misses
barriers and metastable states.

As can be seen from (14), the relative displacement at two different points 0, x
increases with their separation jxj below the critical dimension Dc¼ 4; the elastic
object is said to be rough. We can rewrite (14) in a more general form as

wRðLÞ � l
L
Lp

� ��
, ð15Þ

where we introduce the roughness exponent �. In our present calculation
� 	 �RF ¼ ð4� DÞ=2, where the subscript RF stands for random force corresponding
the expansion of VR(x, u) up to a force term in equation (11). The characteristic
length-scale Lp

Lp �
ð4� DÞl2C2

jRuuð0Þj

� �1=ð4�DÞ

ð16Þ

is called the Larkin length [20] in the context of flux-line lattices, the Fukuyama–Lee
length [23] in the context of charge density waves, the Imry–Ma length [47] for
random magnets, etc. On this length-scale the displacement is of the order of the
correlation length l of the random potential, i.e. the displacement field can choose
between different energy minima and hence metastability appears. For weak
disorder, Lp is large compared with the mean impurity distance n�1=d

imp and hence
pinning phenomena arise from the collective action of many impurities. In the
situation of strong pinning, which we will discuss further in the second half of this
article, individual pinning centres lead to strong distortions already on the scale
shorter than the distance between impurities n�1=d

imp . In the next sections we will always
assume Lp � n�1=d

imp . The Larkin length will then play the role of an effective small-
scale cut-off for the phenomena considered in the following.
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Unfortunately, the result (14) is not applicable on length-scales much larger
than Lp since equation (12) is only a necessary condition for the ground state: it is
the condition for a saddle point, not only for the absolute minimum. It is generally
believed that the elastic object has a unique (rough) ground state [48]. But for
distortions u>l the system has in general many local minima and perturbative
methods break down. A nice demonstration of the breakdown of perturbation
theory in systems with several energy minima has been given by Villain and Semeria
[49]. In this case more elaborate methods like the renormalization group approach
have to be applied. This exceeds the scope of the present short review, but a
schematic presentation of the method is given below.

The result of this approach is that the roughness w(L) can still be written in the
form (15) but with �RF replaced by a non-trivial roughness exponent � with 0 � � � 1.
(For �>1, jruj � L��1 diverges on large length-scales and the elastic approach
adopted here breaks down.)

For periodic media, in general, the effects of disorder are weaker. In the case
of elastic manifolds it may pay off for the elastic object to make a large excursion to
find a larger fluctuation in the impurity concentration, which lowers the free energy.
On the contrary, for a periodic medium, the distortion has to be at most of the order
of the period of the medium to reach a favourable interaction between the impurity
and the medium. Hence we expect that periodic systems belong to another
universality class with different, smaller exponents. The actual result happened to
be more drastic: the roughness exponent � for periodic media is zero, corresponding
to a logarithmic increase of wR(L) [25–28, 50] (for further details see Section 2.3).

The average h. . .iT over thermal fluctuations does not change the asymptotic
behaviour of the correlation function

w2
RðjxjÞ ¼ huðxÞ � uð0Þi2T

� 	
R / jxj2� ð17Þ

which vanishes apparently in the absence of disorder. It is this correlation function
which dominates the structural properties of the system. But the temperature will
have a drastic effect upon the time-dependent properties.

Since we want to consider later on the motion of the elastic object under an
external force f it is instructive to characterize the energy landscape the elastic object
is exposed to. As a first step we consider changes in the free energy FR (which
depends on a particular configuration of the disorder) by going over to a different
disorder configuration. Such a new disorder configuration may be created in some
cases by applying external forces (compare with equation (87)) or changing the
boundary conditions. Sample to sample fluctuations of the free energy of a region
of linear extension L are then expected to show also scaling behaviour described by
a new exponent �

FRðLÞ � hFRðLÞiR½ 

2

� 	1=2
R � Tp

L
Lp

� ��
	 FðLÞ, Tp ¼ Cl2LD�2

p , � ¼ D� 2þ 2�:

ð18Þ

where Tp denotes a characteristic energy-scale; see, e.g. [51–55]. The scaling relation
between � and � can be understood from the fact that in the free energy the elastic
and the random part of the energy have to be of the same order and therefore it
is plausible that the scaling behaviour of FRðLÞ can be read off from the scaling of

Pinning and sliding of driven elastic systems 185



the elastic energy, which scales with the exponent �. An illustrative one-dimensional
example of the free energy fluctuations is considered in Appendix A.

Further information about the system comes from a second correlation function
wTðjxjÞ which describes the response to a local force which couples to ðuðxÞ � uð0ÞÞ:

w2
TðjxjÞ 	 h½uðxÞ � uð0Þ
2iT � huðxÞ � uð0Þi2T

� 	
R � Tjxj2�D=Cþ const: ð19Þ

Any pair correlation function of u(x) can be expressed by a combination of wRðjxjÞ
and wTðjxjÞ. Equation (19) is (exactly) the same result as in a non-random system and
a consequence of a statistical ‘tilt symmetry’ of the system [56]. Clearly, wTðjxjÞ
vanishes at T ¼ 0. The result (19) can be related to the static susceptibility

� ¼
@

@f
huð0ÞiT


 �
R
¼

1

T

Z
dDx huðxÞuð0ÞiT � huðxÞiThuð0ÞiT

� 	
R ð20Þ

where f is the force conjugate to u.
To discuss the result for wTðjxjÞ further we consider the case when u(0) is

fixed to zero such that w2
TðjxjÞ ¼ ðuðxÞ � huðxÞiTÞ

2
� 	

T

� 	
R	 �u2ðxÞ

� 	
T

� 	
R. The quantity

�uðxÞ ¼ uðxÞ � huðxÞiT describes the fluctuations of u(x) around its thermal average
in a given random environment. Naively one could assume that these fluctuations are
restricted to a narrow valley along the ground state such that the fluctuations should
not increase with jxj ¼ L. The result (19) however suggests a different picture:
besides the ground state there are rare excited states which are very different in
configuration from the ground state, �uðxÞ � lðL=LpÞ

�, the energy of which differs
only by an amount of order �E � T from the ground state (compare with figure 1).

These excited states could indeed become true ground states if we change the
random potential locally (i.e. in the neighbourhood of the initial ground state) in
an appropriate manner. Since at T ¼ 0 the free energy is given by the ground state
energy we have to expect that rare excited states differ in energy as the sample-to-
sample variations of the free energy.

To calculate the fluctuations of �u we therefore make for the probability
distribution of the energy of the excited states of an elastic object of linear extension
L, the scaling Ansatz

Pð�E,LÞ ¼ F�1ðLÞpð�E=FðLÞÞ ð21Þ

where F(L) denotes the sample-to-sample variations of the free energy (com-
pare with equation (18)) and p(x) is an unknown normalized function with

x

u

L

Figure 1. Ground and low-energy excited state of a one-dimensional domain wall.
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pð0Þ ¼ Oð1Þ > 0. With this Ansatz we find for the average fluctuations at low
temperatures T�FðLÞ [54, 55]

j�uðxÞjn
� 	

T,R� ln
L
Lp

� �n�Z T

0

dð�EÞPð�E,LÞ � ln
T
Tp

L
Lp

� �n���

ð22Þ

which gives for n ¼ 2 the exponent n� � � ¼ 2� D appearing in (19).
The success of this approach gives us the possibility to calculate also the specific

heat

cðTÞ ¼ L�D
0

@

@T
h�EiR �

@

@T

Z 1

Lp

dL �ðLÞ
Z T

0

dð�EÞ ��E � Pð�E,LÞ: ð23Þ

Here L0 and �(L) denote the system size and the size distribution of the rare low-
energy excited states on the scale L, respectively. In writing down (23) we have
decomposed the system in ðL0=LÞD blocks of linear extension L. Each of them gives
a contribution to the internal energy of the order of the integral on the right-hand
side of (23). Then we have to sum over the contributions from all length-scales
L, Lp < L < L0. The smallest scale is clearly given by the Larkin scale Lp. The
next independent contributions come from excitations on larger scales
bLp, b2Lp, . . . , bnLp, etc., b>1. (b has to be chosen in such a way that excited states
on scale bkþ1Lp cannot be reached on scale bkLp, which requires b�0 2.) The total
number of scales is given by lnðL0=LpÞ= ln b. If we replace this sum over n by an
integral over L, we obtain a factor (the integration measure) dLðL ln bÞ�1

ðL0LÞD and
hence �ðLÞ / 1=L1þD [57]. (Roughly speaking we could say that we integrate over
all momenta ddk with ksL� 1)

In principle, the distribution Pð�E,LÞ may also depend on the temperature.
If we ignore this unknown dependence, we get

cðTÞ �
Z 1

Lp

dLL�D�1 T
FðLÞ

p
T

FðLÞ

� �
�

T
Tp

pð0ÞL�p

Z 1

Lp

dL
LDþ1þ�

�
1

Dþ �

T
Tp

L�D
p ð24Þ

since the integral is dominated by small L and pðT=TpÞ � pð0Þ. This approach gives
at T�TP a specific heat linear in T which is similar to the physics of common two-
level systems in amorphous solids [58]. This analogy also builds a bridge to the local
pinning picture which thermodynamically is equivalent to the case of [58]. Within the
collective picture, similar results have been obtained, in another way, recently in [59].
The precise value of b remains unknown in this approach but has no influence on
the temperature dependence. Measurements of the specific heat on a finite time-scale
t will lead to a reduced value of c(T ) since not all local energy minima can be reached
by thermally activated hopping. We will give a time-dependent correction factor
(which takes this fact into account) at the end of Section 3.2.

So far we have considered mainly the case of weak pinning. The large-scale
properties (L>Lp) are dominated in this case by density fluctuations of the disorder
where many impurities are involved. We want to stress that in the case of strong
pinning on very large scales, pinning phenomena are again dominated by density
fluctuations of the impurities. Strong pinning on small scales is however very
different from weak pinning and will be further discussed in the second part of this
article. A one-dimensional CDW model with strong pinning (e.g. [60]) is considered
in Appendix B.
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2.3. Results from the renormalization group method
In the rest of this section we give a short account of the application of the

renormalization group (RNG) [61, 62] approach to elastic systems in random
environments [63, 64]. The RNG method starts from a Fourier decomposition of
the displacement field uðxÞ ¼

P
k uke

�ik:x. The first step of the procedure consists
in the elimination of the short-wavelength degrees of freedom uk 	 u>k with k in the
momentum shell �0=b � jkj � �0, b > 1, from the partition function. �0 ¼ 2p=a0
denotes a microscopic momentum cut-off. The result of taking the trace over u>k can
be written again in the form of a Boltzmann factor with a new effective Hamiltonian
for the remaining degrees of freedom. If thermal fluctuations are irrelevant, as for
D5 2-dimensional systems, this procedure reduces to the problem of finding the
values u>k ¼ ~uu>k which minimize the energy, keeping all uk 	 u<k with jkj � �0=b
fixed. Plugging these values ~uu>k into the Hamiltonian we get the new effective
Hamiltonian which contains fewer degrees of freedom [63]. Since the scale ba0 on
which the u>k components describe displacements is small, we can expect that there
is only one minimum as a solution for ~uu>k such that the application of perturbative
methods is allowed. To avoid further misunderstanding we stress here that we always
assume in this section that the system may reach thermal equilibrium, even if the
time-scales are huge. Besides corrections to terms already present in the initial
Hamiltonian, also new terms may be generated in this procedure; their precise form
depends on VR(x, u). The concrete implementation of this procedure is in general
difficult and rests often on approximations valid close to certain critical dimensions.

The second step of the renormalization group procedure consists in a rescaling
of length, time and fields according to

x ¼ x0b, t ¼ t0bz, uðxÞ ¼ u0ðx0Þb� ð25Þ

with so far unspecified dynamical exponent z (� 0) and roughness exponent � (� 0).
After the first step of the RNG-transformation the remaining minimal length-scale
was �xmin ¼ a0b which, after rescaling according to (25), goes over into the original
minimal length �x0min ¼ �xmin=b ¼ a0.

Using rescaling (25) in equation (1), the elastic energy in the new coordinates
obtains a factor bD�2þ2�. Since in statistical physics the Hamiltonian always appears
in the combination H=T, we can absorb this factor in a rescaled temperature

T0 ¼ Tb2�D�2�: ð26Þ

The rescaling has also to be applied to the second term in (1). Having introduced T 0,
VR(x, u) is replaced by b2�2�VR

�
bx0, u0ðx0Þb�

�
	 V0

Rðx
0, u0Þ. The correlator of V0

R is
then given by

V0
Rðx

0
1, u

0
1ÞV

0
Rðx

0
2, u

0
2Þ

� 	
R¼ b4�4��D�ðx01 � x02ÞR b�ðu01 � u02Þ

� �
: ð27Þ

As mentioned already, equations (26) and (27) do not represent the whole change of
T, R under the renormalization, since the new terms produced in the first—non-
trivial—step of the procedure will generate contributions to R0 and T 0. In general
the whole function R(u) is transformed in a non-trivial way. We will not discuss here
the derivation of this transformation but only present the result. The interested
reader is referred to the original articles [29, 30, 63, 64]. For infinitesimal changes
of b¼ 1þ �b one obtains a continuous flow of these quantities. To lowest order in
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4�D one finds with �b¼ �L/L:

@RðuÞ
@ lnL

¼ ð4� D� 4�ÞRðuÞ þ �uRuðuÞ þ
1

2
RuuðuÞ2 � RuuðuÞRuuð0Þ,

dT
d lnL

¼ ð2� D� 2�ÞTþ � � � ð28Þ

where RuðuÞ ¼ ð@=@uÞRðuÞ, etc. To make the notation easier we have absorbed here
the coefficients of the quadratic terms in R into the redefinition of R(u).

A word of caution seems to be indicated at this point: the rescaling (25) is
a matter of convenience, not a physical necessity. If one does not rescale at all, the
first step of the renormalization group still keeps the whole information about
the large-scale behaviour of the system. In this case one obtains the effective
physical quantities (those which one observes in experiments) on the corresponding
length-scale L.

For systems with uncorrelated disorder (VRðx, uÞ is a random function of both
arguments) there is an important simplification since there is no renormalization
of T. Indeed, the full stiffness constant C can be measured by replacing the periodic
boundary conditions used so far by uðL, x2, . . . , xDÞ ¼ uð0, x2, . . . , xDÞ þ �u, that
is applying an overall strain �uL in the x1-direction. The effective elastic constant
Ceff follows then from the free energy FRðL, uÞ

Ceff ¼ L�Dþ2 @
2FRðL, uÞ
@�u2

: ð29Þ

The change of the boundary conditions can be compensated by introducing a new
variable ~uuðxÞ ¼ uðxÞ � �u x1=L. Changing from u to ~uu in the Hamiltonian (1) adds
to the elastic energy a constant contribution �H ¼ C

2
LD�2�u2 and changes the ran-

dom potential into
R
ddxVRðx, ~uuðxÞ þ �u x1=LÞ. Since VRðx, uÞ is by definition a

random function of its arguments, VRðx, ~uuðxÞ þ �u x1=LÞ can be replaced by a
random potential ~VVðx, ~uuðxÞÞ with the same statistical properties. Thus, the only
change in the Hamiltonian is given by the constant �H ¼ �FRðL, uÞ from which one
concludes with (29) Ceff¼C. Since T appears only in the combination C /T, there is
also no renormalization of T.

The flow of R(u) and T as given by equation (28) will terminate in stable fixed
points (other forms of flow like limit cycles are excluded by general reasons), which
characterize physical phases. To find a finite fixed point of the disorder (if it exists)
we have to tune the value of the exponent � in order to make elastic and disorder
energy scale in the same way. The fixed-point condition thus delivers the value of the
exponent �. Different fixed points have in general different values of �. If several fixed
points exist—this is the typical situation—the domain of attraction of a fixed point
determines the phase boundary. Clearly, the flow close to a fixed point depends on the
value of � at this fixed point.

If there is no disorder, R	 0, the roughness exponent is � ¼ �T 	 ð2� DÞ=2 (for
D� 2) according to (28) and each value of T is a fixed point. Since we exclude
negative roughness exponents (there is always a constant contribution to the
roughness), we put �T ¼ 0 for D>2 and hence T is transformed to zero. Switching
on the disorder only the linear terms in R in equation (28) matter as long as the
disorder remains weak. If the initial function R(u) shows a simple power-
law behaviour, uRuðuÞ / ��RðuÞ (� ¼ �1 for random field and a¼N for random
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manifold systems, respectively), we get d lnR=d lnL ¼ 4� D� �ð4þ �Þ 	 �Rð�Þ.
Using as the initial value for � its value at the thermal fixed point, � ¼ �T, we see

that the disorder grows provided 4� ð4þ �Þ�T � D > 0. To get a new stable fixed

point we have to choose then a new value for �. In this situation we have to take into

account also the nonlinear contributions in equation (28). The resulting fixed-point

function R*(u), which determines also the value of �, depends on the initial function

of R(u) and can be found often only numerically [29, 30]. A characteristic feature of

the R*(u) is the cusp singularity, R�
uuðuÞ � R�

uuð0Þ / juj for small juj, which appears on

length-scales L>Lp and is related to the appearance of metastability (see below).

The true roughness exponent for manifolds in random bond systems can then be

written as an expansion in 	 ¼ 4� D. For interfaces in random bond systems one

finds � ¼ 0:2083	þ 0:0069	2 þ Oð	3Þ [30, 65]. It has been suggested that �RB can be

written in closed form as

�RB ¼
4� D

4þN� ðD,NÞ

where �ð1, 1Þ ¼ 0:5, �ð1, 2Þ ¼ ð2=5Þ and �ð1, 3Þ ¼ ð8=21Þ [66, 67].
For random field system �RF ¼ ð4� DÞ=3 for 2 < D < 4 [30].

For �Rð�TÞ > 0, T /C is always transformed to zero, and thermal fluctua-

tions are irrelevant. In the opposite case �Rð�TÞ < 0 weak disorder is irrelevant.

Increasing the disorder strength, there is a phase transition between a disorder

dominated phase at low temperatures and a high-temperature phase where thermal

fluctuations wipe out the disorder. The relation �Rð�TÞ ¼ 0 defines the dimension

D(N) in figure 2.

The discussion applied so far to the so-called random manifold models, which are

characterized by a non-periodic disorder correlators R(u). For periodic media the

correlator R(u) is periodic with period b and this applies also to the fixed-point

function

2 4 6 8

1

2

3

4

5

6

one flat phase: ζ=0

one rough phase:  ζ=ζrm

N

D

D(N) = DN =  ____2N
2+N

                               two rough phases:
           high T : disorder irrelevant: ζ=ζth

low T : disorder dominated phase: ζ=ζrm

0

Figure 2. The D � N plane characterizing different elastic manifolds in a random medium
(� ¼ N). For D>4 weak disorder and for D>2 thermal fluctuations are irrelevant.
For 4 > D > DN (i.e. �R > 0) weak disorder is relevant leading to a non-zero
roughness exponent. For DN > D a thermal depinning transition exists: at low-
temperature weak disorder leads to a non-trivial roughness exponent � whereas in the
high-temperature phase �T ¼ ð2� DÞ=2.
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R�ðuÞ �
1

36
�

� u
b

2�
1�

u
b

2� �
:

However the term �uRuðuÞ in equation (28) violates the periodicity, from which
one has to conclude that for periodic media �pm ¼ 0 corresponding to a logarithmic
increase of the roughness [25–28, 50, 68, 69]:

w2
RðLÞ � ð4� DÞl2 ln

L
Lp

� �
: ð30Þ

For some applications, e.g. for the calculation of the correlation function wR(l ) (but
not for studying the effect of energy barriers), one can derive the results for L>Lp

from the random force model (12) but with a modified correlator for the random
forces VR, uðxÞ

hVR, uðx, 0ÞVR, uðx
0, 0ÞiR ¼

Z
dDkeik:ðx�x0Þ Ruuð0Þ

1þ
Ruuð0Þ
R�

uu
ðkLpÞ

D�4
ð31Þ

where R�
uu / 4� D. As can be seen from (31), the force correlations on length-scales

L � k�1 � Lp behave as Ruuð0Þ�ðx� x0Þ as in the random force approximation of
Larkin [20], whereas on length-scales L � k�1 � Lp there is a long-range contribu-
tion decaying as jx� x0j�4.

Using the result of equation (30) in the structure factor SðkÞ one obtains smeared
(diffuse) Bragg peaks of finite width, SðkÞ ’ jk� Gj�3þ
G , despite the fact that the
system is dominated by the influence of disorder, hence the name Bragg glass has
been coined [25–28, 68, 69].

In D>4 weak disorder flows to zero, i.e. it is irrelevant, but for sufficiently strong
disorder a separate strong disorder fixed point for R may exist. It should be noted
that periodic media allow the existence of topological defects like vortices or
dislocations which may destroy the Bragg-glass phase. However it can be shown
that for weak enough disorder this phase survives in d ¼ 3 dimensions [70–74].

In D ¼ 2 the T-axis (R ¼ 0) is a line of fixed points corresponding to �¼ 0.
For random manifolds disorder is always relevant, i.e. �>0 and there is a non-trivial
fixed point at T� ¼ 0, R� > 0 (see the left side of figure 3). For periodic media (like
flux-line lattices in a thin film or Wigner crystals) the situation is more complicated:
there are two phases both with �¼ 0 separated by a phase transition at T ¼ Tg (see
the right side of figure 3). In the high-temperature phase

w2ðLÞ �
T
C
ln

L
�

� �
, ð32Þ

whereas in the low-temperature phase (T < Tg)

w2ðLÞ �
Tg � T
Tg

� �2

ln
L
Lp

� �� �2
: ð33Þ

with the glass temperature Tg � C. The corresponding renormalization group flow
diagrams for random manifolds and periodic media in a random matrix are shown
in figure 3.

In D ¼ 1 dimension the roughness exponent for periodic media is � ¼ 1=2 both
at zero and non-zero temperature [75, 76] (compare Appendix B).
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2.4. Metastability
The most important feature of pinning is the appearance of metastability. To

demonstrate how metastability appears for weak pinning on the Larkin scale, we
consider here a D ¼ 1-dimensional example. Let us assume that the renormalization
group transformation has been performed n times until the Larkin scale Lp ¼ a0bn

is reached. Below this scale the perturbation theory is known to be valid and there is
no problem in deriving an effective Hamiltonian on this length-scale.

The latter can then be written as

HðnÞ ¼
XN
i

�
CðnÞ

2
ðuiþ1 � uiÞ2 þ VðnÞ

R ði, uiÞ
�

ð34Þ

where CðnÞ and VðnÞ
R ði, uiÞ are the stiffness constant and the random potential on scale

Lp and the ui are the remaining degrees of freedom. By definition of the Larkin scale
the elastic and the random part of the energy are of the same order of magnitude.
In continuing the real-space RNG we eliminate now half of the degrees of freedom
by minimizing the total Hamiltonian, keeping every second ui (say with i even) fixed.
This leads to a new effective Hamiltonian

Hðnþ1Þ ¼
X
i¼2m

�
CðnÞ

4
ðui � uiþ2Þ

2
þ VðnÞ

R ði, uiÞ þ �V
ðnþ1Þ
R i,

ui þ uiþ2

2

� �
, ð35Þ
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2<D<4
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D=2
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?
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?

*

*
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*
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*
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4>D

Figure 3. Schematic phase diagrams of impure elastic systems as a function of space
dimension for (left) non-periodic media (single flux lines, domain walls) and (right)
periodic media (flux-line lattices, charge density waves, Wigner crystals). vR and
T denote the strength of the disorder and temperature, respectively. Fixed points
characterize the properties of a phase, their domain of attraction ends at the phase
boundary. For realistic phase diagrams further degrees of freedom may become
relevant (dislocations, etc.). In D54 dimensions besides of the fixed point v�R ¼ 0
there may be another strong disorder fixed point.

S. Brazovskii and T. Nattermann192



where

�Vðnþ1Þ
R ði, uÞ ¼ min

uiþ1

CðnÞðu� uiþ1Þ
2
þ VðnÞ

R ðiþ 1, uiþ1Þ

h i
: ð36Þ

The expression in [. . .] consists of a parabolic potential with the minimum at
uiþ1 ¼ u plus a random potential. Since both are of the same order of magnitude,
there will be in general several local minima (compare with figure 4). Let us start in
a situation where u ¼ 0 and uiþ1 ¼ uð1Þ is the true minimum of this expression.
Besides this minimum in general several other local minima at uiþ1 ¼ uðm>1Þ will exist.
If we change the external variable u to values different from zero, the minimum uð1Þ
may remain for small values of u the global minimum, but eventually, for u ¼ uc,
another minimum uiþ1 ¼ uðmÞ will take over the role of the global minimum. At
this point the effective potential �Vðnþ1Þ

R ði, uÞ is smooth, but the derivative jumps by
an amount

2CðnÞðuð1Þ � uðmÞÞ þ VðnÞ
R, uðiþ 1, uðmÞÞ � VðnÞ

R, uðiþ 1, uð1ÞÞ: ð37Þ

As a result, the potential shows a cusp at u ¼ uc. Since the magnitude and the
positions uc of the jumps of the forces are random, the effective potential acting on
the degrees of freedom on scales L > Lp is scalloped as shown in figure 4. Continuing
this procedure by eliminating further degrees of freedom we will obtain more of
those cusps on larger and larger length-scales. Such a picture was advocated in
[63, 64]; we will demonstrate in Section 12 its derivation within the local pinning
picture. The forces generated by this effective potential Veff

R ði, uÞ change continu-
ously between two cusps where they jump from negative to positive values. The
typical distance between two consecutive cusps is of order l since cusps first occur at
the Larkin scales. On scales larger than l the forces undergo a random walk such that

��
Veff

R, uði, uÞ � Veff
R, uði, u

0Þ
�2	

R / ju� u0j ð38Þ

u

c(ui+1-u)2

ui+1

ui+1
u

2c(ui+1-u)

VR
(n)(i+1,ui+1)

-VR,u
(n)(i+1,ui+1)

u

dVR
(eff)(u)

force jumps randomly
cusp

Figure 4. Left: The two contributions to the potential �Vðnþ1Þ
R ði, uÞ as well as their

derivatives. The points of intersection in the lower figure correspond to local minima
of the potential. Note that on scales L � Lp, where the elastic energy is much larger
than the random potential, there is only one point of intersection and the derivative
of the effective potential is continuous. In contrast, for L � Lp more and more
metastable states appear. Right: The effective potential of �Vðnþ1Þ

R ði, uÞ as a function of
u. The potential exhibits random jumps of its derivatives.
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for small ju� u0j. This structure of the force correlator is in agreement with our
RNG analysis. Indeed, since �RuuðuÞ is the correlator of forces separated by
a distance u, the difference 2ðR�

uuðuÞ � R�
uuð0ÞÞ / �juj denotes the square of the

difference of these forces averaged over the disorder. It has therefore the same
meaning and the same random walk property as the quantity in equation (38)
[63, 64].

So far we discussed the equilibrium, assuming an adiabatic change of u. If,
however, we change u fast enough, the system may not reach equilibrium and remain
in the local minimum uð1Þ until this minimum disappears completely or it may jump
to the new minimum with some delay. Such a situation will be considered in the
second part of this review when we consider the dynamics of strong pinning.

3. The close-to-equilibrium motion of elastic objects under an external

dc- and ac-drive

In this section we want to consider the creep motion of the elastic object in a
random environment under the influence of a weak external driving force density,
f � fp, where fp ¼ Tp=lLD

p . ( fp is of the order of the zero-temperature depinning
threshold fc discussed in the next section.) We are now in a non-equilibrium situation
which requires its own treatment. If, however, f is small, as we will assume in this
section, we are sufficiently close to equilibrium such that we can still use our findings
of the previous section (for earlier descriptions of relaxation phenomena in CDWs
see, e.g. reference [77, 78]).

3.1. Constant driving force
We first consider the case of a constant driving force f. All changes in f are

assumed to be made adiabatically. The equation of motion will be assumed to be
overdamped with a bare mobility g

1

g
@u
@t

¼ �
�H

�u
þ 
ðx, tÞ ¼ CJ2u� VR, uðx, uÞ þ f þ 
ðx, tÞ ð39Þ

where 
ðx, tÞ denotes the thermal noise

h
ðx, tÞ
ðx0, t0ÞiT ¼ 2
T
�
�ðx� x0Þ�ðt� t0Þ : ð40Þ

In the following we will repeatedly consider the elastic object on a variable length-
scale L which may vary from the microscopic cut-off a0 to the system size L0. The
coupling between different length-scales due to the anharmonic random potential in
(1) is at least partially incorporated into these considerations by (i) the use of the
non-mean field exponents � and � ¼ D� 2þ 2�; and (ii) the condition that in order
to have a moving elastic object on scale L, the system has to be able to move on all
length-scales below L. From the dynamical point of view our present analysis is a
type of mean-field treatment.

As follows from equations (18), the typical free-energy fluctuations on the scale
L are of order FðLÞ ¼ TpðL=LpÞ

�. The energy barriers between different metastable
states scale as EBðLÞ � TpðL=LpÞ

 with an exponent  which is in general different
from �. In the following we will however assume that  ¼�. For some systems this
can be shown explicitly (see, e.g. [79, 80]). In general this is not the case. A counter-
example is a system with an additional isolated potential peak Vp�ðx� x0Þ�ðuÞ, which
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forms a barrier which can never be overcome by thermally activated hopping (unless
we give up the elastic approximation and include topological defects in the structure
under consideration). In equilibrium statistical mechanics, however, this potential
peak does not play a role, since it can easily be avoided by the elastic object. This
example directs us to the picture of the local pinning considered in Section 6 and
later on.

Next we include a small driving force density f. Taking into account that the
typical distance between different metastable states is of order w(L) (see figure 1), we
can write for the expression of the total energy barrier

EBðL, f Þ � FðLÞ � fLDwRðLÞ ¼ Tp
L
Lp

� ��
1�

L
Lf

� �2��
 !

: ð41Þ

The second term on the right-hand side of equation (41), �fLDwRðLÞ, describes
the reduction of the barrier due to the tilt of the potential by the external force fLD.
In rewriting this term we used (15) and (16) and introduced the force length-scale Lf

associated with the equilibrium length-scale Lp:

Lf ¼ Lp
fp
f

� �1=ð2��Þ

, fp ¼
Tp

lLD
p
¼ ClL�2

p : ð42Þ

EBðL, f Þ is shown in figure 5. It has a maximum at

L ¼ ~LLf ¼ Lf
�

�þ 2� �

� �1=ð2��Þ

< Lf

and vanishes for L ¼ Lf . Applying a small driving force f corresponds to testing
the system on a large length-scale Lf. Note that EBðL ¼ Lp, f Þ ¼ Tp

�
1� ð f =fpÞ

�
.

Assuming for the moment that (41) and (42) are valid up to fs fp, we see that
f � fp determines the depinning threshold since there is no energy barrier left in
the system. Note however that we derived (41) under the condition f� fp, and
the vicinity fs fp requires special treatment which we will consider in the following
section.

For f� fp the elastic object is restricted in its motion by energy barriers of
maximal height

~EEBð f Þ 	 EBð ~LLf , f Þ � Tp
fp
f

� ��
, � ¼

�

2� �
, ð43Þ

~E  (f)B

Lω Lf

pT  [1-(f/f  )]p

E  (L,f)B

L

Eω

Lp Lf
~ Lω

Figure 5. Energy barrier as a function of the length-scale L for a given driving force
density f. The different lengths and energy scales are explained in the text.
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which can be only overcome by thermally activated hopping. The creep velocity of
the elastic object follows from vcreep � wð ~LLf Þ=ð ~LLf Þ where we use the Arrhenius law
for the hopping time  � !�1

p e ~EEBð f Þ=T and !p � C�=L2
p ¼ �fp=l. This results in a creep

velocity

vð f Þ �
wð ~LLf Þ

ð ~LLf Þ
/ exp �

Tp

T

�
fp
f

��� �
: ð44Þ

We omitted the prefactor on the right-hand side which is beyond the accuracy of
the present considerations. This formula is valid for T � ~EEBð f Þ and was found first
by Ioffe and Vinokur [81] (see also [82]). Equation (44) was derived from a
renormalization group treatment in [83, 84]. In the opposite case T � ~EEBð f Þ we
expect a linear relation between the driving force and the velocity:

v ’ g f : ð45Þ

The border-line between the two cases, T � ~EEBð f Þ, defines a temperature-dependent
force fT

fT ¼ fp
Tp

T

� �1=�

: ð46Þ

Note that the creep formula is valid only for f � fT, i.e. for f� fp and T � Tp.

3.2. Periodically oscillating driving force
Next we consider the motion under the influence of an ac driving force with a

finite frequency !� !p ¼ �fp=l:

f ðtÞ ¼ f0 sin ð!tÞ : ð47Þ

From the Arrhenius law we conclude that in driving the system over the period of
time p/! only barriers of maximal height E!(T) on a corresponding length-scale L!
given by (compare figure 5):

1

!
!pe�E!ðTÞ=T � 1 i:e: E!ðT Þ 	 Tp

L!
Lp

� ��
¼ T ln

!p

!

� 
ð48Þ

can be overcome. If E!ðTÞ > ~EEBð f Þ, the oscillating force has enough time to trigger
jumps over all relevant barriers and hence the creep formula (44) is still valid (with f
replaced by equation (143)). In the opposite limit this is no longer the case and
hence there is no global motion, v 	 0. The relation E!ðTÞ ¼ ~EEBð f Þ determines a
temperature- and frequency-dependent cross-over force f!ðTÞ

f!ðTÞ � fp
Tp

T ln

�
!p

!

�
0
BB@

1
CCA

1=�

� fT ln
!p

!

� � �1=�

, ð49Þ

which separates the creep region f! < f � fT from the region f < f! where v 	 0. The
cross-over lines fT and f! are depicted in figure 6. For a discussion of the region
f � fp see Section 4.

S. Brazovskii and T. Nattermann196



For f < f! the elastic object as a whole cannot follow the rapidly oscillating
external driving field. However there is still a local motion of parts of the elastic
object corresponding to length-scales

L < L! ¼ Lp
T
Tp

ln
!p

!

� �1=�

ð50Þ

(see figure 5). We consider this point in the next section where we will treat these
fluctuating parts as two-level systems. As a side remark we note that for similar
reasons the specific heat obtains, if measured over a time-scale t, an extra factor

1� T
Tp
ln!pt

� �ðDþ�Þ=�
� �

> 0 on the right-hand side of equation (24).

3.3. Dynamic response of the pinned elastic object: two-level systems
In this subsection we consider the influence of an external time-dependent field

f ðtÞ ¼ f sin!t on a pinned elastic object in the region f � f!. Thermal motion over
energy barriers EBðL < L!Þ mediates transitions between configurations which have
an energy difference �EFT. As we discussed already in Section 2.3, the distribution
Pð�E,LÞ of �E is smooth and has a width of order FðLÞ ¼ TpðL=LpÞ

�. Hence there
are only rare pairs of metastable configurations with �E � T. We therefore model
the object as an ensemble of non-interacting two-level systems [57, 81].

In the following we discuss the dissipation in a two-level system due to an applied
ac-field. We begin with a discussion of a given two-level systems on length-scale L.
The separation between the two minima is w � wðLÞ and the energy difference is �E.
Then the probability that in thermal equilibrium the system is in the higher-energy
minimum is

n0ð�EÞ ¼
e��E=T

1þ e��E=T ¼
�
exp ð�E=TÞ þ 1

��1
: ð51Þ

The external field f(t) disturbs the energy difference �E by �Eðt,LÞ � f ðtÞLDwRðLÞ.
Therefore the system relaxes to the new time-dependent equilibrium configuration
nð�Eþ �EÞ � n0ð�EÞ þ �nðtÞ. The time dependence of �n is controlled by the

T

creep

v=0

linear regime

f

T

f

f

f

p

p

T

ω

Figure 6. The cross-over fields fT and f!ðTÞ as a function of temperature. Note that for
!! 0, f! approaches the T- and f-axis, respectively. For f! < f < fT the elastic object
follows the external field in a creep-like motion whereas for f < f! only segments of
elastic object of size L < L!ðTÞ (defined in (48)) can follow the field and the average
velocity of the whole object vanishes.
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relaxation time

ðLÞ � !�1
p exp

�
EBðLÞ=T

�
, !p � Cg=L2

p ¼ gfp=l ð52Þ

of the two-level system and by the time dependence of �Eðt,LÞ. In a linear
approximation the time dependence of �nðtÞ is therefore described by the equation

@

@t
þ
1



� �
�nþ

@n0
@�E

@�E
@t

¼ 0 : ð53Þ

The power dissipated in this way by the two-level system of linear size L is given by

WðL,!Þ � �Re �n�LDwRðLÞ
df
dt


 �
!

, ð54Þ

where Reh. . .i! denotes the real part of the Fourier transform. With this and the
Fourier transform of equation (53), we get the power absorbed by the given two-level
system:

WðL,!Þ �
1

4T
cosh

�E
2T

� �� ��2

ð�Eðt,LÞÞ2
!2

1þ !22
, ð55Þ

where �E ¼ fLDwRðLÞ. To get the power dissipated by all two-level systems on scale
L, . . . ,Lþ �L we have to average this expression with Pð�E,LÞ, equation (21), and
multiply it with density �ðLÞdL � dL=LDþ1 (compare with equation (23)) of the two-
level systems on scale L. Since the distribution function for the �E is smooth and
has a width of order FðLÞ � T, only the fraction T=FðLÞ of them contributes to the
average. Hence we obtain for the total power density dissipated by all two-level
systems

Wtotalð!Þ �

Z 1

Lp

dL �ðLÞ
Z 1

0

dð�EÞPð�E,LÞWðL,!Þ

�

Z 1

Lp

dL
L

1

L

� �D�E2ðLÞ
FðLÞ

!2ðLÞ
1þ !22ðLÞ

: ð56Þ

The energy dissipation WðL,!Þ is related to the imaginary part of the dynamic
susceptibility

�ðL ¼ 2p=jkj,T,!Þ �
Z

dðt� t0Þei!ðt�t0Þhh@ukðtÞ=@f�kðt0ÞiTiR ð57Þ

WðL,!Þ �
1

2
!�00ðL,T,!Þ f 2 : ð58Þ

The total susceptibility is given by the integral over L with the probability
distribution �ðLÞdL similarly to (56). The main contribution to the real part �0ð!Þ
comes from the length-scale L which fulfils the condition @�0ðL,!Þ=@L ¼ 0. This
yields ð!Þ�2

�
�
�EBðLÞ=T� 1

�
. For low frequencies and temperatures this gives

L � L! (compare with equation (50)) and hence

�0ðT,!Þ �
Z

dL�ðLÞP
�
�EðLÞ,L

�
�0ðL,T,!Þ �

L2
p

C
T
Tp

ln

�
!p

!

�� �2=�
: ð59Þ
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Decreasing the frequency leads to an increase of the susceptibility which is a typical
experimental trend, as well as the logarithmic dependence on the frequency !.

4. Critical depinning

4.1. Constant driving force, f � fc
So far we considered the region f� fp. Increasing f we expect to reach a critical

force density fc (as it turns out it is of the order of fp) at which the elastic object
is depinned. Above the depinning transition the elastic object moves even without
the help of thermal activation with a finite velocity v which reaches the non-critical
regime v � gf at large driving forces f. Qualitatively the v � f diagram is depicted in
figure 7.

All changes in f are again to be performed adiabatically. The equation of motion
in the absence of thermal fluctuations reads

1

g
@u
@t

¼ CJ2uþ f þ gðx, uÞ ¼ �
�H

�u
: ð60Þ

Here we introduced the pinning force density

gðx, uÞ 	 �VR, uðx, uÞ 	 �
@VR

@u
ð61Þ

resulting from the random potential. It is also Gaussian distributed with the
correlator

hgðx, uÞgðx0, u0ÞiR ¼ �ðx� x0Þ�ðu� u0Þ, �ðuÞ ¼ �RuuðuÞ 	 �
@2R
@u2

ð62Þ

for the bare (unrenormalized) correlators. If the object is completely stiff, i.e.
uðx, tÞ 	 uðtÞ–this is the situation if L0 � Lp–then the average pinning force density
hgðx, uÞiR vanishes and its fluctuations are of order ðL�D

0 �ð0ÞÞ1=2 and hence
arbitrarily small for a macroscopic object. Thus a rigid object would never be
pinned.

Next we shall use perturbation theory for weakly distorted elastic objects [21, 24].
To this aim it is convenient to go over to a co-moving frame by rewriting
uðx, tÞ ¼ vtþ ~uuðx, tÞ with h ~uuiR ¼ 0 and look for the lowest non-zero correction to

f

v

fc

depinning regime

flow regime

creep
regime T > 0

T = 0

Figure 7. The velocity of the driven elastic object as a function of the driving force f both
at zero and non-zero temperatures.
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the velocity. Indeed such an approach works well at high velocities where the
displacements ~uu are small. This gives

g�1v� f ¼ hgðx, vtþ ~uuðx, tÞÞiR � hguðx, vtÞ~uuðx, tÞiR ð63Þ

where guðx, uÞ ¼ @gðx, uÞ=@u. In the lowest-order perturbation theory

~uuðx, tÞ ¼
Z

dDx0
Z t

�1

dt0G0ðx� x0, t� t0Þgðx0, vt0Þ,

G0ðx, tÞ ¼ g
Z
k

eik:xe�Cgk2t ð64Þ

and with the help of (62), we get from the right-hand side of equation (63)

g�1v� f ¼ ð4pCÞ�D=2
Z 1

ðC�2Þ
�1
d�D=2�uðv=gÞ: ð65Þ

The large-scale momentum cut-off � � a�1
0 appearing in (64) was taken into account

by adding a factor e�k2=�2

. Moreover, we introduced  ¼ tg as a new variable. We
imply here that D>2 and hence the integral (65) is convergent at large . Below we
will see that this restriction is unnecessary. Decreasing f and hence v, one finds for
v ! 0þ a non-zero threshold fc if and only if �uð0þÞ is non-zero:

fc � �
�uð0þÞ�D�2

ðD� 2ÞC
: ð66Þ

The result (66) looks at first glance different from fp � ClL�2
p which we found in the

previous section. Most importantly, the correlator �ðuÞ ¼ ��ð�uÞ of the random
forces has to have a cusp-like singularity at the origin since ��uð0þÞ ¼ �uð0�Þ has to
be positive. This is not what one gets naively from a weak random potential VR(x, u)
which shows analytic behaviour of �(u) for small u and hence �uð0þÞ ¼ 0.

This long-standing problem has been overcome by the renormalization group
theory of critical depinning at T ¼ 0 [65, 85–90]. It was shown that the force–force
correlator �(u) indeed develops a cusp-like singularity on scales L > Lp after the
degrees of freedom on scales L < Lp have been integrated out. To lowest order in
	 ¼ 4� D the renormalization group equation for �(u) in this non-equilibrium
situation is identical to that for �RuuðuÞ following from equation (28) (calculated
under equilibrium conditions) by differentiating R(u) twice with respect to u. Note
that this simple relation breaks down to order 	2 [65]. Hence �uðu ! 0Þ 6¼ 0. The
force correlator on these scales becomes scale-dependent and reads

�ðuÞ ! �ðu;LÞ / ðCl=L ~��
pÞ

2L�4þDþ2 ~���� uðL=LpÞ
� ~��=l

� 
, ð67Þ

where the function ��ð yÞ has a cusp for small y. Similarly, the mobility g is replaced
by an effective scale-dependent expression

g ! gðLÞ � g
L
Lp

� �2�~zz

: ð68Þ

~�� and ~zz are two new non-equilibrium critical exponents which can be calculated by an
expansion in 	 ¼ 4� D. Note that these exponents are in general different from the
equilibrium exponents introduced in the earlier Sections. If we replace ��1 by Lp and
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�uð0Þ by �ðu,LpÞ in equation (66), and put ~�� ¼ 0 (since the corresponding integral is
dominated by small scales L � Lp), we indeed arrive at fc � fp. A detailed calculation
gives [65, 87, 88]

fc ¼
�1

2� ~��
��

yð0þÞfp: ð69Þ

Qualitatively, the cusp singularity can be understood as follows. In order to obtain
a non-zero depinning threshold the average value of limv!0hgðx, vtþ ~uuðx, tÞÞiR in
equation (63) has to be negative. In other words, the elastic object ‘sees’ in a pinned
configuration more increasing than decreasing potential hills, even at v ! 0!1

The next step in (63) is to expand gðx, vtþ ~uuÞ with respect to ~uu. This leads to a
product hguðx, vtÞgðx, vt0ÞiR with t > t0, which, in the limit v ! 0 (hence vt ! u0,
vt0 ! u0 � 	v), has to be negative as well:

hguðx, u0Þgðx, u0 � 	vÞiR � hguðx, u0Þ½gðx, u0Þ � 	vguðx, u0Þ
iR < 0 ð70Þ

For a typical potential dominating the correlations of the random forces two cases
are possible:

1. If guðx, u0Þ < 0, i.e. the force is locally decreasing with increasing u, then the
force at u0 � 	v has to be positive, i.e. accelerating. This is the situation shortly
before one reaches a potential minimum. For g < 0 one concludes from the
right-hand side of (70) jguðu0Þj > jgðu0Þj=	v, i.e. in the limit v � 	v ! 0 the
curvature of the potential of pieces with g < 0 becomes arbitrarily large and
correspondingly these pieces of the potential shrink to zero.

2. If on the contrary guðx, u0Þ > 0, i.e. the force is locally increasing with
increasing u, then the force at u0 � 	v has to be negative, i.e. retarding. This is
the situation shortly before one reaches a potential maximum. For g > 0 one
concludes from the right-hand side of (70) guðu0Þ > gðu0Þ=	v, the curvature in
these pieces of the potential diverges for v � 	v ! 0 and hence these pieces of
the potential disappear as well.

Therefore for v � 	v ! 0 the effective potential consists mainly of pieces where
g and gu have different signs. Regions with the same sign of g and gu disappear
gradually from the effective potential emerging on scales L > Lp (or at least give only
a small contribution to it). If we assume that only pieces with ggu � 0 indeed remain
in the effective potential and assume that these pieces extend up to ggu ¼ 0, then a
continuous and piecewise differentiable potential can be constructed from alternat-
ing segments where g and �gu are both negative or positive, respectively. Such
potential pieces are given by VþðuÞ for 0 < u < uþ and V�ðuÞ for u� < u < 0 which
we can model as, e.g. (compare figure 8):

VþðuÞ ¼ fþu 1�
1

3

u2

u2þ

� �
, V�ðuÞ ¼ f�

u2

u�
1�

1

3

u
u�

� �
: ð71Þ

1As mentioned already, within the collective pinning regime this is only possible on scales larger

than the Larkin length, since for L < Lp the elastic object is essentially undistorted. More generally,

the cusp appears together with metastable states; this follows from the possibility to switch between

ascending and descending branches (in the terminology of Section 7.1), preferably selecting the lowest

one (see the derivation of the force correlator in Section 12).
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The forces f and positions u may change from segment to segment. According to

what we said above, the average value of fþ ¼ Oð fpÞ has to be identified with the

depinning threshold. Such a shark-fin potential is schematically drawn in figure 8. Its

appearance in a driven situation is rather obvious since the elastic object will pass the

regions where gug > 0 very quickly. Together with the property �ðuÞ ¼ �ð�uÞ this
explains the physical origin of the cusp. (See also the above footnote; the precise

meaning of the ‘shark-fin’ potentials is given by ‘termination points’ of metastable

branches of Section 7.1 and corresponding figures.)

For a negative driving force a corresponding discussion leads to a potential

in which g and gu have the same signs, and regions with the different signs of g and

gu disappear. This corresponds to a potential which differs from that drawn in

figure 8 by changing the direction of the u-axis. If we do not impose the

additional condition that ggu ¼ 0 at the boundaries of the intervals where gu > 0

or gu < 0, respectively, then the potential may be discontinuous as depicted in

figure 8(b).

Another problem following from perturbation theory is the fact that for

D� 2 the right-hand side of equation (65) could diverge. This has also been

overcome by the renormalization group theory of the critical depinning [65,

85–89]: D ¼ 2 is no longer the lower critical dimension due to the appearance

of non-classical critical exponents in the renormalized perturbation theory.

Close to the depinning transition, the velocity—which can be considered as an

order parameter of the transition—vanishes as a power law

v � vp
f � fc
fc

� � ~��

, f > fc: ð72Þ

Here we introduced the characteristic velocity-scale vp ¼ g fp. Approaching the

depinning transition there is a diverging correlation length

� � Lp
f � fc
fc

����
����� ~��

: ð73Þ

V   (u)eff

V   (u)eff

u

u(a)

(b)

Figure 8. (a) The effective potential as it emerges on scale L>Lp for an elastic object
moving with a positive velocity. The shape results from the requirement that �0

uð0þÞ

is negative and that at the boundaries of each segment guðuÞgðuÞ ¼ 0. (b) The effective
potential resulting only from the condition that guðuÞgðuÞ is negative everywhere.
We consider the case (b) to be the generic one. Note that orientation of the potential
is reversed for a motion with a negative velocity.
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The appearance of a diverging correlation length on both sides of the depinning
transition has to be expected for the following reason: if we approach fc from values
f < fc by increasing f adiabatically, larger and larger avalanches of local motion of
the elastic object will occur until we reach a critical state at f ¼ fc. A further increase
of f will then lead to a macroscopic motion of the elastic object. At f ¼ fc a local
perturbation will hence trigger a global response, corresponding to an infinite
correlation length. With increasing velocity spatial fluctuations in the local velocity
will be reduced and the correlation length shrinks again. We will come back to this
point in the following.

On length-scales Lp � L � � the nonlinearities of the pinning potential dominate
and distortions of the elastic object obey dynamical scaling with non-trivial
exponents ~�� and ~zz:

h ~uuðx, tÞ � ~uuðx0, t0Þð Þ
2
i
1=2
R ¼ l

jx� x0j

Lp

� � ~��

~��
� jx� x0j

Lp

~zz.
!pðt� t0Þ

� �
: ð74Þ

Here ~�� is the non-equilibrium roughness exponent and !p ¼ vp=l. It turns out that
1 < ~zz < 2, i.e. the dynamics close to the depinning transition is super-diffusive,
reflecting the rapid motion of the object after the maximum of the shark-fin potential
has been overcome. The scaling function ~��ðyÞ behaves as y� ~��=~zz for y ! 0 and
approaches a constant for y ! 1. The critical exponents satisfy the new scaling
relations [87, 88]

~�� ¼
1

2� ~��
¼

~��

~zz� ~��
�

2

Dþ ~��
: ð75Þ

These exponents were calculated first to order 	 ¼ ð4� DÞ in [87, 88] and recently to
order 	2 [65]. For charge density waves ~�� ¼ 0 [85, 86] (i.e. the roughness increases
logarithmically with L) and ~zz ¼ 2� ð	=3Þ � ð	2=9Þ [65, 85, 86], whereas for domain
walls ~�� ¼ ð	=3Þð1þ 0:14331	Þ and ~zz ¼ 2� ð2	=9Þ � 0:04321	2 [65, 87, 88].

In the opposite regime L � � the problem is essentially linear and u can be
replaced by vt in the argument of gðx, uÞ. This can be seen qualitatively as follows.
On the time-scale t the elastic object advances on average by an amount vt.
Randomly distributed pinning centres will lead to a local distortion which, according
to (74), spreads over a region LðtÞ � Lp !pt

� �1=~zz
. The local retardation or advance-

ment of the object due to the fluctuation in the density of the pinning centres scales
as ~uuðtÞ � lðLðtÞ=LpÞ

~��
� lð!ptÞ

~��=~zz. Since ~�� < ~zz, ~uuðtÞ grows more slowly than vt. Thus
on time-scales t > tv ¼ !�1

p vp=v
� �~zz=ð~zz� ~��Þ

and length-scales L > � 	 LðtvÞ the nonlinea-
rities in the argument of VR, uðx, vtþ ~uuÞ can be neglected and the linearized theory
applies. In this case uðx, tÞ is replaced by vt in the argument of the random forces.
Random forces act then as thermal noise with temperature � v�1.

So far we considered the elastic theory of critical depinning. If we include
topological defects in the theory, the transition may become hysteretic, as was
shown in [91]. We will come back to the influence of topological defects on pinning
phenomena in the second part of this article.

As a side remark we mention here that an alternative characterization of the
depinning transition can be reached if we pin the elastic object at the boundary of
the system by an infinitely strong surface barrier such that the displacement at
certain surfaces vanish. In a charge density wave this can be reached by applying an
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external electric field but preventing a current flow by the absence of external leads.
In a non-random elastic system an external force f then generates a parabolic
displacement profile as a solution of (60). The situation is different in a system
with random pinning forces: as long as f < fc the elastic object cannot move and
the pinning by surface barriers does not matter. For f > fc, on the other hand,
the surface barriers prevent the elastic object from moving and a parabolic profile
will emerge. A detailed investigation shows that this is indeed the case [92]. Using
the decomposition uðxÞ ¼ u0ðxÞ þ ~uuðxÞ with the Ansatz

u0ðxÞ ¼ �
1

2

XD
i¼1

~CCiðxi � xi, 0Þ2 þ u0 ð76Þ

and h ~uuðxÞiR ¼ 0, one can determine fc from the vanishing of ~CC ¼
P

i
~CCi. Which of the

curvatures ~CCi are non-zero depends on the specific pinning conditions on the surface.
Note, that this decomposition is similar to the description of the dynamics of the
depinning transition in a co-moving frame. From equation (60) we obtain

C ~CC � f ¼ g
�
x, u0ðxÞ þ ~uuðxÞ

�� 	
� gu

�
x, u0ðxÞ

�
~uuðxÞ

� 	
, ð77Þ

which replaces equation (63) of the case of a moving elastic object. In lowest order of
perturbation theory we obtain then (similar to the derivation of equation (65)) its
RNG counterpart [92]

~CC ¼
f � fc
C

: ð78Þ

It is to be expected that this relation is true to all orders in 	 ¼ 4� D. Indeed, on the
scale of the correlation length � the height a�2 of the parabola is expected to scale like
the roughness lð�=LpÞ

~��. Thus

a�2 �
fc
C

f � fc
fc

� �1�2 ~��

L2
p � l �

�
Lp

� �2�ð1= ~�� Þ
ð79Þ

and with (73), (78) and the scaling relation (75) ~�� ¼ 1=ð2� ~��Þ we get indeed
the expected result. Thus we may also characterize the depinning transition by the
vanishing of the parabolic displacement profile. If one decreases the forces again
the curvature shows a pronounced rhombic hysteresis profile [92]. The problems of
inhomogeneous profiles are related to contemporary space-resolved studies of sliding
CDWs; see Section 6 for discussion and references.

4.2. The depinning transition at finite temperatures
At f � fc and T ¼ 0 the velocity is zero, but one has to expect that as soon as

thermal fluctuations are switched on, the velocity will become finite. Scaling theory
predicts in this case an Ansatz [93, 94] (generalizing (72))

vð f ,TÞ � T ~��=�
f � fc
T1=

� �
ð80Þ

with �ðxÞ ! const: for x ! 0 and �ðxÞ � jxj ~�� for jxj � 1, such that vð fc,TÞ � T ~��=.
Here  > 0 is a new exponent which still has to be determined.
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This prediction seems to be in contradiction with simple scaling considerations
applied directly to the equation of motion (39). Indeed, after renormalization of this
equation at T ¼ 0 up to length-scale � and time-scale !�1

p ð�=LpÞ
~zz all terms in this

equation scale as ð f � fcÞ. If we consider now the thermal noise as a small
perturbation (at the fixed point describing the depinning transition) then its
contribution to the equation of motion is of order

ð f � fcÞ
T
Tp

� �1=2 f � fc
fc

� � ~�� ~��=2

;

where ~�� ¼ D� 2þ 2 ~�� > 0 and hence  ¼ � ~�� ~�� < 0. Thus thermal fluctuations seem
to be irrelevant at this transition.

However, this is not true. The previous argument considers the influence of
thermal fluctuations on length-scales of order L � �. The relevant thermal fluctua-
tions which depin the elastic object act however on much smaller scales of the order
of Lp � � as we will see now, following an earlier argument by A. Middleton [94].
At the critical point f ¼ fc essentially only barriers on the scale L � Lp are left as
we saw in the previous sections. It is therefore sufficient to consider only this length-
scale. To this aim we coarse-grain the system into regions of linear size Lp and denote
the corresponding Larkin domain by the subscript i ¼ 1, . . . ,N ¼ ðL=LpÞ

D (compare
with figure 9).

Each domain is then essentially characterized by a single local coordinate ui
related to u(x) by ui �

R
i d

DxuðxÞ, where
R
i d

Dx denote the integration over the i-th
domain. Treating the interaction between different domains within a mean-field
approximation one can write (in the spirit of the Kim–Anderson approach) a local
energy expression for the domain i:

Hi ¼ ViðuiÞ � fui � �ið f � fcÞui ð81Þ

Vi(ui) denotes the effective potential for the coordinate ui at the depinning threshold
f ¼ fc. The term ��ið f � fcÞui, �i > 0 describes the mean-field type coupling to
neighbouring domains. The full energy is then given by H ¼

PN
i¼1 Hi.

Two types of effective potentials were considered [94]: (i) a smooth potential

VsðuÞ ¼ ~ffpu
�
1�

u2

3u20

�

~ H i
~

ui

iH

B,i
~

B,i

i

E

u

1

E~

u

ui ui+1

u2 Lp

Figure 9. The decomposition of the system into different Larkin domains (left), and the
effective potential for the coordinate ui in the case of a smooth (middle) and a
ratcheted potential (right).
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and a ratcheted kick potential with

VrkðuÞ ¼ ~ffpu
�
1þ

u
2u0

�
, ðu � 0, compare with figure 9Þ:

u0 denotes the position of the potential minimum. In general the values of u0 (> 0)
and ~ffp (� fc > 0) will be different in different domains. For simplicity we assume in
the following that u0 � lLD

p is the same for all domains.
At the threshold f ¼ fc there is a metastable state corresponding to the left

minimum of the potential. The most unstable domain is then characterized by a
value of ~ffp which slightly exceeds fc and �i � 1. If we now increase f from f ¼ fc to
f ¼ fc þ �f , then the minima in all domains with ~ffp � fc < ð1þ �iÞ�f will disappear.
These unstable domains will trigger transitions in neighbouring domains which
destabilize further domains and so on until the whole object is depinned. The height
of the energy barrier for the most unstable domains in the region �f < 0 is given by

EB � u0 fc ð1þ �Þ
fc � f
fc

� �3=2

for the smooth and

EB � u0 fc ð1þ �Þ
fc � f
fc

� �2

for the ratcheted kick potential, respectively. These barriers become irrelevant at
temperatures T � EB. An increase of T from T ¼ 0 has the same effect as increasing f
by a value � T2=3 from which we conclude  ¼ 3=2 for the smooth potential. For the
ratcheted kick potential the increase of T has the same effect as an increase of f by a
value � T1=2 and hence  ¼ 2. The different exponents reflect the different non-
linearities of the effective potential. Our analysis of the effective potential depicted in
figure 8(a) (with the analytical form given by equation (71)) is different from [94], but
the exponent  ¼ 3=2 is identical with that of the smooth potential, since the barriers
in both cases have the same dependence on ð fc � f Þ, as one can easily check.
However this remark is only true for a potential of the type depicted in figure
8(a), for a potentials of the type depicted in figure 8(b) the exponent  is probably
non-universal. The exponent  found from simulations for domain walls in random
field systems [95] varies indeed in the range 1:5 <  < 2. Naturally the exponent
 ¼ 3=2 appears in the treatment of termination points (Section 7) which specify the
meaning of the instabilities suggested above.

4.3. Depinning due to an ac-field
In this subsection we want to discuss the effect of an ac-field of a finite frequency

! on the pinning of the elastic object at zero temperature. The equation of motion
is still given by (60) with f ! f ðtÞ ¼ f sin ð!tÞ. A finite frequency ! of the driving
force acts as an infrared cut-off for the propagation of perturbations, resulting
from the local action of pinning centres on the object. As follows from (60) with the
renormalization (68) these perturbations can propagate during one cycle of the
external force up to the (renormalized) diffusion length

~LL! ¼ LpðgC=!L2
pÞ

1=~zz
	 Lpð!p=!Þ

1=~zz , !p ¼
Cg
L2
p
: ð82Þ
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If ~LL! < Lp, i.e. ! > !p, then there is no renormalization and ~zz has to be replaced

by 2. During one cycle of the ac-drive, perturbations resulting from local pinning

centres affect the configuration of the elastic object only up to scale ~LL!, such that the

resulting curvature force Cl ~LL�2
! is always larger than the pinning force—there is no

longer any pinning.

In the opposite case ~LL! > Lp, i.e. ! < !p, the pinning forces can compensate the

curvature forces at length-scales larger than Lp. As a result of the adaption of the

elastic object to the disorder, pinning forces are renormalized. This renormalization

is truncated at ~LL!. Contrary to the adiabatic limit !! 0, there is no sharp depinning

transition if ! > 0. Indeed, a necessary condition for the existence of a sharp

transition in the adiabatic case was the requirement that the fluctuations of the

depinning threshold in a correlated volume of linear size �, �fc � fcðLp=�Þ
ðDþ ~��Þ=2, are

smaller than ð f � fcÞ, i.e., ðDþ ~��Þ ~�� � 2 (compare equation (75)) [87, 88]. For ! > 0

the correlated volume has a maximal size L! and hence the fluctuations �fc are given
by

�fc
fc

�
Lp

~LL!

� �ðDþ ~��Þ=2

¼
!

!p

� �ðDþ ~��Þ=ð2~zzÞ

: ð83Þ

Thus, different parts of the elastic object see different depinning thresholds—the

depinning transition is smeared. �fc has to be considered as a lower bound for this

smearing. A full understanding of the velocity hysteresis requires the consideration

of the coupling between the different ~LL!-segments of the elastic object. Approaching

the depinning transition from sufficiently large fields, f ðtÞ � fc (and !� !p), one

first observes the critical behaviour of the adiabatic case as long as � � L!. The
equality � � ~LL! defines a field fco signalling a cross-over to an inner critical region

where singularities are truncated by ~LL!.
Note that fc0 � fc ¼ fcð!=!pÞ

1=ð ~��~zzÞ
� �fc (cf. figure 10). It is then obvious to make

the following scaling Ansatz for the mean interface velocity ( f0 > fc, vp ¼ !pl)

v f ðtÞð Þ � vp
!

!p

� �ð ~��= ~��~zzÞ

’
f ðtÞ
fc

� 1

� �
!p

!

� ð1= ~��~zzÞ� �
: ð84Þ

cf

pω

adiabatic 
region

ω

fδ c

fco

f

transition smeared

ωT(f)

Figure 10. Schematic frequency–field diagram for the depinning in an ac external field
(with f > fc). For 0 < !� !p the depinning transition is smeared but traces of the
! ¼ 0 transition are seen in the frequency dependence of the velocity at f ¼ fc. This
feature disappears for !� !p.
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Here the subscript  refers to the cases of _ff > ð<Þ 0, respectively, and
’½x ! 1
 � x ~��. For f ðtÞ � fc � fc the classical exponent ~�� ¼ 1 applies. For
jxj � 1, ’ approaches a constant c. The function ’� changes sign at a critical
value ~ffcð!Þ � fcð1� c�ð!=!pÞ

1=ð ~��~zzÞ
Þ. The velocity shows a typical double hysteresis

(figure 11). Qualitatively, the hysteresis loop can be understood to result from the
motion in the ratchet-like potential, figure 8. The reader is referred for details to
reference [96]. There is interesting related work on the influence of an alternating
current on pinned vortex lattices by Kohandel and Kardar [97, 98].

5. Macroscopic perturbations and external constraints

Now we shall discuss briefly the influence of external forces or constraints on
the statistical properties of our model equation (1). The topic includes the important
case of topologically non-trivial distortions which can be enforced by appropriate
boundary conditions or applied external forces. We will assume that these con-
straints are kept constant or are changed only adiabatically such that we can
apply equilibrium statistical mechanics. We will assume that a field CAðxÞ couples
in the Hamiltonian linearly to Ju, i.e. there is an extra piece �HA in the Hamiltonian

�HA ¼

Z
dDxCAðxÞJu : ð85Þ

Examples of A are given, e.g. by

1. a constant external force f coupling to u for which CA ¼ f x=D or
2. by a field which enforces a dislocation line into the system (if we consider

periodic systems—see the following sections). In the latter case A obeys the
relation

H
C
Adx ¼ �b ¼ 2pnQ where the curve C encloses a dislocation line and

n is an integer.

In general, extra pieces of the Hamiltonian of the form (85) lead to an
instability: the system feels a constant driving force or a torque. In order to prevent
an unlimited response we have to assume the existence of additional surface forces
which keep the system in equilibrium. This will be done in this section (for more
details see [92]).
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Figure 11. Velocity hysteresis of a D¼ 1-dimensional interface in a random environment.
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It is convenient to go over to the new field ~uu by

~uuðxÞ ¼ uðxÞ þ
Z x

0

Að yÞdy: ð86Þ

In case (ii) ~uuðxÞ may depend on the path along which the integration is performed.
Different paths may lead to changes of ~uuðxÞ by mQ where m is an integer. Since the
random potential is periodic in u with periodicity 2p/Q such an ambiguity is however
irrelevant. After this transformation the Hamiltonian is rewritten as

Hþ �HA ¼

Z
dDx

1

2
CðJ~uuÞ2 þ VR x, ~uuðxÞ �

Z x

0

Að yÞdy
� �

�
1

2
CA2

� �
: ð87Þ

In both cases (i) and (ii) the new Hamiltonian (87) has the same statistical properties
as the original one, equation (1), since VRðx, uðxÞÞ is a random function of both
arguments. This can most easily be seen by using the replica method, in which the
disorder averaged free enthalpy

GfAgh iR¼ � ln Tre�ðHþ�HAÞ=T
� 	

	 � lim
n!0

T
n

Tre�ðHn=TÞ � 1
� �

ð88Þ

follows from the replica Hamiltonian

Hn ¼

Z
dDx

Xn
a, b¼1

C
2

ðJ~uuaÞ2�a, b �
C
T
Rð ~uua � ~uubÞ � nA2

� �
: ð89Þ

Clearly, the replica Hamiltonian is unchanged, apart from the additional term
�n

R
dDx C

2
A2. It is worth mentioning that this is true only if the random potential

VRðx, uÞ is strictly uncorrelated in x. If the correlations are given by a smeared out
�-function of width a0, Rð~uuaðxÞ � ~uubðxÞÞ in equation (89) has to be replaced byR
dDx0R½~uuaðxÞ � ~uubðx0Þ �

R x
x0
AðyÞdy
�a0ðx� x0Þ.

The disorder averaged free energy follows then as

FfhJuigh iR¼ GfAgh iR�

Z
dDxCAhJui ¼ hFf0gi þ

Z
dDx

C
2
hJui2T,R, ð90Þ

where

hJuiT,R ¼ C�1�GfAg=�A ¼ �A: ð91Þ

If A represents a dislocation then also the mean displacement huiT,R shows a
dislocation structure. Correlation functions of u(x) in the presence of external forces
can now easily be calculated by using the decomposition equation (207), since ~uu is
not affected by the presence of A.

The glassy phases discussed previously have been found under the assumption
that topological defects have been excluded. We will now consider the stability of
these phases with respect to topological defects. In particular, we will briefly consider
the stability of the Bragg glass in charge density waves phase with respect to
dislocations.
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Adding a dislocation increases the disorder averaged free energy according to
equation (90) by, Z

dDx
C
2
A2

¼
b2

2p
LD�2
0 ln

L0

a0

L0 denotes the size of the system. This expression is the energy of the dislocation line
(D ¼ 3) in a pure system and hence dislocations seem to be always disfavoured.
However the dislocation may take advantage of fluctuations in the disorder
distribution and choose a position where its energy is lowered with respect to the
average value. To this aim one has to consider the sample-to-sample fluctuations of
the free energy hF2fhJuigiR � hFfhJuigi2R. This is a difficult problem and only
preliminary results exists, which support the existence of a quasi-long-range ordered
phase in d ¼ 3 dimensions [70–74] provided the disorder is sufficiently weak. In
d ¼ 2 dimensions, where the disorder in the forward scattering term grows under
renormalization as lnL, dislocations always appear [99].

6. Plastic deformations and topological defects

The starting point of the collective pinning picture considered so far was that
the displacements u grow unlimitedly at large distances. At the same time, local
deformations (i.e. strains—gradients Ju) were assumed to remain small thus
allowing for the universal elastic media description, expansions of bare energies in
terms of Ju or forces in terms of u, etc. Nevertheless the elasticity can be broken at
the local level in which case we refer to plastic deformations [42]. The effect is not
only quantitative, which would simply affect basic parameters, it happens that plastic
deformations related to impurities can cause metastable states which is the principal
ingredient of the pinning picture. These plastic metastable states create a set of
pinning effects of their own nature, but they also clarify, or even challenge
sometimes, the complex picture of the collective pinning (see more in Section 12).

In general, plastic deformations invoke displacements which are not small at
a microscopic scale, e.g. the domain wall width or the crystal periodicity. The
deformations may be topologically trivial like large curvatures of domain walls, or as
vacancies and interstitials in Wigner or vortex crystals; then plasticity comes from
the strong-pinning potential itself. The plastic deformations can be topologically
non-trivial, and these are locally stable even without impurities. Among our cases
they appear only in periodic systems because of their ground state degeneracy
x ) xþ b, where b is any of d primitive periods of the sliding crystal. Here the
topological defects acquire forms of dislocation lines, or dislocation loops and their
particular limits of solitons in quasi-one-dimensional systems. (Concerning disloca-
tions, see [100] for a general review, [42, 101] for the theory, and [102, 103] for the
special case of CDWs and for helpful illustrations.)

The basic object is the dislocation line crossing the whole sample (reduced to
the dislocation point in d ¼ 2 systems), see figure 12. It is a kind of vortex of
displacements u (which are now the D ¼ d dimensional vectors u ) u) such that
going around the dislocation line u acquires a finite increment �u called the Burgers
vector. In principle, it can be any allowed translation of the regular lattice, but only
dislocation lines with minimal values of �u, coinciding with one of the primitive
translations �u ¼ b, are stable which we shall imply below. In our perspective, finite
displacements only along the sliding direction x are important, so in our studies we
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shall assume that b ¼ ðb, 0, 0Þ is chosen while dislocation lines and dislocation loops

lie in the perpendicular plane, these are the so-called edge dislocations. In d ¼ 3,

the dislocation line must either cross the whole sample or be closed to the dislocation

loop (two dislocation points D, D* in d ¼ 2). All paths across the dislocation loop

acquire the displacement b in comparison to outer paths. The smallest dislocation

loop embraces just one line of atoms with one unit cell missed or acquired along

this selected line. This limit is the 2p soliton in quasi-one-dimensional systems

(for short reviews on theory see [34, 104] and also [105, 106], for experimental

aspects see [107]). In isotropic crystals (Wigner crystals, vortex lattices) the

elementary dislocation loop is the symmetry-broken state of the vacancy or the

adatom. Going along two paths parallel to b, one above and another below

the dislocation line, the difference b of lattice displacements will be accumulated.

Then the dislocation line can be viewed as the leading edge for an additional atomic

plane being introduced to (or withdrawn from) the crystal (from the side boundary,

or from another dislocation line—the counterpart D* with the opposite circulation

b� ¼ �b).

Here we already arrive at the first general significance of dislocation lines for

sliding crystals: their necessity to bring in or modify the sliding regime providing

the so-called phase slip processes.2 Within the CDW language, the phase slippage is

required at junctions for the conversion from free to condensed carriers [109–113].

When the CDW is depinned between current contacts, CDW wavefronts are created

near one electrode and destroyed near the other, leading to CDW compression at

one end and to its stretching at the other end. In a purely one-dimensional channel,

the order parameter can be driven to zero at once [109] which allows for the

macroscopic phase slip. For samples of finite cross-section, phase slippages develop

as dislocation lines proliferate across the sample, each dislocation line allowing the

CDW to progress by one wavelength [110]. Proliferation of dislocation lines or

expansion of dislocation loops is called the climb. As for any motion not parallel to

b, the climb is not conservative with respect to the number of atoms (the charge in

electronic crystals). As such, it is ultimately related to the current conversion

requiring for the phase slips.

2 Phase slippage is a common phenomenon in condensed matter systems with complex order

parameters. It has been intensively studied in narrow superconducting channels [114], in superfluid

helium [115] and in quasi-one-dimensional CDW systems. Phase slips have been incorporated into the

picture of collective pinning only recently [76].

Figure 12. Topological defects in a CDW. The solid lines describe the maxima of the
charge density. The dashed lines represent chains of the host crystal. From left to
right: dislocations of opposite signs and their pairs of opposite polarities. Embracing
only one chain of atoms, the pairs become a vacancy and an interstitial or �2p
solitons. Bypassing each of these defects, the phase changes by 2p thus leaving the
lattice far from the defect unperturbed.
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The effects of phase slips and the current conversion are closely related to
macroscopic strains of the sliding and/or pinned state. Recent years have brought a
new understanding of the fact that the sliding state is also essentially inhomogeneous
[117–120]. The freedom for deformations is demonstrated by the dilemma associated
with the choice of a solution for the generic equation describing the sliding
motion and deformation of the CDW phase: g�1@t’þ C@2x’ ¼ f (see Section 4).
Taken alone, this equation is satisfied by any solution of the type
’ ¼ f ðcgtþ ð1� cÞx2=2CÞ with an arbitrary value of the partition coefficient c.
Then, at first sight, the response to the driving force f is optionally distributed
between the viscous � t and the elastic �x2 reactions, leaving the collective current
undetermined. It is specifically the equilibrium with respect to phase slips which
selects the solution c ¼ 1 leaving only the viscous undeformed regime ’ � t in the
bulk [120, 121]. Phase gradients originating from the external force cannot grow
indefinitely because the associated strain is released through 2p-phase jumps
repeating in time, with a rate dependent on the magnitude of the remaining strain.3

There is a particular case of the conversion with the help of dislocations which
brings us closer to the problem of strong pinning. Namely, consider the sliding along
a step-shaped host sample (which is quite an important issue in reality) as shown
in figure 13. Coming to the threshold, the sliding in cut layers is terminated, so that
in the narrows the phase velocity v ¼ � _’’ must increase: v ! vþ�v. To keep
the crystal connectivity, new periods must be introduced with the phase slip rate
�v=2p which are provided by the flow of dislocation lines in the cross-section.
Understanding this macroscopic example leads us to expectations for the role
of plasticity and topological defects in the pinning problem, even beyond the
strong-pinning limit.

Let us reduce the size and the sharpness of the obstacle (recall the soft
macroscopic defects studied by space-resolved X-ray diffraction [123]). That will
then be a local region of the enhanced pinning force. It can be either mesoscopic,
caused by rare fluctuation of the collective pinning strength4 (e.g. the concentration
of impurities), or microscopic: a single strong-pinning centre. Our only requirement
is that the local pinning enhancement is strong enough to reduce the mean sliding
velocity that is to provide—at least from time to time—the retardation by the whole
lattice period. Then the retarded zone must be surrounded by dislocation loops to
provide the matching with the rest of the crystal.

3 The phase slip rate is given by the space-time vorticity I ¼ ð@t@x’� @x@t’Þ=2p.
4 Interpretation of pinning in terms of large-scale fluctuations of the pinning force was suggested

in [122], where also the phase slips have been discussed.

enhanced v

ceased current

initial v

Figure 13. Generation of the perpendicular flow of dislocations by sliding through
narrows. The encircled up-arrow indicates the proliferation of a dislocation line. The
up-right double arrow indicates the material flow; its conversion provides the climb
of dislocations which results in the velocity enhancement.
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The microscopic case is illustrated in figure 14 for an attractive impurity moving

across the array of ‘atoms’ of, e.g. the Wigner or the vortex crystal. Usually we

shall assume the co-moving frame where the pinning centre moves through the

asymptotically immobile crystal.

There are three apparent regimes. A weak attractor will only perturb atoms

which will smoothly return to their equilibrium position. A stronger attractor will

draw the atom for more than half of the period; then it clearly becomes favourable

to release the overdrawn left atom and catch instead the next atom at the right which

is now closer, as it will release the energy of deformations. Finally, let the attractor

be strong enough to draw the initial atom over the whole period to the next regular

atomic position. Then the crystal comes again to the local equilibrium but at the

expense of creating zones of dilatation and compression behind and ahead of the

attractor. Being integer multiples of the atomic period, these deformations corre-

spond just to dislocation loops of the minimal size, the solitons of the CDW

language, embracing the path of the attractor motion, see figure 15. Their energy

2Es will be paid for the pinning preserved over one period.

The opposite case to the atomic lattice is the CDW where density is smoothly

distributed over the whole period, see figure 12. Now the development of elastic and

plastic deformations in the course of the impurity motion is illustrated in figure 16,

with the same consequences for metastable states.

In summary, we can generally anticipate several regimes whose existence can be

verified for particular models considered below. We shall refer to some parameter V

characterizing the pinning center strength with respect to certain thresholds V1,V2

for plastic deformations.

1. V < V1. The pinning center is very week, local deformations do not grow to

the plastic threshold but they smoothly return to the original unperturbed

state after the whole period is passed in the course of sliding.

ix

x
Ω

Figure 15. A pair of dislocation loops generated by a strong-pinning centre after the nearly
complete period of sliding. The cross-section (the plane of the figure) corresponds to
the quaternion of dislocations in the right-hand side of figure 12. The phase deficit at
the impurity point xi is determined by the steric angle � of the loop.

Figure 14. Motion of a sliding atomic array through the strong attractive pinning centre,
as viewed from the co-moving frame. Upper row: the straight arrow indicates the
relative displacement of the impurity together with the trapped atom. Lower row:
having been displaced by more than half of the period, the trapped atom is released
to its, now distant, position (the left arc arrow), while the now closer next atom is
trapped instead (the right arc arrow).
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2. V1 < V < V2. The pinning center is strong enough to provide a retardation for

more than half of the sliding period (j�’j > p in the CDW language). Since

then the branch becomes metastable: it is favourable to switch the deformation

from the overdeformed retarded configuration �2p < �’ < �p, j�’j > p to

the weaker deformed advanced one 0 < �’ < p, j�’j < p which saves the

energy of elastic deformations around the pinning centre, see figure 16. The

coexistence of stable E1 and metastable E2 branches—the absolute and the

local minima of the energy—implies the existence of the third branch E3, the

energy maximum, which is the barrier separating the two minima. Since we

postulated here that the metastable branch cannot be maintained over the

whole period, then there must be a termination point (the ‘end’ point) �e where
the metastable and the barrier branches merge together to disappear at larger

retardation, see figure 17.

3. V2 < V. An even stronger pinning centre can sustain a retardation by the

whole period or more. Then there is no termination point and all branches

always coexist. After the whole period passes, the pinning centre is again at

equilibrium with the surrounding crystal, but it is equilibrium modulo 2p;
the difference of one period is accumulated between the pinning center vicinity

and the crystal at infinity. And now this is just the job of dislocation loops

to compensate for this difference. Their diverging pair forms a cylinder

(containing the pinning centre) where this difference is just provided. In the

quasi-one-dimensional picture, see figure 16, this process is easily visualized

as the creation of a soliton–antisoliton pair (a bisoliton) which opens the 2p
retarded allowed ground state in between.

Notice finally that the ‘mesoscopic’ case of a cluster of impurities will have more

degrees of freedom which can cause a large number of close metastable states, thus

merging gradually with the collective pinning picture.

2π

−π

π

0 =0+2solitons

3 2

1

1
2

0

ϕ

x3

~

Figure 16. Evolution of the phase profile ’ðxÞ (for the chain passing through the impurity)
in the course of the relative motion. Starting from the equilibrium position 0 when
’ðxÞ 	 0, the profile evolves gradually through the shapes 1, 2, 3, ~00 finally developing
the bisolitonic shape. These configurations correspond to the retarded branch Eþ

which becomes metastable after ’ð0Þ crosses p. Since then, the advanced profiles
10, 20, 30, 0 of the branch E� are less deformed and hence cost a smaller energy W.
If the relaxation Eþ ! E� does not happen, the new circle starts with the profile
~00 ¼ 0þ 2p corresponding to the infinitely divergent pair of solitons. For a weak
impurity the level p is never reached and only a smooth reversible evolution is
allowed following shapes 0, 1, 0, 10, 0.
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7. Local metastable states

All the following content will exploit the efficient language of CDW (or spin

density wave (SDW)) phases, widely used since [22]. The CDWs are characterized by

the sinusoidal density profile � cosðQ:xþ ’Þ, see (7), and have elastic properties of

uniaxial crystals; see Table 1. The order parameter can be taken as � exp½i’
 so that

dislocations are easily viewed as usual vortices. For a periodic sliding media in

general, the natural choice for the microscopic length-scale is the unperturbed lattice

period b along the sliding direction. It corresponds to the CDW convention to use

the phase ’ for the description of the displacements u ) �’: ’ ¼ �2pu=b ¼ �Q:u.
The velocity becomes the phase velocity for which we shall use the same notation v¼
@u=@t ) �@’=@t. This phase velocity is accessed directly in experiments by measuring

the so-called narrow-band noise (NBN) interpreted as the washboard or phase slip

frequency [2, 3]. Correspondingly the force f is naturally defined as the work done

via sliding by one period, that is f ) f 2p=b. Particularly for electronic crystals

f coincides with the electric field strength f ¼ eE (for Wigner crystals, for

4kF CDWs) or with 2eE (for CDWs, SDWs where one period carries the double

electronic charge 2e).
To quantify and prove the intuitive picture of Section 6, we consider an isolated

local pinning centre which can be described by a single degree of freedom  i and

monitored by another single one �i. They are the local mismatches of phases

 i ¼ ’ðxiÞ � �’’ , �i ¼ �Q:xi � �’’ ð92Þ

relative to the bulk value �’’. The latter can be taken to be homogeneous in space,

static �’’ � const: or sliding �’’ � �vt, within the correlation domain of the collec-

tive pinning which by definition contains many impurities; see more discussion in

Section 8).

Table 1. Relations between parameters of conventional crystals and CDWs.

Displacements u=b ! x̂x’=2p; x̂x ¼ ð1; 0; 0Þ
velocity, density v ¼ @u=@t ) v ¼ �@’=@t� Ju ) @’=@x
driving and pinning forces f ) f 2p=b ¼ Qf
strain, stress J’ ;CJ’

Figure 17. Energy branches for a restrictedly bistable impurity. The uppermost thin line
shows the barrier branch E3. Thick lines show the locally stable branches E, also
classified as E2 > E1. The difference �E ¼ E2 � E1 gives the dissipated energy. The
difference U ¼ E3 � E2 gives the activation energy for a decay of the metastable state
E2.
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Beyond the close vicinity (of a microscopic scale a0) of the pinning centre and

well within the collective pinning domain, we can use the energy functional (1)

H ¼

Z
D

ddx
C
2
ðJ’Þ2 þ

X
i
Við’ðxÞ þQ:xiÞ�ðx� xiÞ

" #
, ð93Þ

and typically Við’Þ ¼ Við1� cosð’ÞÞ.
This energy should be minimized over ’(x) at the asymptotic condition ’! �’’.

By minimizing the energy over ’(x) we can get rid of the phase everywhere except at

x ¼ xi. By analogy with electrostatics, the ‘potential’ ’ðxÞ originates from the ‘point

charge’ V0
i ¼ dVið’Þ=d’, and the elastic energy Wel will be the one of a site charged

at the potential  with respect to the infinity: Wel ¼ ðK=2CÞ 2 where K � a0 (in

d ¼ 3) is the ‘capacitance’.5 The case d ¼ 2 is always problematic: now the inverse

capacitance diverges at the upper limitK�1 � lnL where L is a limiting size. We shall

face this effect once again in Section 10. In many respects, the local pinning scheme

needs revisions in d ¼ 2 which dimension is particular also for the collective pinning,

see the previous Sections.

The elastic regime Wel �  2 is not valid at large deviations where it must give rise

to the more efficient plastic regime. To see this more clearly, suppose that a very

strong-pinning centre allows for the retardation by many periods N,  � 2pN, then

Wel � N2. The plastic alternative (to emit a pair of elementary dislocation loops, the

solitons) after each period of retardation, would give the lower energy Wpl � 2EsN
which grows only as � N rather than as � N2. Actually, for large N a further drastic

reduction of plastic deformations is possible: as much as from � N to � N1=2 lnN
in d ¼ 3 and to � lnN in d ¼ 2 dimensions, respectively. To see this, recall that the

coalescence of dislocation loops is allowed provided the total number of embraced

chains, that is the total increment/deficiency of the crystal periods, is preserved. Then

it will be favourable to aggregate the sequence of N emitted elementary dislocation

loops into the growing single loop embracing N chains whose energy is � lnN per

unit length (the perimeter is � N1=2 in d ¼ 3). The expansion of the pair of wide

dislocation loops, see figure 15, at both sides of the strong impurity will redistribute

the retardation by multiple periods along the defected line to the retardation by the

single period over many lines embraced by the dislocation loop.

We shall return more systematically to the topic of dislocations in Section 9.

The above arguments do not tell us yet what is going on within one period of

sliding and for intermediate pinning strengths. Some peculiarities of long-range

interactions between diverging dislocation loops will require us to consider carefully

5Certainly, for the ideal point impurity we face the divergence of elastic deformations which

would not allow us to determine ’ðxiÞ: the extremal solution for (93) is divergent at x ! 0

’ðxÞ � �’’ � V 0
i=jxj

d�2. As usual, the problem can be regularized at a cut-off length a0 since

microscopically there is a finite width of the pinning site. Actually, there is the microscopic coherence

length �0 � a0, where the amplitude of the order parameter A �
ffiffiffiffi
C

p
can pass through zero if the phase

gradients become too high. An even larger length-scale appears in quasi-one-dimensional CDWs: this

is the soliton width ls (figures 7 and 8, and Section 7.2) below which the system cannot sustain shear

deformations—see Section 7.2.
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also the marginal region between two successive periods. These questions will be
addressed in the next section.

7.1. Basics of metastability

7.1.1. Definitions and classification
Locally equilibrium states are determined by extremal, over ’ðxÞ, values of the

energy functional in the presence of only one impurity at the point xi and for the
asymptotic condition ’! �’’ at jx� xij ! 1. Here we keep in mind the full-scale,
generally nonlinear (see examples below) model which is regular at small dis-
tances and reduces to the elastic model (93) at a sufficient distance from the impurity.
Since the ultimately nonlinear pinning energy depends only on the local phase
’ðxiÞ þQ:xi ¼  � �i (see equation (92) for definitions), it is convenient to keep this
value fixed in preliminary stages and optimize for it only at the end. Minimization
over all other ’ðxÞ, at given ’ðxiÞ and �’’, reduces the energy functional to the function
(below we shall omit the index i addressing only one impurity positioned at xi ¼ 0)

Hð , �Þ ¼ Vð � �Þ þWð Þ: ð94Þ

This variational energy contains the pinning potential Vð � �Þ (we shall call its
amplitude simply V) and the energy of deformations Wð Þ. It is clear from the above
discussion that Wð0Þ ¼ 0, Wð2pÞ ¼ 2Es and the next circle starts from this level
(the configuration 00 in figure 16), so within each period Wð Þ is the same function
with minWð Þ ¼ Wð0Þ ¼ 0 and maxWð Þ ¼ Wð2pÞ ¼ 2Es. The function W0ð Þ,
together with �V0ð � �Þ for several values of �, is shown in figure 18. Their
intersection determines extremal values of (94) over  .

The minima and maxima of the variational energy over  at a given � determine
the branches  að�Þ. There are always locally stable states, which can be either
absolutely stable, a ¼ 1, or metastable, a ¼ 2; the unstable barrier branches are
denoted by a ¼ 3, that is

any a :
@H
@ 

	 0; Hð að�Þ, �Þ ¼ Eað�Þ ð95Þ

a ¼ 1, 2 :
@2H
@ 2

> 0 ; a ¼ 3 :
@2H
@ 2

< 0: ð96Þ

W ,- V W′,- V W ,- V′

Ψ

0

0.25

0.5

-0.25

1.25 2.5 3.75 5.0 6.25

Figure 18. Solutions for all branches  að�Þ are obtained by crossing of a thick line
(dW=d ) with a thin line (�dVð � �Þ=d ) (shown for � ¼ 3p=4). The dotted thick
line is drawn for the short-range model, i.e. without taking into account the long-
range interaction of dislocation loops. The solid thick line shows that these effects
lead to the steep fall for the actual W0.
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Differentiating Ha over � �’’, that is over � along the branch, we obtain the
contribution Fa of a given impurity to the total pinning force fpin. It depends on
the instantaneous value of � and on the branch a ¼ 1, 2 being currently occupied:

Fað�Þ

2p
¼

dH
d�

¼ �
@V
@�

¼
@W
@ 

����
 ¼ að�Þ

: ð97Þ

Thus Fa is positive/negative for ascending/descending branches, see figure 17.
In equation (254) and henceforth, we normalize the force in an invariant way, as the
work performed by displacing over one elementary period, 2p, in our case of density
waves.

Figure 17 and figures 19 and 20 illustrate a typical and more complicated cases.
The whole interval of � or some parts of it can be either monostable or bistable; the
last case corresponds to the coexistence of two locally stable branches: the absolutely
stable one with the lower energy E1 and the metastable one of a higher energy E2. The
same pair of branches can be regrouped also as the ascending branch Eþ for which
Fþð�Þ > 0 and the descending one E� with F�ð�Þ < 0; they correspond to the retarded
and the advanced states at the impurity, respectively. Clearly, E1 ¼ minfEþ,E�g and
E2 ¼ maxfEþ,E�g. There is a symmetry E�ð�Þ ¼ Eþð2p� �Þ so that these branches
cross at � ¼ p,  ðpÞ < p; also EBð�Þ ¼ EBð2p� �Þ. In the following we shall assume
a certain sign of the overall displacement or its velocity, such that branches evolve
towards increasing � and consider only the important semi-interval p < � < 2p; here
Eþ 	 E2 and E� 	 E1.

Notice that the barrier branch has appeared via its absolute energy E3. But the
necessary quantity is its increment U with respect to the metastable branch E2 which
gives the activation energy for its decay:

Uð�Þ ¼ E3ð�Þ � E2ð�Þ: ð98Þ

This quantity corresponds to the barrier height definition EB in the collective
pinning.

E

E E

E

E3

E
~

2E
s

H

θθm 3π2ππ

Figure 19. The complete structure of energy branches (thick lines) for pinning centres of
highest strengths V>V2. Uppermost (thin) lines show the barrier energies. Contrary
to the case of figure 20, all branches pass continuously through the whole period.
Notice the point �m where the activation U is minimal. Half of the second circle,
� > 2p, is also shown. Here, the branches Eþ ,E� are identical to those at 0 < � < 2p,
assuming that the system is totally relaxed. The actual adiabatic continuation of the
branch Eþ is ~EEþ which differs by the presence of two solitons at infinite separation
which have been created over the previous circle of the branch Eþ . The details of the
cross-over between Eþ and E� (dashed circle in the figure) are given in figure 24.
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For strong-pinning centres of unrestricted metastability, the two locally stable
states coexist over the whole period, hence Uð�Þ 6¼ 0. Typical models show that Uð�Þ
is largest at � ¼ p and around 2p (while not exactly at 2p because of special effects
of long-range interactions, see Section 9.1 below). Then there must be a minimum of
the activation at some � ¼ �m given by minUð�Þ ¼ Uð�mÞ ¼ Um (see figure 19) which
plays an important role.

For moderate-pinning centres of the restricted metastability, the coexistence
resides over some intervals around p and 2p: p < � < �e and ~��e < � < 2p. At the
end points �e (or ~��e) the metastable states terminate or branch out of barriers; here
the second derivative is zero:

�e,  e ¼  ð�eÞ :
@H
@ 

¼ 0
@2H
@ 2

¼ 0 ; U � Veð�e � �Þ
3=2: ð99Þ

(see Appendix C). The points �e, ~��e appear by splitting off from � ¼ p, 2p at some
V > V1,V > ~VV1. For the short-range model (see below) V1 ¼ ~VV1.

The points �e, ~��e coalesce and then disappear at some higher V ¼ V2 > V1, ~VV1

(figure 19) which gives rise to the point �m at V > V2 as described above. The
full description for V > V2 requires a detailed study of dislocations generated near
the full period � � 2p. We shall postpone the analysis of all special effects related to
diverging dislocation loops or solitons till Section 9.

Altogether our qualitative arguments lead to the structure of energy branches
shown in figures 19 and 20. There may be a more complicated picture of termination
points for fewer local pinning centres, e.g. figure 24, and even a more complex
hierarchy for the collective pinning regime. At present, this feature of the energy
landscape remains beyond the scaling theory of collective pinning.

7.2. Models
The above analysis exploited only the most general properties of the variational

energy H: the periodicity of the pinning component Vð � �Þ, the monotonous
energy of deformations Wð Þ with the minimum at  ¼ 0, the maximum at  ¼ 2p

π 2πeθ eθ~

H

θ

Figure 20. The complete structure of energy branches Eað�Þ for pinning centres of different
strengths: weak (V < V1, lowest thick curve) and intermediate (V1 < V < V2, other
thick curves). Uppermost (thin) lines show the barrier energies. For intermediate
strengths, notice the disconnected region of higher-energy branches around � ¼ 2p,
in addition to continuously accessible ones corresponding to figure 17. The termina-
tion points of the two regions ~��e and �e coalesce at V ¼ V2 giving rise to the structure
of the regime V > V2 shown in figure 19.
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and with the inflection point  m in between; and complemented by universal long-
range effects of distant dislocation loops (Section 9). Now we shall illustrate these
features on model examples.

7.2.1. Elastic model
This model takes into account the periodicity of the pinning potential but

neglects the topological character of plastic deformations derived from the same
lattice periodicity. As a model of metastable states it was already considered in [21].
For the bare pinning energy it is always natural to choose the point impurity pinning
potential Vð’Þ � Vð1� cos ’Þ. The deformational part Wð Þ is the energy for the
distribution ’ðxÞ optimized at the condition that ’ð0Þ ¼ �’’þ  and ’ð1Þ ¼ �’’. To
calculate this energy we consider a small sphere S of radius a0 around the position
of the impurity on which we assume the phase is ’ ¼  þ �’’. We have then to solve
the Poisson equation r2’ ¼ 0 with the boundary conditions on the collective pinning
domain D far away from the impurity (LD � a0) and on S. The solution and the
energy are, in d ¼ 3,

�ðxÞ � ���þ
a0 

jx� xij
, Wð Þ ¼ 2pa0C 2, � 	

V
4pa0C

: ð100Þ

Depending on the relative impurity strength there is only one (� < 1) or more (� > 1)
solutions of equation (95) for the energy branches

dH=d ¼ 0 , � sinð � �Þ þ  ¼ 0:

The condition � ¼ 1 identifies V1 	 4pa0C and the results of the above general
treatment follow correspondingly, except for the region V > V2. The latter requires
that the periodicity be fully taken into account: W 2 does not show the inflection
point  m.

Detailed calculations for this model can be found in [124].

7.2.2. Solitons in quasi-one-dimensional system: the short-range model
We consider a quasi-one-dimensional system of interacting CDW chains with an

impurity at the chain n ¼ 0 at the position x ¼ 0; the Hamiltonian is

H ¼

Z
dx

X
n

1

2
Ckðrk’nÞ

2
�
X
m

C?
mn cosð’n � ’mÞ

" #
� V cosð’0 � �Þ�ðxÞ

( )
: ð101Þ

Here the first term in square brackets is the on-chain elasticity and the second term
is the interchain coupling which is reduced to the shear elasticity � C?ðr?’Þ

2 when
perturbations are small, C? ¼

P
m C?

mn. The 2p periodicity of the pinning energy
allows us to skip the 2p quanta in ’0 to optimize the total energy which can already
cause local metastable states as we have discussed above. Moreover, the 2p
periodicity of the regular energy in (101) allows for topological defects, the solitons.
For the soliton centred at the position X at the chain n ¼ 0, the phase profile
’sðx�XÞ describes stretching/dilatation by one period along the chain n ¼ 0 relative
to surrounding chains; see figure 21. It is distributed over the length ls �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ck=C?

p
and costs energy Es �

ffiffiffiffiffiffiffiffiffiffiffiffi
CkC?

p
; the last defines their equilibrium concentration

ns � expð�Es=TÞ.
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While single solitons can be created only by phase slips, their pairs are non-
topological configurations which can be continuously developed by driving �. Hence
we are looking for extremal values of (101) with trivial boundary conditions
’ð1Þ ¼ 0. They can be visualized (see figure 16) as a combination of two pieces
of 2p solitons at positions X: ’sð�XÞ � ’sðXÞ ¼  from which one concludes the
relation X ¼ Xð Þ. We can specify the shapes ’sðxÞ within a short-range model [32]
suggesting that in (101) only the central chain n ¼ 0 (passing through the impurity)
is perturbed while its Z � 1 neighbours stay at ’n6¼0 	 �’’ homogeneously. Then the
energy functional is simplified toZ

dx
1

2
Ckð’

0Þ
2
� C? cosð’Þ

� �
� V cosð’� �Þ�ðxÞ: ð102Þ

Its extremum is the function ’sðx�XÞ � ’sðxþXÞ where ’sðxÞ is the standard
saddle point solution for the Sine–Gordon soliton. The sequence of plots of ’(x)
for different � is shown in figure 16. The energy is Wð Þ ¼ Esð1� cosð =2ÞÞ; in
accordance with our general expectations, over one period Wð Þ changes mono-
tonically within 0 ¼ Wð0Þ � Wð Þ � Wð2pÞ ¼ 2Es, Wð Þ �  2 at  ! 0. Now we
can identify the threshold values as V1 ¼ Es=4, V2 ¼ Es=2,  m ¼ p=2. Typical
solutions of equation (95) for this model are shown in figure 22.

The short-range model (265) already contains the most important features
necessary in applications of local pinning. It fails only for high-velocity regimes of
very strong impurities when the two well-formed solitons diverge at X ! 1.
In this regime their interaction with each other and with the impurity penetrates
very efficiently, as a power law, via the elastic deformations of the whole media.
For the short-range model, where the surrounding chains n0 are frozen, the per-
turbations fall off exponentially as expð�X=lsÞ which gives incorrectly the analytic
phase dependence of the energy Wð Þ � 2Es � Esð � 2pÞ2 at  ! 2p. In contrast,
the true power law for long-range elastic interactions results (for d ¼ 3)
in Wð Þ � 2Es � Esð � 2pÞ3=2 which leads to particular instabilities. This effect
relies’upon the view of solitons as nucleus dislocation loops, and we postpone its
analysis till Section 9.1 which collects all information on special contributions of
dislocations.

8. Kinetics and relaxation, vv� f characteristics
The results of the previous section provide the basis for the picture of local or

strong pinning. In this section, we shall apply this picture of local metastable states
to kinetics, and finally we shall describe nonlinear v � f characteristics and the linear
response function �(!).

xi

soliton
adjustment

DW sliding

0

2π

xs

Figure 21. Extinction of a point impurity pinning in the presence of the 2p-soliton. The
phase profile ’ðx� xsÞ can be adapted (the vertical arrow) to the phase mismatch at
the impurity position xs by the adjustment (the horizontal arrow) of the soliton
position xs.
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Before going on, it is appropriate here to rectify our definition of local or strong
pinning. When these notions were introduced [21, 23], the strong-pinning case
implied primarily that the local adaptation of the elastic media follows closely
the minimum of the impurity pinning potential. Our definition complies with this
tradition but generalizes it to the multivalued case when the minimum is allowed also
to be the metastable one. But at the same time we disagree with the rather common
view that for the strong pinning the correlation volume is of the order of that per
impurity. At least for d > 2, we see that however strong the impurity potential is, the
deformation falls off with distance as a power law. For d > 4 the perturbation would
be levelled out completely while for d ¼ 3 it will contribute to long-range fluctuation
of the collective pinning for which there is no difference with respect to the impurity
strength. The next ambiguity is to identify the strong pinning via the linear
dependence of the critical field fc on the impurity concentration ni. This definition
is also traced back to the old epoch when the importance of time-scales was not yet
appreciated. Today it is clear that, because of limited heights of potential barriers,
the local or strong pinning describes relatively high velocities or frequencies, or
respectively, low temperatures, where its contribution is indeed linear in ni.

8.1. Kinetic equation
We consider now the kinetics in an ensemble of impurities possessing local

metastable states. With the exception of particular regimes of strongly divergent
dislocations, these states are formed locally, at a distance shorter than the mean
impurity spacing Li which, in turn, is much smaller than the pinning length Lp.
Hence we can define a reference phase for a volume D staying well within the
collective pinning correlation volume LD

p but still extending over the large number of
impurities:

�’’ðx, tÞ ¼ D�1

Z
D

dx’ðx, tÞ ; LD
i � D � LD

p :

Here we can neglect the dependence on x, so that �’’ � �’’ðtÞ. For the same reason
we can neglect the direct contribution � fa0 of the driving force to the energies Ea.
Moreover, we can separate the local pinning force fpin from impurities and the
regular viscosity fvisc � v=g coming from the phenomenological damping (39):
f ¼ fvisc þ fpin. Here the time delay related to viscosity �t � a20=gC is small compared

Ψ

θ

Figure 22. Solutions  að�Þ for the short-range model shown for V1 < V < V2. They
correspond to the plots of figure 20. The double period for �2p <  < 2p allows us
to see both retarded (medium lines) and advanced (thick lines) configurations; thin
lines correspond to barriers.
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to v�1. For the collective pinning this problem is more complicated because the
microscopic scale a0 is enlarged to an intermediate one Lp (see equation (65) and the
related text afterwards). In the following we shall speak only about the pinning part
fpin of f implying that fvisc can be added at the end. Actually even that is not
necessary: we shall see below that the linear damping � v is generated by the pinning
itself which result is confirmed by experiments, see Section 13.

As in statics, each impurity can be characterized by the positionally random
phase �i ¼ �Q:xi � �’’ðtÞ which now evolves in time following the moving reference
phase �’’ðtÞ. The single monitoring parameter � describes both the time evolution and
the distribution over impurity positions; the average over randomness, h. . .iR,
becomes

h. . .iR !

Z
d�
2p
:

For each bistable impurity (see Section 7 and figures 17, 19 and 20), the state
occupies instantaneously one of the two branches ‘’ with energies Eð�Þ: ascending
Fþ > 0 and descending F� < 0 where F ¼ 2p@E=@� are the local pinning forces.
The upper and lower energy branches are E2 ¼ maxfE�,Eþg and E1 ¼ minfE�,Eþg.
There is also the barrier branch E3ð�Þ, E3 � E2 � E1. The branches E3, E2 can
terminate at points �e, 2p� �e, where both the upper metastable branch E2 and the
barrier E3 split out: E3 ¼ E2 at �e, hence at �e there is no activation energy,
U ¼ E3 � E2 ! 0 at �! �e, for the decay of the metastable state E2 to the stable
one E1. The barrier activation disappears at �e as U � Veð�e � �Þ

� with � ¼ 3=2.
The branches cross at � ¼ p and we neglect the repulsion between E1 and E2 due to
quantum tunnelling, see Section 10. In the course of the density wave motion
� ¼ �ðtÞ, the distribution of occupation numbers n ¼ fnþ, n�g for branches 

n ¼
1

2
ð1� nÞ ; n ¼ nð�, tÞ ð103Þ

obeys the kinetic equations (see more in Appendix D)

dn
dt

¼
neq � n


;
d
dt

¼
@

@t
þ _��

@

@�
_�� ¼

d�
dt

¼ v ; neq ¼ tanh
�E
2T

, �E ¼Eþ � E� ð104Þ

where neq is the value of n in thermal equilibrium.
Here and mostly below, we imply an internal relaxation which is due to passing

over the local barriers. Its rate ð�Þ does not depend on the velocity _�� but is an
essential function of the position �:  � 0 expðU=TÞ where U ¼ Uð�Þ and �1

0 is the
attempt rate. Later, in Section 9, we shall discuss also the external relaxation which
is due to the mean free path of diverging pairs of dislocation loops or solitons.

Finally, the pinning force averaged over both the sliding period and the initial
conditions is given as

f ¼ ni
Z 2p

0

d�
2p

Fþnþ þ F�n½ 


¼ ni
Z 2p

0

d�
n
2

d
d�
�E

¼
ni
2

�En½ 

�right
�left

�
ni
2

Z �right

�left

d��E
dn
d�

ð105Þ
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where �left, �right ¼ 2p� �e, �e are the bistability limits. In the last form of f, the first
term ni�Ej�max

¼ fmax gives the energy dissipation by the ultimate falling from the
termination point, while the second term erases this value fmax due to occasions of
earlier fallings down which are more frequent at lower v.

8.2. Stationary motion
Consider the stationary process when the density wave moves with a constant

phase velocity v ¼ � _�’’�’’ ¼ _�� ¼ const:; then @n=@t ¼ 0. The solution of the kinetic
equation (104) is trivial, see equations (140) and (141) in Appendix D, being even
simpler at low T � �Eð�Þ: for �Eð�Þ � T, the pinning force can be written as a
weighted distribution of instantaneous forces:

f ¼ ni
Z �max

p
d�Fð�Þ exp �

Z �

p

d�1
vð�1Þ

� �
,

F
2p

¼
d
d�

�E
2

¼
Fþ � F�

2
ð106Þ

or of energies �E dissipated via falling from the metastable to stable branches:

f ¼ fmax exp �

Z �max

p

d�1
vð�1Þ

� �

� 2pni
Z �max

p

d�
vð�Þ

�Eð�Þ exp �

Z �

p

d�1
vð�1Þ

� �
,

fmax ¼ 2pni�Eð�maxÞ: ð107Þ

Here fmax is the largest value of the pinning force to which it saturates at high v;
�max ¼ �e, 2p (depending on the impurity strength) is the most distant point reach-
able by the metastable branch.

Equations (106) and (107) are suitable for calculations at small and large
velocities, respectively. After simple calculations presented in Appendix D, we arrive
at the results shown schematically at the v � f plot of figure 23.

1. Small velocities v � �1
p : where p ¼ ðpÞ � expðUp=TÞ, Up ¼ UðpÞ is the

maximal relaxation time in the region of the branch crossing point � ¼ p.
The main contribution comes from the close vicinity of p: � � pþ �� where
�� � vð�Þ. We can distinguish between two subregimes:

1a. Very small velocities v � vp ¼ ðT=FpÞ
�1
p � �1

p , Fp ¼ FðpÞ: The decay
happens as soon as the branch becomes metastable in the vicinity of p, even
before the � dependence of  is seen. The life-time interval is �� � vp, hence
the law (106) yields

f ¼ pnivp
d�E
d�

����
p
¼ nivFpp ð108Þ

which emulates the phenomenological viscosity. This is the regime of the
linear collective conductivity � ¼ v=f ¼ const. It shows an activated
behaviour via �1

p which can emulate the normal conductivity.
1b. Moderately small velocities vp � v � �1

p : Deviations �� are still localized
around p but they may already be large enough to see the decrease of the
barrier height: U � Up � Fp��=2p ,  ¼ p exp½���Fp=ð2pTÞ
 , Fp=T � 1.
We have exploited the fact that the branch Ebð�Þ has a minimum at p so
that the linear dispersion of Uð�Þ is given by dE2ð�Þ=d� ¼ Fp. The condition
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vð�Þ � �� is fulfilled at ��Fp=T � ln½vp
 and finally the dependence f (v) or
v( f ) become

f � niT ln½vp
 ; v � �1
p expð f =niTÞ:

Convenient interpolation formulas for cases 1a,b are

f � 2pTni ln 1þ v
pFp

2pT

� �
; v ¼

2pT
pFp

exp
f

2pTni
� 1

� �

but the integral representation (147) is more precise.
The physics of the f � v regime is given by the high probability to stay on the

metastable branch during a small displacement �� � pv. The physics of the f � ln v
regime is that at higher v a wider region of �� is explored and the metastable branch
starts to feel the decrease of the barrier (far ahead there is either the termination
point �e or the minimal barrier point �m, even if unreachable yet at these moderate v).

2a. High velocities v � p
�1: restricted metastability V1 < V < V2: At higher

velocities, vp � 1, the points distant from � ¼ p can be explored, and
especially � � �e becomes important. The motion along the branch Eþ starts
to reach the close vicinity of �e at high enough ve � v � vp where, see (149),

ve ¼
T
Ve

� �1=�
1

0
; � ¼

3

2
; Ve ¼ const: ð109Þ

and the coefficient Ve was defined in (132). Within the limits ve � v � vp,
the diminishing barrierU � Veð��Þ

3=2 still remains atU � T so that the decay
of the metastable branch Eþ is still activated. Finally we obtain from (107)

f ¼ fmax � CeniFe
T
Ve

ln
ve
v

� �1=�

; v � ve exp �
Ve

T
fmax � f
CeniFe

� ��� �
; Ce � 1: ð110Þ

Realistically, this regime can be found only at very low T: the cross-over
velocity ve must drop well below the microscopically high values of the
attempt rate �1

0 .

v

vln

f

v

−1

v−(ln   )fm
2/31 fm−v

T

v

fc

fm

Figure 23. Schematic plot of the f(v) dependence showing several regimes of relaxation, see
Section 8 for explanations; here for brevity fmax ! fm. The zoomed vicinity of small
v ¼ 0 and f � fc should recover the collective pinning sliding regime with an opposite
curvature of f(v) and finally, at very small v of the collective creep regime, the
curvature will change once again (according to figure 7). Note that the viscous force
is not included in this figure; it would simply give an inclination to the dashed line of
the asymptotic regime.
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2b. High velocities vp � 1: unrestricted metastability V > V2. For very strong
impurities the metastability is maintained over the whole period. Both the
metastable branches and the barrier branch stretch over all � and T 6¼ 0
everywhere. The important role is played now by the point �m where the
barrier activation is minimal: minU ¼ Uð�mÞ ¼ Um. It gives rise to the
minimal (over the whole branch) relaxation time m � expðUm=TÞ, see
figure 19. In the vicinity of �m we can write Uð�Þ ¼ Umð1þ ð� � �mÞ

2B=2Þ,
B � 1. There are two different regimes described below.

3a. High-velocity range v � vm ¼ �1
m ¼ maxf�1g: Now the 1=v expansion works

in (107) and we find from (150)

f ¼ f max � const:
ni
vm

ffiffiffiffiffiffiffiffiffiffi
T

BUm

r
ð�Eð2pÞ ��Eð�mÞÞ, f max ¼ 2pni�Eð2pÞ: ð111Þ

The asymptotic force f max is the energy to create the pair of dislocation loops
(solitons); it is determined only by the final point � ¼ 2p. It is approached
by the law f � f max � �1=v which recalls, at first sight, the collective pinning
corrections for high velocity, but the sign is opposite!

3b. Moderately high velocities vm � v � �1
p : Now v is high enough to reach the

point �m, but not that high yet as to bypass it easily—still vm � 1, hence the
point �m will provide the major relaxation. These effects will be particularly
pronounced near the threshold V2 when Um, and consequently m, become
much smaller with respect to their typical values over the branch. We can
easily obtain (up to numerical coefficients)

f ¼ 2pni �Eð�mÞ þ ð�Eð2pÞ ��Eð�mÞÞP
� �

, P � exp �

ffiffiffiffiffiffiffiffiffiffi
T

BUm

r
1

vm

 !
:

This formula tells us that the main force is provided by the part of the branch
between 0 and �m or, equivalently, by the energy released from the relaxation at �m—
similar to termination points for case 1b. The second contribution � P comes from
the remaining part of the branch, between �m and 2p, but the penetration probability
P to this part through the ‘hot point’ �m is exponentially small in 1=v. Nevertheless
this small probability is responsible for the irreversibility and memory effects. Indeed
P is the probability to create dislocation loops (solitons) which are long-lived plastic
deformations.

Summary: The most important cases of these regimes are shown in figure 23 and
will be discussed again in comparison to experiments in Section 13. We have skipped
from consideration the most limiting cases: highest v for strongest U will be
considered in Section 9 devoted to the effects of dislocations; lowest v (the law vT

in figure 23) will be considered in Section 11 devoted to the ensemble averaging.

8.3. Linear response
The standard response function � ¼ � �’’=�f is measured in CDWs as the dielectric

susceptibility " � �. Within the collective pinning picture it can be found with the
help of the same kinetic equation as described in Appendix D. Here we shall follow
a more intuitive and transparent approach first considered in [33]. Consider the
reaction of local bistable states to a weak perturbation for low ! or at large t. In
equilibrium, the impurities occupy the lowest branch E1 (for a moment we neglect
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the effects of the thermal population). For small variations �� the main contribution
comes from the degeneracy point � ¼ p where the two stable branches cross each
other. Impose a small homogeneous shift of the relative impurity positions �� at
t� 0. In the whole ensemble of impurities, these become metastable, which have been
occupying the interval of stable positions p� �� < � < p while the stable positions
at p < � < pþ �� become empty, as shown in figure 17. The subsequent evolution
follows the relaxation towards thermal equilibrium. The imbalance of forces gives
rise to the inverse response ��1. Going from the real time �ðtÞ to the Fourier
representation �! we find

�f ðtÞ ¼ ��niFp expð�t=pÞ, �! ¼
��

i!
, ��1

! ¼
�f!
��!

¼
2niFp

1þ 1=i!p
: ð112Þ

At high !� �1
p , �! saturates at its maximal, real value, max� � niFpð Þ

�1. The
small ! limit of �ð!Þ corresponds completely to the small-velocity limit of the v � f
law (146). At !p � 1, the system reaches thermal equilibrium and ��1

! disappears
� i! giving only a contribution niFpp to the damping parameter g�1 in full
agreement with the f � v results.

9. Generation of dislocations at high velocities

Until now we have exploited mostly the general properties of metastable
branches: the existence of points of level degeneracy �E ¼ 0, of the barrier
termination U ¼ 0 or of its minimum. Topological defects were implied to exist in
the background providing peculiar reasons for the metastability. Quantitative results
were derived for a general position of � when dislocation loops have not yet emerged
as distinct (and distant) entities. A more elaborate analysis is required near the final
point 2p of unrestrictedly metastable branches accessible at high v. Here the
metastable configurations are formed explicitly by divergent pairs of solitons, more
generally dislocation loops, centred around X—see figures 15 and 16. Their
interaction will modify both the structure of energy branches and the related
kinetics.

First of all, we add here a few technical notes necessary to work with
dislocations. For details see [42, 100, 101] in general and [103, 105, 106] especially
for CDWs.6 In CDWs particularly, dislocations have all the properties of conven-
tional vortices in planar magnets or superfluids (with an exception for a special
conservation law for the total area embraced by the loops which distinguishes the
climb from the glide). Even more pragmatically, we can invoke the common wisdom
of magnetostatics considering dislocations as currents, the strain as the magnetic
field r’, H and the stress as the induction Cr’, B. The signs are however
different: antiparallel dislocation lines (dislocation lines with opposite polarities)
attract each other. For our typical case of dislocation loops lying within the plane
ðy, zÞ, i.e. perpendicular to the sliding axis x, we arrive at the following prescriptions.
In the inhomogeneous field ’ðxÞ created by other sources, e.g. another dislocation
loop or the impurity, the glide force in the x direction applied to unit length of the
dislocation loop is � Cr?’. The energy per unit area of the dislocation loop is

6 For more complicated techniques of working with ensembles of dislocations see [125].
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� C@x’. The dislocation loop self-energy has the standard vortex form: at large R,
EDLðRÞ � CR lnðR=a0Þ in d ¼ 3 or lnðR=a0Þ in d ¼ 2, respectively. At the minimal
R � a0 the dislocation loop is interpreted as the nucleus dislocation loop embracing
just one chain—the soliton, EDLðRÞ ! Es. The phase distortion by the dislocation
loop itself at a given point is half of the steric angle �3=2 (the angle �2 in d ¼ 2) at
which one views the dislocation loop from this point. This angle evolves from 0 to 2p
along the path crossing the dislocation loop; these asymptotic values are approached
as ��d � ðR=XÞ

d�1.

9.1. Effects of dislocations upon metastable states
Consider firstly the long-range instabilities near  , � ¼ 2p corresponding to the

divergent pair of solitons. From large distances, the dislocation loops interact with
each other and with the impurity via long-range elastic forces. By definition, the
presence of dislocation loops at points X displaces the phase in between, at x ¼ 0,
by 2p with a deficiency �� ¼ 2p�  ð0Þ. The latter is given by the sum of (steric)
angles �d � ðR=XÞ

d�1 (at large X /R) of their view from the point x ¼ 0; see
figure 15. The energy W is equal to the energy of two dislocation loops 2EDLðRÞ,
also taking into account their mutual interaction at finite X. The attractive potential
�W of the loops is given by the longitudinal stress C@x’ � �ðC=RÞðR=2XÞ

d produced
by one loop over the area � Rd�1 of another one at the distance 2X:
�W � �CRd�2ðR=2XÞ

d. Finally, we exclude X in favour of  to arrive at

� � �ðR=XÞ
d�1 , �Wð ðXÞÞ � �CRd�2ðR=2XÞ

d
� �CRd�2ð�� Þd=ðd�1Þ: ð113Þ

We notice that, while the force disappears as W0 � ð�� Þ1=ðd�1Þ
! 0, its derivative

diverges W00 ! 1 giving rise to the branch instability. Namely, even for arbitrarily
large V � W we shall meet the conditionW00 ¼ �V00, hence there is always a solution
of the last equation in (99) at some  �

e < 2p.7 A more elaborate analysis given in
Appendix C shows that this value of  is reached at � ¼ ��e > 2p, which is already in
the next circle of the mean sliding. According to the first relation in equation (113),
there is a distance between dislocation loops Xe associated to the phase deficiency
 e � 2p. We see that instead of diverging (X ! 1 which requires for  ! 2p) at the
end of the period �! 2p, the pair of dislocation loops loses its stability at some
critical distance X�

e corresponding to  �
e < 2p of the branch E�

þ. Then it falls to the
higher distance X�

e )
~XXe corresponding to ~  e > 2p of the branch ~EEþ, and continues

the new circle along this branch. As a result, the region encircled by the dashed line
in figure 19 acquires the structure shown in the magnified picture of figure 24. We
shall call ��e the overshooting termination point of the overshooting part E�

þ of the
branch Eþ penetrating into the next period � > 2p. The appearance of new
termination points brinks some similarity to the vicinity of the p point at V0V1.

The possibility of relaxation of E�
þ to ~EEþ is not unique. In principle, there is

always an option to fall down directly to the lowest branch Eþ (the same � but  
being close to 0 rather than to 2p), thus releasing the energy � 2Es. But it requires
the annihilation of the distant pair of dislocation loops which involves a large barrier
both in energy and configuration. There is one more option: to fall to a descending

7 In CDW materials there are also long-range Coulomb forces which are not screened at low T.

They affect drastically the energetics of dislocations [105, 106] which leads to an even more singular law

Wð Þ � 2Es � Esj � 2pj.
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branch E� close, in energy (see figure 24). But this is the strongly advanced branch
(all descending branches are advanced configurations) corresponding to the pair of
dislocation loops with opposite polarities, so that this transition would require to
switch phases from � 2p to � �2p along the whole interval ð�X,XÞ which is hardly
possible.

9.2. Kinetic effects of diverging dislocation loops
The complete kinetics of these states is complicated for several reasons: one of

them is the larger number of branches involved. A simplification comes from the
high-velocity condition to reach this regime: v � 1=ð�Þ at all �. Here  is the
relaxation time for dropping from the term Eþ to E� which we always kept in mind
before. Neglecting this basic relaxation in the small vicinity of 2p, we can concentrate
on the short relaxation time � �  to fall from E�

þ to ~EEþ. Now on top of the law
f � fmax � �niF=v (case 3a of Section 8.2) we shall see the sequence of regimes
similar to 1a, 1b, 2a (also from Section 8.2) for the case of restricted bistability, but
with much smaller � instead of . This new contribution to f(v) falls off slower
(hence finally winning) than � 1=v but its emergence is delayed because the force is
reduced to the smaller value F�, as given by the inclination of the overshooting
branch E�

þ (see figure 24). We shall notice traces of this regime in applications to
CDWs in Section 13.

Actually, the relaxation time approach may not be applicable any more. For
well-separated solitons, the extrinsic mechanisms of relaxation enter the game:
annihilation of solitons and antisolitons produced by neighbouring pinning centres
along the chain, aggregation of solitons into growing dislocation loops, and
disappearance via phase slips. Now the final rate is determined by the soliton
distance X in comparison to its collision mean free path � rather than by the time in
comparison to  as it was for intrinsic processes. Phenomenologically, � is included
in the starting kinetic equation by the following substitution which is noticeably
different from (104):

@

@�
!

@

@�
þ

1

�

dXð ð�ÞÞ

d�
,

*
~

~
e

E

E

E

~
E

3E*

E*++

+

-

+

π 2π θ θ

H

Figure 24. Special effects near the cross-over between two successive periods which are
caused by interactions of distant dislocation loops. E�

þ is the overshooting part of the
branch Eþ . The branch ~EEþ differs from the lowest branch Eþ by the presence of two
solitons at 1.
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where Xð Þ is the distance associated to the retardation  ð�Þ taken along the term
Eþ. It results in the following modification of equations (106) and (107), as well as of
(141):

s ¼
Z �

p

d�
vð�1Þ

) s ¼
Z

d�
�

dX
d�

¼
Xð�Þ

�
: ð114Þ

Recall now (see equation (113) and the text above it) that the diverging dislocation
loops of radius R leave in between the phase retardation approaching 2p as (at
d ¼ 3) � ¼  ðXÞ � 2p � �R2=X2; and the same long-range elastic deformations
provide their attraction with the potential � �CR4=X3. Well before the over-
shooting instability develops, that is at �� < 0, we have (see Appendix C, paragraph
5) � � �� as it should be for a very strong impurity. Then
�H ¼ H� 2Es � �Esð���Þ

3=2, hence F � Esð���Þ
1=2, and we arrive at

X �
Rffiffiffiffiffiffiffiffi
���

p ; s �
R

�
ffiffiffiffiffiffiffiffi
���

p :

The condition s � 1 in (114) defines the characteristic �� � R=� and finally we obtain
the force correction

�fmax ¼ �ni
Z

2F
��

2p
� �niEsð���Þ

3=2
� �niEs

R
�

� �3=2

: ð115Þ

The last formula relates the high v asymptotics of the pinning force and the mean
free path � of dislocation loops.

10. Quantum effects

The strong-pinning picture also gives an access to quantum effects which become
important at very low temperatures, when the thermal activation is not efficient.
The quantum creep has become the subject of experimental studies since [126] which
work has attracted substantial theoretical attention; see, e.g. [127–129]. The existing
schemes concentrate upon the quantum nucleation of CDW advances in regions free
from impurities. But this approach cannot tell us how the pinning is released and the
motion as a whole is initiated. For this goal, it is necessary to consider the quantum
decay of metastable states at the pinning centres.

Phenomenologically, the dynamics is introduced via the kinetic energy (I=2Þ _  2

with I being the ‘moment of inertia’ associated with the ‘angle’  . Typically, I � !�2
0

where !0 is a microscopic scale for the frequency of local quantum vibrations;
usually it is associated with the attempt frequency !0 � �1

0 . Then the quantum
Hamiltonian is

ĤH ¼ ĤHð , �Þ ¼ P2
 =2IþHð , �Þ ; P ¼ �i�hh@=@ 

where P is the momentum conjugated to  and �ðtÞ is considered as the time-
dependent parameter. The quantum interference is efficient only near the branch
crossing point � ¼ p. Then the degeneracy will be lifted by splitting the levels E1 and
E2 which opens the quantum gap �q between them as shown in figure 25. Within the
normal dynamics of equation (299), the gap is �q � expð�const:

ffiffiffiffiffiffiffi
IU

p
=�hhÞ. But the
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emittance of phase phonons to the bath will have a pronounced dissipative effect
upon the tunnelling as we shall describe later.

Working within the normal dynamics, we arrive at the standard Landau–Zener
problem of tunnelling due to slow time-dependence of the Hamiltonian (via �ðtÞ in
our case). The standard notion is that if v, ! are negligibly small, then the system
will follow adiabatically the exact quantum branch of the lowest energy Eq

1 which is
a mixture of classical branches E1, 2:

Eq
1 � E2 þ E1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � E1ð Þ

2
þ�2q

q
ð116Þ

and the average force is zero within an exponential accuracy. Namely, at low v � �q
the force will be determined by the small probability of the non-adiabatic transition
to the upper metastable branch E2:

f � exp �
1

vq

� �
;
�hh

q
¼ �q:

Conversely, the tunnelling between bare branches E1, 2 is suppressed for large velo-
cities or frequencies of �ðtÞ (v,!� �q), and the average force is given by the classical
picture we have described above in terms of the thermal relaxation time. In kinetics,
the effects of quantum and thermal fluctuations seem to be similar and in our
simplified picture the inverse times are additive �1 ¼ �1

p þ �1
q .

The phenomenologically introduced inertial dynamics of equation (299) may not
be valid. Actually, the dynamics of the variable  becomes retarded and dissipative
because of the non-local contribution from the whole field ’ðx, tÞ. Its action (on the
imaginary time axis) is given by

Sbulk½’ðx, tÞ
 ¼
C
2

Z Z
ddxdt u�2 @t’ð Þ

2
þðJ’Þ2

� �

where u is the phason velocity and C is the static elastic modulus. Now we can repeat
the prescription of Section 7.1 to integrate out ’ at all x 6¼ 0 keeping fixed the value
’ð0, tÞ ¼ ’ðtÞ ¼  þ �. In the Fourier representation we have

low v

high v

H

θ

Figure 25. Pinning extinction by quantum tunnelling between branches E. The gap �q
opens between classical branches E1 and E2 which were degenerate at � ¼ p (compare
to figure 17). Adiabatically, the system follows (the arc arrow) the lowest branch Eq

1,
thus giving the zero force in average over one period. Only non-adiabatic transitions
(the diagonal arrow) from Eq

1 to Eq
2 allow the system to reach the metastable branch

to gain a net pinning force.
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Skin½’ðtÞ
 ¼
1

2

X
!

K! ’!
�� ��2 , K! ¼ I!!2 ð117Þ

where I! is the frequency-dependent generalization of the constant I, while the kernel
K! is given by

C
K!

¼

Z
dk

ð2pÞd
1

k2 þ !2=u2
¼

Z
dk

ð2pÞd
1

k2
�

1

k2
�

1

k2 þ !2=u2

� �� �
: ð118Þ

Mainly we shall address the case d ¼ 3. Here we should use the second form in
equation (118) where the first term in brackets f g gives, after the regularization at
high k � a�1

0 , just the elastic contribution (100) we considered in Section 7.2; its scale
is K0 � Ca0. The second term, regular at high k and hence model independent,
gives the contribution � j!j=u and finally we obtain K! � Ca20j!j=u, while the
regular contribution � !2 appears only as the next order in perturbation. The form
(117) with K! � j!j is typical for dissipative quantum mechanics [130], which route
we shall follow below. In the time representation, the K! gives rise to the kinetic
action

Skin½’ðtÞ, t
 � �hh�

Z t

0

dt1dt2
’ðt1Þ � ’ðt1Þ

t1 � t2

� �2

, � ¼
Ca20
�hhu

� 1: ð119Þ

It is logarithmically divergent in the tunnelling time t if the tunnelling trajectory
acquires a final increment (between p and �p in our case). The total action can be
written schematically as

SðtÞ ¼ �hh� lnðt!uÞ þ
I
t
þUt , !u ¼

u
a0
:

Here we have included also the regular moment of inertia I for which there are
always some local sources. The tunnelling level splitting is �q � exp �Smin=�hhð Þ where
Smin ¼ min SðtÞ.

At intermediate 1 � � �
ffiffiffiffiffiffiffi
IU

p
=�hh, we arrive at the usual WKB result

Smin �
ffiffiffiffiffiffiffi
IU

p
, but with an essential pre-exponential suppression of tunnelling:

�q �
U
I!2

u

� ��=2

exp �const:

ffiffiffiffiffiffiffi
IU

p

�hh

� �
:

At higher � �
ffiffiffiffiffiffiffi
IU

p
=�hh, the tunnelling suppression is more drastic:

Smin � � ln
I!u

�hh�

� �
, �q �

I!u

�hh�

� ��

:

The last condition imposes the constraint upon the value of the pinning potential
which must be compatible with the metastability condition. For typical models we
find !0 � !u to be necessary.

In d ¼ 2, the first form of K�1
! in (118) should be used. Now the whole integral is

diverging at small k yielding a universal result. We obtain an even slower frequency
dependence K! � C= ln u=ja0!jð Þ, which is KðtÞ � 1=ðt ln2 tÞ instead of t�2 as in (119).
The logarithmic divergence is the same we have noticed for the static problem.
We see once again, recall Section 7.2, that for d ¼ 2 short- and long-range effects
cannot be separated, whatever they concern: the interference of the collective and the
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local pinning, or the local dynamics and the one related to emittance of sound to the
bulk.

Clearly, further studies are necessary. Already we can now understand quantum
creep as the tunnelling between retarded and advanced configurations at the moment
when they become almost degenerate. The process is strongly affected by emitting
sound excitations which drive it to be dissipative even at T ¼ 0.

11. Ensemble averaging of pinning forces

Above, in studies of both f � v and �, we have assumed the simple exponential
relaxation at identical pinning centres. In reality, there may be either a broad
distribution of impurity strengths or a tail in addition to the peak at the value for
a typical pinning centre. The effects of distributions can be important in applications
and they are particularly necessary to build a bridge to the collective pinning regime
where the broad distribution is the basic ingredient. We shall concentrate on the
most pronounced effects at lowest v and ! compatible with the local pinning picture.

For a distribution of barriers PUðUÞ, the distribution of  is
P ¼ PUdU=d ¼ PUT= and we shall consider two limiting cases. Firstly, the
model with the exponential distribution of barriers corresponds to microscopic
fluctuations of, e.g., the distance between the CDW chains and impurities:

PU � U�1
0 expð�U=U0Þ , P � ðT=U00Þð0=Þ

1þT=U0 : ð120Þ

Similar effects appear for Poisson and Gaussian distributions. Secondly, we can also
try the scaling distributions which appear intrinsically within the collective pinning
regime, now P � ð ln� Þ�1 where the index � > 1 (this condition is necessary for
convergence of the normalizing integral) depends on the dimension d and the critical
index �. Naturally, the distributions are normalizable, but we also notice that in
all’cases their first moment, which is the mean value of , is divergent:Z

dPðÞ ¼ 1 but h i ¼

Z
dPðÞ ¼ 1:

Recall now that the low !, v asymptotics for both ��1
! and f(v) are linear in 

(��1
! � ! and f ðvÞ � v) and then saturate or change to a slow growth at higher

cross-over values !, v � 1. Hence, their averages will be divergent within the � 
regime and saturate at the cross-overs. For example, for the response function (112)
we obtain

��1
! ¼

Z
dPðÞ

2niFp

1þ 1=i!
;

=��1
! � niFp!

1Pð!
�1
Þ � niFpPUðT ln ð!�1

ÞÞ: ð121Þ

Thus, the low ! tail of the imaginary part =��1
! gives direct access to the

distribution of potential barriers. A similar result is obtained for the real part <��1
!

which is given by the integral of 2, the second moment. The interpretation is that at
relatively low ! (still within the local pinning domain) or high T, only those long-
lived states contribute which are due to rear occasions of large impurity potentials,
hence large barriers U � T ln!�1. Then ��1 � PUðT ln 1=!Þ. For example, for the
exponential distribution (120) we find ��1

! � !T=U0 .
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The same procedure can be applied to the f � v dependence. The law (108) was
derived for a typical impurity. At the lowest v, we may still find some rare regions—
maybe clusters of host imperfections or particularly strong impurities—where
barriers U are high enough so that vðUÞ � 1 still holds, hence we are looking for
U � T ln v0=vð Þ and the pinning force is given just by their probability PðT lnðv0=vÞÞ.
For the exponential distribution we find that the ‘current–voltage’ characteristics
change from Ohm’s law f � v at low v to the nonlinear regime f � vT=U0 with a
diverging differential resistance at lowest v, as shown in figure 23.

For the scaling distribution of the collective pinning we obtain a very slow
decrease ��1

! � j ln!j�� and f � j ln vj��. These results are very encouraging since
they show the same functional forms as the formula (44) for the collective pinning
creep with � ¼ 1=� ¼ ð2� �Þ=� and the formula (59) with � ¼ 2=�. Actually there is
no discrepancy, even in powers, since equation (44) was already derived for periodic
media, where �¼ 0.

Certainly, the straightforward merging of results from collective and local
pinning theories is speculative and should be used only as a suggestion for more
rigorous studies. Nevertheless the observed unification of different (v( f ) and �ð!Þ)
and differently derived results of collective pinning theory on one hand, and the
essentially different view of local pinning theory on the other hand, looks quite
optimistic. We shall discuss some other aspects of this correspondence in the next
section.

12. Interference of local and collective pinnings

We have already seen that the simplified but explicit approach of local pinning
provides clear interpretations for hypotheses of collective pinning, particularly on
the origin of metastable states. At the same time, it raises challenges which have not
yet been met. For example, the following items of the above analysis are important
for the theory of the v � f dependencies:

1. A fraction of metastable branches terminates at the end points or relaxes fast
at minimal points. There are those points which determine f(v) at high enough
v but they are not accounted for in collective pinning theory.

2. A fraction of stronger metastable branches do not posses this instability which
at first sight allows for the large v perturbative approach of collective pinning
theories. But it results in the even more obscure effect of generating sequences
of dislocations or solitons. Now the v � f dependencies are determined by
competing processes: annihilation versus aggregation. These processes are not
yet accessible to existing theories except for the simple treatment of local
pinning which also needs to be further elaborated. Particularly demanding
are studies of aggregation and annihilation of dislocations, their own pinning,
etc.

Consider more closely some other aspects of interference of collective and local
pinning centres. Pragmatically, we shall concentrate on those which will be
important in studies of the response functions in applications to susceptibility of
density waves discussed in the next section. The problem is more fundamental, being
related to interference of different scales within the collective pinning picture. Here,
a great simplification comes from the clear separation of both length- and time-scales
between the local pinning and the collective pinning regimes. The slow evolution
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of the collective pinning allows us to consider it within a given distribution of local
metastable states. Then the collective pinning is described by the same Hamiltonian
(93) where the generic pinning potential Vð’ðxÞÞ is replaced by the local pinning
energy Vð’ðxÞÞ ) Eað’ðxÞ þQ:xiÞ. The collective pinning evolution will be described
by the same equation (39) where the generic random force is replaced by Fa ¼ E0

a:
within the phase language it reads

g�1@t’� CJ2’þ
X
i
Fað’ðxÞ þQxiÞ ¼ f :

Without local effects, the sum over impurities would correspond to the random force
density gðx, ’ðxÞÞ of equation (39). Here the major difference from the pure collective
pinning is that now F ¼ Fa is a two-valued function where the degree of freedom
a ¼  or a ¼ 1, 2 allows for thermodynamic or stochastic treatments, contrary to the
frozen disorder xi.

For the linear response, or for the motion with a small velocity, most of the
impurities are locally relaxed, and we shall neglect others for the moment. Then the
random potential becomes single valued, a ¼ 1 only, but its correlator R, defined
by equation (6), changes in comparison with the generic form R � cosð’Þ. To make
things simple, consider the limit of a very strong impurity potential V. Then the
lowest energy state is  ¼  1ð�Þ ¼ � � 2p�ð� � pÞ and the pinning energy becomes
Wð 1Þ which causes the discontinuous force. For example, for the short-range model
of Section 7.2.2 we have Vð�Þ ¼ Vð1� cos �Þ ) V�ð�Þ with

V�ð�Þ ¼ Wð 1ð�ÞÞ ¼ Es 1� sin
� � pj j

2

� �
, F ¼

Es

2
sin

�

2
sgnð� � pÞ:

Recall that these energies and forces already take into account the elastic adaptation,
so their correlator should be compared to the renormalized correlator of pinning
forces rather than with the bare one (61). We see that the force becomes
discontinuous at � ¼ p which property is more general than our particular choice
of the model. The bare smooth correlator (10) becomes singular, cusp-like, at ’ ¼ 0:

1 2 3 4 5 6

Figure 26. Comparison of the force correlators �ð’Þ 	 �R’’ð’Þ following from local and
collective pinning, respectively. The upper curve shows the force correlator of the
local pinning approach as given by equation (122). The lower curve shows the fixed-
point function ��ð’Þ � ð’� pÞ2 � p2=3 found from collective pinning [85, 86]. Note
that �ð’Þ is periodic: �ð’Þ ¼ �ð’þ 2pnÞ, n integer. The scales on the vertical axis
have been chosen differently for the two curves to allow for a better comparison.
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R ¼

Z 2p

0

d�
2p

V�ð�ÞV�ð� þ ’ÞÞ � cosð’Þ ) ’
�� ��� p
� �

cos
’

2
� 2 sin

j’j

2

Clearly it contains the non-analytic term � �j’j3 which causes the kink � �j’j in
the correlator of forces

R’’�ð’Þ �
1

4
p� j’jð Þ cos

’

2
� 2 sin

j’j

2

� �
: ð122Þ

We can already observe the apparent link to the cusp anomaly in the force–force
correlator discussed in Section 4.1 as a clue to the threshold pinning force. In this
way, the local pinning picture suggests a transparent view and straightforward
interpretation for one of the most important results of the collective pinning theory
obtained with the help of the FRG.

The bare kink in the random force correlator, originated by the local pinning
at L � Lp, provides the necessary boundary condition [85, 86] for the kink
formation, and hence the development of the threshold field, within the collective
pinning domain L � Lp. Also we can get an interpretation that the kink is formed
by choosing the lowest state every time when the retarded and advanced terms cross
each other changing their character from stable to metastable and vice versa.

As well as in the case of collective pinning, the cusp is rounded, if T 6¼ 0, for small
’; here it happens at �E ¼ Fp’ < T when both levels a ¼ 1, 2 become comparably
populated.

Consider now those pinning centres which are not in equilibrium; each of them
provides a point pinning force which is not random: it is directed against the applied
force f. These states are close to degeneracy, � ¼ ’ðxÞ þQ:xi � pþ ��, and their
fraction � ¼ ��=2p is small (as T=Fp for the linear response problem and as vp for
the slow sliding). Their concentration nne ¼ �ni ¼ L�d

ne determines the distance Lne

which is large in comparison to the mean distance between impurities. Still it can be
either larger or smaller than the pinning length Lp. If � is not too small, such that
Li � Lne � Lp, there are many non-equilibrium impurities within the pinning
volume, and their point forces add to the total restoring force floc of the local
pinning which we have been studying before. The collective pinning will react to the
difference f � ¼ f � floc developing its own reaction fcolð f �Þ. Then for the linear
responses to both forces, fb ¼ ��1

b ��, we find the additivity of the inverse suscep-
tibilities which will be an important element of applications (e.g. equation (123)).
In case of very low �, when Lp � Lne, we face the picture of very distant point
sources of non-random forces. The reaction of the pinned elastic media to the
isolated point force is not quite known and we can only guess that they will still
contribute additively to the average pinning force.

13. Some applications to density waves

Experimental observations on sliding charge and spin density waves are very
rich and clean; most general effects are very stable and observed similarly in different
materials [6, 7, 8]. At high enough T, the collective pinning picture is well
confirmed in general. A typical observation is the inverse relation between the critical
field for the onset of sliding and the real part <" ¼ "0 of the dielectric susceptibility
" � �: fc / 1="0 � n2i [1–3]. The collective pinning is always affected by the T
dependence of the elastic moduli (e.g. via the order parameter vanishing near the
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transition temperature Tc of the CDW/SDW formation, or via screening of the long-
range Coulomb interactions at low T), and these are readily identified experimentally
[131–133]. The critical dependencies of the parameters C and V on Tc � T are known
microscopically, interestingly different for CDWs and SDWs, and their combination
confirms in all cases the T dependence of the critical field fc. The sliding also
demonstrates the expected saturation of the v � f dependence to the linear law at
high v. The local pinning does not show up at these high T as it should be: the
barriers U cannot be higher than Tc, which is the scale of Es, so that the relaxation is
too fast for any observations.

The picture changes drastically (see [134] for the modern review and [135]) at T
low in comparison to Tc and to the activation energy � of normal carriers; the last
one is important because of the Coulomb hardening of the elasticity C � expð�=TÞ.
In addition to the usual threshold fc ¼ ft1, the v � f curve shows a sharp upturn at
the ‘second threshold field’ ft2 (for earlier observations see [2, 3, 136, 137]). Even
beyond detail, the overall v � f curvature becomes opposite to the high T one and
hence to expectations of the collective pinning theory. The dielectric susceptibility
" � � starts to show ! and T dependencies, with =" showing a maximum as a
function of ! and <" showing a surprising sharp peak as a function of T [138, 139].
These changes can be related to the opposite T dependencies for strengths of
collective and local pinnings, with the last one playing the major role at low T
and not very low !. (Even at low T the collective pinning reemerges at ultra-low !
which appear in measurements of the time delayed heat response [140, 141].)

Below, we shall apply the picture of metastable plastic deformations to interpret
these observations. The same model will allow us to describe the two remarkable
features which became commonly observed in charge and spin density waves. There
are both the anomalous peak of "0ðT,! ¼ const:Þ and the nonlinear current-voltage
I� E (that is v � f ) curve with the second threshold field in the sliding regime.
Namely, the features of " result from a competition between the local relaxation and
the collective pinning affected by the freezing of the Coulomb screening. The upper
critical field in I� E curves is reached when the shortest lifetime configurations are
accessed by the fast-moving density wave.

13.1. Nonlinear f(v)
Clearly, the first critical field Et1 can be only the threshold due to the collective

pinning Et1 � fc. It seems to be almost time-independent which requires for high
barriers available only within the collective pinning regime. The slow creep, observed
as ‘broad-band noise’ at finite T, corresponds to a distribution of high barriers in
accordance with the collective pinning picture.

On the other hand, Et2 appears to be the high-velocity limit of the pinning force
via the energy dissipated by the moving density wave which we identify with the
maximal force derived above for the local pinning: Et2 � fmax. With increasing v,
we shall inevitably reach the local-pinning regime with its lower barrier heights
necessary to provide the condition v � 1. The qualitative curve of figure 23 clearly
shows the necessary positive curvature and the approach to the almost vertical I � V
as it is sometimes observed.

In recent experiments [134, 135], two distinct regimes have been established: the
linear regime I � E at small E followed by the exponential growth
I � exp½const: E 
. Next, very recent experiments [142, 143] have shown that Et2 is
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a steep cross-over, rather than a kink as it was supposed for a long time, and it is

closer to our picture. Now it is possible to fit quantitatively, within the same set of

parameters, the f � v dependence over several orders of magnitude of v encom-

passing three different regimes of the theory described in Section 8 as 1a, 1b and 2,

that is f � v, ln v and f � fmax � �1=v. Figure 27 shows such a fit [144] done by the

general formula (106) with functions Uð�Þ and Fð�Þ specified for the short-range

model (point 2 of Section 7.2). Even the slowing down at high currents

corresponds qualitatively to high-velocity effects related to generation of disloca-

tions, Section 9.

13.2. Low T, low ! susceptibility peak

Sliding density waves are principally characterized by their giant dielectric

susceptibility, "0 ¼ <" � 106 � 109, corresponding to the low threshold field

Et � fc. Remarkably, a sharp maximum of "0ð!,TÞ as a function of T has been

observed in a wide range of density wave materials at low T and for very low

frequencies ! [138, 139, 145]. With ! decreasing from, typically, 105Hz to 10�2Hz,
the maximum height is growing while its position Tmaxð!Þ is shifting towards low T

as shown in figure 28. Importantly, the uprising parts T > Tmax of all plots for

"0ð! ¼ const:,TÞ follow the same master curve "0ðTÞ and differ only by the cut-off

Tmaxð!Þ below which "0 drops sharply, see figure 29.

While some features of the T dependence (the rising high T slope) are quite

specific to CDWs and SDWs, we suggest this example as showing simultaneously

a combination of several important ingredients: sensitivity of the collective pinning

to elastic parameters; separation of time-scales between the two types of pinning, as

well as their interference in observations.

The electric polarization, being proportional to the average phase displacement

� �’’, creates the restoring force fpin, which may decay in time. The external electric

field E opposes fpin which has two well-separated contributions fpin ¼ fcol þ floc. The

Figure 27. The single model fits (Ogawa et al [144]) for the experimental v( f ) (current–
voltage) curve through three different regimes, 1a, 1b, 3a of Section 8.2. The middle
part of the semi-log plot clearly demonstrates the f � ln v regime. The left part, if
plotted in the normal scale, shows the linear fs v law. These two regimes indicate the
presence of bistable pinning centres of either intermediate or high strengths. The
sharp upturn at higher f discriminates in favour of the unrestricted bistability
( f � fmax � const:=v). The curvature sign-change at low v is an artifact of the
logarithmic rescaling of the current axis. The decreasing growth rate at highest v
agrees with expected effects of dislocations; see Section 9.
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inverse susceptibility can be defined as:

"�1 � �
@fpin
@ �’’

) "�1
col þ "

�1
loc: ð123Þ

Keeping track only of the major dependencies on !,T, ni, we can write, with the
help of (112),

"�1 ¼ const: n2i e
��=T þ

const: ni
1þ ði!0Þ�1 expð�Up=TÞ

ð124Þ

where the first and the second terms come from the collective and local pinnings
respectively. The activation law e��=T in the first term comes from the effect of
the Coulomb hardening of the longitudinal elastic modulus which is special to
quasi-one-dimensional density waves.
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Figure 28. The dielectric susceptibility of density waves from interference of the local
and collective pinnings. The plots show the T dependencies of 	0ð!,TÞ at various !.
Calculations have been done for the formula (125) with A/B¼ 9 and U0¼ 0.5 (both
U0 and T are in units of �). While the units of "0 and ! are arbitrary, their changes
correspond to the experimental plots below: at each step, ! was rescaled by one order
of magnitude resulting in the overall change of "0 by one order.
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Figure 29. Experimental data by Nad et al. [138, 139]. Labels at the top of each curve
show the frequency, in Hz.
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For the model with the exponential distribution of barriers of Section 11, we
obtain

"�1 ¼ A exp �
�

T

� �
þ B!T=U0 , A � n2i , B � ni ð125Þ

where the second coefficient B is a complex weak function of T,!. In both cases,
the function "0ðT,! ¼ const:Þ is non-monotonic, it has a peak at Tmaxð!Þ defined by
the equation

! �
1

0
exp �

EaU0

T2
max

þ
V0

Tmax
ln ni

� �
: ð126Þ

Numerical calculations for (125), shown in figure 28, are in agreement with the
results of [138, 139] shown in figure 29. Concerning the frequency dependence, the
function ="�1

DWðT ¼ const:,!Þ in (124) is monotonous, but the measured function
="DWðT ¼ const:,!Þ shows a maximum which is also in agreement with experiments.

The interpretation of these results [33] is that different types of pinning compete
to contribute to "�1, so that the lowest " dominates, and near Tmax the pinning force
is minimal. Namely, at the higher T slope the T dependence arises from the
dispersionless (very high barriers for collective metastable states) collective pinning
affected by statically screened Coulomb interactions. At the lower T slope, the
dispersion of " comes from the relaxation of local metastable states. With increasing
T at given !, the local states approach thermal equilibrium; then floc ! 0, hence
"ðT,!Þ grows with increasing T until the collective pinning force becomes dominant.
Recall another, more phenomenological interpretation [138, 139], which suggested
approaching a kind of dipole glass transition.8

We conclude that the cross-over picture of the local and collective types of
pinning describes altogether the susceptibility anomaly, long-time relaxation and
nonlinear v � f characteristics. The peak of "ðTÞ results from the competition of
the local metastable plasticity with the collective pinning affected by freezing out
of the Coulomb screening. In f � v curves, the upper threshold field f2 is reached
when the metastable plastic deformations with shortest life-time are accessed by the
fast-moving density wave.

14. Conclusions

In this article we have given an overview of the present status of our under-
standing of pinning phenomena in various systems, stressing the unifying aspects.
Both languages of collective and local pinning exploit intensively the concept of
metastable states.

The picture of collective pinning discussed in the first part of this review is to
some extent worked out. The theory has been successfully applied already for the
explanation of equilibrium phases, depinning and creep phenomena in vortex
lattices, charge density waves and magnetic domain walls. The decisive steps here

8 Indeed, there is an interesting, while indirect link to the physics of two-level systems in

conventional polar glasses [58]. Thus, "�1
loc may be interpreted as "�1

loc ¼ ��, where �� ¼ �i!"� are the

effective complex ‘conductivity’ �� and the ‘dielectric susceptibility’ "� per effective two-level ‘dipole’

with ‘polarization’ fp under the ‘random field’ � � p and the ‘external field’ ��.
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were the understanding of thermodynamic and dynamic scaling behaviour, as well

as development of renormalization group methods which are capable of considering

the effects of metastability emerging on large length-scales even from weak pin-

ning centres. The domains of application of this theory are large length- and time-

scales, the critical field vicinity and the creep below it. The theoretical description of

plasticity in disordered systems is still incomplete.

The picture of local pinning, within its domain of low temperatures and not

too low frequencies or velocities, can be effectively used to explain experimental

data, qualitatively and even quantitatively. The advantages come from the explicit

treatment of metastable states, their creation and relaxation, and their relation

to plasticity and topological defects. It also provides a clue to the quantum creep

showing that the tunnelling repulsion of crossing branches destroys the pinning.
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Table 2. Frequently appearing quantities.

Quantity Symbol see eq., fig., sec

field coupling to Ju A (85)
cut-off a0
Burgers vector b Section 6
stiffness constant C ¼ ðCkC

2
?Þ

1=3 (1), (9)
elastic moduli Ck; C? (9)
curvature ~CC (76)
dimension of the elastic object D (1)
space dimension d (2)
energy barrier on scale L EBðLÞ (41)
energy of the dislocation loop
of radius R

EDLðRÞ (113)

soliton energy Es figure 19
Section

energy difference between
low-lying states

�E (21)

frequency-dependent barrier E! (48)
energy branches (1: stable,
2: metastable, þ : accending,
� : descending)

E1;2, E (95, 96)

free energy FRðL; uÞ (29)
disorder-dependent free energy FR (18)
forces from the single impurity
Fa, a ¼ þ;�; 1; 2

Fð�Þ ¼ E0
 (97)

driving force density f (39), (60)
pinning threshold fc � fp ¼ Cl=L2

p (66), (69)

Continued
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Table 2. Continued.

Quantity Symbol see eq., fig., sec

pinning forces: total, collective,
local and its maximum

fpin, fcol, floc, fmax figure 23,
Section

temperature-dependent force fT (46)
frequency-dependent
characteristic force

f! (49)

free enthalpy G (88)
random pinning force gðx; uÞ (61)
variational energy H ¼ Wð Þ þ Vð � �Þ (94)
Hamiltonian H (1)
tunnelling rate I! (117)
dynamic parameters K! (118)
length-scale (variable) L (15)
system size L0

scale on which tilted
potential vanishes

Lf (42)

Larkin length Lp (16)
frequency-dependent scale L! (48)
frequency-dependent
diffusion length

~LL! (82)

correlation length of the
random potential

l (15)

soliton length ls figure 21,
Section

concentration of impurities nimp; ni (4)
occupation numbers of
terms , their difference and
its equilibrium value

n, n ¼ nþ � n�, neq (103, 104)

probability distribution of
excited states

Pð�E;LÞ (21)

distribution functions for U and  PU, P (120)
wavevector of charge density wave Q (7)
disorder average h. . .iR (5)
correlator of the random potential R (6), (10)
correlation function of the
random potential

RðuÞ (6)

running effective t= sð�ðtÞÞ (141)
thermal average h. . .iT (17)
temperature T (19)
energy scale due to pinning Tp ¼ Cl2LD�2

p (18)
position vector (D-dimensional) x (1)
barrier branch E3 and the meta-stable
state decay activation U

Uð�Þ ¼ E3 � E2,
Up ¼ UðpÞ

(96, 98)

displacement field (N-dimensional) u (1)
pinning potential, its magnitude
and threshold values

Vð’Þ; V, V1,V2 (102), C

random potential VRðx; uÞ (1), (2)
velocity v (44)
phase velocity v ¼ �d �’’=dt Tab.1,

App. D.1
impurity potential vRðx; zÞ (2), (4)
strength of individual pinning
centre i

Vi (4)

deformation energy Wð Þ (94)

Continued
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Appendix A: Free energy fluctuations in D¼ 1 dimensions

An illustrative example is given by a linear D¼ 1-dimensional object such as

a magnetic flux line with the boundary conditions uðLÞ 	 u and u(0)¼ 0. Changing
u enforces the object to see another disorder environment. Using the transfer matrix
technique, it can be shown that F(L, u) obeys the equation [51]

@FR

@L
¼

T
2C
@2FR

@u2
�

1

C
@FR

@u

� �2

þVRðL, uÞ: ð127Þ

As a side remark we mention that if we read L, u and FR as time, space and height
coordinates, respectively, equation (127) becomes the Kardar–Parisi–Zhang equa-
tion, which describes the height profile of a growing surface under the random influx
VRðL, uÞ of particles [146]. The correlations of the restricted free energy show the
following scaling behaviour:

�
FRðL, uÞ � FRðL, u0Þ

�2D E1=2
R

¼ Tp
L
Lp

� ��
�

u� u0

wRðLÞ

� �
: ð128Þ

Table 2. Continued.

Quantity Symbol see eq., fig., sec

roughness wRðLÞ (15)
dynamical critical exponent z (25)
exponents at the T ¼ 0
depinning transition

~��; ~��; ~��; ~zz; ~�� (72)–(75)

mobility g (39)
correlator of random
pinning forces

�ðuÞ (62)

�-function of width l �lðxÞ (3)
quantum splitting of branches �q ¼ �hh=q 116
roughness exponent � (25)
thermal noise 
ðx; tÞ (39)
pinning phase mismatch
and its special values

� ¼ �iðtÞ ¼ Q:xi � �’’ðtÞ;
�e, ~��e, �m, �

�
e

(92),
Figs. 17, 19

barrier exponent � ¼ �=ð2� �Þ (43)
size distribution of excited states �ðLÞ (23)
correlation length � (73)
relaxation time  ¼ 0 exp½U=T
 (104)
scaling function �( y) (80)
phase field of the charge
density wave

’ðx; tÞ (8)

mean value of phase �’’ðtÞ (92)
soliton profile ’sðx�XÞ Figs. 21, 16
exponent describing the
free energy fluctuations

� (18)

response function and the
susceptibility of CDWs

� � " (123)

local phase mismatch and
its special values

 ¼ ’ðxi; tÞ � �’’ðtÞ,  e,  
�
e (92, 99)

frequency ! (47)
pinning frequency !p ¼ gC=L2

p ¼ Cfp=l ¼ vp=l (48)
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For small values of the argument y ¼ ðu� u0Þ=wRðLÞ of � the difference of the free
energies should not depend on L since the configurations dominating the free energy
will be the same for most parts of the elastic object (apart from x close to L). This
gives �ðyÞ � y�=�. For large arguments y the elastic stiffness dominates over the

disorder and h
�
FRðL, uÞ � FRðL, u0Þ

�2
i
1=2
R � ju2 � u02j=L as in pure systems. A

numerical solution of (127) shows that for large L and intermediate values of y
the free energy FRðL, uÞ forms a rugged landscape as a function of u with typical
valleys of width w(L) separated by hills of height TpðL=LpÞ

� [147, 148]. The general
picture of a rugged energy landscape as concluded from equation (128) is believed
to hold also for higher-dimensional elastic objects.

Appendix B: Strong pinning in D¼ 1-dimensional CDWs

To give a specific example for the case of strong pinning, we consider a lattice
model for a charge density wave with the Hamiltonian given by

H ¼
X
<i;j>

1

2
Ci, jðui � ujÞ2 �

X
i
Vi cos 2pðui � �iÞÞð Þ ð129Þ

where 2p�i ¼ �Q:xi and xi is a random impurity positions at which Vi 6¼ 0. If we
assume for simplicity that Vi 	 V for all i and consider the limit V ! 1, then
ui ¼ �i þ ni with ni integer and the Hamiltonian can be rewritten as

H ¼
X
hi, ji

1

2
Ci, jðni � nj þ �i � �jÞ2: ð130Þ

The minimization of this Hamiltonian leads to a set of integers fni, 0g from which
a well defined result for the ground state and hence the roughness wR follows. The
ground state consists of regions of constant ni separated by oriented domain walls
at which ni changes by  1. A very simple situation exists in d ¼ 1 dimensions, where
hi, ji ¼ i, iþ 1 and the ground state follows trivially as niþ1 ¼ ni þ ½�iþ1 � �i
. Here
[. . .] denotes the Gauss bracket which replaces its argument by the closest integer.
Thus the ui undergo a random walk and hence � ¼ 1=2. For a more detailed
discussion of the one-dimensional case see e.g. [149].

The specific transfer matrix technics (Appendix A) in the dimension D ¼ 1 allows
for a more detailed description of the interference between the pinning and the
thermal motion [60]. Thus for temperatures high in comparison to the characteristic
elastic energy T � T� � Cnimp, and arbitrary with respect to V, the heat capacitance
c(T ) is

c � nimp=2
0, T � V ; c � nimpðV=TÞ2, T � V:

In the same regime, the correlations of the order parameter cosð2puiÞ decay
exponentially with the correlation length �ðTÞ such that ��1 ¼ ��1

T þ ��1
R . Here

�T � C=T is the correlation length of a pure system while the randomness
contribution to ��1 is

�R � n�1
imp

I0ðV=TÞ
I1ðV=TÞ

� �2

where Im are the modified Bessel functions.

S. Brazovskii and T. Nattermann244



For low temperatures with a constraint to the strong-pinning regime T � T� � V
the correlation function of displacements behaves as a kind of Mott law

ui � uj
�� ��� 	

T

� 	
R� i� j

�� ��nimp
T�

T

� �1=4

exp �const:
T�

T

� �1=4
 !

:

This non-trivial T dependence appears because thermal jumps take place primarily
within segments of an optimal spacing i� j

�� ��
opt� n�1

impðT
�=TÞ1=2 which is much larger

than the typical one n�1
imp.

Appendix C: Details of metastable branches

Here we give details of the results of Section 7 on the energy branches and their
special points in the language of the CDW and its phase.

Consider first the termination points defined in (99); all quantities at this point
will be labelled by the index e. Expanding in the vicinity of the end point

 ¼  e þ � ; � ¼ �e þ ��, �� < 0 ð131Þ

we find from (95), (98) and (99) the solutions

� 3, 2 ¼  2
V00

e

H00
e
j��j

� �1=2

, U ¼ Vej��j
3=2 , Ve ¼ �

2

3

ð2V00
e Þ

3=2

ðH00
e Þ

1=2
, H00

e ¼ V00
e þW00

e : ð132Þ

As a function of V, the coefficient Ve is singular at V ¼ V1 when the end point
emerges and at V ¼ V2 when it annihilates with the next one, �Ð ~��e:

1. Consider the emergence of metastable branches when the points �e, � �e þ 2p
split from the point p. We find

V ¼ V1 þ �V � V1 : �e � p � ð�VÞ3=2 ,

U � ð�VÞ�1=4
ð���Þ3=2 , Fe � ð�VÞ1=2: ð133Þ

2. Consider the cross-over to the unrestricted bistability: V ! V2 when the two
sets of end points �e, ~��e join together and with the point �m of the minimal
barrier. At V ¼ V2 þ �V <V2 the degeneracy is lifted and the branch crossing
point ð�m, mÞ splits into two end points

�e, ~��e ¼ �m � ��e ��e �
ffiffiffiffiffiffiffiffiffiffi
��V

p
; U � ð�VÞ3=4ð���Þ3=2: ð134Þ

At V > V2, U(�) passes through the minimum Umin � ð�VÞ3=2 at � ¼ �m.
For both signs of �V we can write the interpolation

V7V2 : U ¼ B1��
2 þ B2

� �3=2
; B1 � �V1=2 , B2 � �V:

3. Consider the limit of very strong impurities which allows for an explicit
treatment. The equation W0ð Þ þ V sinð � �Þ ¼ 0 at V � maxW0 has the
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following solutions:

Eþ :  � � � V�1W0ð�Þ , Eþ � Wð�Þ � ð2VÞ�1W02ð�Þ

E� :  � � � 2p� V�1W0ð� � 2pÞ , E� � Wð� � 2pÞ � ð2VÞ�1W02ð� � 2pÞ

E3 :  � � � pþ V�1W0ð� � pÞ , E3 � 2VþWð� � pÞ � V�1W02ð�Þ

U ¼ E3 � Eþ � 2VþWð� � pÞ �Wð�Þ , W0ð�m � pÞ ¼ Wð�mÞ:

4. Fortunately, for a point impurity we can order the branches and simplify

the energy a priori even at arbitrary V. In what follows, p < � < 2p, while
W,W0 are functions of  at �2p <  < 2p. For each term, we determine its

own function  ¼  að�Þ with a ¼ f�, þ , 3g 	 f1, 2, 3g (within the selected

semiperiod of �):

 ¼  þ : � ¼  þ arcsin
W0

V
, Eþ ¼ W� V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

W02

V2

r
þ V

 ¼  � : � ¼  þ arcsin
W0

V
þ 2p , E� ¼ W� V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

W02

V2
þ V

r

 ¼  3 : � ¼ pþ  � arcsin
W0

V
, E3 ¼ Wþ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

W02

V2

r
þ V

Uð�Þ ¼ Ebð bð�ÞÞ � Eþð þð�ÞÞ:

These expressions were the bases for our plots in figures 18 and 22.

5. Consider in more detail the overshooting branches which appear due to

special long-range effects of dislocations (recall the end of Section 7.2 and

Section 9.1). This is the regime of small � �  � 2p and �� ¼ � � 2p. Here,

V is close to its minimum �V � b=2ð� � ��Þ2, b ¼ V00ð0Þ; W is close to its

maximum W2p ¼ 2Es, but the expansion is not analytical. We shall write it,

according to (113) taken for d ¼ 3, as �W ¼ �4=3að�� Þ3=2 where a � CR
for the dislocation loop of radius R. The minimization of H over  gives

�� ¼ � þ 2a=bð�� Þ1=2 ¼ 0.

At �� < 0, there is one solution � ¼ � a=bþ ðða=bÞ2 � ��Þ1=2
� �2

; it gives the

branch Eþ approaching the end of the period, � ! 2p� 0 with some deficiency

Eþð2pÞ < 0: �Eþ ¼ �ð8=3Þa4=b3 corresponding to the retardation � ¼ �ð2a=bÞ2.
At �� > 0, there are two solutions � ¼ � a=b ðða=bÞ2 � ��Þ1=2

� �2
. Here the ‘� ’

sign corresponds to the barrier branch E�
3; the ‘þ ’ sign corresponds to the

overshooting part E�
þ of the branch Eþ .

Entering the next circle �� > 0, the energy Eþ keeps increasing, passing through

the energy 2Es at � ¼ � 3a=2bð Þ
2 , �� ¼ 3=4ða=bÞ2. Further on it crosses the branch

~EEþ to become metastable. Since then, the difference E�
3 � E�

þ ¼ U gives the

relaxation barrier. Finally, the two solutions Eþ and E3 collapse at the termination

point

��e ¼ ða=bÞ2 , � e ¼ �ða=bÞ2, �He ¼ 20a4=3b3:

The above results give rise to the picture of figure 24 and related conclusions.
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Appendix D: Details of the kinetic equation

The kinetic equation is derived from the balance law for occupation numbers
of’‘þ,�’ branches, see equation (103):

dnþ
dt

¼ W�nþ þWn� ,
dn�
dt

¼ Wn� þWnþ: ð135Þ

HereW,W are transition rates between the branches and the full time derivative is

d
dt

¼
@

@t
þ _��

@

@�
; _�� ¼

d�ðtÞ
dt

¼ v ð136Þ

W�=W ¼ exp ð�E=TÞ , W, W� � exp ð�Eb=TÞ, �E ¼ Eþ � E� ð137Þ

The relaxation rate is

1

ð�Þ
¼ W þW� �

1

0
cosh

�E
2T

exp
Eþ þ E� � 2E3

2T

� �
ð138Þ

where �1
0 is the attempt rate. For �E >> T,  � expðU=TÞ with the activation

energy U ¼ E3 � E2. Notice that at the end points the metastable branch disappears
and so ð� ! �eÞ ! 0. Still, the expression (104) leaves us with a small but finite
value of  � 0 even at Uð�eÞ ! 0. Hence it should be corrected to provide  ! 0
at U � T; this happens via a dependence 0ð�Þ whose plausible form is
0 � ð� � �eÞ

k, k > 1.

D.1. Stationary motion
Consider a stationary process when the density wave moves at a constant phase

velocity v ¼ � _�’’�’’ ¼ _�� ¼ const:, then @n=@t ¼ 0. Now the solution of equation (104) is
trivial, but the boundary conditions must be properly specified. Suppose first that
there are no end points which is the case of very strong impurities V > V2; see figure
19. Then for � approaching 2p, both ‘þ ’ and ‘� ’ branches contribute to initial
conditions for the branch ‘þ ’ at � ¼ 0 adding the pair of solitons at infinity, see
figure 16. Conversely, there is no source for the ‘� ’ branch at � ¼ 0. This condition
reads

@nþ
@�

����
0

¼
@

@�
ðnþ þ n�Þ2p ¼ 0 , hence nð0Þ ¼ neq: ð139Þ

The solution of (104), (139) is

n ¼ neqðs0Þes0�s þ

Z s

s0
neqðs1Þes1�sds1 ð140Þ

where sð�Þ is an effective t= over the branch:

s ¼ sð�Þ ¼
Z �

p

d�
vð�1Þ

; s0 ¼ sð0Þ ¼ �sð2pÞ ð141Þ

(We shall keep the same notation for functions of � and of s ¼ sð�Þ.) In the presence
of end points (right �e and left 2p� �e) there is only one branch of lowest energy
E1’which survives beyond ð2p� �e, �eÞ, that is

0 < � < 2p� �e : n ¼ 1 ; �e � � < 2p : n ¼ �1: ð142Þ
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The contributions of these monostable regions to the pinning force are exactly
compensated as they should be. Within the bistability region ð2p� �e, �eÞ the
solution is

n ¼

Z 1

0

neqðs� s2Þ expð�s2Þds2: ð143Þ

Substitution into the general expression for the force (273) yields (in the presence
of end points)

f ¼ ni
Z 1

�1

ds�E
Z 1

0

ds2e�s2 n0ðs� s2Þ � n0ðsÞ½ 
: ð144Þ

Mostly we shall consider the case of low T when �E � T in essential regions.
Then

neqðsÞ � �sgn s, n� neq ¼ �ðsÞe�s: ð145Þ

(� is the unit step function). The point of symmetrical population, n ¼ 0, is shifted
to s ¼ ln 2. At 0 < s � ln 2 there is an inverted population, n2 > n1, as shown in
figure 17. Finally the expression (144) is simplified to the form (106).

D.2. Various regimes for f(v)
Small velocities for all cases. At vp � 1, sð�Þ is large almost everywhere, except for
the vicinity of p where the barrier activation energy takes its largest valueUðpÞ ¼ Up;
then we should use (144). Namely, if for largest ðpÞ ¼ p we have vp � 1, then
s � 1 already at � � p � vp � 1 so that at ð� � pÞ � 1 we have s � 1. Then the
series in v is well convergent. In lowest order of v we find

f � pni
Z 1

0

ds�E
d2neq
ds2

¼ pni
Z

v=T
cosh2ð�E=2TÞ

d�E
d�

� �2

d� � vpFp: ð146Þ

At low T the dependence of the expression under the last integral in (146) is governed
by the factor exp � ðE3 � E2Þ � ðE2 � E1Þð Þ=T½ 
 ( see 138). It has a maximum
expð�Up=TÞÞ at � ¼ p and we arrive at the result (108).

At higher velocities, still only the vicinities of the crossing point � � p are
important, but we must take into account the reduction of the barrier with increasing
�: U ¼ Up � Fpð� � pÞ=2p. We obtain

f ¼ niT
Z

ds expð�sÞ
sþ vpFp=ð2pTÞ

�
nipFpv at vpFpT � 1
niT lnðvpFp=TÞ at vpFp=T � 1:

�
ð147Þ

High velocities: restricted metastability. Let vp >> 1. Then s � 1 only at � � �e.
The form (107) is more appropriate for calculations. Since e�s � 1 is small at s � 1,
i.e. at almost all �, then only the vicinity of �e contributes, hence we can take F ¼ Fe
at � ¼ �e. We obtain

f ¼ fmax � 2pniFe

Z �e

p
d� 1� e�sð�Þ� �

; fmax ¼ 2pni�Ee: ð148Þ

Recall that at �e the activation U ¼ E3 � E2 ! 0 vanishes while the force is finite
Fe ¼ @�E=@� 6¼ 0. We find

fmax � f � Feni��v
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where ��v is defined by the condition

sð��vÞ �
ve
v
����þ1

v expð�
Ve

T
���vÞ � 1; ve ¼

T
Ve

� �1=�
1

0
ð149Þ

and we arrive at the result (110), valid in this simple form at
ve expð�Ve=TÞ � v � ve.

High velocities: unrestricted metastability. The calculations are similar to the
above case of restricted metastability and we shall skip equivalent steps. The
difference is that now there is a high-velocity range v � vm ¼ max �1 where the
1/v expansion is valid:

f ¼ 2ni �Eð2pÞ �
2

v

Z 2p

p

d�
ð�Þ

ð�Eð2pÞ ��Eð�ÞÞ
� �

: ð150Þ

D.3. Linear response
Consider _�� as a perturbation in the kinetic equation and expand as

n ¼ neqð�Þ þ �nð�, tÞ:

@

@t
þ
1



� �
�nþ _��

@

@�
neq ¼ 0 ; f ¼ ni

Z �max

p
d�Fð�Þ�nð�Þ: ð151Þ

In the Fourier representation we have

�n! ¼
i!�!

�i!þ�1
� � d

d�
neq ð152Þ

f! ¼
�!ni

�1þði!Þ�1
� � Z �e

p
d�
d�E
d�

d
d�

neq �
Fp�!ni

�1þði!Þ�1
� � ð153Þ

��1
! ¼

�f!
��!

¼
niFp

1þ 1=i!
, ð154Þ

which confirms (112).

References
[1] MONCEAU, P., 1985, in Electronic Properties of Quasi-One-Dimensional Compounds,

P. Monceau, ed. (Dordrecht: Reidel).
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