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Abstract

Most quasi one-dimensional conductors at low temperatures go over into an insulating state via a
symmetry breaking transition. The theory of this state, which is characterized by periodic lattice
deformations, in other words by charge-density waves (CD W), can be constructed on the basis of the
Peierls model. Interest in this model has especially increased in connection with the study of doped
polymers, and of the CDW motion.

The stationary states of charge and spin carriers in a Peierls insulator differ substantially from those of
ordinary semiconductors. The reason lies in the strong self-trapping effect, which leads to self-
localization of the electrons at a depth on the order of the width of the forbidden band. The result is
the creation of solitons with the features of intermediate-radius tight-binding polarons, but having
anomalous quantum numbers. Their classification depends on the band filling and symmetry breaking.
For systems of the trans-polyacetylene type produced from a metal with half-filled band as a result of
lattice dimerization, the majority carriers are solitons of the domain-wall type, having either a charge
*e or a spin 1/2. For systems with non-integer number of electrons per unit cell in the metallic phase,
only spin uncharged solitons remain. In systems without a metallic phase whatever, such as polymers,
spinless bipolarons with charge * 2e can exist. Self-localization of thermally activated electrons, the
carriers, can be suppressed only by strong coupling between the chains, but the extrinsic carriers form
in this case, too, deeply localized clusters. The weak coupling between the chains does not alter the
internal structure of the soliton, but exerts a strong influence on statistical properties of their
ensembles. In the three-dimensionally ordered phase, the solitons are bound into pairs, and when the
temperature is raised they are organized into flat domain walls.

When the electron density changes, or when they become redistributed among different chains or
bands, periodic superstructures of the soliton-lattices type are produced. Excitations of the type of
envelope solitons also exist against the background of these lattices; they carry a bound single-
electron state, have a spin 1/2, but a non-integer electric charge. One-dimensional models are
theoretically investigated by solving exactly a self-consistency equation based on the mathematical
theory of finite-band potentials. The results explain a number of general and detailed properties of
quasi one-dimensional electronic materials as they were on agenda in 1980’s.

The literature update to 2000’s can be found in short reviews

http://arxiv.org/abs/0709.2296v1 and http://arxiv.org/abs/0908.4249 and on the web site
http://Iptms.u-psud.fr/membres/brazov/
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I Introduction

§1 Quasi-One-Dimensional Compounds with
Metal-Insulator Transition

More than a hundred materials with quasi-one-dimensional properties
are known at present. The initial spur and a constant stimulus to the
search for new synthetic materials was Little’s suggestion [1] that the
superconducting transition can be higher in hypothetical conductors
of organic origin than in ordinary metals and alloys. Although this
problem has not yet been solved, the results of the search went far
beyond the framework of the initial idea.

The substances investigated are divided into several classes having
entirely different chemical nature. With respect to the physical prop-
erties they can be insulators, semiconductors, metals, and even low-
temperature superconductors, can have a magnetically ordered state,
and so on.* Quasi-one-dimensional conducting materials contain as
their basic elements chains of molecules with partially filled valence-
electron bands. It was therefore to be expected that the substances
would have the properties of metals. Most materials turn out, how-
ever, at least at low temperatures, to be insulators. An almost univer-
sal property of these substances is the presence of lattice superstruc-
tures that lead to formation of a gap in the density of state on the
Fermi surface and to a finite activation energy in the spectra of
single-electron states and spin excitations.**

Many substances are metallic at room temperature and have no
lattice superstructure. However, when the temperature is lowered, a
structural phase transition is observed into the dielectric state, which is

*Within the framework of the present survey we are unable to discuss the detailed
properties of concrete substances. The most investigated materials are described, for
example, in the reviews [2-4]. However, modern experimental data, particularly on
polymers, can be found so far only in original papers or in review articles presented at
recent conferences [5-8].

**These three definitions of the dielectric gap are substantially different both with
respect to the experimental data and in accordance with the theoretical premises
advanced below.
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characterized by lattice deformations with wave vector Q whose
projection Q) along the chains is close to the diameter 2pp of the
almost plane Fermi surface in the metallic phase. This phenomenon is
called the Peierls effectr [9] and the low-temperature phase with
spontaneous lattice deformations is known as the Pejerls—Frihlich
state [10].*

The different classes of quasi-one-dimensional conductors contain
also materials that should have dielectric properties by the very nature
of their basic structure, without formation of lattice superstructures.

In these substances, the chemical formula and the crystal structure
are such that the plane Fermi surfaces lie from the very beginning on
the boundaries of the Brillouin zone, as a result of which a gap E, is
produced at the Fermi level even in the absence of the Peierls effect. It
is remarkable, however, that the values of E, frequently turn out to be
of the same order as in substances of the same class that manifest a
metal-insulator structural transition. This observation, and also a num-
ber of concrete experimental data and the theoretical premises pre-
sented below, allow us to assume that the interaction between the
electrons in the lattice exerts a substantial influence on the properties
of the dielectric state in these substances, although it is not its only
cause as in the Peierls dielectrics. Such quasi-one-dimensional sub-
stances will be called combined dielectrics, to distinguish them from
Peierls dielectrics and from the opposite limit of dielectrics with a
rigid band structure.

Thus, the most prevalent low-temperature phase of quasi-one-
dimensional conductors is the dielectric state. Prior to 1978 it was
regarded most frequently as a vexing obstacle to stabilization of the
metallic state. However, detailed experimental and theoretical investi-
gations have revealed unique properties of the nonmetallic state of
quasi-one-dimensional conductors, which remain to this day the sub-
ject of intense study.

Both the experimental properties and the theoretical models of
quasi-one-dimensional conductors depend substantially on the aver-
age number p of electrons per unit cell (usually, per molecule) in the
metallic phase. It is remarkable that the quantity p, 0 <p <2, can

*The frequently used designation “Peierls dielectric” is arbitrary, since these sub-
stances can be regarded at best as narrow-band semiconductors.
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vary in a wide range. In stoichiometric compounds the change of p is
discrete because of the changes in the chemical components that serve
as donors or acceptors with respect to the conducting chain. Typical
values here are p =1, 2/3, 1/2, or similarly for 2 — p.

A continuous variation of p is possible in non-stoichiometric com-
pounds, e.g., in (TTT),{5 s [11], where p~1/2, in the KCP family
[2-5, 12], where p~1/3 or 2/3, and in doped polymers, where p = 1
for trans-polyacetylene [13, 14] and p~2 for other polymer semicon-
ductors. Continuous variation of p under external action (pressure)
takes place in substances with incomplete charge transfer between two
types of conducting chains, e.g, in TTF-TCNQ, where pa1/3 [4
15], and in TaS, and NbSe;, where p=a1/2 [16].

In all substances with non-integer values p, the values of E, in the
dielectric phase are small compared with the total width D of the
valence band. For example, in inorganic conductors with d-electron
bands, such as platinum complexes (KCP) and the compounds NbSe,
and TaS;, values E,~10" eV are observed at D~1 eV. In organic
compounds with 7- electron bands (TTF-TCNQ and others) we have
E,~107% eV at D~107'"% eV. However, in TCNQ salts with p =1
(KTCNQ and others), the values observed already are E, ~D~10""
eV, i.e., a strong interaction takes place. It is known that in the
polymer trans-polyacetylene (trans-(CH),), where p = 1, we have Eg
= 1.5 eV at D <510 €V, i.e., the interaction is relatively weak. In the
remaining polymers, regarded by us as combined dielectrics [17] or as
systems with p =2, the values of E, are as a rule even higher:
E,~ 1.6 ¢V in polydiacetylene (C;R),, E, ~2 eV in cis-(CH),, and
E, =~ 3 eV in polyphenylene (C¢H,), . Obviously, tight binding already
takes place in the latter case.

For substances with non-integer p, the most pronounced effects are
anomalously high values of static dielectric constant e~10?-10* and
nonlinear effects in anomalously weak electric fields E~1 V/cm.
These phenomena are frequently regarded as manifestations of the
so-called Frohlich conductivity (see the review [4]).

Another phenomenon common to many quasi-one-dimensional di-
electrics is the strong difference between the values of the gap E,
determined from optical data, E’P, and from the activation energles
for the longitudinal (E) and transverse (E;%) conductivity, and for
the paramagnetic susceptibility EX (see, e.g., [18, 19]). These proper-
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ties, while less pronounced than the Frohlich conductivity, are very
important in conjunction with the data presented below for polyacety-
lene.

It is tempting to regard dielectrics with p = 1 or 2, where which E,
is large and there are no Frohlich effects, simply as sem1conductors
that differ in the anisotropic spectrum of the electrons, and frequently
also of the phonons. However, the experimental data accumulated in
recent years, as well as the theoretical results, make it necessary to
revise the very nature of the electronic excitations of both the current
carriers and the spin carriers in these substances. The most interesting
data were obtained by investigating polyacetylene [13, 14, 21]. This
quasi-one-dimensional material (see Fig. 1a, b) is unique for several
reasons. The simple chemical structure, the possibility of reversible
donor and acceptor doping, the wide temperature interval of the
observation, the good separation of the different energy scales, the
sufficiently weak interactions of the electrons with the lattice and with
one another, and the weak coupling between the chains have made it
possible to observe, for the first time ever, singular physical phenom-
ena that, according to the prevailing theoretical concepts, should be in
general typical of quasi-one-dimensional dielectrics.

By now, a large set of experimental data has been obtained for the
electric (conductivity o as a function of the temperature, frequency,
and doping level), optical (absorption and Raman scattering in vari-
ous ranges, photoconductivity, photoluminescence and nonlinear phe-
nomena) have been obtained for polyacetylene. Of particular interest
are experiments on the investigation of magnetic properties, such as
the static susceptibility, EPR, NMR-relaxation and Knight shift,
nonlinear effects in EPR and NMR coupling (dynamic nuclear polar-
ization and Overhouser effect) [13, 21].

The conclusions drawn from these experimental investigations
(albeit debatable [22]), can be formulated as follows.

1 Among the excitations of the system there exist long-lived
deeply self-trapped states with electron levels in the region of the
center of the forbidden band. They result from doping or optical
pumping. These states are revealed by light absorption or by photo-
conductivity at frequencies iw~A = E,/2 and by new lines of the
Raman spectra and absorption in the region of the lattice-vibration

frequencies w < W+
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Figure 1



SELFLOCALIZATION AND SUPERSTRUCTURES 105

2 Undoped material contains mobile spin carriers that propagate

exclusively along the (CH), chain (the anisotropy of the diffusion
coefficient, determined from measurements of the NMR relaxation
time 7' [21], amounts to D, /D 1 ~10%. These spin carriers have no
electric charge and vanish when current carriers appear (as a result of
doping).
- 3 In weakly doped material (y < 0.005) with hopping conductiv-
“ity, the Curie law is not obeyed, i.e., the current carriers have no spin.
In the intermediate doping region 0.005 < y < 0.05, a state with
migtallic conductivity is observed. In this case, however, no paramag-
ne\pc properties, such as the Pauli susceptibility (neither static nor
ERIR) and the Knight shift, which are inherent in normal degenerate
serpiconductors and metals, are observed.

7The foregoing groups 1-3 of the experimental data suggest that
strong selflocalization of exciting electrons takes place in a quasi-one-
dimensional dielectric. The resultant stationary elementary excitations
are characterized by anomalous quantum numbers: they have either an
electric charge or a spin, whereas in normal semiconductors the
conductivity and the paramagnetism always accompany each other.
This picture of the excitations, as well as the very origin of the
dielectric state and of the lattice superstructure, can be naturally
explained in the theory of the Peierls—Frohlich state. The present
review is in fact devoted to an exposition of the modern development
of this theory.

1.1 Lattice Deformatians or Coulomb Interaction?

A question that always arises in the interpretation of the properties of
concrete quasi-one-dimensional materials is whether they are caused
by lattice deformation, i.e., by the Peierls effect, or by interelectron
interactions. For example, the properties of polyacetylene were initially
interpreted [23] on the basis of the Hubbard model [24], which takes
into account the repulsion of the electrons at one site, and recently
[25] more frequently on the basis of the Peierls model, which takes
into account the interaction of the electrons with the static deforma-
tions of the lattice. Lively discussions have taken place in connection
with the interpretation of the properties of complexes based on
TCNQ and other organic molecules. There is no doubt that both
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effects play an important role in most materials and one cannot count
on determining the quantitative parameters by using some single
model. However, there are qualitative differences between the predic-
tions of the Peierls and Hubbard models, and these permit a direct
comparison with experimental properties. Such properties are the
relations between the activation energy EJ for the magnetic suscepti-
bility x and the forbidden bands E,, observable in optical (£;*") and
electric (E°°“d) phenomena. The clearest picture can be regarded to
be the one for systems with p=1. In this case, both the lattice
deformations and the interelectron repulsion lead to formation of
gaps, £ and EZ°™, with EQPU = E°™. Simultaneously, lattice defor-
matlons lead to the appearance of an activation energy £X in the
magnetic susceptibility, 2EX = Eg“’“d.* The interelectron interactions,
however, leave the system paramagnetic, £EX = 0, just as in the metal-
lic region. The reason, roughly speaking, is that under the influence of
the interaction there occurs not a charge (CDW) but a spin (SDW)
ordering, and the system becomes an intrinsic antiferromagnet. This
antiferromagnetic state can be stabilized by tunneling of electrons
between the chains, as in (TMTSF),X [15], or else a structural
deformation of lattice somehow does take place and corresponds to
the so-called spin-Peierls transition [28]. In the latter case, a finite
EX appears and the system becomes qualitatively equivalent to a
Peierls dielectric. Such an hierarchy of transitions is observed, e.g., in
MEM|(TCNQ), [27]. Thus, if the relation

EP ES™»2EX > 0

holds, it can be concluded that Coulomb interaction predominates in
the system. For a system with p# 1 it is possible to use with
assurance in this criterion only Eg"p‘, since Egc‘md can become small
because of the Frohlich conductivity effects [4, 10, 16, 28]. In com-
plexes with charge transfer, both cases can apparently take place. In
polyacetylene, the absence of paramagnetism indicates that this mate-
rial must be described, at least qualitatively, by the Peierls model.

*In experiment, E cond can increase, E °°"d>2Eax, on account of addition of a
mobility gap 18]
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Thus, the Peierls model corresponds to materials that are dielectrics
simultaneously with respect to the magnetic, optical and, with stipula-

tion, electric properties.

§2 Models of Peierls Effect and Basic Results of the Theory of
Solitons and Superstructures in the Peierls—-Frohlich State

We consider a one-dimensional dielectric with a narrow vertical
forbidden band E,. Its electronic properties can be described by the
effective-mass method on the basis of the Hamiltonian

H=(0Ak A+[€); k= —ihd/ox; v = const (1)
- D

When using Egs. (1) we are justified in assuming a slow dependence,
compared with the atomic scale a, of the two-component wave
function Y and of the matrix element A on the coordinate x

A=Ax); =9 (x)= (%), 4a(¥)) )

The A(x) dependence is produced by the lattice deformations {(x).
These deformations can be regarded as a classical field if the frequen-

cies w,;, of the corresponding phonons are low enough

hes,y < OF (3)

where 8E is the change of the electron energy on account of the

stationary deformation A(x).
The ground state of the system and the stationary perturbatlons

(solitons) can be determined, if the adiabaticity criteria are satisfied
[3], from the condition that the total functional of the system energy

W= W{A} = Wel {A} + I/Vlaf {A} (4)

be a minimum. The energy W, of the electron subsystem takes in all
cases the form
W,= S E; E=E|{A) (5)

E<p
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where E is the eigenvalue of the Hamiltonian (1) and p is the
chemical potential. The lattice deformation energy W), . the class of
the functions A(x), and the microscopic determination of the compo-
nents of the wave function ¢, (x) depend substantially on the nature
of the investigated system. One can single out three main phenomeno-
logical models A, B, and C, two crossover models AB and AC, and
microscopic discrete models D.

2.1 A The Peierls—Frohlich Model

The Peierls— Frohlich model for substances in which the potential A(x)
is produced by spontaneous lattice deformations {(x), with the char-
acteristic wave vectors 0 ~ i2kf of the deformation {(x) far from
the Brillouin-zone boundaries Q= *7/a of the main lattice: 2k,
# o /a. Model A can be used to describe substances with p 5 1 or 2.
In this case the variables (2) determine the deformation {(x) and the
wave function {(x) of the electrons:

F(xX)~B(x)e K% 4 A*(x)e e (6)

'LP(X) — ‘[J+ eikp.\' + \IJ__ e-—-ik,—x (7)

From the condition p # 1,2 it follows that the points £2k. = *pr/a
are not equivalent in the Brillouin zone of the non-deformed phase.
Consequently, A(x) = A, + iA, is a complex field with independent
components A; and A,. The incommensurability of the deformation (6)
causes also the effects of the interaction of the superstructure (6) with
the main structure to be frequently insignificant: the pinning energy
T, is small in terms of the parameter [28, 29]

T,/A~(|Al/DY' 2«1, n>3 (8)

if p=m/nis an irreducible fraction. Consequently the lattice defor-
mation energy W, ,{A} should be invariant to a uniform shift of the
superstructure (6) or, equivalently, to a constant shift of the phase of
the field A(x) [30]:

§—= §(x + xg)s A(x)~> A(x)e™, V=, e*(1/2% ‘
®)

xO = 2kFx0
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The deformation energy should therefore be of the form

Widd) = [ '—3’—- dx (10)

where the value of g corresponds to one of the standard definitions of

the electron-phonon interaction constant.
The dynamics of the system is described in the adiabatic approxi-

mation by the Lagrangian [30] /" {A}, A = A(x, 1):
J’{A}=fdx—m-|2——W{A} | =04 (11)
g:’.-w—l ’ at

where W {A} is the potential energy, defined by formulas (4), (5), and
(10), and & = w,;,(2kz) is the unrenormalized (bare) frequency of the

phonons with wave vector +2k.
The gauge invariance of (9) leads to a continuous degeneracy of the

ground state with respect to the phase x,

2
A= Age™; A0~Dexp{—-%}; A—-—-;‘% (12)
F

The electrons in the ground state occupy the levels

Ep =~ [(Upk)z + Aﬂ]/z

Of importance in the phonon spectrum are two low-lying branches
corresponding to the amplitude § and phase x oscillations

1/2
wsawo{l + —lla-fgzsz ; §o="hvp/By

(13)
_ 2Y%A,

w, = uk, wp =

=20 k<!

fivg

The total spectrum of the phonons for the case of quadrupling of the
period, p = 1/2, is shown in Fig. 2a.
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Figure 2
2.2 B The Peierls Model

The Peierls model for substances in which the potential A(x) is
produced by spontaneous deformation {(x) corresponding approxi-
mately to doubling of the host-lattice period. Model B can be used to
describe substances in which the metallic undeformed phase band is
almost half-filled, p ~ 1. This case was investigated most intensively in
connection with the theory of trans-polyacetylene, trans-(CH),, Fig.
la. At p~1 the quantity 4k, =2wp/a is close to the reciprocal-
lattice period 27 /a. As a result, the points * 2k, come closer together




SELFLOCALIZATION AND SUPERSTRUCTURES 111

(accurate to 2w /a) and their contributions to the deformation ¢ (x)
can no longer be separated as assumed in (6). For a correct descrip-
tion of the system we must now express {(x) in terms of the envelope
function A(x) of the relatively rapid oscillations with a wave vector
7/ a corresponding to doubling of the period:

((x)~A(x)e™/* + Ae™ /% = 2K(x)cos( T x + )
A(x) = ﬂ(x)e""’; Im ﬂ(x) =0 (14)

Y(x) =y, exp(in/2a) + _exp(—ir/2a)

Since the points + 7 /a are equivalent, the functions A(x) and A*(x)
should agree accurate to a constant phase factor exp(ip). The value of
¢ is determined by the details of the electron-phonon system. For
example, for the deformations of the acoustic branch, observed in
polyacetylene, we have ¢ = 7 /2, while for the intramolecular deforma-
tions ¢ =0. In a theoretical investigation, the value of ¢ can be
chosen arbitrary, by using the transformation (9). We shall assume
everywhere in Chapters II-V that ¢ = 7 /2. The system dynamics is
described, just as in the model A, by the Lagrangian (11), where the
phase of the field A(x) is fixed [29] and @ = &(7 /a) is the frequency
of the phonons for the deformation {(x) on the boundary of the
Brillouin zone. The phonon spectrum at p = 1 is shown in Fig. 1b.

2.3 AB Crossover Model

Crossover model for the investigation of effects of weak double
commensurability [31]. It is suitable for the description of quasi-_one-
dimensional substances with total charge transfer from the singly
valent ions to the conducting chains. These include the compounds of
the type K(def)CP (K, ;sPt(CN,) - 1.5H,0) and the organic conduc-
tors of the type (TTT),Z;, 4, or (TMTSF),X with various. monovalent
acceptors X [11, 15], which are now most actively investigated.
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In these substances the number of electrons p, per molecule (Pt,
TTT, TMTSF) is fractional, so that the system might be approxi-
mately described by the model A. However, allowance for the weak
modulation of the conducting chain by the field of the periodically
disposed ions (K, X) increases the unit cell. If the ions are monova-
lent, their density is also equal to p,. Consequently the quantity
4k, = (2w /a)p, coincides with the reciprocal vector of the large cell,
i.e., the points =2k, become equivalent. Therefore the expression for
the free energy acquires additional terms

SW g =fzi;%(BA2 +BHARY);  Wap=Wa+ SWay (15)

where B is a constant complex quantity. Owing to the invariance of
W, to the transformation (9), the phase of the constant B can be
chosen arbitrary. We shall assume that Im B = 0. The condition that
the lattice be stable without interaction with the electrons imposes the
restriction |B| < 1.

2.4 C Combined-State Model

Combined-state model [17, 32, 33] for the description of substances
that have no metallic phase, i.e., that would be dielectrics even
without the effects of the interaction of the electrons with the lattice.
‘Tt is convenient for the description of polymer semiconductor and, in
conjunction with the AC model defined below, of compounds with
total charge transfer from the chains of the divalent ions to the
conducting chains. In the C model the matrix element A(x) of the
Hamiltonian (1) consists of two parts

Ax)=A, +A(x)e™; A, ,=const; g@=const ImA,=0;

(16)

The quantity A, takes into account the interaction of the electrons
with the potential of the rigid structure, and A;(x) is determined by
the local lattice deformations. In (16) we chose A, and A, to be real,
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and left out the constant phase shift . The value of ¢ is determined
by the microscopic structure of the substance. For example, in the
case of cis-(CH), (see Fig. 2b), A, is determined by the nonequiva-
lence of the bonds that are located at the bases and the lateral sides of
the trapezoids, and A,(x) is also connected with the alternation of the
bond lengths. Therefore for cis-(CH), we should have ¢ =0. The
special case ¢ = /2 can be realized in polyphenylacetylene and in
the as yet uninvestigated polymer trans-(C,HF), (see Fig. 1c). In this
case the quantity A, is due to the non-equivalence of the carbon
atoms that are bound to the hydrogen and fluorine. If the interaction
of the electrons with the lattice deformations takes place, just as in
trans-(CH), via alternation of the bond lengths, then the case
¢ = 7 /2 should take place.

The lattice-deformation energy in the model C is determined obvi-
ously only by the component A,(x)

A} (x)
C _ 1
Wi = f gz dx (17
C A2 c
LC=[ =L dx—
[ e (18)

where @ is the phonon frequency corresponding to the deformation
A,. '

]

2.5 AC Model of Combined Dielectrics

Model of combined dielectrics close to the Peierls—Frohlich state [33].
Tt can be used to describe materials with total charge transfer from
the chain of divalent ions to the conducting chain. Examples are the
organic compound (DBTTF)g(SnClg); [34] and the platinum com-
plexes M, [Pt(C,0,),] - 6H,0, where M = Mg, Co, and others, while
x = 0.6 [5, 12]. Reasoning in anaology with the derivation of the 4B
model, we obtain

Wac= Was +f[CA(x) + C*A*(x)] dx C =const (19)
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2.6 D Discrete Models of the Peierls Effect

They are needed to derive the parameters of the continual models and
to investigate the influence of the finite width and curvature of the
electron band and the commensurability effects. The discrete models
were effectively used (see the review [25]) in computer investigation of
the statics and dynamics of solitons as applied to the theory of
trans-(CH),. A class of exactly solvable discrete models [35, 36],
which contain the continual models A and B as limiting cases, were
recently found. The discrete model of polypheny! [33, 37], Fig. 1d, also
turned out to be exactly solvable.

We consider a one dimensional chain of molecules located at the
points x,. For each N molecules we have N, = pN electrons, with
p < 2. We shall assume that the electron spectrum is determined by
the typical tight-binding Hamiltonian

Ht\bn = Cn\bn+1 + Cn—-ltpn—-l + D,,L{/,, = EL{/,,

Co = f(Xpsr1 — X,) (20)

where C, are the integrals for the electron hopping between the nearest
molecules, and v, is the local potential of the possible intramolecular
deformation. The ground state of the system is determined from the
condition that the functional of the system energy

W= S E+U 1)
E<yu

be an extremum, where the energy levels of the electrons £ = E {c,,
v,} are determined from (20), u is the chemical potential of the
electrons, and U = U(x,,v,) is the energy of the potential interaction
between the molecules and the intramolecular deformations.
Greatest interest attaches to the case of almost rigid lattices x,
= na + u,, |u,| € a, when the deformations v, and the displacements
u, of the molecules under the influence of the electrons are small
enough. It is then possible to confine oneself to a quadratic expansion
of U in powers of u, and v,, and to a linear expansion of C, in (20) in
terms of u,,, — u,. Confining ourselves only to the potential interac-
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tion between the nearest molecules, we obtain

X,~na+u,; C,,":Co[l-a(unﬂ——un)]

(22)
U= ; [ %K(u,,ﬂ - u,,)2 + —;—kv,?]

A linearized laitice Peierls model, defined by formulas (20)~(22) at
v, = 0, was investigated by Schrieffer and others [25, 37-42] as the
model of trans-polyacetylene and of systems with p=1/3. In the
region where they are valid, the expressions (22) are not sensitive to
the form of the total dependences of f(x) and U(x,,v,) in (20) and
(21), and can be obtained from various model potentials. An exact
analytic investigation of the discrete model is possible if the following
relations hold for C(x) and V'(x) [35, 36]:

C() = Cot™™; f(x) = KCe 2
(23)
U=k Lot + Clexp(~2(x,, - %) |

n

The formulas in (23) go over into (22) if the parameter « is small, or
equivalently, if @ is small. The functionals of the models 4 or B are
obtained from (20)-(22) by substituting the expansions (6), (7), or (14)
at x = x, = na after discarding the rapidly oscillating terms. The
deformation {(x,) can be taken to be either u, or v,.

The model C with ¢ = /2 is obtained in the approximation of the
model B by introducing a fixed dimerization with respect to v,:

$(Xn) = Uy — Uy ; 0, =(~1)"0p; v, = const
The model AC is obtained in the approximation of the model A,
likewise as fixed v, corresponding to the potential of the periodically
disposed ions
S(x,) =1ty — Uy v, = DoCOS(mpn + o)

vy = const; @y = const
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2.7 E Continual Model with Quadratic Dispersion

Besides the continual models A—C with linearized electron dispersion
law, which leads to the Hamiltonian (1), interest attaches also to a
continual model with quadratic dispersion. This model, which de-
scribes the electrons on a continuous deformable filament, is charac-
terized by the functional

UZ
o 3)

W= > E+ f
E<pu
where E are the energy eigenvalues of the Schrodinger equation with

potential U(x):

A

( f,; + U(x))¢(X) = Ey(x); P=—ih/ox (24)

The model (24), (25) is obtained from the discrete model (20)—(22) at
p <1 when all the §,,, u,, and v, are slow functions of »:

nox, P, v EmT (g —w)>Ux) m=C

An investigation of the model E makes it possible [43] to track the
transition from the Peierls—Fréhlich state described by the model A to
the system of loosely disposed bipolarons at p— 0.

2.8 Principal Results of the Theory

Our understanding of the Peierls state has unexpectedly changed in
recent years. It is interesting that the development of the theory
followed two independent paths, on a completely different basis, but
at one and the same time. One path, initiated by the study of Su,
Schrieffer, and Heeger [37], was due to experiments on polyacetylene
together with the general interest in the concepts of ropological soli-
tons. The other line, initiated by the paper of Brazovskii [41], was
caused mainly by the internal needs of the theory of the Peierls—
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Frohlich state, and also by certain general but less clear experimental
results for systems with incommensurable charge density waves,

From the point of view of semiconductor physics, the specifics of a
Peierls dielectric can be explained by following [17, 30, 44]. In all
semiconductors, the interaction of the electrons (e) and of the holes
(k) with phonons leads to polaron effects and determines the structure
of the fundamental edge. Among the three-dimensional substances,
this interaction can lead to self-trapping, i.e., to formation of a
tight-binding polaron [45], only in ionic and narrow-band dielectrics.
A common feature of one-dimensional systems is that the self-trapping
effects take place at any type of electron-phonon interaction, includ-
ing also the case of a simple deformation potential [46], provided it is
strong enough and satisfies the adiabaticity condition (3). It is impor-
tant that in a one-dimensional system there is no barrier to self-
trapping, so that the free electrons and holes are absolutely unstable.
Among the one-dimensional dielectrics in general, a distinguishing
feature of the Peierls—Frohlich state is that for stationary interaction
of the electron excitation with the amplitude and phase phonons,
expressed in the scale Ay = E, /2 for the energy and §, = hvp/A, for
the length, there is no small parameter. As a result, a polaron state is
produced with a characteristic dimension ~§, and the binding energy
Aq— E, and the depth of the local level 8Ey = A, — E, turn out to be
of the order of A,. The adiabaticity condition [45]

a4 = (8E0/h600)2~(A0/hw0)2~Ms/m* > ].

where m* = A,/ 03 is the mass of the free electron, M, is the polaron
mass, and w, is the frequency of the amplitude mode (13), coincides
with the region of applicability (3) of the Peierls model itself. Thus,
the free electrons in a quasi-one-dimensional Peierls—Frohlich state
can be observed only in light-absorption effects when, according to
the Franck—Condon principle, lattice deformations have low probabil-
ity. All the excitations with lifetimes 7 > wg '~10"" sec, i.e, all the
intrinsic thermally activated charge and spin carriers and the extrinsic
carriers produced as a result of charge transfer, doping, injection, or
optical pumping should be regarded as stationary states of a system
with a deformed superstructure. They should be determined from the
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condition that the system energy have a local minimum when account
is taken of the interaction of the electrons with the lattice deforma-
tions. In view of the deep self-trapping, in both analytic and computer
theoretical investigations it is necessary to start out with the complete
many electron problem, which takes into account also the delocalized
states of the valence electrons. It was found that all the basic
continual models A, B, C, and E, and some discrete models of the
Peierls effect, admit of an exact analytic investigation of their static
properties [17, 32, 35-37, 43, 44, 47-52]. The dynamics of the self-
trapping phenomena was investigated with computers in [25, 39, 40]
in the discrete model D with parameters corresponding to the contin-
ual model B; the conclusions of all the investigations are in full
agreement. They show that the results of self-zrapping differ strikingly
in many cases from normal polarons. The resultant states have the
character of tgpological solitons that join various equivalent ground
states of the system A(— c0) # A(+ o). These solitons have anomalous
quantum numbers that result from total or partial cancellation of the
charge density of the localized electrons, and from local perturbation
of the electron density of the nonlocalized electrons of the continuous
spectrum. The basic types of solitons are listed in the table (page 119),
with the exception of the most nontrivial objects with non-integer
electric charge, which arise in the mode! C with ¢ = 7 /2 (chapter II,
8§4) and in mode! B with a finite number of electrons, p # 1 (chapter
IV). The soliton state is characterized by a charge ¢, by a spin S, by a
total energy E, by a local energy level E,, and by a number »; of
electrons on this level. Non-topological solitons—polarons and bi-
polarons—have two levels * E, and are characterized by occupation
numbers » | = », and v_ = 2 — p,, where v, and », are the numbers of
electrons and holes participating in the self-trapping. The last two
lines of the table indicate the physical manifestations of the solitons in
the one-dimensional regime (T > T,,;) and the three-dimensional or-
dered phase.

In the first line of the table are indicated the chapter and paragraph
of the review where the corresponding theory is presented.

Carriers are regarded as intrinsic if their activation energy is a
minimum. They predominate in the absence of electron sources.
Extrinsic carriers are considered to be those with minimum energy per
electron. They predominate at low temperatures in the presence of
sources (doping, optical, pumping, injection, or surface phenomena).
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II Self-Trapped States in One-Dimensional Models of
the Peierls Effect

It was shown in §1 that in a Peierls dielectric there is realized a
specific strong interaction of electronic excitations near the edge of
the forbidden band E = A, with phonons corresponding to deforma-
tions of the lattice superstructure. As a result, the edge of the optical
spectrum E, = 2A, becomes smeared out and strong self-trapping of
the electrons takes place with a lifetime 7 > w; ' on the chain.

Stationary excited states should have the properties of tight-binding
polarons (with respect to the parameter a® = Ay/hwy>> 1) of interme-
diate radius (/~§, = hvz/A,) with respect to motion along the chains,
and of small radius a, for hops between the chains. The self-trapping
energy 8E, and the depth 8E, of the electron level should be of the
order of A,

8ES = AO — ES ’ 8E0 = AO - EO , (SESNSEONAO

Detailed properties of this state call for an exact solution of the
problem; this is presented in §§2-4.

In §2 we investigate the self-trapping states in the Peierls—Frohlich
state for incommensurate systems. It is shown that in the correspond-
ing model A (I, §3) such a state takes the form of an amplitude soliton
with energy E, = (2/)A,, spin S = 1/2, but zero charge e, = 0. The
soliton produces a localized electron state with energy E, at the center
of the band; this state should be singly occupied, », = 1. The soliton
energy turns out to be fully delocalized. The influence of various
factors that distinguish real systems from the model A on the
electroneutrality properties of the spin carrier is investigated. It is
shown that inclusion of interelectron interactions preserves the prop-
erty ¢, = 0. A small local charge

es~350 lnw h(‘?) , ~ely/€x

F

appears on account of the phonon dispersion. The commensurability
effects of odd order n lead to the appearance of a fractional charge
(e, = /3 for n = 3) concentrated in the soliton tails whose length is
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I~hog/T,> &, where T ~(4,/ e~)"/21 is the “pinning tempera-
ture.”

In §3 are investigated systems with doubly commensurate charge
density wave. It is shown that in the model B (I, §3) the amplitude
soliton has a‘broader spectrum of the quantum numbers s = 1/2,
e, =0, and s = 0, ¢, = * e, corresponding to filling of the central level
v, =1 and »,= 0 and 2, with the same shape and energy as in model
A. In addition to such kink-type solitons there is also a polaron with
normal quantum numbers: s = 1/2, e, = *e, and E, = 2y2 A, /.

For systems with weak double commensurability (model AB, I, §3)
there are spin neutral solitons described in §2, and also shallow
solitons of the sine-Gordon type with s =0, e, = * ¢, and E, < A,.

In §4 are considered electronic excitations in combined dielectrics
(model C, I, §3). In this case kink-type solitons are strongly bound
into pairs. As a result, excitations exist in the form of polarons with
s=1/2 and e, = *e, bipolarons with s=0 and e, = *2e, and
excitons (non-Coulomb) with s =0 or | and e,, = 0. On the basis of
these results we compare the properties of polymer semiconductors
belonging to types B and C. The possible existence of Bose condensa-
tion of a bipolaron gas is suggested.

§1 Electron-Phonon Interactions and Polaron Effect in the
Peierls—-Frohlich State

1 As indicated in chapter I, a quasi-one-dimensional gas of non-
interacting electrons on a system of deformable chains at zero temper-
ature 7T is in the ground Peierls—Frohlich state. With the exception of
transition regions near p =0, 1, and 2, it is characterized by a lattice

deformation {(x) in the form
$(x) = {ocos(2prx + @) (D

where x, is the coordinate along the chains, py is the Fermi momen-
tum for the electrons in the metallic phase. The phase ¢ of the charge
density wave must be regarded as fixed, ¢ = const in the model B for
systems with p = 1 and can be regarded as arbitrary, neglecting weak
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pinning effects, in the model A for the system with |p — 1| > A,/ € (see

chapter I, §2). The electrons occupy negative-energy states E; = —¢,,
where
6= (hok)? 8035 Bo=gle~cexp(=1/N)  (2)

where v, is the Fermi velocity, g is the electron-phonon interaction
constant, and A = g2/ whop.

The ground state of the system, obtained in the self-consistent-field
approximation, was determined correctly on account of the adiabatic-
ity parameter (Brazovskii, Dzyaloshinskii [30])

Ln_=(_u_)2=A H
M O 4 A

where m and M are the band mass and the so-called effective
charge-density-wave mass, u is the phase velocity of the charge-density
wave, @ = w(2py) is the nonrenormalized phonon frequency.

The elementary excitations of the system contain, first, phonon
modes (two for model 4 and one for mode! B), which are conve-
niently defined at low temperatures as the amplitude and phase modes
 and o,

2

€l

< 1 (3)

ob)

§(x,1)~ReA(x, 1)

(4)
A(x,t) = [AO + 8(x, t)]cos(Zpr + @(x,1))
with dispersion laws
— e — 1 g2 0\ 1/2
wp(q) =ug;  ws(g) = wo(l +5509%)
(%)

Wy = 2\/-2_A0u/h01;~ s 50 = hDF/AO

This picture can be justified both for a system that is three-
dimensional with respect to the phonons, and for a one-dimensional
system, regardless of the presence of long-range order [30]. The
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thermal and quantum fluctuations of § and ¢ lead to a smearing of
the parameter Ay. In structure measurements, the value of A, is
determined accurate to

1/2 1/2
21/2 T | hw
() "5(%))

but the picture of the smearing of the electron spectrum (2) turns out
to be much more complicated.

We consider the electron and hole excitations that determine the
properties of the system as a narrow-gap semiconductor. If, as is
usually understood, the lattice state is assumed fixed (A(x)= A,
= const), then the electron-hole excitations are constructed in the
- same way as the particles (2) of the ground state, namely linear
combinations of the waves | % p. + k> with a dispersion law *e¢,.
However, the excitations defined in this manner are not renormalized
and should be modified to some degree under the influence of the
interaction with the phonon modes—the polaron effect. As shown by
Brazovskii [41], this effect is specifically strong in a one-dimensional
Peierls— Frohlich system and leads to a radical restructuring of the
picture of the electronic excitations of the system. The reason is that
the electron or hole excited initially in a state with momentum
k<& ! and energy €, = A, interacts with the deformations of the
superstructure (CDW)—renormalized phonons. Following [44], we
shall show in this section that in the units vp 4, and §, this
interaction, for a quasi-one-dimensional phonon spectrum, does not
contain any parameters whatever except the adiabaticity parameter
(3). As a result, a distinction must be made between two types of
electronic phenomena, depending on the relation between the electron
lifetime T and the characteristic phonon frequency wy.

i States with rw, < 1 are determined at a fixed spontaneous lattice
configuration. These include real states with r~hA; ', which are
responsible for optical transitions across the gap, and virtual states,
which determine the renormalization of the phonon spectrum and the
specific dielectric constant [30] in a system with p =1

Hw? 2 £2 _
2 - 70 Wy = < gl <&t (6)
olj + (hveq)

€
w.___.._
[ hop S|

€o(q) =
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(w, is the plasma frequency). Obviously belonging to the same type are
states that determine the system energy and consequently the value of
Ay. For all these short-lived siates we can assume a spectrum e,
smeared out by certain amount ~e¢;; €; K 4, (see formula (13) below).
The value of ¢, is determined by the thermal and quantum fluctua-
tions of the amplitude 8(x,?).

ii Long-lived excitations with 7>> w§ ' must already be investigated
as stationary states of the electron-phonon system. In this case the
phonon frequency, if the condition (3) is satisfied, drops out of the
theory and the problem no longer has any small parameters at all.

2 We attempt now to describe the states of both types (with
> w; ! and with 1< w5 '), assuming that the scale & of the signifi-
cant changes of 8 and ¢ and of the wave functions of the electrons
is large compared with §,, and the value of § and the depth of the
electron level e = E — A, are small compared with A,:

£ ¢, lef~|8(x)| <4,

The interaction of the electron e or of the hole 4 with the amplitude &
or phase ¢ phonons (5) is determined by the Lagrangian

L8} = L5 + L, — H (7)
where
8% _
Ly = f dx thh{ 5 } (8)
Ly=[ax h”F Do ©)
o DOr | @
u2 ¢
* 3 7 ﬁz th ’
%=fdx¢ ()HY(x);  H=J—+8+8x =g (10)

(the = signs correspond to e and A).

The functionals (7)—(10) were rigorously derived in [30] and used to
describe virtual states and to determine the region of applicability of
the Peierls model. Their form obviously corresponds to a definition of
the function 8(x,r) as the local change in the forbidden gap width
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2A(x,t) and of the function (1/2)vzq'(x,?) = v:0pz(x, ) as the local
shift of the Fermi level. The terms with the time derivatives § and ¢ in
(8) and (9) are obtained by substituting (4) in the term ~|A]? in the
general Lagrangian (1.2.11) of model A.

3  We consider the state with 7> w; !. In this case the fluctuations
of § and ¢’ constitute for the electron a random potential of the
Gaussian-white-noise type. Its action is determined by the correla-
tions at coincident instants of time, which can be easily calculated on
the basis of the Lagrangians (8), (9). Confining ourselves to the
low-temperature region, 7T < fw,, when only quantum fluctuations
are of importance, we obtain for the Fourier component with respect

to the coordinate
(B (1)0 (1)) = g hopwg (11)

2.21.2

(B (DB (1)) = —— <@ )P (%, 1))

= ﬁi— hopwebok (12)

The extra power of k in (12) causes the contribution of the fluctua-
tions of the phase (i.e., of the Fermi level) to be small in comparison
with the contribution 8 in terms of the parameters §,/£ < 1. The state
density N(E) for the Hamiltonian (10) in a random potential with
distribution (11) is known from Halperin’s paper [59]. For N(4; — ¢)
we have the following asymptotic expression [30]

Ny — )~ 226 exp[——(e/e,)y‘] (13)
TN VW
where
2/3
v, =3/2; eI/A=—;-(%%) ;o wKeg <l
0

We see that €, /hwy~(Ag/wg)'/? > 1, thus confirming the correctness
of the adiabatic approximation not only in the tail (13) of the state
density, but also in the region |¢|~e¢, where the edge is smeared. The
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general conclusion is that the strong smearing of the fundamental edge
in a Peierls dielectric is a particularly pronounced Urbach phenomenon
and is not specially connected with the absence of long-range order in
the one-dimensional system.

The violation of the long-range order in a system with p = 1 (model
B) means that the gas contains the solitons investigated in §3, at a
concentration

E, T 172 hogp _ ’)
C~exp{ T }(3;) max(hw,T) ' Be=1 Ao

According to the results of the investigation of the optical absorption
(chapter III, §3), it leads to broadening of the fundamental edge 24,
by an amount (Avpn)®/A,. The loss of the long-range order in an
incommensurate system (model A) on account of phase fluctuations, as
indicated above, is inessential for short-lived states.

It is of interest to note that the possibility of treating quantum
fluctuations of the displacements adiabatically, as a random potential,
is unique to one-dimensional systems. In fact, a similar approach for
a d-dimensional system would yield a formula of the type (13) in
which », and €, are generalized to

o, d. _ei)z-(d/z)N A d-1 By
d 2’ Ay €p AW

whence

sz 2R
Wo €F @o €r Ao
It is seen from (14) that at d = 3 we have ¢;/hw, < 1 even if a small
parameter exists for the static electron-lattice coupling, expressed in
(14) in the form 4,/ ¢z. Thus, the adiabaticity condition is satisfied at
d=1, is violated at d =2, and the problem becomes in principle
dynamic at d = 3.

4 A long-lived excited electron causes static distortion of the

lattice. It can be seen from (8) and (10) that we have a typical polaron
problem. It is known [46] that in the one-dimensional case a self-
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irapped state exists also in the case of a short-range interaction of the
deformation-potential type, as in (8) and (10). Inasmuch as for a
polaron at rest the parameter w, drops out of the problem, the binding
energy is €, = Ay — E, Ay, i.e., we encounter the deep-level problem
which is outside the scope of the approximation (8), (10). At any rate
it can be stated that the polaron size ~§;=rhog/A,, its mass is
mp~m*A3 /hwi, and the coupling constant defined in polaron theory
[45] as a®~¢y/w, is of the order of a~(Ay/Awy)'/?> 1. An investiga-
tion of such a strongly self-trapped state calls for an exact solution,
which will be described in the following sections.

In the approximation (8), (10) we encounter the problem of total
screening of the charge. An extremum solution for (8) and (10) yields

P'(x) = —m4*(xX)(x); () - @(—0)=—m, (15

so that it follows from the properties of the phase [30, 55] that a
charge that screens completely the charge of the introduced electron
is produced in the deformed CDW. This result is confirmed by the
exact solution investigated in §2.

The intensity 7, of the optical excitation of a pair of self-trapped
states can be estimated by interpolating equation (13). We obtain

L~exp{ —(eo/€))*?} = exp{ — CAy/hwy};  C~1  (16)
Inasmuch as frequently A,/Aw,a=10, the polaron lines should be
practically invisible. In analogy with (16), the probability of the pure
electronic mechanism for the transition of a polaron between chains
should be small. The polaron effect explains the usual lowering of the
activation energies and of the longitudinal conductivity compared
with E, for the transverse conductivity and with the value of E,/2
determined from the optical absorption edge E,.

To conclude this section, we shall bring to light the difference
between the picture of electron-phonon interactions in related three-
dimensional systems. The Peierls state can be regarded as a particular
case of a three-dimensional dielectric of the exciton-insulator type [60]
produced as a result of a structural phase transition from the metallic
phase with a Fermi surface having the property

e(p+Q)=—¢(p)
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at a certain Q. The ground state of such a system is also described by
the BCS theory. The Hamiltonian of the electron-phonon interaction
in the dielectric phase also takes the form (10), where p should be
understood as the operator of the three-dimensional momentum, and
dx should be replaced by d°r. In the Lagrangian (7), however, dx will
be replaced by (p/m)d 3r, owing to the appearance of the area factor
of the Fermi surface 4mpz/(2%) . This factor obviously leads also to a
small electron-phonon interaction constant

g*~(prbo)” 2~(A0/€F)2<< 1

Consequently, in a non-one-dimensional BCS dielectric the electrons
are well-defined excitations near the edge £ ~ 4, of the band.

§2 Spin Solitons in the Peierls-Frohlich Model for the
Incommensurate State (Model A)

2.1 Single-Soliton Solution for an Isolated Filament

We consider a system of noninteracting electrons on a deformable
filament in the Peierls— Frohlich ground state. We add to the system
vy < v electrons, where » is the degeneracy multiplicity of the initial
band. (v = 2 for spin degeneracy). As a result of the interaction of
these electrons with the deformation of the superstructure A(x), the
system goes over into a certain stationary state, ground or excited. As
shown in §1, one can expect self-trapping of the additional electrons
in the region ~¢; at a binding energy ez;~A,. Since ez /hwy~Ay/ huw,
> |, the problem can be solved in an approximation quasi-classical in
the lattice degrees of freedom and corresponding to the tight-binding
polaron theory [45]. As applied to one-dimensional problems, this
theory was expounded in the papers of E. I. Rashba [46]. In the
zeroth approximation in the parameter %w,/e; in the localization
region, as well as in the parameter fiw, /A, outside this region [30], the
lattice deformation can be regarded as a classical quantity

¢(x) = -}g- [A(x)eiCr=+0 1 c.C.]
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where A(x) = A (x) + iA,(x) is a complex function, and x = const is
an arbitrary phase. Far from the localization region |x|> {, the
system should go over into one of the possible ground states, i.e.,
A ——— A+ = : + | =
(x)x_*iw + = const; AL | = A, (1)

We write the electron wave functions J(x) in the field A(x) in the
form

Y (X) =12 [ug (x)cos(ppx + x) + ivg (x)sin( pex + x)]  (2)

Any stationary state of the system, including the ground state, is
determined from the condition that the functional of the system
energy W {A(x),yg(x)} be an extremum. Assuming the spectrum of
the electrons near the Fermi points =+ p, to be linear, we can use the
functional of the energy of the model A, formulated in I, §2:

W {A(x), By X); ug (X), 0 (X))}

A¥(x) + A3(x ]
- )gz ( )+§{—-z[u§(x>v:s(x>+vﬂx)uz’s(xﬂ

+ Ay (x)[ wf (x)ug (x) — 0F (x)vp(x) ]

+ iby(x) [ 0F (x)ug (x) = u* (x)vg(x)])
(3)

where f'(x) = df/dx and the summation extends over all the occupied
states. The first term in (5a) is the lattice-deformation energy. We

assume that vg = 1.
Varying (3) with respect to u(x) and vg(x) we obtain equations of
the Dirac type for the eigenfunctions corresponding to the energies E:

Varying (3) with respect to A,(x) and Ay(x) we obtain the self-
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consistency conditions,

W oA St — et =

84, e %(UE“E tfvg) =0 (6)
M=2-%+-1—z(u"fu-—u~u*-)=0 7
A, g i gVEE (7)

Equations (4)—(7) correspond to the self-consistent field approxima-
tion for an inhomogeneous state of the system or, strictly speaking, to
the zero-order quasiclassical approximation. Their applicability, as
indicated above, is based on the existence of the adiabaticity parame-
ter vp/u>> 1. There is also another known physical system describ-
able by approximately equivalent equations. This is the model, inves-
tigated in [61], of two-dimensional relativistic field theory with a large
number of interacting fermions »>> 1. The large parameter » was
necessary to be able to use the quasiclassical approach.

2 We seek a solution such that in the soliton region the function
A(x) varies in the complex plane along a chord of the circle |A] = A,.
By properly choosing the phase x in the definition (2), we can put
A, =const, A = A, + iA,(x), as shown in Fig. 3a. We define now the
parameters 0 < § < 7 and &, > O such that

A, =Agcosd;  ky=1/A}— A? = Asind

It can be seen from (4) and (5) that at A, = const there always
exists a localized normalizable solution labeled hereafter by the index
E,:
a) if Ay(*ow)= Fk, as shown by the arrow in Fig. 3a, then
Ey= A4, vy(x) = vg(x) =0,

uo(x) = uED(X)~exp{ fo “Ay(p)/ dy} (8)
b) If Ay(* o) = * kg, then Ej= —A,,

oo(x) = vg,(x)~exp = ["Ay(y)/dy ©)
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It is easy to verify that the cases a) and b) are charge-conjugated,
i.e,, they correspond to electron and hole polarons. For the sake of
argument we shall consider hereafter the case a).

At E # Ej it follows from (5) that

vp(X) + Ay(x)vg(X)
g () = 2L 2-(15—2}30)5 (10)
Substituting (10) in (6) and (7) we obtain

A
SW —2=L 42 5 vpvg—p(x) (11)

BA] g E# Ey
where

p(x) = %(”E“E + 0f ) (12)
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is the particle-number density and

SW A A d\ VEUg
oW 22 4 A, + &) ETE
ek RN G b T

Substituting (10) in (4), we obtain an equation for vg(x) at E # E,:
vp +[A;— A — Ef + E*Jog =0 (14)

We consider first the self-consistency condition (13) jointly with Eq.
(14) for the set of functions v.. As follows from the results presented
in ITI. §4, the functional equations (13) and (14) reduce to algebraic
ones and can be solved if the function A,(x) satisfies the equation

Ay — 6A3A, — ANy =0; A = const (15)
The single-soliton solution of Eq. (15) in case a) takes the form

Substituting (16) in (8), (10), and (14) we obtain the complete set of
the electronic states in the field A(x)

Eo = AOCOS 9; Do(X) = 0,

Vko/2
o x) = ch(kyx)
(17)

1 ikx

€
VN.L

| =k ikgth(kgx)

E———""Gk: 'Uk(X)=

U(XxX)=

where

N,=2¢/(Ey+ €) (18)
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We substitute (16)-(18) in Egs. (11)-(13). In the summation we
should regard the states with £ = — ¢, as p-multiply occupied states,
those with £ = + ¢, as unoccupied, and ascribe to the localized states
E = E, an arbitrary occupation number v, that is so far arbitrary:

0<pyy <o
We obtain
SW _
8A2 = 2A2(X)X (19)
and
oW ko v ko
— =2FE.X + —— 19
04, 2ch¥(kox) | © L 4 &(Eo+ Ey) (1)
where
1 y 1
X=——=> — 20
g2 L Ek: 2€k ( )

At equilibrium we should have X = 0. For the ground state (# = 0,
vp = 0) this condition determines the equilibrium value of the gap

parameter
Ago~egexp{ —1/A)

in the absence of a soliton, the sum in (20) changes by an amount
~O(1/ L) as a result of the change in the state density because of the
presence of scattering phase shifts in u,(x) and as a result of the
refinement of the normalization (18). We therefore always have

X=X(0)=0(1/L)

The sum in (19a) can be calculated to order O(1), since it enters with
a factor that is integrable with respect to x. We obtain

SW Aok ] }
= - vo—v—+ +2E,X 21
A 2ch?(kox) { ° ’ #9
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In the equilibrium position
SW /oA, =8W/84A,=0
and we have from (19) and (21)
Ay=A8yp+ O(/L); B=0y—vomw/v, or §=0.

We determine the total excitation energy W(#) from the relation

w dh,  sw db,
e [SA @ " 5A, @ (22)

whence

_ : h(kox) kg 8 _
aw ._fdx[sm?.ﬁ () X(0)+ 2 (end) (v vo)} (22a)

The quantity X(#) enters in (22a) with a factor integrable with
respect to x, i.e., it can be assumed, with accuracy O(l), that X ()
= (. We obtain

aw [ .
ot AO( vo) sin (22b)

Integrating (22b) with the boundary condition W(0) = »,4,, corre-
sponding to electrons at the momentum k =0 for an undeformed
superstructure, we obtain, in accordance with the results of [56, 62]*:

W(8) = AO{(VO - v—f;)-cosé? + %sin()} (23)
Ay . 7Y, mY
W, = W(8) = —— sm( : ) 6y = —2 (23a)

As seen from (22b) and (23), the positions # =0 and 8 = 8, corre-

*The presented derivation of the energy enables us to avoid the more laborious
direct energy calculation in [61].
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{1 Es (9)/Ao

=0

e \)0=2, \)a

i vozi
2
T

0 T T 6

&
Figure 4

spond to the maximum and minimum energy of the system. Plots of
W(@)atv=2and»,=0, 1, and 2 are shown in Fig. 4|
We comnsider the following different cases of occupation numbers

a.) V0=O; 00"_—'0; WS=O; k0=0.
We have an undeformed system in the ground state.
b) vy =2; 0, = m; W, =0; ky=0.

We have an undeformed system with an additional occupied level in
the ground state.

We conclude that there are no singlet (v, = 0 and », = 2) stationary
excited states. Any excited pair of electrons or holes will be absorbed in
the ground state without a barrier after a time 7~wy '. This nonradia-
tive recombination, in accordance with the qualitative analysis given in
§1, goes through intermediate nonstationary polaron states.

We consider now the case of one electron. We have here an already
nontrivial stationary state:

Ay

r=2 w=1; G=T; k=g Ey=A=0 o= 24

(24)
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which we shall in fact investigate hereafter. We note that this solution
with 8, = 7 /2 has electron-hole symmetry, i.e., sélf-trapping of either
an electron or a hole leads to the same result.

We shall show that the total electron density remains homogeneous
and that the local charge of the soliton is zero. 1t follows from (17) and
(18) that the distributions of the densities pg(x) in the states £ = £,
and E = ¢, are equal:

1 , N I EIL
_— pk(__\) = - :
2 ch?(kyx) L (Eg + &)

po(x) =

The total change of the density in the system takes the form
(SP(X) = Vopo + 1’% p,\(x) = (”0 — P "f:r‘ )p()(.\') (25)

At equilibrium # = avy/» and we find from (25) that
Sp(x) =0 (25a)

Thus, exact compensation of the local charges took place. This
property can be attributed to the Frohlich-conduction phenomenon. It
will be shown in §4 that the effects of the coupling between the
chains, as well as the commensurability facts, produce again a local
charge around the soliton, but at distances /> §,. The obtained
property can be established also without resorting to the explicit form
of the solution. We differentiate (12) with respect to x and use Egs.
(4)~-(7). We obtain

a,

1ap _ A\ 8W _, 8W
2 dx - Mg, T hea (26)

It follows therefore that at equilibrium p(x) = const and we arrive at
(24a). A similar investigation for the more general model is carried
out in §3.

We show now that the total energy of the soliton is delocalized. We
have the lattice part of the energy density
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The energy density of the bound state
Wy = Eopo(x)

as well as of the continuous-spectrum states
We(x) = EEAPk(X) - —Eopo(x) +0(1/L)

The total energy density is
W(X) = wy + vow, + rw,
= Agpo(x)(vo — ¥8/m)cos§ + O(1/L) (27)

We see from (27) that at equilibrium, for 6 = 8,= my,/» we get
w(x)~1/L, and comparing with (23) we get

_ 241
W(JC) == -7;' AOZ
Thus, the local changes of the electron and lattice energies cancel
each other completely. The total energy of the soliton (23a), E,
= (2/m)A,, is determined by volume effects of the change of the
density of states (18), although the equilibrium conditions (19a) and
(20b) are locally determined.

The kinetic energy of a soliton moving with velocity o< u is
determined, just as for tight-binding polarons, mainly by the inertia of
the lattice. The electronic contribution to the mass M, is small in the
ratio ~(u/vz)* < 1. We have

|A(x, 1) : _AA(x, 1)
Wkin = f dx —?:_6—2—- ’ A(X, f) = Y, (28)

Neglecting the change of the shape of the soliton when it moves with
low velocity v, we can substitute in (28) A(x, 1) = Agth[(x — £)/&].
We obtain

A3 A2
ka:lMs&; Ms'—'i——%}‘:l"z—ogm*; m*:f‘_‘é_
2 T AG A L OF
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2.2 Effect of Perturbations on the Local Charge of the Soliton

It was shown above with the framework of the one-dimensional
Peierls— Frohlich model that the charge and energy of the system
remain homogeneous in the presence of a soliton. As a result, the
solitons should not contribute to the electric conductivity and thermal
conductivity of the system. Their only kinetic manifestation would be
spin diffusion. In real systems, one might expect a substantial change
in the local properties of the soliton. It is particularly important to
take into account the interelectron interaction, which is usually not
weak. In addition, we must investigate the effects of coupling between
chains, the influence of phonon dispersion, of commensurability, as
well as the effect of motion of the soliton. The delocalization of the
energy is probably an accidental property of the simple model and
should vanish when account is taken of the correlation energy. The
charge delocalization was connected with the electron-hole degeneracy
of the solution, and can be preserved also for a more complicated
system. In this part we consider the question of the local charge of a
self-trapped excitation for a sufficiently general model of a quasi-one-
dimensional system of electrons on a deformable lattice. It turns out
that its investigation can be carried out in general form on the basis of
the equations of motion, without having the explicit form of the
solution for the complicated model.

2 We consider a quasi-one-dimensional system of conducting
filaments with transverse coordinates R,. We shall assume that there
are no electronic transitions between the filaments. Let the electrons
on one of the different filaments interact via long-wave phonon fields
®,, = ®,(x,R,, 1), including the Coulomb potential & (x,R,) and the
short-wave fields

B,(x,R,, e + BY (x,R,,t)e ™ "%~
which transmit the backward scattering of the electrons. These fields

are characterized by the parameters g!,*(x,,, x,) for interaction with
electrons and

Ezexp[i{k(x - x,)+k, (R —R)}]
Dn(1i\1) xm _ xn — A m n L m n
( ) k§¢ w? — wi(k,k,)

(29)

for interaction with the unrenormalized Green’s functions (A =i or
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A = a). We assume for the sake of argument that the frequency of the
short-wave phonons (A = a) at small %, ie., near *2pp, can be
written in the form

wi (kK )l (k) + Q3(k,) (292)
where

Wl (k) =@ + 28,5,k
Quk,) = ; I exp{ik (R, —R,)}

We introduce the operators for the creation v, (x), annihilation
¥,(x), density p,(x), and current j,(x) of the particles on the chain n,
as well as the operators of the charge-density wave components 5" (x)

and 7,(x)

pn = \lbn-*—‘hl/n ; jﬂ = ¢n+62 n ]
Mo = O s My =Y, 6.,
where 6,,6. = o, % io,, and [ are the Pauli matrices and the unit

matrix. In terms of these variables, the system described is character-
ized by the Lagrangian

L= 3 [ar{38,(DR) T+ Bi(DS) Bun )

m,n, i o

- [(I)imgr(nigpn + d)lmgr(r:g jn + Annn+ +A:—nn]

(40 a8 |
+ 4y, (11 ey +id, e )xpn} (30)

where
An(x’ t) = /% grgrzz)Bam(x’ t) (30&)

is the field conjugate to the charge-density wave density m,(x). In the
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zeroth approximation for the Peierls—Frohlich model, the operator
A, (x,1) goes over into the classical gap function A, (x).

We assume that in the model considered, just as in the particular
case of the Peierls—Frohlich model, there exist self-trapped stationary
excited states. The adiabatic approximation developed in §3, which
corresponds to the theory of tight-binding polarons, means in the
general case that at least some of the modes B, have frequencies @,
that are small compared with the soliton binding energy. On the other
hand, as will be seen subsequently, a significant influence on the
soliton charge is exerted only by modes with a considerable dispersion
5,1 .. Both conditions lead us to practically the same modes—the
acoustic-branch phonons a = a. In the principal adiabatic approxima-
tion B,(x) can be regarded as classical local deformations. The
remaining modes requires quantum mechanical averaging { - - - >, for
specified B,(x). In the Feynman formulation this means that the path
integral over the fields B,(x,¢) is calculated by the saddle-point
method (see [30]), but exact integration is assumed over the remaining
fields B, (x,#) with a 5 a.

3 Assume the presence of an isolated moving self-trapped excited
state of the system in the vicinity of the chain n = 0. Since the energy
and the charge of the excitation must be finite, the characteristic
perturbations of the quantities p,(x), j,(x), and A, (x) should decrease
rapidly enough with increasing number n of the chain. We can
therefore determine the summarized perturbations

P = Shen(0 s T () = S a3,
We determine also the effective gap parameter
A(x, 1) = |A(x, t)lexp{ ix(x, 7}
in accordance with the formulas
AGx B = S<ATA,Y,

aX(X,t) 1 '
SRS NACAN § + A A O A+
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The function A(x,?) goes over into the solution
A(x) = Agth(x /&)

for a soliton at rest, in the model considered in part II.

We use the equation of motion, introduced in Appendix I, which
connects the operators p,, j,, and A,. We average Eq. (A.10) at fixed
perturbations B,(x,?) and substitute expressions (31). We obtain an
equation that connects the perturbed distributions

8, v 1AF ax
at 277' A%uz at

dp 5= 2 (% 29\ 'dp
+ ax p-f[; p(y)dy-*-zl:aaxz(g;i SJ' 875) 5—;
- 2
+—13 X 14| =0 (32)
g W ax
where

8¢y

u?/ot =A%l /40 A= g*/nhog; w;'= R lg| < & !
i

and the effective electron-phonon interaction constant g* is defined in

(A.8a).
We consider now a perturbation moving with a constant velocity

v # 5. We then obtain from (A.5) J=1v and 3/8t = —v(3/dx).
From (32) we get

where

(33)
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It follows from (33) that

p(x) = ilz_ff”(y)exp{ ~k|x — y|} dy (34)
or
p(x) = f(x) + %ff(y)exp{ —k|x = y|} dy (34b)

Since actually 7w, > A, and f(p) changes over a length not shorter
than &, = hvp /0> 1/ Kk, we obtain from (34a)

p(x) = (1/1%) f" ()

Since f(y)—>0 as y— * co, we obtain from (34a) the exact result,
namely that the soliton charge e, and the dipole moment P, are equal
to zero, while the quadrupole and higher moments are finite:

e, =0; P, =0; P, = efp(x)xzdx= % ff(y) dy (35)

We introduce the characteristic soliton length ¢ and the gap-
deformation amplitude 5. We then have from (33)-(35)

1 {8\ € s &
ot () (5) & ds s

?
(36)
Ay \/ ex \2
el o) (7} &
P, X( €F) (wp) Aogog
For the model considered in §2 we have exactly
4 5 A% ] 16 €A
xX)=— = : Po= =
J)=2x @ K} chi(x/&) 2w WV AR %
(37)
A% 3th*(x /&) — 1
p(x) ~ 8 0 ( 0)

Loy WolGEl  ch?(x /&)
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We see that the local charges are small in terms of the parameter
Ao/, K 1.

The exact compensation of the charge, which was established above,
takes place because of long-range three-dimensional Coulomb fields.
At a large distance and a weak coupling between the chains, the
screening takes place with participation of a large number of chains.
In kinetic phenomena, however, an important role is played by local
charges, particularly on the central chain n = 0, where the localized
electron is placed.

We consider Eq. (A.19), neglecting all the couplings between the
chains, i.e.. I, = 0. We obtain for J, and p, the equations (32) and
(33) with k = 0 and w, = 0. The solution of (33), according to (34b) is
po(x) = f(x). As a result, the charge ¢, and the even moments P, will
differ from zero, with

£

e
&r o

8

Substituting in (33) the solution derived in Part II, we obtain in first
order in the dispersion s/ vy

P T oAt (x/) " mhhoph@

For a moving soliton it is necessary to consider the second term in
expression (33) for f(x). When the zeroth solution is substituted it
vanishes, since A(x) varies in the complex plane along a straight line
passing through the origin. Generally speaking, motions with allow-
ance for dispersion deforms the soliton. It can be shown, however,
that the general character of the solution does not change also in next
order of perturbation theory in (v/u)?. We cannot exclude the possi-
bility that e,(v) — e,(0)~(v/u)*" at n > 3.

We shall show in chapter IV that effects of proximity to the rtwofold
commensurability point lead to the appearance of a charge in the spin
soliton. The value of this charge depends on the shift 2k, — 7/a. In
chapter VI we shall show that the soliton charge can be restored
on account of interaction effects between the chains in a three-
dimensionally ordered phase.
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2.3 Perturbations That Violate the Gauge Invariance of the Model A

All the perturbations that lower the degeneracy of the ground state of
the model exert a strong influence on the soliton structure. For model
A, such perturbations are the commensurability effects and the interac-
tions between the chains. The role of these perturbations manifests
itself at large distances |x| > &,, where account need be taken of only
the change of the phase ¢, of the field A,(x), where « is the chain
index. The state of the system outside the core (|x|<S§,) of the
amplitude soliton can be determined from the condition that the
energy functional be a minimum (see, €.g., [4, 29, 55])

H = {@.(x))
(pl?. TZ 5
=fdx ; (FIUF'4—’; + 'ED—FCOSH(PQ) + %CTC COos (qja e (pﬂ)

(39)
TC,TH<<A0; CNI

where T, is the temperature of the three-dimensional ordering of the
system, T, is the pinning temperature [29], a and B are the indexes of
the neighboring chains. The most important cases are n = 1,2, 3:

Model AC: n=1, T{~AC/A\

Model AB: n=2, T}~A3B/A

Systems with p =2/3,4/3: n=3, T{~A}/D.

The Hamiltonian (39) determines the structure of the system for
self-trapping of two particles, distorting the term », = 2, Fig. 5, in the
region # =~ 7. In place of a new homogeneous state expanded to cover
two particles, we obtain now a set of solitons than connect equivalent
states with ¢ = 2kw/n, k= 0,1, ... . The soliton charge is [55]

e

~ [t

e, =< [p(+0) —g(—w0)] =

Phase solitons with n % 1 can exist only in the interval 7, > T > T,
and when the strengthened adiabaticity condition A,/Aw, < 2 is
satisfied, something that can apparently occur only in substances with
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n< 3. At n=2, in the AB model, solitons with e, = * e are possible
and go over continuously, with increasing parameter B, into rhe
amplitude charged solitons of the model B (§3). An analysis of the
experimental data for K(def)CP as an example is given in [31].

In the disordered phase, T < T, the solitons are preserved only at
n=1. In the remaining cases they are bunched into “phase-slip
centers,” where the phase of one chain changes by 2« relative to the
surrounding ones. The charge of the center is e, = 2e and its energy is
E.~max(7,,nT,). These excitations probably determine the small
low-temperature activation energies and conductivities observed in

many materials with p % 1 or 2.
The amplitude solitons take the system out of the equilibrium

_ 2k +1
n

I

7 = const; k=0;,x1;...

4

determined by the minimum of the Hamiltonian (39), with the excep-
tion of the case of even n. This leads to equalization of the phase in a
region of dimensions /~#Avg/T,; hvg/T,, I > §,, on the tails of the
soliton. The electron density becomes perturbed in this region, and as
a result a spin soliton can acquire an electric charge [47]. This
phenomenon is investigated in detail in chapter VI, §1, with the
interaction between chains as the example. The commensurability
effects are investigated similarly. The plots of the complex function
A(x) are shown in Fig. 5b for » = 3 and in Fig. Sc for n = 1. A change
in A(x) takes place near the surface of the cylinder [A(x)| = 4, at
|x|> &, and near its diametral plane at |x| </ At n=3 we have
p(*x o) = *7/3,and at n = 1 we have p(* 00) = * . In the vicinity
of the core of the amplitude soliton @(x)= (m/2)sgn(x — x,) the
charge of the soliton is

= £ [(p(+20) = p(xo+ 0)) + (o(x0— 0) — 9(~20))]

We obtain

A fractional charge was obtained for spin solitons at n = 3 in [47]. This
effect was recently investigated in a discrete model in [40, 41].
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§3 Spin and Charge Solitons in the Peierls Model for
Systems with Double Commensurability

In this section we consider systems in which the number of electrons p
per unit cell in the metallic phase is equal to unity, p = 1, i.e. the
initial band is almost half-filled. In this case 2p, = 7 /a, meaning that
the period of the superstructure in the Peierls states is doubled com-
pared with the period of the main structure. These are precisely the
systems on which interest was focused in both the experimental and
theoretical investigations. As shown in chapter I, §2, the stationary
states of such a system are extrema of the energy functional of the

model B

Wiay= 3 E(a)+ [de (1)
E<np g
Aj=Ey:. A= —~i}‘wF58; 6.+ A8, @)

in

P=(et-)i b =deexp{ Jx)+y_ep[~3Lx) (3)

The extrema of the functional (1) obviously correspond to the
extrema of the functional (2.3) of mode/ A on the class of functions
A(x) such that A, =0 and A = iA,. Therefore, by varying the func-
tional (1) we obtain Egs. (2.4, 5) and (2.7) at A, = 0. Now, however,
we must not take into account Eq. (2.6) and its corollaries (2.19a) and
(2.21), which are the results of varying the functional (2.3) with
respect to A;(x). In the upshot we obtain all the results described in
Chapter 11, §2, items 1-9, with the exception of the connection (2.23a)
between 6, and »,. (Inasmuch as only the field amplitude A(x)
changes now, we have § = 7 /2 at any »).

We arrive at the conclusion that in model B the soliton can carry an
arbitrary number of bound states »y=0;1;2, and its shape and
energy do not depend on »,. The corresponding soliton charge will be
e.=—e, 0, or +e, and the spin s=0, 1/2, or zero. Obviously,

allowance for the Coulomb interaction should lift the soliton energy
degeneracy with respect to the charge e,. In first order in e*/hvp we
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should have

24, e?
W,=—|1+C ; C~1 4)
T

hog

The determination of the coefficient C is difficult because of the need
for taking into account the variance of the dielectric constant E(g)
(1.6), which is substantial at g~&;” I, The appearance of solitons with
vy =0 and 2 can be attributed to the topological stability in a system
with discrete degeneracy of the ground state (A— —A) compared with
the case of continual symmetry (A—Ae®™). In the latter case, which
was considered in §2, the stability of the soliton with vy = 1 was caused
only by energy factors. However, the coincidence of the shape and
energy of the solitons at all vy =0, 1, and 2 is an unexpected property
of the Peierls model.

Besides ropological solitons, which bind different vacuum states of
the system A(+ o0) = —A(— o), there exist also nontopological self-
trapped states, for which A(— o) = A(+ 00). Their form can be ob-
tained from Eq. (2.15), which under the symmetrical asymptotic
conditions

takes the form

(MY = (A — Ag)*(A% + 284A + A) (5)

In analogy with the parameter 4, in §2, the constant A in (5) must be
determined from the self-consistency equation (2.7) or, in simpler
manner, from the energy-minimum condition.

The electron spectrum in the presence of symmetrical deformation,
A(x), defined by Eq. (5), has two local levels + E,. As a result of
simple calculations we find that the symmetrical soliton is stable only
if the local levels * E, are so occupied that the total spin of the
electrons is §' = 1/2. This condition means either that the level — E,
is doubly filled and the level + E, is singly filled, or else that the level
+ E, is empty and the level — E, is singly filled. The soliton charge is
accordingly e, = +e or e, = —e. In this case 4 =1+3/(2/2 +3),
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and from (5) we obtain the soliton shape

A(x) =4y 1 — 1
(3)=% 1 +\/2_ch(\/:2_x/.50) ©)

The total energy of the soliton E; and of the local level E, are equal to
4y

212 Aom094,; B, =2
m V2

The distribution of the charge p(x) and of the spin o(x) in the soliton
now coincide and are determined only by the bound-state wave
function vy, (x)

B, =

p(x) = 20(x) = [y (x)|* =27/ %51 [ 1 — Ay 2A%(x) |

_ 1 A2 A2 ARWYZ a2 a2 11/5
%(x)"mzﬂmoggﬂ( (45— 22 =AY (a3 - &2+ 4 )

Thus, a symmetrical soliton is perfectly analogous to a normal elec-
tron or hole polaron. We note that despite the deep self-trapping of
the electron, the total polaron energy hardly differs numerically from
the energy of the free electron or hole.

It must be borne in mind that the small value of the total self-
trapping energy of one electron

SE = by — E, ~0.14,

can cause the polaron (6) to become a metastable state in real matter.
The stability of this particle will be particularly sensitive to electron
hops between the chains. In a system of ordered chains, the minimum
energy will be possessed not by the polaron, but by the electron in the
band state with energy A, — ¢, , where ¢, is the integral of the hopping
between the chains.

Equivalent states were known in the Gross—Neveu model [61]. For
the Peierls model they were first obtained by computer simulation of
the self-trapping of one electron by Su and Schrieffer [39], and
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analytically by Brazovskii and Kirova [17, 32] and later by Bishop
and Campbell [63].

A classification of the electronic excitations in the Peierls mode! B
for the case of double commensurability is given in the table of §2 of
chapter 1. We have polarons with quantum numbers corresponding to
normal electrons and holes: s = 1/2, e, = * ¢, as well as solitons with
anomalous quantum numbers: s =0 and e, £ e, or else s =1/2 and
e, = 0.

We emphasize once more that in the incommensurate Peierls—
Frohlich model A there is only one type of excitation, shown in the
first column of the table of §2, chapter I. The problem of the
crossover between such different electronic spectra of electronic exci-
tations is solved in chapter IV,

§4 Elementary Excitations in Combined Dielectrics:
the Bipolaron Problem

Generally speaking, there is no degeneracy of the ground state in
combined dielectrics. Therefore the existence of single solitons such as
kinks is impossible even in an isolated chain. In a weak field of
external dimerization, A,, however, (see I, §2, model C), the general
arguments of §1 concerning strong self-trapping remain in force.
Therefore the excited or injected electrons or holes, as well as particle
pairs, will form deep polarons. The lattice deformation A; should have
identical asymptotic values A;(+ c0) = A,(— o) as for the polaron in
model B. An exception is the case of “orthogonal external dimeriza-
tion,” o =m/2 (see I, §2), when the ground state of the system is
doubly degenerate. In this case, self-trapping of a pair of particles
would produce two solitons of the kink type (11.2.16) with energy
(I1.2.23) at a fixed value of # (see Fig. 3a):

|A,(o0)]
A

e

p=T1 A=A, Ax)=A(x); =

In the continual model C, the energy functional of the system
is of the form (I.2.12). For the homogeneous state A, = const, E =
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- \/(}‘wk)2 + |A]* we obtain

w_P Ty, D 1
L—whvl:h lnw EJ

2

2A cos : A
LR N A§S1n2q>)l/2+ — c0s 29 (1)
g

2

where A = g?/who and D is an energy of the order of the width of the
electron band. At equilibrium (3W/84,),,, =0 we have |A] =14 at
A; = 8, (see Fig. 3b), whence

- 172

é—z_ ) _A_- _ COS(P

(A3 sm<p) lnAO =X

_ s (2
A=Al =[(Asing)* + (8, + A,cos 9)’]

Here Ay~ D exp(—1/]) is the gap in the limit A, = 0 (model B). The
absolute minimum of (1), according to (2), is always located at
A> Ay, Asing and A > A, so long as A, « D. In the limit ¢ = 7/2

we obtain |A| = max{4,,Ay), ie., A = £YA2~ A2 at A, <A,, and
there is no spontaneous dimerization, A; =0, at A, > 4. At @ % /2
we always have A; # 0. In the case of cis-CH, we can expect both A,
and A, to result mainly from the change of the lengths of the bonds,
which corresponds to ¢ = 0. In the isomers of (CH), we have 2A =2
eV and 24, = 1.5 eV, i.e, in cis-(CH), we have A,/A, =3/A—1=35,
and the dimerization remains mainly spontaneous. Altogether we see
from (2) that A, > A, already at A < (A,D)'/?, i.e., in semiconducting
polymers there is always a wide range of parameters for which the
effect of spontaneous Peierls dimerization A, is comparable with or
exceeds the external effect A, .

The inhomogeneous self-trapped states, which are stationary carriers
of the charge and (or) of the spin, are also extremals of the functional
of model C, defined by formulas (1.1.1, 4, 16, 17).* At a small number

* All the necessary formulas can be obtained in the limit of low density, n— 0, from
the general periodic solution of the problem for model C, obtained in III, §4.
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of trapped fermions (electrons », or holes »,)
v=yp,+v,=0;1;2

the exact solution for A;(x) is of the form

A(x) = 800{1 ——[th(% + %) - th(% — %)” — A cosg
(3)

5. = (B — AZsin'p) ", &=t ctha,

oQ
where a is a parameter to be determined. At a < 1

Ai - 800 "'2(12

o0 20&2)(
1+ ch
oo

and (4) describes a shallow polaron. At a>> 1 we have {~§_ and (4)
takes the form of two domain walls separated by a distance d = {_«
(Fig. 6a). The energy of the local states is

+E, = :*:\/Afsinch + 862ch™%
and their occupation numbers are v, =, and v_ =2 — p,,
v,+y=2+4+v, —v_=vp

The total excitation energy is

E = %Z[{%vcosﬁ+sinﬁ— BCOSB} + (e - fha)] (4)

where

E —
2 v = A,cosp/AA

COSB—_——;—
A
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a(x)

E, (a) reaches a minimum E, = E,(a,) at a = a,, determined from the
equation

(82 /A% ~ sinzﬁ)(v - fwﬁ) = 4ysin Bcos

)
B=B(a)

The charge and the dipole moment of the excitation are equal to
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(P, # 0 whenever ¢ 7 0)

e* = (v, — v,)e

B - v) \/ 1 — sin?Bcth’a

P, (o) = e.fooa( thocos 8 (®)

3 |

a=a, B=p(a)

The terms E,(«) are shown in Fig. 6b by solid lines in the limit y =0
(model B). The dashed curve is a plot of the additional term in (4)
E_(a)~v, which differs from zero for systems described by model C
at o #= w /2. If y <1, then «,> 1 and the excitation can be regarded
as a bound state of two domain walls. In this case

Exa)=%d, d=af  where F =4yA/nf

Z is the distance-independent attraction force between the walls.
According to (6), the charges of remote walls are equal to

(rs—2B../me and —(», — 28,/ 7)e

where sin 8 = 8_ /A, which agrees with the results of §2.

In the absence of excited states of the particles (the lower curve,
v = 0) the domain walls are attracted already at y = 0, so that the gap
becomes homogeneous, A(x) = A. For one fermion (the middle curve
v = 1), a polaron state is produced, which goes over in the limit as
vy —> 0 into the polaron of model B of §3. Its properties do not change
qualitatively on going from model B (y = 0) to model C. In contrast
to the isolated domain walls for model B, the polaron carries both a
charge e and a spin'1/2.

For the fermion pair e + e, e + h, or A + h (the upper curve, v = 2)
two domain walls that repel each other at y =0 are produced. At
y # 0, however, a bound state is formed, with a = «,(y) determined
from (5). We note that according to (2) we cannot have y > 1. At
y~1, the Coulomb repulsion

Up~e?/ et
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(e is the low-frequency dielectric constant), which was not taken into
account, assumes a greater role, whereas according to (4) we have at

a<kl

E,~AL2 /482
A rough estimate yields
Eh'DF 52
E,>U at y < ~ 2
2 ) " 5

In the opposite case, the neutral pair »,=v, =1 will be a Mot
exciton, and the charged pair (bipolaron v, =2, v, =0 or v, =0,
v, = 2) breaks up into two polarons (v = 2)—>2(v = 1).

The results enable us to interpret a number of experimental data
[20], namely: the large photoresponse time in trans-(CH), is attributed
to the formation, after a time T~w,, L~1071 sec, of domain walls that
move apart. The potential barrier of the repelling walls prevents
intersection of the localization regions of e and 4, thus delaying their
recombination. The exponential growth of the photoconductivity in the
region from 1.1 eV to 1.5 eV can be attributed [44] to fluctuational
Urbach absorption (§1) from the threshold of the production of the
separated domain walls ((4/7)A = 1.0 eV) to the production of free
e — h pairs. The absence of recorded photoconductivity and, on the
contrary, the observation of luminescence in cis-(CH), agrees with the
confinement principle. A strong electron-phonon interaction manifests
itself in experiments on Raman scattering near 2A. The absence of
paramagnetism in doped polyphenylene (C;H,), [see Fig. 1d)] can be
evidence of the existence of bipolarons. The microscopic theory of
polyphenylene as a combined dielectric was developed by Brazovskii,
Kirova, and Matveenko (unpublished). It was found that the role of
A,(x) is played by the libronic mode of the rotation of the benzene
rings around the molecule axis. The large width of the forbidden band
~3 eV does not make it possible to employ quantitatively the
continual model C. It was found, however [33], that a realistic model
of polyphenylene admits of an exact solution in analogy with the
discrete Peierls model (I11, §2).

Formation of tight-binding polarons might be revealed by the sup-
pression of their direct optical excitation and by the strong anisotropy
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of the diffusion registered in accord with NMR data for the spin
components (polarons with » = 1). The absence of photoconductivity
at a pronounced absorption peak may be evidence of self-trapping of
e-h pairs. The growth of the conductivity upon doping or upon
injection, without an increase of a paramagnetic response, in systems
described by model C, can point to formation of e-e (or h-h) bi-
polarons. Since the bipolarons are spinless (S =0) charged (e, =
+2e) particles, their gas with concentration ¢ <£;' can become
superconducting. The transition temperature T, can be estimated with
the aid of the results of [64]

hw, 2-2b h b
e 5

[~}

where w,, is the frequency of a phonon corresponding to the deforma-
tion A;, w, is the frequency of the bipolaron jumps between the
filaments, and b~=2/3. It is recognized here that the bipolarons form
a quasi-one-dimensional Bose gas with strong repulsion between the
particles on one chain. The particle density C is assumed to be high
enough for the collision frequency 7~ '~nn?/ M,, to be large com-
pared with @, . My,~A/(¢,w,)* is the bipolaron mass.

III Periodic Superstructure in One-Dimensional Models
of the Peierls Effect

In this chapter we consider in detail the ground state of a one-
dimensional Peierls system. In .the previously investigated models it
was regarded as homogeneous, A(x) = const. This, however, no longer
holds even in continual models when the atomic concentration p of
the electrons changes in the vicinity of p = 1. In a discrete model that
takes into account both the superstructure and the host lattice, the
ground state cannot be regarded at all as homogeneous.

In §1 we investigated the ground state of the model B in a wide
range of p, bounded only by the condition |p — 1| « 1. We investigate
the evolution of the superstructure A(x) from a lattice of solitons of the
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type of II, §3, at p~1, to an almost sinusoidal superstructure at
lo — 1] > A. We obtain the changes of the electronic spectrum and of
the thermodynamic functions. We solve thereby the problems of the
commensurability effects near the point p = 0 and of the crossover from
the model B fo model A with change of p.

In §2 we present the results of a solution of the discrete Peierls
model (1.2.20, 21, 23), which takes into account the effects of the finite
width and of the curvature of the electronic band and the compress-
ibility of the host lattice. These results show that for physical quanti-
ties considered at constant pressure the conclusions of the continual
model are applicable in the case of weak binding.

In §3 we consider the optical absorption for the band structure
obtained in §1. We investigate transitions between different singular
points of the electron spectrum. We show that all the direct transi-
tions located above the first absorption threshold are dipole-
forbidden. We shall consider the restoration of the transitions when
the long-range order of the periodic structure is destroyed. We obtain
the broadening of the fundamental edge when the soliton lattice melts
in the limit as p—>1. We show that the qualitative change of the -
absorption spectrum as p—1 is due to the coming together of the
sequence of transitions in which umklapp processes take part.

In §4 we consider the periodic structure for the ground state in the
model C, which corresponds to a doped combined dielectric. A com-
plete description of the problem is presented, based on a simple
hypothesis but without resorting to the special mathematical formal-
ism used in the complete solution. In various limiting cases the results
give the relations used in chapters II and III.

§1 Ground State of One-Dimensional System Near the
Double Commensurability Point

We consider a one-dimensional system in which the number of
electrons per unit cell of the undeformed (metallic) phase is close to
unity, p~= 1, meaning that the initial band is almost half-filled. The
study of such systems was carried out quite actively in connection
with experimental investigations of doped polyacetylene, trans-(CH), .
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1

From the viewpoint of the theory we can point independently to a
number of problems that call for a special investigation of the region
p~ 1. First, as mentioned in chapter I, §2, the system states with
p =1 and with |p — 1]~1 are described by different models, B and A,
having different electron as well as phonon properties. The homo-
geneous state A = const in the complex-field model A is strongly
inhomogeneous from the point of view of the model of the real field:
if A, ~ const, then

A
ABmAAsin[g—(p— 1)(x——x0)], 1> |p— 1[>>-.5A (1

Second, as shown in chapter II, §3, introduction of additional elec-
trons in Peierls dielectrics with p =1 leads to formation of solitons
with a local level lying at the center of the forbidden band. Conse-
quently, as p—> 1 the deformation should take the form of a soliton
lattice that goes over at |p — 1|~1 into the sinusoidal structure (1). In
this case the midgap state of the soliton gives rise to a new allowed
band located symmetrically relative to the center of the metal band
E =0. The width of the new band E_ turns out to be comparable
with A, when the distance between solitons is of the order of §
=ho/A,, ie., at an electron density n = |p — 1|/a~¢,™"

A, = Ay(x)|,, = const

An investigation of this crossover region calls for an exact solution
of the problem of the ground state of the model B, §1.2, at arbitrary p.
This solution was first obtained by Brazovskii, Gordyunin, and
Kirova [49], and independently by Horovitz [50]. A number of the
results of [49] were later derived anew in [51].

A more convenient form of the results was obtained in a paper by
Brazovskii, Dzaloshinskii, and Kirova [52] as a particular case of the
solution of the more general problem expounded in chapter IV. The
first results on the behavior of the model B as p— 1 were obtained by
Kotani [66] on the basis of numerical methods. An attempt by Rice
and Timonen [67] to investigate the problem on the basis of the
phenomenological Ginzburg-Landau model for A(x) led to an incor-
rect result namely that the deformation vanishes at a certain critical p.
We present below the main results of an exact solution.
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We express the lattice-deformation porential ®(x) and the electron
wave functions ¢(x) in the form

Q(x) = A(x)sin(7x/ a);

g (x) =2 [ Ug (x)cos %ﬁ +1Vp (x)sin X J
A(x) = A, = const corresponds to doubling of the period at p = 1. The
energy functional W {A, U, V'} of the system is of the same form as in
I1.2.3 (here and hereafter vz = 1) at A; = 0 and A,(x) = A(x)

L+ 3 [-i(UsTE+ VU

W{A,UE,VE}=fdx gt 2
i

+iA(VEU - UEVE) ]| (2)

where the energy levels £ and the chemical potential u are reckoned
from the center of the metallic-phase band. From (2) follow the Dirac

equations for U and V

or

Up +[E*~ P(x)|Ug=0;  Vi+[E*=Q(x)|Vg=0
*
P(x) =A%+ A Q(x)= A=A

and the self-consistency condition

1 1 4
A2 2 (UEVE—VEUE)"—'"‘ Z E(A+EE)VEVE (5)

1
21E<p. E<p *

In contrast to the investigation carried out in II, §§2, 3, we must seek
a periodic and not a solitary solution of the system (2)—(5). As will be
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shown* in III, §4, the periodic solution of the problem of finding the
extremum of the functional (2) satisfies the equation

A" —6AM + AN =0  where P —6PP' + AP =0;

0"~ 600" + 40" =0 ©

Choosing A = A2(1 + k™%, 0 < k < 1, we obtain
A(x) = Asn(€ k); §=xA,/k; k=k(P) (6a)

The functions A(x), P(x), and Q(x) have a period /= 4kK(k)/A,,
where K(k) is a complete elliptic integral of the first kind [78]. It is
known [57, 58] that the spectrum of the Schrédinger equation (4) with
a potential satisfying Eq. (6) has only one forbidden band: E? < E?
< EZ

The following connection exists between the parameters k, A, and
E ., E_

E+_E—. — . E"__l_ 2___1'_k
k—m, Ak—E+ E__, 'E:--—-r-—VI r —m
(")

The spectrum of the electfonic states consists of three allowed bands
Z: E< —E_,; Zy: —E_<SE<E_; Zy E < E
which are separated by two forbidden bands
G: —-E . <EL-E_; G,y E_<EXE,

as shown in Fig. 7.

*All the results presented below follow from the formulas of Chapter III, §4 for
mode! C in the limit

Ae=Al=El=0; E2=E...; E3=E+.
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| E (32)
Z3
7 E"’
G 7
27
z —E
Za ~®, 0 ®£, i 4
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G'ié E-
Z
z
—E+
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Figure 7

The state density in the allowed bands is equal to

LdE 7 RVNE) (8)
where*
R(E)=(E*— E})(E*- EZ) 9)
2§ = — A2 +EX+E =E1E(r)/K(r)

(10)
r=[1-E2/E2]"* =20k /(1 + k)

* K(r) and E(r) are complete elliptic integrals of kind I and II, respectively [78].
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The components of the electron wave function in the allowed bands
can be written in the form

p+b

1/2 . X d_y

Q(x)+ b

Ve 2L(b - S)

*

1/2 iR(E -"___4)’__ .
EXpy T <! ( )J(; Q(_)’)""b ( )

b=>b(E)=2E*-A(1+k™?%/2

They correspond to a wave vecter x equal to

K=:’:2R(E)<ﬁ5> (12)

The *+ sign in (11) coincides with the sign of the derivative dik/dE.
The band boundaries are located at k = % k,, where

__m Ay 1 E, (13)
dhve kK(k) 2hve K(r)

The spectrum of the electronic state is shown in Fig. 7.

The determination of the parameters £, and E_, or equivalently
of £ and A,, depends on the electron distribution in the quasi-one-
dimensional system. We consider a situation wherein the electron
density » on the chain is given, n = |p — 1|/a. In this case, as follows
from the results of chapter IV, the central band Z, should be either
empty if p < 1, or filled if p > 1. (We shall assume below, for the sake
of argument, that p < 1). In addition to the rigorous result, this filling
corresponds to intuitive notions concerning the formation of a soliton
lattice at [p — 1| < a/€&, with empty (p < 1) or doubly filled (p > 1)
midgap state. At |p — 1|~1, the forbidden band (G, at p < 1 or G, at
p > 1) should coincide with the gap A at the Fermi points =+ & for the
Peierls—Frohlich model A. The second gap, which is symmetric with
respect to the center of the band, drops out in this case from the
region where the model A is applicable.

The number of states in the central band Z,, with account taken of
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the two branches of the spectrum and of the spin degeneracy, is

2
T

27

Lk, (14)
Accordingly, the numbers of the states in bands Z, and Z, decrease by

8N, = 8Ny = — 2N, = £ L, (15)

This value should coincide with the change of the total number of
particles relative to the case of a half-filled band. We obtain

lo — 1
a

E
n= 2 +
T

"= K (r)ios (16)

The self-consistency condition (5) takes the form

EdE
2 =0 (17)

I+
g JE<-E. ((E?- E2)(E? - E2)}"”

The logarithmic divergence at the lower integration limit is elimi-
nated by subtracting from (17) the analogous equation at p = 1, when

E_=0; E. = A ~ee” /M €, = const (18)
As a result we obtain the simple self-consistency condition
E —E? = A} = const (19)

Substituting (19) in (16) we obtain an equation for the dependence of
the single parameter » on the density »:

A,

Y. ; r=r(n) (20)

rK(r) =

The remaining quantities can be easily expressed with the aid of
Egs. (7) in terms of r and of the constant A,

Al Al 1—7‘2

E_'_—-T, E_—':———'—,'.“'—"—", Ak=A1\/E

21
k=(1-r)/(1+71) 2D
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The change of the energy of the system compared with p =1 is

A%

W,~ W= W(E,,E_)— W(b,,0) = °=

p

L[ ! o }
\/(Ez— E*)E*-E}) EYE’-A}
E(r)

| 2 2 2
= —E; —E- +4F

2ahvg { By —£2 T K(r) (22)

Substituting expressions (21) for E; and E,, we obtain finally
2 E
_ A o2,420)
W,~ W, =8Wn)= Sio, {l 2 + 0 (23)

where r = r(n) is determined from (20). The chemical potential of the
electrons is

A1
w=Gr =2 S EO) (24

Expressions (11) for the wave functions enable us also to calculate the
local densities w(x) of the energy and p(x) of the particle number. We
have

A2
2N EWN
g* E<-E, dE

w(x) = [UtUg + ViV dE

g2 WL‘<—E+ [(Ez—Ei)(EZ—— Ei):]l/z

+>E (25)

The first term in (25) vanishes by virtue of the self-consistency
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condition (17). Consequently, w(x) = W/L, ie., the energy of the
system, just as in the case of one soliton, remains homogeneous.
For the particle-number density p(x) we obtain at p < 1

P(x) =P = S (UtUs + ViV~ 1/L)

= ook KO8~ ] (26)

In the limit as p ~ 1 we obtain

A(x)==Ath(Ax);  p(x)~ — 1/2ch?(Ax) (27)
2
- - 4
p=FE|l+ Ao +O(EY) (28)
Es = 2"Al
™

E+=A1, E_%4A1€Xp(—A1/n)

Equations (27) show that the lattice deformation and the charge
distribution as p—> 1 correspond to the dilute lattice of charged solitons
investigated in chapter II. The quantity E, in (28) coincides with the
soliton energy. The next term in (28) yields the repuision energy, which
decreases exponentially with distance between the solitons.

In the limit n>> A, /Aoy, |p ~ 1| > A a/hop we have

7 2 A} - A(n)
W(n)— W(0)= 1 nhog + Shion (29)
where
A(ny=(E, —E )/2%A2/2wnhu D’ e~ 2/
* B ! T nhog
(30)

E, = 2A(n) is the gap on the Fermi surface.



166 S. A. BRAZOVSKII AND N. N. KIROVA

The connection (29) between W(n) and A(n) corresponds to the
energy of a “homogeneous” Peierls— Frohlich state in model A. The first
term is the change of the energy of the metallic phase compared with
p = 1. The difference between the arguments of the exponentials in
Eq. (30) for A and Eq. (18) for A, can be interpreted as a decrease, by
afactor of 2, of the electron-phonon interaction constant A on going
through the region n~4,, owing to the suppression of the umklapp
processes. Actually, however, there exists a strong pre-exponential
dependence, so that we can write the interpolation formula

A(n) == A}/max(Be;,4,);  Bep= —ghu,,n (31)
where 8¢ is the shift of the Fermi level in the metallic phase away
from the center of the band.

§2 Results of Exact Solution of Discrete Peierls Models

In this section we present the results of an investigation of the exactly
solvable discrete Peierls model formulated in chapter I, §2. A consis-
tent solution together with the necessary results from the spectral
theory of Schridinger difference operators is given in the paper of
Brazovskii, Dzyaloshinskii, and Krichever [35]. We recall that the
model D, defined by formulas (I.2.20-23) in the weak-binding limit
A= (mxc)" '« 1 and at |p — 1] < 1 goes over approximately into the
continual model B investigated in §1. At arbitrary A and p we have the
following results.

The ground state of the mode/ D for the lattice x, = na + u, is an
incommensurate doubly periodic structure. It can be regarded as a
superposition of two sublattices with even and odd n, shifted relative
to each other, and with periods

No=2/lp—1]:

1 A= /N (08
27 0((n—ng+ 1)/N, + (= 1)"/4) )

u, = u(n_n0)=

0() =0, T=iK'/K; K = K(k)
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where §; are the elliptic Weierstrass functions and K and K’ are elliptic
integrals [78].

We note that n, in (1) is an arbitrary, generally speaking, integer so
that the ground state is continuously degenerate with respect to
translation of the superstructure, despite the absence of translational
invariance in the energy functional (1.2.20-23). This result, of course,
is the consequence of the special degeneracy of the model and is
closely connected with its exact integrability,

The deformations (1) are accompanied by the appearance of charge
density waves, defined as the local electron-density distribution:

N '
=23 2_ 0 K' 9
0, = Q,E< ul¢”(E), --p+ -Z— ? gn—ou(n - no) (2)

The parameters 7= 1(p) or &k = k(p) are determined from the
self-consistency condition

k) 9(0) = 7KC; r = dnu
cn §%(p - 1|/2) ’

3)
u=Kkp-1; t=e“

where cnu = cn(u, k) etc. (dnu,snu) are the Jacobi elliptic functions
[78].

At arbitrary p# 0, 1, or 2 the electronic spectrum consists of three
allowed bands (- E,,~E,), (—E_,E_), and (E_, E,). The chemi-
cal potential lies in one of the forbidden bands (—E_,—E_) or
(E_,E.), depending on whether 0 <p <1 or 1 <p < 2. The band
edges E_, E ., and E,, are defined by the following expressions:

of L=lp =1, lp—ll)
2 2 E,
Em=25 1 , —E——=snu (4)
(3 )6 "
E_
E, dmu
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The ground-state energy Wy(p,a) (per molecule) is equal to

K*(r)

W'2K

snudn’u E(r)

1 + -
cn’u K(r)

N—1WO=

SHU 0'(1/2*‘ |P - 1|/2) J (5)

Kk 9(1/2-1p —11/2)
For the pressure P(p,a) we obtain

aWo) 2 K(n)
p 7

| 4 Snludn’u _ E(r)
da K

m} ©)

P=N‘1(

The parameters k, u, and r in expressions (4)-(6) must be determined
from the relations (3).
In the weak-interaction limit

)\p=['mcEcos(-72l\p - 1|)}_1<< 1

lp— 1> /™
we obtain from (3) and (4)

E, ~2¢; E,_ /E,~E_/E,~sin(w|p—1|/2)

(7)
EZ —E? = Ncos)(mlp — 1]/2); A ,=8ce~ /P

The approximate relations (7) are a generalization of the results
obtained for the continual Peieris—Frohlich models in §1. They must
be refined when the ground state of the system acquires the character
of a soliton lattice. This occurs in fact at p—> 1, p—>0, and p—>2.

At p(2 — p) < 1/Kkc we arrive at the limit of the isolated self-trapped
state—bipolaron. The problem of the transition of the Peierls— Frohlich
state into a dilute polaron lattice was solved by Belokolos [43] for the
continual model E.

In the case of interest to us, pa~1 and |p — 1| <exp - (—1/A,), we
have a loose lattice of kinks. For an isolated kink we obtain from (1)
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and (2)

1, ch[a(n—no—-l/2)]
"2 chla(n—ny+1/2)]

Uy, 41 = CONSE
pan = 0= 3 [th(a(n = ny = 1/2)) = th(a(n ~ ny+ 1/2))]

Pons1 =P D Pyy=1
n
a= %e-l/h

We note that for an isolated kink only every other site takes part in
the deformation and in the redistribution of the charge.
For the electron spectrum we obtain

E, ~2¢, E,~A; E_=4Aexp{—8a/|p—- 1]}
(8)

o— 1| <a

We consider in the same limit expressions (3)—(6), leaving out terms
~O(E_/A)), which are exponentially small when the distances be-
tween the solitons are N, =2|p ~ 1/7!. This approximation corre-
sponds to the limit k=1, |r]—>|p — 1] in expressions (3)-(6). We
obtain:

rK(r)(—l——'t——r-f-),p_”= 7K &)
Wo = K;(:) [2—1‘2—4%% +2r’lp—-1|J (10)
P=—7;%;K2(r)[2—r2-—-2§,§2J (11)

Using (9)-(11) we obtain the following: an expression for the system
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energy wy(p) at a given length either pressure
E_
wo(p) = wo(1) + Eflp— 1|+ O A, (12)

where E, = | p| is the soliton energy.
We note that

(%E:)P:_ O(exp{ —8a/lp = 1]})

just as for the continual model B, §1. In contrast to Horovitz’s
calculations [50], we find that du/dp > 0, i.e,, the system is thermody-
namically stable.

In the weak-interaction limit we obtain E, = (2/m)A,.

We note that Eq. (9) leads to a linear dependence of the average
length on the concentration [p — 1|.

§3 Optical Absorption and Dielectric Constant in a State with
Periodic Superstructure

The band structure of the electron spectrum in a Peierls dielectric,
described in §§1 and 2 of this chapter, can be experimentally investi-
gated by optical methods. An investigation of the optical properties is
particularly important for a substance with a weak coupling between
the chains, when the spectrum of the single-particle state of the system
differs substantially, as a result of the self-trapping effects, from the
band states at a fixed deformation A(x).

The investigations of the kinetic and thermodynamic properties can
in this case yield information only on solitons. For optical absorption,
however, owing to the condition A > hcop,,, the Franck—Condon princi-
ple holds, according to which light absorption takes place at a fixed
lattice configuration. Therefore, by studying the light absorption we
can obtain information on the band structure of the ground state.
Naturally, for a Peierls dielectric greatest interest attaches to an
investigation of the region p~ 1, where qualitative changes of the
band structure take place.

In this region we must trace the manner in which the fundamental
absorption edge fiw = 2A, and the absorption threshold on the local
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Figure §

level of the soliton Aw = A, go over as p—>1 into the fundamental
edge Aw = 2A(p) for model A at |p — 1|~1. It is also of interest to us to
ascertain whether the second (G, at p < 1) forbidden band can be
optically observed (Fig. 8).

From among the low-frequency optical properties, of principal
interest is the process of the establishment of the Frohlich conductivity
from the dielectric constant (11.1.6) for model B. This problem can be
solved in the long-wave limit with the aid of the thermodynamic
functions obtained in §§1 and 2 for the Peierls model.

To calculate the optical absorption we use the usual expression for
the imaginary part of the dielectric constant in the dipole approxima-
tion

4o 2
= J|O0(E, — E, — wh 1
€5(w) o2, L %l 12 3 (E; 1 ) (1)
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where L is the length of the system, S| is the cross section per chain,
J, is the matrix element of the current operator J. In the (Yd)
representation we obviously have J = ev, - 6,. Consequently, in the
representation (1.2) we have

Jio=evop[UF8adadx,  =(UV) 2)

It is obvious that optical transitions proceed with conservation of
the quasimomentum, and the total momentum « is conserved, gener-
ally speaking, accurate to within the reciprocal-lattice vector: «, — «,
= 2k,m.* Equation (1) takes the form

2.2
47Te F

) IZKS(Eq(rc+2x0m) E\(k) — ©)

€2((0) = WS
L m=0,x1,...

(f(U;‘(}C + 2rgm)Vi(k) + V3(k + 2om) U, () a’x‘2 (3)

We consider now the principal optical transitions, assuming that
p <L

3.1 Absorption from Z, into Z; (Transition d in Fig. 8)

For a direct transition with m = 0 we obtain with the aid of (II1.1)

_ E E
J(S(0)=2euFfU§"U1{zA(x)( 5 +1 3 bz-:P)

__ R B
by+P b,+ P

dx 4

where R, = R(E;) is defined in (1.9). Since E, = — E|, R, = R,, and
b, = by, we obtain as a result of (1.11)

f A(x)dx=0 (5)

evpk,
(P+ by)L

J(O)_.

Consequently, this transition is forbidden in the dipole approxima-
tion for an ideal periodic system, i.e., there is no absorption threshold
at iw=2F .

* Everywhere in this paragraph m, m|, m, are integers.
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For transitions with m % 0, we write down the matrix element in a
form that is more convenient for our case. As a result of (1.11) we
have

evpL
Jim = ——li-fo’/2dx[(U;V1+ ViU,

+[(FUNE V) + (£ V(= U]

X exp{ ixgml } } (6)

For transitions at k,x, > 0 we obtain from (6)

ev FL

=2

fo’/z(U; Vi+ V3Udx[1 - (~1)"]
Consequently, transitions with m = 2m, are forbidden. For transitions
with x,k, < 0 we find similarly that transitions with m =2m, + 1 are

forbidden.

We consider now allowed transitions. Let k,x, >0 and «, — &,
= (2m + 1)2k,. Substituting expressions (1.11) in (6) we obtain after
simple transformations

2evg

J{mM =
[(F+b1)( §+b2)]

1/2 J;I/4d—;c' {f(P, Q) — f(QP)}

(7)
|
H9+%XP+%HV2

g p)=

X COS(2€2R2 p+ 5 )
2

= | E

Transitions with m 7% 0 are most significant in the limit p—>1 §x,
< 1¢, = hog/A,, when the transition frequencies become close in

value.
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In this limit we have for 0 < x < //4

AmcA zhg POl QmAf(1~2¢h™2x/8)

ewAl[1+—;:($18x)2} 8k = k — ko, b=A7+2(8k)%; R = A8
x d}’ aT x dy
—_— =3 R| —— =~ dkx
2€RL 0+ R Okx + 5 2e fo P+ F oKX (8)
Substituting (8) in (7) we obtain for the transitions (Z, ., — Z;.)

evp

(2m+1) _ 1/4dx X — ~
J§ = 4ev f th 2= sin[ (1, — k) x] r@m ) (9)

3

Analogously, for the transitions (Z,, — Z3, ) we obtain
J x5 evy [2am (10)

Substituting (9) and (10) in (3) we obtain

dkh Ag}
2[(47”:; [2A — hw +——-{(6;t) + (8k,) }J

&(w) =

2 2 2
KoY A ko€ ) (1 + 2m)°A
Alﬁwh—-ZA]—(gl o) A1 (#081)( )4
hzwj 2 2
32m°A7 7 [ By(wh = 28,) = 83(2mé )]

(11)

where 8(x) is the Heaviside function.

It follows from (11) that the fundamental absorption edge splits into
a series of thresholds Aw — 2A, =~ 22m? + 2m + 1)(ke€ A, m > 1,
with an intensity that decreases like 1/m2 At A,> hw — 24,
> (Kp¢,)*4,, calculation of the sum in (11) leads to the expression

Fwif(ho — 24,)

EH W) =~
) 16A,[ Ay (o — 24,) ]2

(12)
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which agrees with the result for the absorption in a homogeneous
Peierls dielectric. Thus, umklapp processes ensure continuity of the
averaged optical absorption as n—0, even though the direct optical
transition is forbidden.

3.2 Absorption from the Band Z, to the Band Z,

For a transition to the lower edge of the Z, band at k, = *k,,
Ky = F Ky, m =1 (transition « of Fig. 8) we easily obtain from (3)

e€v
v IGCRL CREL R
A
(13)
_ 4 M* 12 11 ]
() hszlj(h“’”(E+"E—)) , M*_M++M—

The effective masses M. on the edges of the bands E_ are therefore
equal to, as a result of (1.8),

_N(ER) N
Mi—ﬁ(m—l_l)/(l_k)

At n>> ¢! we obtain from (13) an expression of the type (12), but
with A, replaced by A, /2. This formula corresponds to absorption
through a gap E, = A, in model A for the Peierls—Frohlich limit.

For the transition to the upper edge of the band (transition 8 of
Fig. 8) we obtain, using (6), at m =1

I =0

Consequently, in the dipole approximation the transition 8(Z,~ Z,)
is forbidden at all frequencies, i.e., there is no absorption threshold at
hw=E_ + E_. At low densities, just as for the Z,—> Z; transitions,
processes with quasimomentum nonconservation become significant.
We consider transitions from Z, and Z, with momentum change
Ky — k; = 2kgm; m > 1. For the transitions Z, — Z . (transition y of
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Fig. 8) we obtain

evpL

() =
J, ]

j;[/z(U;‘V, + VEU)(1 + (— 1)) dx

1.e.,
(2n+ 1) __
JEnh =
For the transitions Z, —Z ., on the contrary, J!*™ =0. For the

transitions y with even n, k, — k, = 2K,2m we obtain in analogy with
(12)

2evp ri/4 dx

b [1(P +55)(2 +5,)]

am)
T =

1/2 {f(Pv Q)—f( Q,P)}

(14)

In the limit n§, < 1, k— 1 we can calculate (14) by using approximate
equations (18) and equations similar to them for the Z, band:

&R, &R,
lg + b2| |p+ by

f@:p)=[kg+ )P+ b2)|]‘/2cos(2 e

€= IEfI

dy x dy
2e,R x—————-wc?x-%-—q-; 2¢,R e g OKX
2 * Al
F

From (14) and (15) we obtain Jy(z”")%weu,,-(ngl)‘/z, i.e., as n—>0 the
matrix element depends weakly on m. The same results are obtained
by calculating the matrix elements J{™ and J{™. Just as for absorp-
tion from Z, into Z,;, Eq. (11), we obtain a series of thresholds at
Ao — A= mA (€ koA /2. At A;> ko — A, > (§,k,)%A, we obtain in
analogy with (12)

B

s [ 28, 2
o\ fe=E | 004y (16)
1

2
€(w) = 116 £
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Equation (16) describes the threshold of midgap absorption by dilute
solitons. We emphasize that it can be obtained only when account is
taken of the quasimomentum nonconservation, whereas a strictly
vertical transition disappears in the presence of a soliton [13],

3.3 Change of the Optical Properties Upon Violation of the
Periodic Structure

In a real system there are always perturbations that cause its state,
stationary or instantaneous, to differ from the periodic structure
investigated above. These perturbations influence the optical proper-
ties of the system, particularly the transitions forbidden for an ideal
periodic structure. We consider below the influence of the inhomoge-
neities on the absorption in the region of the edge (hw~2E ) of the
transitions from Z, into Z,.

A distinction can be made between two characteristic inhomogene-
ity cases. The first is typical of high densities n¢, > 1 and corresponds
to smooth perturbations of the phase of the complex field A in model
A. The second case 1s important for the limit of low densities n§; < 1,
when strong disordering of the lattice of loose solitons is possible. Its
results from thermal melting, quantum flactuations, and, most impor-
tantly for the description of polpacetylene, from interaction with the
doping impurities.

In the first case the long-range order may be violated, the correla-
tion radius R, becomes finite, but the short-range order is preserved.
We can therefore use the same expressions for the current matrix
elements (2) as for the ideal structure, but in expression (3) for the
dielectric conmstant it is necessary to average over the long-range
perturbations.

We consider a direct transition from Z, into Z, with m =0 at
n¢, > 1. From (4 and 5) we obtain
5 2 E?.
((F52)) = ——-F——— ([ A A(y)dy dx)

(P +b) UL

_ B K(Z) Z L K@) =A@nA0,y (17)

(P+b)'L
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where ¢ ...) denotes averaging over all the perturbations due to
impurities or to thermal or quantum fluctuations. From (17) and (1)
we obtain at hw —2E, <4,

M 1/2
(0) \2 +
&(0) = o2S | ;-,<(J )>(}‘zw—2E+)

In the limit when n§,>» 1 and k<1, which corresponds to the
Frohlich model, we have

(18)

A(x) = Asin(2kx + @(x)); 2kg =
Consequently

| 2E2A2 2 2 o o
<(J3(0) )2> _.____b,_S(ZKD) S(q) =f<e:m(.x) T g igx ")dy
L(P +b)

(19)

where S(gq) is the structure factor. It can be seen from (18) and (19)
that ez(w)~L'1, i.e., even when inhomogeneities are taken into ac-
count there exists a threshold on Aiw =2FE_ only in a system of finite
length. Since S(gq) is also very small, it can be concluded that the
absorption considered is practically unobservable. Other causes that
lead to a finite value of the matrix element of the direct transition
from Z, to Z; may be the account of the nonzero light momentum
and the higher multipole terms.

We consider now the case of low densities, when the system is a set
of randomly disposed solitons. For a dilute system of solitons, the
function A(x) can be approximately represented in the form

N X — X
A(x),——-Alch{ ; f}; 0<x<L (20)
j=1 1

In (20) we have neglected corrections ~exp(—1/n¢,), which are due
to the soliton interaction. The wave functions U and V of the
electrons are obtained with the same accuracy from (I11.2.18).
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For the states of the continuous spectrum

X — .
oy + iy th = y
1

Upir(X) = exp{ikx + ip(2j — 1))
V2L E,
(21)
Vaju(x) = IL exp{ikx + ip(2/ — 1)}
Xoj T+ X Xy F Xo544
R R A
Upy—14(x) = AL exp{tkx + ip2(j — 1)}
(22)
Wk . X T Xpi-
vp + A th z
1 . , .
Vaj—1x(x) = TE exp{ikx + ip2(j — 1)}
k
Xoj—2F Xy Xoj—1 F Xy
2 ST

where exp(ip) = (kvgh + iA)E,; E, = ¢ = +\h2k*+ A}, and
U, and ¥, are functions of U(x) and V(x) in the vicinity of the jth
sohton For localized states with E = 0, the wave functions can be
obtained in the tight-binding approximation

-1 \/_.ch — Xy ,)/&1]

Azj . NAaAul*=8
Vo = ; gf(j) e

] flrch —x)/6]

a=1,2,..., N where N is the number of solitons.
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When substituting expressions (21) in (1) and (2) it must be borne
in mind that owing to the inhomogeneity of the system the optical
transitions will take place with arbitrary change of the momentum
P17 Pa-

In the region of the fundamental edge hw = 2A; we obtain from (1),
(2), and (21)

N
e . S
P S it 9 (i
<

J(Pl’p2)= 2L
J

r

X 4 [EXP( % (P1— ) (X1 xj))

“

ihog ( P P?.)

—exp(é-(m —P2) (% + xj—l)J > —ale e

EP: €/”2
— [ exp( 5 (21 = P2)(% + %41))
+ exp( :21' (P1— P2)(% + x_ 1))

Thog(py = p2)exp(i(py = p2)X))
7T(P1 ~ Pa)
Alsh{ "T }

x —L (ﬁ+ﬁ)} (24)
P EPz €Pl
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where @, = ‘P(Pl) ©2 = @(pa); Xo= —Xx; XNH =2L - xy, and €,
= |E,|. Since, in the main, p, — p,~n < £"!, we obtain from (24)

J(p1>p2)=J(p>9)

- S S

le

X {i[eXP(iQ(XjH + x;)) — exp(ig(x; + x;_)) ]

24, .
Fong [exp(zq(x + %) + exp(ig(x; + x;41))

— 2 exp(i2qx )]]
(25)
g=(P1—P)/2  p=(pr+p)/2
The first term in (25) vanishes at g =0, and therefore makes no

singular contribution to €,(w). Retaining in (25) the principal second
term, we obtain

222

P p) = G BN es(Ratsmx) 09

Expression (26) must be averaged over the coordinates x;. We shall
assume that under the influence of the random fields of the impurities
and of the thermal and quantum motion of the solitons, the coordi-
nates x; are randomly distributed and that their correlation is inessen-
tial. Then, using the Poisson distribution, we obtain at large N

e}

L2(4c2 + qz) (27)

T3 p,q)~
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It follows from (1) at Aw~ 24, that

_ 4ge’L dyq A (p )
62(0«)) - hszS (271_)2 S1172 (28)
+ [Al(h‘*’ = 24,) = (hvgq) ]
Substituting (27) in (28) we obtain finally
hPw? f(w—2A
&) = —= L) (29)

4A7 [(€)" + (ho/A = 2)?] v

It can be seen from (29) that the absorption peak becomes smoothed
out at Aw — 2A,~(&,n)*A,. For the transition into the middle band,
using (1), (2), (21), and (23), we have

wzwjng /! 1

Bu(iw? = &) chlm(Rw? = A} /28]

€(w) =

(30)

Equation (28) shows that absorption into the middle band is
proportional to the number of solitons, i.e., it takes place for each
soliton independently.

3.4  Summary of Results on Optical Absorption

The band structure of a Peierls dielectric with p# 1 electrons per
atom has eight Van Hove singularities location at the points of the
wave vectors * kg at energies = E_ and = E_ (Fig. 7). For an ideal
periodic structure, the optical absorption coefficient should have a
singularity €,(w)~(w — w;)~'/? for the following transitions (formula
13):

ai{xKky, —EL})>{FKry,—E_}; hw,=E_ —E_ =4\,

The remaining transitions between the singular points are dipole-
forbidden. Allowed transitions with change of momentum, which
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occur between singular and nonsingular points (Figs. 8 and 9a) are:
B:{x(kg+ (2m, — 1)2ky),E < —-E, )
> {Frp, E_}; he, > E, —E_
Yi{x(ko+dmrg), E< —E,}
—>{*Ky, —E_}; ho, > E, —E_
§:{x(—rp+2myip), E< —E,)
> {x@2m;+4my, -k, E>E )y hw >2E,

where m;,m, = 1,2, ...

Near the transitions f, y, and § the absorption coefficient should
have a threshold.

As p—1, E_—0, and k,—>0 the transition frequencies § with
different m, and m, come closer together. As a result, the sum of
transitions of type & leads to the normal singularity ey (w)~(E —
Eg)“/ 2 E, =2A,, which is typical of fundamental absorption for the
Peierls state with p = 1.

The frequencies of the transitions «, 8, and y also come closer
together and lead to the singularity e,(w)~(1 — p)(Aiw — Al)"/ 2
which corresponds to transitions from the valence band E < —A; to
the local levels E = 0 of solitons with concentration » = (1 — p)/a. In
the limit n§, > 1, the transition a assumes a form peculiar to the
fundamental absorption edge for a Peierls dielectric.

The forbiddenness of the direct («k,~> k,) dipole transitions is lifted
when the periodic structure is disturbed. At n§, <1, in a real system,
the periodic structure should go over into a system of randomly
disposed solitons. In this case (Fig. 9b) the transition § becomes
allowed, but the absorption peak becomes smeared out in the region
how — 2A,~(né?A,. At n&, > 1, the structure becomes disturbed only
at large distances x > hvg/ Eg, on account of thermal and quantum
fluctuations and under the influence of random potentials. As a
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Figure 9

result, the transition § becomes allowed (18) in the finite fluctuating
system, but with a very small oscillator strength.

Absorption on loosely disposed solitons was investigated in [13,
68-70]. In [13] was obtained absorption from the lower band Z, to
the soliton level, and it was also noted that the strictly vertical
transition at Aw = 2A, from Z, into Z, vanishes in the presence of one
soliton. Nonetheless, the absorption remains finite on account of
transitions with nonconservation of the momentum. At a finite den-
sity, approximate calculations were performed in [68] and [69] respec-
tively for periodic and random arrangements of the solitons. It was
found that the oscillator strength for transitions with hw~24, de-
creases because of the appearance of absorption with Awaz A,. How-
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ever, in view of uncontrollable approximation, all the nontrivial
effects were left out, namely, the forbiddenness of vertical optical
transitions at hw = 2A, for a periodic arrangement of the solitons, and
the suppression of the singularity at w = 24, for the random arrange-
ment. The systematic investigation reported in this section was carried
out by Brazovskii and Matveenko [71].

3.5 Low-Frequency Dielectric Constant and Establishment of
Frohlich Conductivity*

The results of §1 enable us to determine the nondissipative dielectric
constant €,(¢,w) at w K wy and ¢ € n. In the long-wave limit we can
use the relations obtained in §1 for A(X) and w(n), assuming X
= X(x,t) and n = n(x,t). The local changes 6n of the electron density
are connected with X by the relation

Here / is the local period of the superstructure A(x), and ¢ corre-
sponds to the usual definition of the phase of a charge-density wave.

Substituting A(X (x, ¢)) from (II1.1.6a) and w(n(x, ?)) from (I111.1.23)
in (I.2.11) we obtain the Lagrangian for the perturbations of X (x,7).
In the presence of an external electric potential ®(x,?), this
Lagrangian is of the form

f(X)=%Pcnw[(%)z—uz(%ﬂ—%%%@ (31)

where

BN ee—— 2D e

*These results are published here for the first time.
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is the “charge-density-wave mass density” and

2 8 0w _ 16AVE (l—rz)K3(r)

= 33
pcowl? 8¢*  pepw! T E(r) (3)
where u is the phase velocity of the charge density wave.
For ¢€,(¢q, w) we obtain from (31)
co;‘z
WP =@t s
(34)

« _ dme* _n?

P S, Pcpow

3

At ng¢;> 1, Eq. (34) goes over into the expression for the Frohlich
dielectric constant [4, 10, 28, 30]. At n§{, <1 and pepw~n the
effective plasma frequency w; vanishes—the Frohlich conductivity
vanishes together with the soliton lattice.

The phenomenon considered here explains possibly the behavior of
trans-(CH), in the concentration region 0.002 < na < 0.05, where
metallic conductivity without spin paramagnetism is observed [13, 14].

84 Periodic Superstructure in Dielectrics of the Combined Type.
Exact Solution for the General Model C

In this section we investigate the ground state of a combined type
dielectric at an arbitrary electron density. The results obtained for
model C in different limiting cases will be given by relations previ-
ously employed in the study of models A and B. We present here an
elementary derivation of the solution, without resorting to special
mathematical data. A complete study will be published by Brazovskii,
Kirova and Matveenko in [33].

The energy functional for model C, defined by formulas (1.2.1, 16,
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17) can be written in the form (we assume in (I1.2.1) a constant p = 1)

W {A(x)}

=fdx

) Tk : U
+ %4} (—z—a%oz +A(x)o, +A*(x)°—)4

(1)
A(x)= A, +A(x)e™

where 6, and 0, =27 (0, * io,) are Pauli matrices. We introduce the
following parameters and functions

A, = Asing; dy(x) = A(x) + A,cosgp (2)
A(x) =[By(x) = 8y (x) Je® 3)
Vs (%) =27 (u(x) £ o(x))e > 4)

Relations (2) and (3) are illustrated in Fig. 3b. In terms of the
variables A,(x), u(x), and v(x), the functional (1) takes the form

W (85(x), 4(x),0(x))

Azcosqa )
L+ [ de { L cospi )

+ > [—i(u*v’ + v*u') + A (u*u — v*v)
E<p

+ iAy(x)(v*u — u*v) J (5)
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Variation of the functional (5) with respect to the components of the
wave functions u(x) and v(x) yields the equations

u' —du=i(E+A4)v (62)
o' + A0 =i(E—A)u (6b)
or
O (B gm0 p=Mtl ()
o' +(E*=~ A~ q)o=0 g=47]-4) (7b)

With the aid of (6a) and (6b) we can easily obtain separate normaliza-
tion conditions

1 A
1 Juruedx =5+ 51 (82)
* _ 1 Al
fDEDde = E - —2"—E: (8b)

Variation of the functional (5) with respect to A,(x) yields a self-
consistency condition that can be expressed with the aid of (6b) in the
form

2A 2A
B 0 S By (2 + ) Fe() =0

g g E<p
)
Fy (%) = o} (x)05(x)
The function Fy(x) satisfies, as a result of (7b), the equation
F;:”+4(E2—Al——q)Fg~2q”FE=O (10)

and the normalization condition (8b).
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The self-consistency condition (9) jointly with equations (10) and
(8b) is a functional equation for the set of functions Fgz(x) and A(x).
We stipulate that it be reducible to an algebraic equation. In the
simplest case this means that for each E the following relation holds

(2A2(x) + L )P () = Ap8y(x) + By (11)

where 4; and B, do not depend on x. with the aid of (10) we can
exclude F from this equation and obtain a single equation for the

function A,(x):

Ay — 6820, — aly =0 (12)

where « is an arbitrary constant.
As a result of (12), the potentials p(x) and g(x) satisfy the equation

U”—6UU ~ alU’ =0, U=p(x),q(x) (13)
When (13) is satisfied, we easily find from (10) and (11) that
Fg(x)~(E?— q(x) + const) (14)

We can now determine, integrating Egs. (12) and (13), the explicit
relations for the deformation A,(x) and for the potentials p(x) and
g(x). Expression (14) yields the modulus of the wave function, while
its phase can be determined in elementary fashion from Eq. (7b). It is
convenient to write the result of these simple calculations by introduc-
ing the parameters E,, E,, and E, and a function y(x) such that

q(x)=Ef + EJ + EJ ~ 2y(x) — A]

(15)
E}< E}E}; EF< y(x)< Ef
From (13) and (15) we get the equation
Y'(¥) = 2y~ R(v(x))
(16)

R(y)=(y— E})(y — E3)(v — Ef)
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From (16) we obtain

y(x) = Ef — rikisn*(kx,r) (17)
E} - E} >
= EEZ____EZZ. . k=+E!-E} (17a)
3 1

For the normalized wave function we obtain

(E-4) (B2-v(x)
oe(¥) = 2E A,

i AY dy
Xexp{ii\/R(Ez)f EE—_—%{B} (18)

dg=LIE*~ (y(x)| = L[ E*— E? - KE(r)/K(n]  (19)

The spectrum of the wave functions (18) has three forbidden bands G
and four allowed bands Z

G: E*< E},  E}< E’E};
(20)
Z: EX<E?’<E}; EI<E?

as shown in Fig. 10. The potentials p(x) and the functions u.(x) are
defined by expressions of the type (15) and (17), with the substitutions

A—4,; Y(x) 2 v(x + xq); X, = const (21)

The parameter x, can be determined by comparing the definitions of
A,(x) from (6a) and (6b)

vg (%)

vg(X)

Ay(x) = — (22)

E=-A, ug (x)
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With the aid of (17), (18), and (21) we obtain from (22)

arcsin —K—— .

xo= 4 F (23)

F(&,r) is an incomplete elliptic integral of the first kind [78).
Ay(x) = {El2 + (EF — E_f)[sn"‘(kx,r) — en?(k(x + xo),r)]}l/2 (24)

The momentum p(E£?) can be easily determined from (18) with the
aid of (16)

[R(£H]” [ EO) ,
P(E* = < R > = k{E(v,r)+ (7((7“7 - I)F(v,r)}

E*— E}
v=v(E)=arcsin ——-—-—«-—12 : Fle= 1~ p2
E; — Ej

The spectrum of E?(p) is shown in Fig. 10. For the density of state we

(25)
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can obtain from (25)

y
P _ £ (26)

dE* 91 [R(EY)

where A is defined in (19).
The boundaries of the forbidden bands are located at £ = + E,
and at £ = * E,, * F,,

A< E, K E,< Ey; p(E,z)=0; p(E§)=p(E32)=p_

The quantity p_ can be easily determined from (235) and we obtain
for the total number of states (with allowance for the spin) in each of
the separated bands (E,, E,) and (— E,, — E;)

”=%P‘=Kﬁﬁ 7)

From Eq. (27), with allowance for (17a), we obtain the first relation
between the three free parameters E,, E,, and E;. The two other
relations can be obtained from the self-consistency conditions. Substi-
tuting (15) and (18) in (9) and using (12) and (13) we obtain, in
accordance with condition (11), the equation

Jiy(x)+J,=0 (28)
where
1 E? - A}
! g2 EZ:” EA, (29)
2
A cosq VR(AI)
==+ 2 —F5— (30)

g E<p Edg

From (28) follow the self-consistency conditions J, = J, = 0.
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Equation (30) contains logarithmically diverging sums. We regular-
ize this equation by subtracting a similar equation at

E,= E2=A1 = 0; E; =A0~Dexp{—1/}\} }\=g2/'ﬂhv

(31)

This limit corresponds to the homogeneous state in mode! B, i.e., the
quantity A, is the gap in the Peierls dielectric with the dimetization, at
the same coupling constant A as in the considered combined dielectric.
Changing over in (29) and (30) from summation to integration, we
obtain after simple calculations

F(B, 1) — Acosg Ex(E5 — Elz)l/2
(B.1) N [_R(A%)]I/Z

(B3 — AY)F(B,1) — (B3 = EDII(B,r',1)

=0 (32)

A2
E}+ E}— E}

. E, E, | E2 - E?
= arcsin —- ; L= —r; =1 —
g E, E, E?— E?

Equations (27), (32), and (33) determine the parameters of the spec-
trum E,, E,, and E, in terms of the constants 4, A,, ¢, and A as
functions of the electron density n.

The ground-state energy W, is defined as the value of the func-
tional (5) when relations (27), (32), and (33) are satisfied. The calcula-

+ LBy (B2 - E3)""n

: 0 ()

where

*F(B,1), E(B, 1), and XI(a, n, r) are incomplete elliptic integrals of the first,’second,
and third kind, respectively, K(r) = F(w/2,r); E(r) = E(n/2,r)[78].
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tions are carried out in analogy with the self-consistency conditions
(29) and (30). The calculation procedure is the same as in chapter [V
for the doubly periodic state in model B. We obtain

F(B,1)
Ez(Esz - 512)1/2

w=1
T

X [Eng —~ A}(E} + E} — E}) + 203(E? - Elz)]/zE(r)RJ

1/2 2 2 1/2
+ LB} - B "E(B.1) + 22 (B} - BY)'E(n

*

2 -

1/2 ‘
2 A, cosp (_R(A%)) Il = E32—E12,
g K0 EI-A

1 2 2
+ 5 (3E{ — 3E} — EJ) + const (34)

The electric-charge density distribution

o(x)—d=e > uguE-i—v,}‘vE-——l—]
E<yu L

can also be easily calculated with the aid of (18) and (26). We obtain

o(x)— 0o

= € "2
WkK(r)r

E?2
snz(kx, r) + snz(k(x + Xg),r) — r—22- (l - K((:)) )

Acosp  Ak%?
P TR = [ = sk (x  xoyr] (39)
| V- R

The first term in (35) yields the charge distribution and the second
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yields the distribution of the dipole moment. The relations obtained
above go over into the formulas of chapter I1, §4 for the bipolaron,
y = 2. To this end they must be investigated in the limit n — 0, when

E,—A, E,— El-—>E,,=3<:OS,8=5[;\f+(32—1\%)/ch2a]1/2

The corresponding results are given in chapter II, §4.

IV Doubly Periodic Superstructures, Spin Excitations,
and One-Electron States in the Peierls Model

In this chapter we consider doubly periodic solutions in the one-
dimensional continual Peierls model, and solve the problem of spin
excitations and of one-electron states at an arbitrary number p of
electrons per atom. We investigate the ground state of the system as a
function of p and of the spin angular momentum ». We obtain for m
a dependence on the external field 4, characterized by a critical value
H, # 0 such that at H > H, an angular momentum m is produced in
the system and a second period appears in the lattice deformation.
For m—0 we consider, against the background of the periodic
structure, solitons that carry localized electronic states. These solitons
correspond to states of the system with one extra electron. The triplet
and singlet excitations are sums of two single-particle states. We find
that the soliton charge, in contrast to the spin, is partially screened at
p # 1, so that in the Frahlich limit at |p — 1| > A,/ D the local charge g
vanishes like g~eA/8u, where A= A(p) is the gap on the Fermi
surface and du = u(p) — u(1) is the Fermi level measured from the
center of the band.

The results are applicable also to the problem of the ground state
and of elementary excitations of a system of two coupled chains
which is relevant to a model of TaS;. In this case the integral f, of
electron hopping between chains plays the role of the magnetic field 4,
and the difference between the occupation numbers of the sym-
metrized and antisymmetrized orbitals plays the role of the magne-
tization m.
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§1 Peierls Model in a Magnetic Field or the
Problem of Two Chains

The investigations of continual models, reported in the preceding
chapters, show that the wave vector 2 /A of the superstructure {(x) is
equal to the diameter 2k, of the Fermi surface in a metallic phase,
with accuracy to the wave vector 27/ a of the main-structure recipro-
cal lattice. Such a superstructure can be regarded as singly periodic.
At the same time, a number of physical problems call for the
investigation of quasiperiodic lattice deformations characterized by
incommensurate wave numbers Q; = 2w /A;. Different periods A; can
appear in the ground state of the system in the case when the metallic
phase contained several groups of electrons characterized by different
Fermi momenta k{. Such a problem is obviously encountered for a
system in a strong magnetic field, in which we have in the metallic
phase kg1 kg for different spin projections o, =1 and |.

More pressing is the equivalent problem of a system consisting of
two chains in which the electron wave functions overlap. In the case
of a strong elastic coupling between the chains, the deformations of
both chains should coincide: AV (x) = A® (x) = A(x), and the system
energy functional can be written in the form (II.3.1-3) with an
electron Hamiltonian

TR R T T

where H, is the Hamiltonian (I1.3.2) for one chain and ¢, is the
integral of the electron transition between chains. The matrices / and T,
act on the spinor ((7; @), $(® = (Y, (), where the index a = 1
or 2 numbers the chains. Changing over to the components iy,
= 27172 + ¢@), we obtain the Hamiltonian of one chain in an
effective magnetic field A= pgH =1, .* By way of an important
example we cite a molecule of the TTF type, in which the stacks make
up many quasi-one-dimensional compounds (Fig. le). In this case y(*
are the upper molecular 7 orbitals for each of the two rings, and ¢, is
the overlap integral between the rings along the C=C bond. Another
possibility can be realized in organic conductors with complex mole-

*The same role plays a potential energy shift between two nonequilibrium sets of
chains, like in monoclinic TaS; or NbSe;.
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cules that usually contain a large number (M) of = electrons. In these
compounds, the appearance of several unfilled bands can occur at
M=T/ s where T and Y, are the respective hopping integrals
between neighboring atoms in the molecule and between neighboring
molecules in the conducting chain. Typically, Ta22 eV, ¢, <05 eV,
and M~10-30, ie., the condition for the existence of many bands
can indeed be satisfied.

Quasiperiodic solutions are also a convenient means of finding
solitons against the background of periodic structures by going to the
limit of infinite periods A;—> co, / > 1 at a fixed fundamental period A,
of the structure. An investigation of the solitons is essential for the
determination of the electronic excitations in the system (see the
review [58]). This limiting transition yielded the charged spiniess
excitations at p =1 (chapter IIl) and p = 0 in the E model [43). To
determine the spectrum of the spin excitations at arbitrary p it is
necessary already to use doubly periodic structures.

The most interesting changes of the properties of the system take
place in the concentration region |p — 1] « 1 adjacent to the limit of
the half-filled band at p = 1. We recall that at p &~ 1 the essential wave
vectors of the lattice deformations lie near the Brillouin-zone bounda-
ries 7 /a, as a result of which it is necessary to take accurate
account of lower (second) order umklapp processes in the electron-
phonon interaction (Brazovskii, Dzyaloshinskii, Obukhov [29]). At the
same time we can neglect higher-order umklapp processes (k > 2)
which arise at p #= 1 and whose amplitudes have a relative smallness
(E,/ €-)- "2« 1, k > 2. As a result we arrive at a continual model that
contains the real field of the deformations of A(x):

§(x)~A(x)cos(mx/a);  A(x)|=Ay=const p=1 (1)

where the function A(x) varies slowly over distances of the order of
the interatomic distance a. At a large value of the concentration

n= lP; d > Ao ; lp—1|>A||D (2)

when v is the Fermi velocity at the center of the metal band, the
Frohlich limit is reached, wherein the influence of the host lattice
becomes insignificant. In this limit it is possible (chapter II) to
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describe the system by the complex A(x) field:
{(x)~Re 5(x)exp(z’2kFx) (3)
where A(x) varies slowly over distances of the order of
I=2n/Q; Q=Pk—n/al=|p~1ln/a

As shown in chapter III, the transition between two limits is realized
continuously via evolution of the A(x) superstructure in (1) from a
soliton lattice to the almost sinusoidal deformation (3).

We recall that the elementary electronic excitations cannot be band
states in the potential of the superstructure A(x) of the ground state
because of the strong self-trapping effect (II, §1). At p =1 there exist
(I, §2) spinless (s =0) excitations with charge g = *e, or else un-
charged (g = 0) with spin s = 1/2, of the domain-wall type

A(xy=AMih(x/&); & =hop/A s = %An (4)

with energy E; < A,, and symmetrical polarons (bound states of an
electron and two walls), which carry both a charge *e and a spin
1/2, with energy E,:

A(x) = A,[l —VZ /(ch(x2 /&) +J2‘)]

5
E, =224 /7 ®)

We note that £, < E, <A,.
In the Fréhlich-model limit (2) and (3) there are electronic excita-
tions of only one type (II, §2), which carry a spin but are not charged:

x—xO

s=1/2; g =0, 5(x) = Apei"’th——‘g——- ; §= ——

E =2A/n

where E, is the (soliton) excitation energy, while ¢ and x, are arbitrary
constants.

Thus, the question arises of the change of the excitation spectrum
with changing p. The question of charge excitations is relatively
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simple to solve. From the results of chapter III, §1 it follows that at
p % 1 charged solitons (4) with ¢, = * e and s = 0 cannot be regarded
as excitations of the system, since they form the periodic structure of
the ground state A(x). They are replaced by gapless excitations of the
electron density, which constitute sound in the soliton lattice (111.3.34)
at n< &, and go over into Frohlich conduction at n>» & L

The question of spin excitations is more complicated, It follows
from the results of chapter II, §4, that the soliton (4) with ¢, =0 and
s =1/2 cannot be stable in the presence of another soliton with
e,= e and s=0. Two solitons of the type (4), with s =0 and
s =1/2, could merge into a polaron (5), with an energy gain

8E =2E, — E,=4A\|m — 22 A7 >0

It is therefore natural to assume that with increasing » a gradual
change takes place in the character of the single-electron excitations,
from the type (5) at n < £, ! to the type (6) at n>> &~ !. As can be seen
from (5) and (6), in this case a qualitative change takes place in the
form of the soliton, from an isolated polaron (S) to an enveloping
soliton against the background of a rapidly oscillating structure (6),
Figs. 11a and b. Even more substantial is the change in the quantum

A NS
\_J \_J

, Bap
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Figure 11
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numbers of the spin soliton, from g= *e at n<¢ ' to g=0 at
n>¢,"'. We shall show that this change proceeds continuously, i.e.,
the spin excitation, at p=1 is connected with a non-integer local
charge.

Solution of this problem makes it also possible to determine the
change of the system energy W(XN) when the number N of the
electrons is changed by unity, i.e., to find the work function of the
electron A = W(N + 1) — W(N), which does not equal the chemical
potential u = 0 W /dN. We shall obtain simultaneously the spin triplet
excited state of the system.

In this chapter we construct doubly periodic solutions in the one-
dimensional continual Peierls model, in which the number p of
electrons per atom satisfies the condition [p — 1| <« 1. We obtain the
system ground-state energy W(n,m) as a function of the concentra-
tion of the total number of particles n = n? + n| = |p — | /a and of the
spin angular momentum m = nt — nl, where nt and n] are the
concentrations of electrons with different spin projections on the
magnetic-field direction. We investigate the function m(H), which is
characterized by a critical value H = H, such that a spontaneous

i o

“E-E, -EIE E £, E, E,
Mmoo M
E*
2
E+
2
1E;
--E:
1E% l
-P, -P. P. P, P

Figure 12
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angular momentum m 7 0 is produced in a system at H > H, . At
m # 0 the superstructure of the lattice becomes doubly periodic, and
additional bands, one forbidden and one allowed, appear in the
vicinity of the Fermi level (Fig. 12).

We consider, as m =0, solitons against the background of a singly
periodic superstructure, which carry localized spin states. We investi-
gate the soliron-charge screening, which is found to be negligible at
n< ¢! and almost complete at n>£,7!, in accordance with (4)

and (6).

§2 Doubly Periodic Structures and Finite-Band Potentials

We write down the wave functions ¥(x) of the electrons in the form
V(x) = 2'2[ u(x)ecos(mx /2a) + iv(x)sin(7x /2a) ] (7)

The components of the spinor {(u,v) as well as the potential A(x)
from (1) are related by the equation for the eigenvalues of the energy
E of the electrons

up — Aug = iEog ; vy + Aoy = iEBug (8)

(the prime denotes derivatives with respect to x). Here and elsewhere
the Fermi velocity is equal to unity. We obtain from (8) the equivalent
equations

up + (E* = pluy =0 p=A"+ A

)
o+ (E*—qJog=0 g=4"-A
The energy functional W of the system is
A%(x)
W {A(x): f,(E)) =;]§,(E)E+f - dx (10)

where f (E) are the occupation numbers of the states with energy E
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and spin o, which take on the values f,(£) =0 and 1, while g is the
electron-phonon interaction constant. The stationary state of the
system is determined from the condition that the functional (10) be
extremal with respect to the field A(x), given the toral particle numbers
N,=n,L, where L is the length of the system. We introduce the
Ferml levels p, and the thermodynamic potential W () that depends
on them:

W(Ma)=W—§MaNa; (?Sg%—)') =0

(11)
Bo=pEh;  h=pgH

where p and H are the chemical potential and the external magnetic
field, and py is the Bohr magneton. The variation in (11) should be
carried out at specified distribution functions f,(E). These functions
are determined next from the conditions that the free energy of the
system % = W — TS be a minimum, where 7 is the temperature and
S is the entropy of the system. Confining ourselves only to the limit
T = 0, we should assume that

L, E<uy,
Jo(E)=1¢
0; E >,

For the variation of (10) with respect to A(x) we note that, accord-
ing to (9), :

SE® o 4 o 0g(x)
54(%) = 20%(x)v(x); _—SA(y)

Account is taken here of the fact, which can be deduced from (8),
that the components u(x) and v(x) can be independently normalized

fu*(x)u(x) dx= fu*(x)u(x) dx=1/2 (13)

With the aid of (12) we obtain from (10) and (11)

= 8(x ——y)[2A + %J (12)

W _ 2 . P )
SACY) —Ez—A(x)+E%E fG(E)[2A+Z;]DE(x)DE(x)_O (14)
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It follows from (8) that

A(x) = —04(x)/vo(X);  q(x) = v5(x)/vy(X);
(15)

vo(X) = 0(X)| g=o

Using (15), we can rewrite (14) in the form
oo 0| SETEYE e (0 +577 =0 (1)

Equation (16) can be integrated, and the integration constant can
be determined from the normalization condition (13). We obtain

B (B)[los (1) = o3(0)] + ?(1 —2Lo(x)) =0 (17)

At the transformation from (14) to (17) we lose only the self-

consistency conditions for the particular case of the homogeneous

solution |vg(x)|* = (2L)~!/%, which corresponds to p = 1.
Substituting (15) in the second equation of (9), we obtain

vp/vp — 05 /vy + E* = 0; vy /vy = q(x) (18)

The system of equations (18) and (16) or (17), with allowance for
the normalization condition (13), determines the sought set of wave
functions. We shall show that this system has solutions in the class of
so-called finite-band potentials g(x). A theory of Schrddinger equa-
tions (18) whose spectrum has only a finite number of forbidden
bands was developed by Novikov et al. [57, 58] in connection with
solutions of Korteweg—de Vries (KdV') equations with respect to g(x).
The problem considered by us calls for taking additional account of
the functional relations (16) and (17) between the solutions vz(x). It
turns out that (17) reduces to an algebraic equation for finite-band
potentials.

We shall consider specifically the case of interest to us, that of a
spectrum with two forbidden bands G, ,, but the derivation presented
below can be generalized in elementary fashion to include the case of
an arbitrary number of forbidden bands. We define the boundaries of
the spectrum E, = (E_,E,,E,,E, ) as shown in Fig. 12, where the
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forbidden bands G, and G, are dashed

G, E?<E*<E}; G,y E?< E*<E?

According to [57, 58], the two-band potential g(x), its eigenfunc-
tions vg(x), and the state density dN(E?)/dE? are expressed in terms
of two (in accordance with the number of forbidden bands) functions
v1, which are defined in the regions of the forbidden bands G, ,:

CEF< yy(x) < EX; B2 <y (x)< Ef

Namely,
1/2
v (x) = [(EZ — 11(%))(E? - 72(x))/2LA(E)]
(19)
exp{ =i ["dx RVAE) ) (E* - vi(x))(E - 72(x))}
where
R(e)=¢€(e— E?)(e— Elz)(e - Ezz)(e — E3)
(20)
AE)={(E* = vi(x))(E* = v2(x))ID
The angle brackets ¢ - - - > here and below denote averaging over the
length of the system:
1 rL
(F(x)y = T Jo F(x)dx
For the potential g(x) and for the deformation A(x) we have
q(x)= E2 +E2 + EZ+ EZ — 2(7,(x) + va(%)) o
)

1 d
A(x) = — 5 = In(vi(¥)72(x))
The number dN of states in the interval dE? is

L4 2 2 2
AW =5 = gt ((E =) (E = n@)) @)
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where
P(E?) = iR]/z(Ez)<{(E2 = ¥i(x))(E* - 'Yz(x))}—[> (23)

is the wave vector of the function (19). With the aid of (20) we can
rewrite (22) in the form

AN, — LA(E)/4R V(B (24)

The following additional conditions are also in force:
LdN(EZ) =0 (25)

Formula (25) ensures equality of the momenta p(E?) at the comple-
mentary edges of forbidden bands. We present also, for the sake of
completeness, the differential equations that define the family of

functions v, 5(x)
i = £2iR'2(7) /(2= 7))

Here g(x) satisfies the second KdV equation [58]

C, = const

//// 5(q) - Iqu + IOq + C]Q = C2 ’ C2 = const

Itis remarkable that in the subsequent calculations no use is made of
the coordinate dependences or of the equations that must be satisfied

by the functions y, 5(x).
We substitute the expressions (19) in Eqgs. (16) and (17). From (17)

we obtain

1 (E) (B =) (E*=n)l  yv,
Lg A(E) 4(0)
1 Y1Y2 | _
+_gg{1-m}-o (26)
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 Equation (26) is of the form
By + By y1(%) + va(¥)] + B3vi(¥)v2(x) =0 27)

where B,, B,, and B, are constants. In analogy with (16) we obtain

LByl + By(v '+ v5 )] =0

from which, with Equation (21) we obtain
B A"+ By(A" — 6A*°A) =0 (28)

The only solution that (28) can have in modified Korteweg-de Vries
equation (MKdV') form is a single-period potential A(x) with a single
forbidden band E? < E?< EZ2, which was investigated in chap-
ter IIL

To obtain a potential with two forbidden bands it is necessary to
stipulate B, = B, = B; = 0. As a result we obtain from (26) the three
self-consistency conditions

B, = ~g1—2 + 1 %fa(ﬁ:) Af;) sign R(E2) =0 (29)

B,= 1 ;L(E)Aé) sign R(E2) =0 (30)
1 1o L(E)[simR(ED) | ]_

By = %4 (0) +LE’G E A(E) A(0) 0 (D

Using relations (19) we can find that Egs. (29)-(31) are linearly
dependent. We shall therefore use hereafter only two of them, (30)
and (31).

The investigated state of the system is characterized by six parame-
ters u,, o =17} and E;, i= 1,2, +, —. Equations (30) and (31) and
the laws of conservation of the number of particles with each spin
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projection
N, = Ln,=> f(E) (32)
E;

impose on these parameters four constraints that determine, say, E, in
terms of u,. The remaining two parameters are determined from the
condition that the total energy of the system (1) be a minimum on the
class of two-band potentials, or from the condition that it be extremal
on a larger class of potentials.

We shall assume in the present paper that the Fermi levels u, pass
through the forbidden bands of the potential. This assumption is
sufficient for an investigation of the single-electron states, when we
must consider isolated solitons with local level E,: E,— E,— E;. In
this case E; > uf > E§ and E§ > p} > EZ. This assumption seems
natural also in strong fields A A, m> ¢! In this limit, the
deformations 2ky, and 2k, and respectively the gaps G, = {E 2 E}
and G, = {E{,E? } on the Fermi levels u, and y, should be approxi-
mately independent. A rigorous proof can be obtained in analogy
with the investigation of the discrete Peierls model [35] or the Peierls
model on an elastic filament [43].

We shall assume hereafter that p < 1, i.e., that the electron band as
a whole is less than half-filled (the case p > 1 differs only in that the
electrons are replaced by holes). This means that the bands £ > E
and £_> FE > —E_ are not filled, and n,(E)=0 at E > —E_.
Furthermore, the band E < —E_ is always filled for both spin
components n,(E)=1, E< ~E_, 6 =7;|, ie., each band state is
doubly filled. The degree of filling of the additional band — F, < E
< — E, can differ, depending on the arrangement of the levels y,. For
the multiplicity of the filling of the states of this band » = n(&) +
n(E), —E,< E< —E,, we have

We consider now the self-consistency condition (3) for an arbitrary
value of ». Transforming from summation over E to integration with
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the aid of (24) we obtain

A (Pp-1/2 E3 5 —1/2 _
2 EiR (€)de+ vj;:lz R (6)de=0 (34)
where
R(e) = (e— E%)(e— E)(e— Ej)(e~ E?) (34a)

Calculating the integrals in (34), we obtain

- = 2-Z-‘K . M 2=
E? —E? m(2 (p)’p)’ i (E} —E})(E} - E?)

(33)

From (35) we obtain the following results:

a) v=0; E} = E?, the empty additional band { — E,, — E,} con-
tracts and joins the empty band {—E_, E_ } located above it.

b) »=2; E}=E2, ie., the completely filled additional band
joins, preserving the finite width corresponding to the number of
particles, the completely filled band { £ < — E3 } beneath it.

c) »=1: from (35) follows the relation

E* +EX:=FEl+ E]=2E} (36)

i.e., the bands have a common center designated EZ in (36).

The results of items (a) and (b) show that in a single-band (m = 0)
Peierls state the Fermi level p,=p, can be placed only in the
forbidden band. Otherwise the system turns out to be absolutely
unstable with respect to a discontinuity in the state density on the
Fermi level, with subsequent merging of the equally filled bands.
These results agree with the conclusion obtained in II, §2, that in the
Frohlich limit |p — 1|~1 there are no activation charge excitations,
despite the presence of a gap in the state spectrum of the rigid
potential. We note that the usual picture of degenerate semiconduc-
tors would correspond precisely to location of a Fermi level in a
forbidden band.
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We consider now the self-consistency condition (29) or (31). We
subtract from (29) Eq. (30) multiplied by E}, and change from
summation to integration with the aid of (13). We obtain

[ _r, BY(E* - Ej) N E*(E*— Ef)
2 _f—Em mR'*(E?) 5£52 aR/(E?)

0

(37)

When account is taken of relations (36) it is easy to find that the last
term in (37) vanishes. The logarithmic dependence on the cufoff
energy E,, is eliminated by subtracting from (37) the same equation at
p=1, when E,=E,=E_=0 and E_ = 4A,. The lower integration
limit (— E,,) can now be allowed to tend to —oo0. As a result we
obtain from (37), subject to the condition (36), a second relation

(EX —E2) - (E} - E}) =4} (38)

It shows that the interval (E2,E2), which stems from the forbidden
band of the single-band potential, becomes wider when the additional
allowed band (E?, E2) is included. At E, = E,, Eq. (38) goes over
into the relation E2 — E2 = A%, which agrees with the result of
chapter III. Relations (36) and (38) impose two constraints on the
four parameters E;, i = +, —,1,2. The free parameters of the band
structure can be connected with the particle density n, or, in other
words, with the end-point momenta p_ and p_ of the bands (Fig. 12b)

n=n,+n = ;1;(21& +p.—po)= %(h +p-)
(39)

1
m=n=m =1 (s =p-)
where

E? dP 2 E3 dp 2
= —_ dE? —p_= —— dE 40
P- fo P P+—P [ (40)
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We introduce the notation

z=E?—-E}; 2a=E}—El; 2b=E}-E}; (a*—b%=41/4)
(4)

and use relation (36). Equation (24) then takes the form

ﬁlE _ z2+%<q>z -~ A,
dz 2Q‘/2(z)

(42)

where
Q(z) = (z + E§)(2* — a)(2* = b?)

The quantities ¢ and 4, = A(E,) are defined in (11) and in (10a). The
coefficients {g) and A, in (42) can be obtained from the condi-
tions (25).

We define a family of hyperelliptic integrals

]i" z ,Z = z2 anZ 43
» (21 52) Ll |(E02iz)(zz—az)(z?'—bz)llf2 ()

and introduce the abbreviated notation
LE(b,ay=1*; IX(=bb)y=JF; IX(a,e)=J7F (43a)

for the integrals over the forbidden (/,*) and allow (J,*,J *) bands.
Substituting (25) in (42) we obtain

LIF+ L+ I
A= (B - V)(ER =) = e

and

]2—]0+ - ]2+]0~
Ig LT + I

(=A% = 2(2E62 — {1+ Yz>) =2 (45)
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Substituting (32) in (4) we obtain
P+ _P—=%Jz++;11‘<9>-]1++%140-70+ (46)

and
P—=j2_/2+<9>j2_ (47)

The equations (46) and (47), with allowance for (44), (45), and (39)
and in conjunction with the constraints (36) and (38) determine
completely the band boundaries E; given the particle numbers n,
and n,.

We now derive general relations for the densities of the energy w(x),
of the charge p(x), and of the spin o(x). By definition,

A? - —
w(x)= ;C) + EZJ%(E)¢§ (x)be ()
| (48)
w(x)y=W/L
Using (8), (19), and (29), we transform (48) into
w(x)= 1 SAE)E B - £ (49)

We find that, just as in the case of a single-band potential (chapter I1I)
and in the limit of an isolated soliton (chapters II and III), the toral
energy of the system is delocalized, i.e., w(x) = W/L = const.

The summation in (49) diverges rapidly far from the Fermi levels.
We can regularize it by subtracting the energy density of the Peierls
dielectric w, at p=1, when E,=E,=E_=0; E_,=A, p,=p_
=0, and w, = w_,, — A3/27. Here w_,, is the energy of a metal with
p =1 and without lattice deformation. Since the sum over E con-
verges for w — w;, we can calculate w and w, separately by introduc-
ing an arbitrary limiting momentum p,, > p,, p_. The value of p,,
should be fixed in order that the changes of the particle densities n,
be connected with the momenta p.. by relations (39). The value of p,,
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is connected with the energy E, corresponding to this state by the
relation (23). Since E, > E;; i = 1,2, +, —, we obtain from (13)

g E}
P~ E, 1 - =% +0 2

m

(30)

m

We can write down the condition p, = const, according to (50)
approximately as

E? — {g)> = const + O(YI,Z/Enz'x) (31)

This result is in fact not connected with the form of the potential
q(x), but follows directly from (9) at E2> (g>.

For the case (33c), » = 1 of interest to us, expression (49) reduces,
when account is taken of (24) and (36), to

Ir 2 2 Irp2 2
g . B ("~ Ep) fE,% , E°(E7 — E)

w = -

E? 2oRYE?  JE% 7R '/}(E?)

Calculating the integrals, we obtain

E;— E} E{—{(q>
ar

w=w(nm)= -

+ const (52)

whence

E% + E* +A? —2(A%

w(n,m) — w(0,0) = P

(53)
w(0,0) = w,

The quantity (A®) as a function of E, is given by Eq. (45). Equation
(53) yields also the general form for the energy, which was used in the
case of a single-band potential, in chapter III, §1.

The particle-number density n(x) in the system is, by definition,

n(x) = %fa(E)JE(X)JE(x)
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Using (8), (19), (30), and (42) we obtain

n(x) = CA¥(x) + D[2(Eg — 11)(E3 — 72)
— 1/A(4EGN — 60N + A)]  (54)

where

[ =21 (a,00) + v/ "] /4n (54a)

C
D

il

[v]gh =215 (a,0) | /4 (54b)
The particle spin density, is, by definition,
1 — —
o(x) =5 S[AHE) ~E I (s(x); (o =73
In analogy with (54) we obtain
o(x)= —é—(Z:A2 + %5[2(1502 —11)(E¢— 12)
~ L@E2n - 6870 + A”’)] (55)
4 0 !
where
C=vwl/4n; D=lg /4n (552)
Equations (36), (38), (39), (46), (47), and (53)-(55) enable us to
investigate the principal static properties of the Peierls model at zero

temperature. Simpler relations can be obtained in the limit of large »
and in the limit of small m.

§3 The Frohlich Limit. Phase Transition in a Magnetic Field

We consider the general relations of the theory on going to the
Frohlich limit n>» &', E§ ~ EZ ~ E2 > A}; a; b. It is natural to
express all the physical quantities in this limit in terms of the width
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E,=E,—E_ of the gap between the doubly filled and unfilled
states, and the width £, =24, = E, — E| of the singly filled band,
E,~E, —E_~a/E, and E,=E;~ E\~b/E,. The results
should not depend explicitly on the value of E,, which now deter-
mines only the overall shift of the Fermi levels relative to the center of
the band. The energy scale is defined by the quantity

Ay=A|,_o~A/4E,; E_ = 24; k=A8/A<1 (56

Expanding the integrals (43) up to terms ~E; * inclusive, we obtain
from (44) and (45)

(g = (O (x)) ~20%(2 — k*) + 4AE (k) / K (k) (57)
Apg=— ((E§ ~1)(E§ — n)} ~4E;NE(k)/ K (k) (38)

K(k) and E(k) are complete elliptic integrals of the first and second
kind, respectively [78]. From (46), (47), (57), and (58) we obtain

m=(p, —p_)/7=28/kK(k)hvp (59)
2 E a2 (ECR) 3) 3 &
”=(P++P—)/W’f¥;gf; Eg(m‘g)*‘ﬁa
(60)

From (60) we can determine E, and substitute it together with (57)
and (58) into the formula (53) for the energy. We obtain

w(n,m) — w(0,0)

whop o 8 & p (2E<k> 1)

=4 " T Trkoy T Twho, T who, \ SRR

or

w(n,m) — w(n,0) ~ A} f(k)/mhog

(61)
f(ky=1~k™[1-2E(k)/K(k)]
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Equations (59) and (61) enable us to determine the spin-excitation
energy in the Frohlich limit. As m—>0 we have according to (59)
k=1, A—A,, and we obtain from (61)

w(n,m)y— w(n,0)~ Em

E =27,/

The quantity E, is the energy of the self-trapped state (6) with spin
s=1/2 in the Peierls—Frohlich model, which was investigated in

chapter II, §1.
At high spin density m > A,/khv, we have from (59) k=0, and we

obtain from (61)

(62)

B hopmm? A
w(n,m) = ) - 7T3m2(huF)3 (63)

We have considered so far the system properties for given particle
numbers N, and N, ie., given n and m. We consider now the system
properties in the case when only the fotal number of particles is given,
N, + N = nL = const. The spin density m should be determined from
the condition that the free energy be a minimum,

w(n,h) = w(n,m) — mhhog (64)

at the specified magnetic field 4. The investigation of expression (64)
at arbitrary n is quite difficult. We confine ourselves to the Frohlich
limit considered above, n>> A, /hvg. This region is of greatest interest,
first, because it involves practically all the quasi-one-dimensional
substances with structural dielectric transitions. Second, with increas-
ing n the gap 2A decreases in proportion to n~! in accordance with
(56), and can become equalized with the attainable magnetic fields.
Substituting (59) and (61) in (64) we obtain

A
ThUp

W(n,m) — w(n,0) =

2 h
1+ (27(-(-1{_) 1)-——k-—E;

2

(k) (65)

Whv
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where k = A,/A according to (56). From (65) we find

g 2E(k) (h/E)k— E(k)
dk Kby K(1-K?

(66)

where E, = 24,/ according to (62). It can be seen from (66) that the
function f(k) has a minimum at k= k,, <lonlyath>h = E

E(k,)
— =

m

" (67)

Equations (67) and (59) determine the function m(h). As h—>h,+ 0
we have

B 1- kK2 mhog _ 1
he  2In(1— k%) A  In(l - kY
whence
- mhvoghc expl — A 1= 82 hoghe exp| — 8
274, mhvg om 2wl mhog
(68)
Ath>h,, k=0 and
h/h ~w/2k; hopme~h./k; h=Zmhop; x= = Xpauli

2 ThUg

We have found that at 2 < h, the system has no paramagnetic
susceptibility: m = 0, x = 0. At & > h, the system becomes paramag-
netic, and furthermore with a susceptibility x that becomes infinite at
h = h,. At h> h,, the value of x coincides with the Pauli susceptibil-
ity Xp.ui for a normal metal, despite the presence of gaps on the
Fermi levels p, and p,.

The results are applicable also to other systems with two bands
overlapping if the Fermi velocities can be regarded as close. The field
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h corresponds in this case to the difference between the Fermi
momenta for the two groups of electrons in the metallic phase, while
mm /2 corresponds to the difference between wave numbers 2p_, and
2p_ of the two interfering components of a CDW in the dielectric

phase.

§4 Single-Electron States and Spin Excitations

We consider the limit of an infinitely small spin density, when the
number of states, and the number of particles that is equal to it, in the
band {—E,, E,} tends to zero. The band itself contracts in this case

into a local level — E
m—=0, E>E—>Ey; b0 a—-Aj/2; m~In(A}/b)

To calculate the effects of first order in m it suffices to separate in the
integrals (43) the terms ~In(A?/b) and to neglect the corrections of
higher power in b.

Assume that a small spin density m = M /L < n is produced in the
system, and the total density changes, n—> n + 6n, where 6n < n. The
quantities m and 8n determine the width b and the shift 8(EJ) of the
center of the band {E2 E})}. From (46) and (47) we obtain in first
order in 6n and m

T
n= —; m /e (69)
rK(ryhog hoprIn(A}/ b)
m+ Onms = ) 5(EZ) + mS(7)
20yhop (1 - rHKY(r)
(70)

S(r)= %K(/")[Z<-Z— ,r) - —'—;—(l - %2)_1/2 + 2A0(cp,r’)}
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F=— F=— rere=1; ctgp = 1’
Z(8,ry= E(8,r)— F(9, rNE(r)/K(r)

Aoy = 2 [K(rE(@.r) = (K(r) = E(")F(9.r)]

Z(8,r) is the Jacobi zeta function, Aye,r’) is the Heuman lambda
function, F(8,r) and E(8,r) are elliptic integrals of the first and second
kind, respectively (K(r) = F(x/2;r), E(ry= E(7w/2,71)).

We calculate 8{g) from (45) and 8(£¢) from (70) and substitute in
(53). We obtain the change of the system energy

SW=L[w(n+ dn,m)—w(n0)] =pudN - M)+ EM (71)

In the limiting cases Eq. (71) takes the form
W= %Al(é‘n - m)+ —2-—\/—_— Aym; hopgn <A, . (72)

8WzE+8n+%Am; W=E, —E_, hom>A. (73)

It follows from (71) that the change of the system energy is equal to
W, = 2u following the addition of a singlet pair (6N =2, M = 0), to
W, =2E, following the addition of a triplet pair (6N = M = 2), to
W, — W,=2(E, — u) = 2E, following the transition from the singlet
to the triplet state, to 6W ., = u, = E, following the addition of one
particle (N =M =1), to W _,=u_ =2u — E, following the re-
moval of one particle (8N = —M = —1), and to Ef =p, —p_
= 2(E, — u) = 2E, upon excitation of an electron-hole pair.

We note that the electron-hole and spin excitations have the same
activation energy E,, while the single-particle chemical potentials are
equal to p, = p + E,. These facts, as well as an investigation of the
corresponding coordinate dependences, show that the two-particle
state is simply an assembly of two distant solitons, each carrying one
localized particle. At n>> £ it follows from (73) that E, ~ 24/, i.e.,
each soliton constitutes a domain wall (6).
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At n< &7 it follows from (72) that E, ~2A(2 ~ 1)/, ie., the
activation is effected via a transformation of the spinless domain walls
(4) into polarons (5).

We consider the local properties of one soliton, namely charge and
spin. To this end it is necessary to investigate the limit m—0 in Egs.
(54) and (55). Far from the soliton (as x— * o) we have A(x)
— A, ,(x), where A, (x) satisfies Eq. (28) with B,/ B, = 4EZ, while

(Eo2 - Y1(x))(E5°' - yz(x)) = — A (By)|vg (x)? =0

inasmuch as vg(x) degenerates as £, — E, into the wave function of a
local level. The expression in the square brackets in (54) and (55)
tends therefore to 0 as x = * c0. According to [73], the asymptotic
singly periodic solutions A, ,(x) in the presence of one soliton differ
exactly by half a period, from which it follows that A, _(x)=
—~A_ (x). Taking these remarks into account, we obtain from (54)

the soliton charge ¢,:

g, = elim [(n(x) — noo(x))/m]

m—0

= ¢ lim {[C<A2(x) — AZ (X))

m—0
+2D{(EG = 1\(0))(ES = va(x)> ]/ m} (74

Calculating the coefficients C and D in (54a, b) as & — 0, we obtain

K(r
oK
7wk |
(75)
(5.9
1 4 4 p.
D= 22— L _2Kkmz(I,
s TR KOHE)

Calculating (44) and (45) as b—0, we obtain, taking (69) into ac-
count,

(B(x) ~ AL (x))=4mE, Z( T )i AomATEgm  (76)
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Substituting (75) and (76) in (74) we obtain ultimately

nhog . 2 +1
F(Z 1 - In ; n<A /ho
9"61—2___(y r)- ~ A] \/5—1 l i
d K(r) 7 A2
= o ; n> A /hog
(77)

Equation (77) shows that at n <« &' the soliton charge is close to the
one-electron charge. With increasing n, partial screening of the soliton
takes place on account of deformation of the periodic structure in the
vicinity of the soliton.

In the Frohlich limit n>> ¢ and r < 1 we obtain ¢,—0, ie., the
charge is completely screened in accord with the results of II, §2. The
residual charge g~ — eA/ E is a weak effect of a distant commen-
surability point and becomes lost when the approximate functional of
the Peierls—Frohlich model (I1, §2) with complex field A(x) is used.
Calculation of the spin density in accordance with formulas (55) and
(55a) as m— 0 leads to the obvious result that the spin of one soliton
iss=1/2.

V Polarons and Domain Walls in Systems with
Strong Elastic Coupling
Between Chains

In this chapter we consider the Peierls state in a system of chains with
sufficiently strong elastic coupling, when the degree of anisotropy a of
the phonon frequencies and of the electron-phonon interactions is not
too large, 1 > a > A. When this condition is satisfied, a strong change
takes place in the picture of the elementary excirations and sometimes
in the structure of the ground state.

In §1 is considered the interaction of electrons with superstructure
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deformations, for a system with small integrals of electron transfer
between chains, t| < A. In this case the deformation covers a large
number of chains, and the polaron effect for one electron turns out to
be weak. The self-trapping, however, becomes strong, ~A,, if several
(N~a/N) electrons participate in it. The results are droplets whose
size is limited by Coulomb repulsion.

In §2 we consider the ground state of the system in which the
electron spectrum is considerably three-dimensional. It will be shown
that if the tunnel integrals t, in the Peierls-dielectric phase with
doubling of the period increase, say because of an applied pressure,
the dielectric phase becomes unstable with respect to formation of
soliton walls, which are the combinations of neutral solitons investi-
gated in chapter II, §82, 3. Formation of a periodic superstructure of
soliton walls leads to the appearance, in the dielectric phase, of Fermi
surfaces that correspond to a new type of carrier. From the experi-
mental point of view, at the instant when the soliton walls appear, the
anisotropy of the conductivity acquires an unexpected character: the
conductivity transverse to the filaments becomes larger than the longitu-
dinal conductivity (at low temperatures). The reason is that when the
distance between the walls is large metallic conductivity along the
soliton wall immersed in the dielectric phase becomes predominant.

The conclusions obtained in §2, jointly with the results of chapter
IV, can possibly explain the origin of the incommensurate superstruc-
ture-and the residual metallization of NbSe;.

The material of §1, based on [54], is published here for the first
time., The material of §2 is based on {74, 75].

§1 Polarons and Electron Droplets in a System with
One-Dimensional Electron Spectrum

The conclusion obtained in chapter II, concerning the strong self-
trapping of the electronic states, and the results of chapter I, §§2—4 for
different soliton forms, are applicable if under certain restrictions on
the transfer integral t | of the electrons between the chains and on the
transverse dispersion a of the phonon spectrum w(2pp,q,) and of the
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interaction constant A(q ):

“~8‘*’2(2PF>‘]¢)/‘°2(2PFsO)“"”‘(‘]J_)/}\(O)
Namely, it is necessary to satisfy the inequalities
1, KA, (1)
a <A )

Whereas condition (1) on ¢, is certainly satisfied at least as a weak
inequality, by virtue of the very existence of the Peierls effect, the
condition (2) that the structural coupling be weak may not be
satisfied at all.

The presence of solitons destroys the correlation between the chains,
Therefore, even at a /A K1 the interaction between the chains leads to
attraction between solitons with a force independent of the distance

hog

F ~(a/N)(Bo/bo); = A—o

so that at low temperatures solitons of one filament can be bound into
pairs, or else domain walls can be produced that include a large
number of filaments. This case is considered in chapter IV, §1.

In the present section we consider the case of strong elastic coupling

a/A>1

which corresponds to system with fully isotropic elastic properties at
an anisotropic electronic spectrum. In this case the self-trapping of an
electron on one chain is accompanied by deformation of a large
number of surrounding chains. As a result, the deformation of the gap
§,(x) turns out to be small, |§,(x)| < A,, the electron level Ey = A, —
€, is shallow, ¢, < A;, and the longitudinal size A, of the deformation
8,(x) and of the localization of the electron is large: A, > £&,. However,
if the self-trapping involves several () electrons located on nearest
chains, the state becomes deeper

L~N7'5 e~N%;  |§(x)|~N%
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For real parameters we have even at N = 3-4
€ ~|8(x)[~4o; lo~&o

and at larger N the multielectron self-trapped state should break up
into two domain walls. The walls bound a three dimensional region in
the shape of a disk, inside of which the sign of A(x) is opposite the
sign in the surrounding volume.

Let the system in the metallic phase be characterized by an electron
Fermi velocity vz, by an electron-phonon interaction constant A
= g*/whop, and by a phonon spectrum near the planes *2p;:

B (2pr + gy 9 ) =B + Q¥ (qL) (3)

where q, = (q),9,), || < m/aj (j = 1,2) is the wave vector in a plane
perpendicular to the conducting chains. The quantity

a=[max£22(ql)—minﬂz(ql)]/az; a5l

characterizes the anisotropy of the phonon spectrum. We shall define
& hereafter in such a way that

min *(g ) = 2%(g5) =0

In the dielectric phase, the spectrum of the electrons (e) or holes (4),
without allowance for self-trapping, takes the form

(k) =\/(khvp)2+A2 ~ A+ PR 2m* om* = Ay /vE k<)
The spectrum of the amplitude phonons is of the form
6i(qu) = w5+ Q%(qL); @ =208 Q)

The role of the anisotropy parameter is now played by the ratio
b= a/\, which can be large: b>1 at a <A< 1, ie., the Kohn
anomaly enhances effectively the elastic coupling between the chains.
In the adiabatic approximation the lattice deformation in the
presence of N electrons or holes above the gap is described by a
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Lagrangian that generalizes the Lagrangian (II1.1.7-10) for one chain:
A
_z”=fdx[%6 2 Ez,b,ﬁ(x) —--2— +6(x)—~e}¢m(x)]

()
\L'm(x) ‘Pl(x R ) Sn(x) = S(X’Rn)

where » is the index of the chain R,, i—index of the electronic state,

pl=_2 [wz——wo Qz(ql)}/wo

is the reciprocal Green function of the phonons, y,,(x) are the wave
functions of the electrons localized on the chains n;, and ¢ are their
energies reckoned from the edge of the spectrum ¢,. If transitions of
electrons between chains can be neglected, ¢, = 0, then for each i, n
we have

fdx\p (X)W (x) = 1

The stationary state of the system is obtained as an extremal of the
functional (5). We get

N
Dn;'lam + Pn = 0! pn(x) = 'Zl ‘pi:(x)\bin(x) (6)
hz 82
[— Tm* 5‘; an:I\bin = €Y, (7

For the polaron at rest we have from (6)

mhog dzq_LS_Lei(q_L —Qo)(R,,—R”.)pm(x)
2 @m)*(1 + 2%(q.)/wd)

O, (x) = — ()

where S, = a,a, and @, and a, are the transverse dimensions of the
unit cell. Since b > 1, an important role in the integral (8) is played by
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values of q, that are close to the minimum of Q*q,) at q, = q©,
where we can write

Q?'(‘h)

wg

= (blic% + bzlc%); K = 7T~daj(qj - j(O)), I;cjl <1lj=1;2.

We assume that the electrons are localized on one (n =0, R, = 0)
or on several nearest chains, so that N2< b. It follows then from (8)
that 8,(x) depends only on the total linear density of the electrons

p(x) = 2 5Pa(X)

_ Thog di e "Re
W) =) T ) T r g e

)

k= (K ,rcz)

We see also that in the electron-localization region 8, depends little on

the number of the chain, §,(x) ~ y(x).
If we neglect the transfer of the electrons between the chains, we

have
(%, R, ) = ¢(x)8,;

and, in addition, in the ground state all the wave functions are the
same

i=0, &=—¢=—¢€(N)  p(x)= Npy(x)=Ny§y,

Substituting (9) in (7) we obtain

€

_8 Mo, %0 )y g (10)
2 & 0 ‘foon 0

According to (9), Ay < 1 since b> 1: Ag~ 7% "'In(b~") at d =2 and

Ay~n?/2yb at d=1. Equation (10), in contrast to the case of
weakly bound chains (b « 1) considered in chapter II, §1, contains a
small parameter NA,, which defines the self-trapped state as a shallow
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polaron:

Yol X
o(*¥) = \/2?Nchx

The total energy of the polaron at rest is

E(N)= —Neo-}-nsz—%Sn(x)Dn; 8,0 () dx

w=0

N
~ = Neg+ — X Lottr f p3(x) dx

— 1 3240 o N
= _‘2—4—N AOAO__ —‘3"-60 (]2)

i.e., the self-trapping energy per electron, E|, is equal to

2

IE (M) = 57 A58 = 3 (13)

Assume that the polaron mass m, is large compared with the

free-electron mass, m, > m*. Then the kinetic energy Ey;, = m,0*/2 of

a polaron moving with velocity v < v, can be calculated with account

taken of only the kinetic energy of the lattice. As a result of (5) we
have

2 2
1 98, (x,1) m, 0
E;, = ~
kin En: ThoR0] f( dat ) ax 2

Substituting in this formula the relation 8(x, ) = §(x — vf) obtained
from (9) and (11), we find the polaron mass

% A
5 0
m = ==_ AO n»-t"‘._._E

14
P 30 h wo 02 ( )

The initial premises of the theory are the conditions that the polaron
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effect be weak
<4y £> ¢, (15)
and the adiabaticity condition
€0 > hwy (16)

It follows from their compatibility that

2

hw°<< AoV <1 17
5, ( 2 ) (1)
Hence
S 2>> s g l/2NA 18
) > > (1) o (18)

We note that in contrast to the theory of a one-dimensional tight-
binding large-radius polaron [45, 46], the adiabaticity condition does
not lead automatically to a large polaron mass. If m, calculated from
Eq. (14) does not satisfy the inequality m,/m*>>1, then we must
assume that m, ~ m*.

Besides the adiabaticity condition (16), for a polaron to exist it is
necessary to satisfy the condition that the transverse dispersion of the
electrons t* be bounded:

t* L e(N) (19)

For a system of weakly bound chains e,~A1, so that condition (19) is
satisfied by virtue of the existence of Peierls instability in the given
substance. Thus, violation of condition (17) or (19) leads to a destruc-
tion of the polaron effect and restores the simple picture of electron
and hole excitations. It can apparently be assumed that in substances
with strong elastic coupling the polaron effects for one electron are
insignificant.

We consider now states with N > 1. Here the adiabaticity condi-
tion (16) and the requirement that the electron be one-dimensional (1)
become less stringent with increasing N. It is necessary here, now,
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however, to take into account the Coulomb repulsion effect. The
corresponding energy 1s estimated at

NN-1) 2 N*(N —1)

U(N )~ 3 y = > U, (20)
where
~ 6 % 3 vh S

is the dielectric constant (see (11.1.6)), and

2 U S
U]%_e_ 1 _Lgl.

& BN g (21

The total energy of an N-electron polaron, with allowance for the
Coulomb forces, can be estimated at

N} N -1

E,(N)=—NE, + 5

U, (22)

It follows from (21) that the energy defect 8E,(N) per particle, due to
coalescence of N one-electron polarons, is equal to

SE\(N) = + Ey(N) = Ey(1)= —~N(N — 1)(E, - %)

We conclude that the coalescence takes place only if E| > v,/2, ie,
as a result of (21), if

& CE
g <% (23)

Using (11) we can write down the inequalities (23) in the form:
b<byatd=1and b > b, at d =2, where

2\ 2
b1~(§—') ; b2~_ (24)

1
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When the condition (24) is violated, there will exist in the system only
the one-electron elementary excitations discussed above.

A more typical situation is one in which the chains are sufficiently
closely packed, so that the condition (24) is satisfied. We see that the
rapid growth of the binding energy 6E(N) is restricted by the number
N < N,, such that

§Nn) Sk eo(Ny) 4y (25)

Bearing in mind the fact that for all the known compounds A,/ ¢,
> 1072 ie, b < 1/X < 5, we find from (25), taking (11) into account,
that the weak-coupling theory can be used for N-particle polarons only
at N=1, 2 and 3, i.e,, N, = 3-4. We conclude that the self-trapping
becomes deep already in the case when the electrons are on the
nearest chains.

At N > N, in the internal chains, bounded by a transition layer of
width ~N,,, the changes of the gap parameter A, (x) depend weakly
on the number N. In this limit, the stationary states will be the same
as for isolated chains. Since now the Coulomb interaction over a length
¢, is small compared with A, in terms of the parameter § | /£ < 1, we
must consider a distribution such that there are two excess electrons
for each chain. In a system with p = 1 (model B) there are produced
in this case repelling domain walls (see Chapter II, §§3, 4), which are
contracted in the considered system by edge effects. A disk-shaped
region is produced, inside of which the sign of the dimerization
parameter 1s opposite that in the surrounding volume. The statistics of
such objects is considered in chapter VI.

§2 Spontaneous Development of Superstructures and Metallization in
a Peierls System with a Three-Dimensional Electron Spectrum

In chapter III we considered one-dimensional models that describe
substances with weak interaction between the chains. Periodic su-
perstructures were produced in this case as a result of the change in
the electron density in the chain. In the present section we consider
the Peierls model for substances in which a strong elastic interaction
takes place between the chains, and the electron spectrum is three-
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dimensional enough for the width 7| of the transverse dispersion of the
electron spectrum to be comparable with the gap 2A.

It is precisely such substances that were investigated most inten-
sively in recent years in connection with the success in stabilization of
the metallic state. Examples were indicated in chapter I, §1. We
assume that with increasing ¢, , say as a result of external pressure, a
phase transition can take place with formation of a periodic super-
structure. The resultant deformation is similar to that investigated in
§1, but with a half-filled central band. Such a transition should
manifest itself experimentally in a metallization of the system, espe-
cially in a steep increase of the transverse conductivity. The mecha-
nism of this transition was indicated by Brazovskii, Gor’kov, and
Schrieffer [74]. More detailed calculations were given by Brazovskii,
Gor’kov, and Lebed’ [75], whose paper we follow for the most part
hereafter.

The phenomenon considered should be quite general for systems
with a three-dimensional electron spectrum, regardless of the degree
of three-dimensionality of the phonons. However, methodological
restrictions make it possible so far to construct a theory for systems in
which a strong elastic coupling exists between the chains. Under this
condition we can regard the domain walls as flat and use the result of
the one-dimensional model investigated in §1.

The energy scales of A and ¢, are comparable but are small
compared with the total width of the electron band. Therefore the
Fermi surface in the metallic phase should take the form of two open
sheets corresponding to the spectrum

e(p,pLy=e(xprtk p )~ Tochk+1.(p.) (1)

The parameters of the interaction of the electrons with the lattice
deformations g(k,), max gk, )= gk'?) =g, now depend also on
the transverse momentum k, . We assume that in the Peierls state the
lattice deformation {(r) is characterized by a very simple star of
vectors (£k;, £7/a)

{(ry~sin(mx/a)[ 4 (x)exp(ik 1) + c.c.]
1.e., the lattice deformation is of the form

§{(r)~sin(mx/a)[ &y (x)exp(ik r, ) + c.c.] (2)
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where A, (x) are slow functions of the coordinate x. The functional
of the system energy (per chain) (at zero temperature) can then be
written in the form

dp IAkL(x)IZ
W=f—§=L~E@%:<“E(pL)+fdx——»~—-————g2

27)?
+fdx!A (x)}2(~—§~+-i:), SZ=(SJ_) (3)

where E(p,) are the energy levels and depend on the transverse
momentum p, in the field {(r), g is the electron-phonon interaction
constant, with g the maximum value of the function 8k, -

The dispersion Sgk includes, generally speaking, the dispersions of
the phonon frequency as well as of the interactions themselves. The
assumption that a strong structural coupling is present means that
Sk, ~g"

As usually, due to the cancellation of the logarithmic contributions
the first two terms in (3), taken together, are of the order of A2,
whereas the order of the last term is

A8ge /g ~02/g* > A%/ hog

Consequently, k | is determined primarily from the condition that
gk ) be a maximum, and can be regarded as a fixed specified:
k, =k©, g(k,)=g. Without limiting the generality we can assume
that k, = 0. The function Y= (x) satisfies the equations

—ind et (p1) = E@L) [t (%) + A(X) Yy () =0

-

(4)

— b = (p2) = B () [y (%) — 180z (x) =0

We make in (4) the following change of variables
Ypz (%) = e (x)exp[ = i1 (pL)¥]

ZF(PJ.) =1.(pL)—t-(PL)
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The functional (3) then takes the form

w_ A dp,
—L———Ez— Lf -[E‘<a(pn dE[E+t(pl)}

()
a(pL)=p—t{pL)

Here L is the length of the system, dN /dE is the density of states, E
is the eigenvalue of the Hamiltonian H,

L Ay
H=i| i H=B;  y=F.¥o) ()

The functional (5), (6) is similar to that already used before (chapter
III, §1) for the one-dimensional Peierls model. As follows from the
results of chapter IV, functionals of this type have extrema in the
class of the so-called finite-band potentials A(x). We consider the
simplest case of potentials with two forbidden bands. It corresponds
to deformation of a lattice A(x) of the type of a single-periodic
superstructure (II1.1.6a), and the Hamiltonian (6) has the spectrum
shown in Fig. 7. We also have the relations (III.1.7) between the
parameters k,A,,r and E_,E_ as well as a formula (111, 1.8) for the
density of states for Hamiltonian (6).

In contrast to the one-dimensional model, each eigenvalue corre-
sponds here to a band E(p )= E + t(p ), see Fig. 13a.

Just as in the one dimensional case of §1, the following self-
consistency condition holds:

d
éi +f~%iff3<a(pl)

Esign(E*~ E?)dE
W\/(EZ — E2)(E*- E})
It differs in the fact that the integration region is bounded by the

condition E(p,) < u, i.e., E < a(p,).
The system energy (5), under the condition (7) is equal, in analogy

=0 (V)
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with (I11.1.22), to

E(r) d
1 2 2 2 P
= —FE; —EZ +4F% ——~ | +2 —_—
2977’201:[ M T K(r) n£(m)<u 0 t(pL)
__1 ﬁ?_i_\/ 2 _ 2 _
mhop ja|<E_ Q (E- —a)(Ex a)
[ 0,300, )siemd ®)
aj<E. £
where
E(ry— K(r)
= l E? dN 2= 2 ;
®(p.) ) —-—dEz dE rhup E. 0 F(o,r)
E? —qa
+E_ E(p,r)—|a -
)
. E+ E?_ —Q
= arcsin
¥ E_ E? -«

F(o,r) and E(g,r’) are elliptic integrals,

In the problem of chapter III, §1, the inhomogeneous states were
due to a change in the electron density. The chemical potential y was
always in the forbidden band. The two free parameters £, and E_
were determined in terms of the specified electron density » and from
the self-consistency condition.’

Now we are considering the problem where the chemical potential
is not known beforehand so that three parameters, u, £, and E_ are
to be determined. Two relations between them can be obtained from
the self-consistency condition (7) and from the condition for the
conservation of the total number of particles. The last free parameter is
determined by minimizing the energy (8).
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The condition for the conservation of the number of particles can
obviously be written in the form

f‘—%iﬁx g—g—dE=const

Recognizing that the two states in the central bands are combinations
of one state from the conduction band and one state from the
“valence” band of the dielectric phase, we obtain

dp, dp, .
(1-2[ )= [ ROme (0

a>0

Equation (10) has a simple meaning—the central band should on the
average be half-filled. This condition is a consequence of the conser-
vation of the total number of states and the total number of particles.

We now use the general relations obtained above to study the
behavior of the system near the instability point of a homogeneous
Peierls state, when the lattice deformation has the character of well
separated domain walls produced against the background of a Peierls
structure. To this end it is necessary to investigate equations (7)-(10)
at small values of n, i.e, as E_—0. We consider first the particle-
number conservation condition (10). For any function ¢(p | ), the chemi-
cal potential y, (as E_ —0) is determined from the condition that the
contour / on which ¢(p,)= p, divides the cross section of the
Brillouin zone into two parts of equal area.

It follows from (10) that at £_ ## 0 we have

p=po+ O(E2/E%)

We note that for a sufficiently symmetrical form of #(p ) we have
I = o, whereas for arbitrary 7(p,) we can assume that p=sp,
= const only at the required accuracy ~O(E2 /E?).

We consider now the self-consistency condition (7). It can be written
in the form

Y d E2 —a? +yE% —o?
_____9__=2f p-Lln\/ * V. (11)
|| < E

‘@ VEZ —E?




SELFLOCALIZATION AND SUPERSTRUCTURES 235

where Ay~ exp(— whog/ g") is the gap in the homogeneous Peieris

dielectric.
At E_—>0 we obtain from (11)

d
M= E% — B2 +24, ==\ E? - (12)

la|< E_

where the integral term is of the order of £_. The expression (8) for
the energy can be written at small £ _, with allowance for (12), in the

form

2

— 2
W = 2‘777701-" +nd +nk- B (13)
where
24, dp .
A= —+2 r —_ 14
™ 1pL)<po ®.) {2 ( )
dt

(15)

. /) =
= Tuk; | 20 a b5 ,B(l) AU ‘ B |
Here (/) is the transverse component of the electron velocity on the
contour /.

The quantity 4 is the energy required for the production of one
domain wall. At t(p ) =0 it goes over into the soliton energy E,
= 2A,/ 7 for the one-dimensional Peierls model, chapter II, §3. We
see that the electron transfers between the chains decreases the value of
A and at a suitable form of the functions #(p ) the quantity A4 can
reverse sign. The condition 4 = 0 is the limit of the absolute instabil-
ity of the one-dimensional Peierls state.

The quantity B characterizes the interaction energy of the domain
walls. Just as in the one-dimensional model, this energy decreases
exponentially with increasing distance between walls. However,
whereas in the one-dimensional case we always have B > 0, now, as
can be seen from (15), it is possible in principle to choose the function
t(p_) such that B < 0. At B > 0 the instability of the inhomogeneous
state revolves as a second-order phase transition (with respect to
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pressure), while at B < 0 the phase transition takes place jumpwise at
a certain 4 > 0. There is no unique connection between the defini-

tions of 4 and B.

The periodic state considered by us is the alternative of the flow-
order of particles from the valence band to the conduction band of g
Peierls dielectric, which leads to formation of electron-hole pockets

(the ““Lifshitz transition of order 2.5”), Fig. 13b.

N

| E

—

<

Ml
N

I

Figure 13
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The latter, obviously, sets in when
t — mint =
max#(p,) — min#(p,) =24, (16)

This condition, in turn, is independent of the inequalities imposed on
A and B. Consequently, for different functions #(p, ) there can take
place arbitrary three different ways of transition from the dielectric
Peierls state to the three-dimensional (anisotropic) metallic state.

We consider by way of example the model of two-dimensional strong
coupling t(p ) = tcos(ap). This model is strongly degenerate. Indeed,
electron-hole pockets are produced at t=A,. At the same point,
according to (14) and (15), A and B vanish simultaneously. Thus, the
points of all the phase transitions coincide.

As can be seen from these results, with increasing overlap of the
chains the formation of metallic sections of the Fermi surface becomes
possible via two mechanisms. In the first case, when the condition
(16) is satisfied, the pockets are produced in the vicinity of £ = +A4A,,
Fig. 13b. In the other case, at 4 = 0, they are produced in the vicinity
of E =0, Fig. 13a.

One cannot exclude the possibility that more complicated lattice
deformations lead to the appearance of new small forbidden bands on
these Fermi surfaces. In the first case of (16) this can be regarded as
an effect [60] of three-dimensional electron-hole pairing, while in the
second case this would correspond to a deformation of the type III,
§4, which produces an additional forbidden band near £ = 0.

The rigorous results of chapter IV show that the results are stable,
at least for a steplike Fermi surface corresponding to the two-chain
problem.

We note in conclusion that the results of the present section can be
applied equally to materials with p = 1 and to ones with incommensu-
rate superstructures, such as NbSe,. A common feature is that for both
Peierls models (B and A) corresponding to these systems (I, §2) there
exist stable solitons with half-filled central level (11, §§2, 3).

In light of the theory expounded above, it makes sense to review
the experimental data on materials that preserve the residual metalli-
zation after structural phase transitions, such as (TSeT),Cl, NbSe,,
and (SN), . These data have so far been interpreted on the basis of the
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picture of electron-hole pockets. The most intriguing are the properties
of the compounds NbSe; and TaS,. The structure of these materials is
such that there exists both a small chemical shift de; = & between the
two slightly nonequivalent sets of chains, as well as a substantial
dispersion #(p ) on account of electron transfer between chains. 1t is
therefore natural to expect the complete theory for these compounds
to unify the models considered in chapter IV and in the present
section. In this case we obtain an explanation for the coexistence of
two superstructures with wave vectors Q. = (7/2a)(l * @), a <1 at
p = 1/4. For NbSe,, the phenomena described above, determined by
the function #(p ), should predominate. For monoclinic TaS;, which
goes over after the formation of the two superstructures into the
dielectric phase, the mechanisms of chapter IV, determined by the
value of h, should predominate. The experimental relation O, + Q _
= 7 /2a, corresponds to Eq. (IV.2.39). We conclude that in MX,
compounds there can exist periodic domain structures made up of the
amplitude solitons investigated in chapter II §2, for model A.

VI Solitons in a System of Weakly Coupled Chains

We investigate in this chapter the influence of weak interaction
between chains (3d coupling) on the state and statistics of the amplitude
solitons in models A and B, on the basis of publications [47, 53). The
weak 3d coupling does not influence substantially the process of
electron self-trapping or the structure of the soliton core (|x|~£g), but
its role turns out to be fundamental at large distances x, especially
below the three-dimensional ordering temperature T < T,, T,<A,.
Since each soliton couples different states of the system, the correla-
tion between the chains is violated in its vicinity. As a result, the
system loses an energy

U~T |x|; F ~(a/g)di; F~13/veh; a<g?/oph, 1, <

(in the notation of chapter V), which increases in proportion to the
distance x from the soliton, in analogy with the confinement in models
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C in AC (I, §2; II, §4). A similar role is played by commensurability
effects of odd order (1, §2).

In the case of model A considered in §1, the correlation can be
restored by changes in the phase of the order parameter A(x), local-
ized in the tails of a soliton of length /~hv,/T,>&,. In the case of
model B, which is considered in §2, it is impossible to restore the
correlation for one soliton. As a result, the solitons are coupled into
pairs at 7 < T,, and aggregation of pairs between the chains takes
place at T'< T, < T,. For a three-dimensional system’ the tempera-
ture T, is a phase-transition point below which plane domain walls
appear in the system and pass through the entire cross section. For a
layered system a gradual increase of the transverse dimension of the
paired walls takes place at T'< T,. A distinguishing feature of the
Peierls model manifests itself in the fact that the solitons have quan-
tum eigenvalues (s, e,) that make it possible to monitor their concen-

tration.

§1 Solitons in the Quasi-One-Dimensional Peierls—Fréhlich Model
with;Continuous Degeneracy of the Ground State

We consider the quasi-one-dimensional Peierls—Frohlich model (mod-
el A), which is characterized by an equilibrium gap A, and by a low
three-dimensional ordering temperature T, < A,. The soliton binding
energy is

ie., 0E, > T, so that its formation (self-trapping of the electron) takes
place mainly independently of the surrounding chains. As a result,
however, the sign of the parameter A(x) is reversed on the central
chain on going through the region of the soliton with center at the
point x,. Inasmuch as in the ordered phase the chains should be
correlated, the change of the sign of A(x) far from the soliton
becomes equalized, and this should be reflected in the soliton proper-
ties. The perturbations of the surrounding chains should decrease
rapidly with increasing n, so that to describe the effect it suffices to
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take into account the chain with n = 0, which carries a soliton, and its
Z nearest neighbors. Since the equalization will take place at a
distance /~Avy/ T, > &,, we can use a quasiclassical description [30]
in terms of the phase @, on the chains, assuming that |A, (x)| =4,
The presence of the soliton is taken into account here by the disconti-

nuity of the phase qy(x)
Po(X0 + 0) — @o(xp—0) =7 (1

at continuous phases ¢, (x), n# 0.
The described model is characterized by an energy functional

1
(z + l)e2

7 {p}) = Zf drhoy [(% cos(@, — @o)

©)

where T, < A, is the three-dimensional ordering temperature.

The equilibrium state of the system is described by the extremals of
the functional (2) with the supplementary condition (1). We define
@, (x) = @y(x) + Y(x) at n*0. The functions ¢, and ¢ satisfy the
equations

(z+ l)q) + zy” =0

| ©)

(z+ 1"+ (z+ Dypg — e *siny =0
with the boundary conditions* s
Y(x), ¥'(x), pp(x) >0 at x—> * oo (4a)

Po(X) = —Y(x) = —%sgn(x - x5) at x—>x, (4b)

*The condition (4b) presupposes, in addition to (1), that the extremal (2), which is
antisymmetric with respect to x,, has been chosen. It will be shown below that this
choice corresponds to an absolute minimum of 5#° (see (12a)).
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From (3) and (4) we obtain the following solutions:

Y(x) = —4arctg{exp o~ ixl ~ %o }sgn(x — Xp)
go(%) = 7 { Fsenx — 29(x) ; (5)

@, (x) = zj_ 7 [—%sgnx + \,b(x)}

where [, = /In[tg(x /8)].

Plots of g4(x) and ¢, (x) are shown in Fig. 14a.

3 Although the core of the soliton is not charged, in the region of
phase relaxation &, < |x — x| S/ there appear charges g, with den-
sity p,(x) = e, @, (x)/ 7. From (4a, b) we have

go =27 [9o(0) = @o(0)] = — =Z

7
~

sk

en
qn = —e;—?-[q)n(-i-oo) - q’n(-oo)] T+

We note that the sign of g, is opposite to the sign of the charge
eo = e of the initial carriers. The total charge of the system g¢
depends on the signs of the charges of the carriers e, :

a) all of the chains have the same charges

¢ =¢, g=dgo+2zq,=0
in accordance with the results of chapter II, §2;

b) the surrounding chains have charges opposite to that of the
central chain

— * — [r— j——J z
€y = —€p; gq=40~ 24, = Z+1eO

As z—> co we have g —> —2e, the charge is doubled.
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c) The charges of the chains alternate

=0 — = _ _Z
néoen——o’ 4g= 9= Z+le
as z—> oo we have g—> —e, and the system has a single charge. The
case (a) corresponds to systems with total charge transfer, such as TaS,
or KCP, while case (c) corresponds to systems with partial transfer,
such as TTF-TCNQ. Thus, in KCP the solitons remain uncharged,
and in TTF-TCNQ they have a charge ~ — e localized in the region
I~hop/ T,.

4 The presence of a connection between the chains leads also to
the most substantial interaction between the solitons. As indicated in
the footnote above, the change of A(x) for a single soliton proceeds
along a definite diameter perpendicular to the ordering direction
A(+ 0) = A(— o0). We can therefore speak of solitons having two
signs respectively, ¢(x) ~ * (7 /2)sgn(x — x;) at x = x; (see (4b) and
(12a)).

We consider two solitons of the same sign, located at the points
+d/2. The boundary condition (4b) is generalized in accordance

with Fig. 14b:

¢(—%——0)=w+¢(——g—+0)=¢—
(6)
¢(g+0)=—w+¢(——‘§i—0)=¢+

The solutions of Egs. (3) outside the discontinuity points x = *d/2
are characterized by a first integral H or k

1=k

l12¢/2_(1 —cosy) = H; H 2

! ()
It follows from (4a) that at |x| > d/2 we have H =0 and k = 1. At
|x| < d/2, according to the least-action principle for the functional
(2) the quantity H = H(d) is proportional to the force # of the
interaction between the solitons:

hv.H
_ 8%_ Z UF (8)

S =T g T A 22l
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The quantity (2) on the extremal (7) is equal to

__2_‘72'_ 2z 41 — Yy . 21[/_ 4’-"“77
e f \/2H +4sin A A

P

2{sin - (d¢— Hd

®)

Varying (9) with respect to ¢, and ¢ _ at a specified H, we find that
the solution is antisymmetric and

1
; ; — < k<1 10

The solution (7) can be written in the form
cos-lk =sn(K(k) k) (11)
2 |

where K (k) is a complete elliptic integral of the first kind. The value of
k is determined according to (6) from the equation

sn(K(k) S k) = \/—k (12)
at
d»l, k-1,  y.on/2 (12a)

=[32/(\[2‘+ 1)2]e—d

We have found, in particular, that for a single soliton the phase
relaxation proceeds antisymmetrically (see the footnote on p. 240).
Atd< [ wehave k~>1/y2, ¢, -0, and H->0, i.e., the repulsion
force is finite.
We consider now the case of solitons of opposite sign. In place of
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(6) we have, in accordance with Fig. 14c,
_d i oN=uld_0)=
‘P( 2t O) ”b( 2 ) Ve

40 s(+0)- v,

(13)

Since ¢/(0) = 0 and ¢/(0) # 0, we now have in (7) H <0, i.., attrac-
tion takes place. In place of (8) we have

2?_7_125——"'—1-,%’=2 ‘b\/2%’+4sin-%£ v+ 4 ‘ sin’y diy —

‘UF A \bO 2 ll/+_
(14)
Varying (14) with respect to iy, and ¢, we obtain
cosy, = —st‘—P—Q ;. H= —2sin* 22 % (15)
The solution of (7) is now
Yo osto Vo) _x cpede
cos ) = COS 5 sn[K(cos 3 ] , COS > (16)

According to (14)-(16), the value of y, is determined from the
equation

sn[K(cos%Q—%) cos%gJ——\/lzj (17)

The solution (17) has a continuous singularity at the pointd// = = /2.
At d > [ we have Y,—>0, ¢ —> 7 /2, and

H~ —[32/(\/5+ 1)2}«3-"
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Atd < ml/2 we have Y, =y, =7 and H = 2. In this region we have
a finite attraction force (8) independent of the distance at H = 2.

Calculation of the energy 5#° and of the interaction force ¥ =
—32% /3d shows that solitons having opposite signs on the same
filament and equal signs on neighboring filaments are attracted:
F N 0, while solitons having equal signs at one filament and
opposite signs at neighboring filaments are repelled, 5 4,5 | <0.
According to (8), (12), and (17) we have

dsl  |F |~hy [ P~T/vph
(18)
d=l ]5"|~(hvp/lz)exp{——2d/l}
At a finite temperature 7 < T, the attracting solitons are located in
the region d 5!/ T, where the thermal length /, was determined from
the relation .% L.~ T under the condition that /, < /. We obtain

LpmhopT/T2; I )I~T/T.<1

At T< T?/Ay< T, we have [.~&,. In this case solitons bound on
one filament should annihilate.

The quantum oscillations of a pair of solitons at distances &, < |x|
< [ can be described by the Hamiltonian

k9 hop
7= 2Ms 8x2 * 12

| x| (19)

where M, is determined by Eq. (I1.2.28). From (19) we can estimate
the amplitude of the zero-point oscillations I, = | x|>

lo 4 \2/3 Tc 1/3 (hzwéTc)]/3
~E)T) ~

A A (20)

At the typical parameters u/vy~T./A~10"" we have [,/I~10"".
The foregoing estimates are valid if /,>> £,. Actually, however,

Iy (_u_ 59)2/3~1~( Fiwg )2/3~1

EEN vp T, T

c [
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5 From the foregoing estimates it follows that at T< T, the
thermal motion should cause the solitons on the same chain to be
attracted and annihilated, and those on neighboring chains to form
classical bound states at /. > [, or quantum bound states at /. < .

The soliton linear concentration C is equal to (under the condition
Cl< 1)

M. T2
C=(—£;—;) exp(—E;/T), T<huw,

Actually,
Cl~10XT/E,)" *exp(— E,/ T)

whence at T < T,~hw, we have C/ < .

We find that at T < T, individual solitons and bound complexes
are on the average far from one another and do not interact in
practice. On account of the rare collisions, solitons of the same sign
can become bound in this case on a large number of neighboring
filaments so that planes with simultaneous reversal of the sign of all
A, (x) are produced. These effects are investigated in detail in §2.

The interaction of a charge-density wave with the main structure in
the case of odd-order commensurability leads qualitatively to the same
effects as the chain interaction described above. The distribution of
the phase on the tails of the amplitude soliton is shown in Fig. 5a. The
soliton charge as indicated in chapter II, §2, is equal to *e/3.

Commensurability effects manifest themselves if the pinning energy
~T?/A, exceeds the energy ~ T/ /A of the interaction between the
chains. In real systems this is possible apparently only in systems with
threefold commensurability, if the following condition is satisfied

T T AO 1/2
n<z~(3)

The combined dielectrics described by the AC model are a special
case. The phase equalization takes place here in analogy with the
interaction, considered above, between chains. The soliton charge is
*2e.
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§2 Statistics of Kink Ensemble in a System of Weakly Bound Chaing

In this section we consider the static properties of a gas of amplitude
solitons for models A and B when the average distance between
solitons is much larger than the microscopic width £, of the soliton,
but smaller (for the model A) than the equalization length [ (§1).

2.1 Equivalent Ising Model

The system considered can be described by an order parameter n,(x),
where « is the index of the chain and x is the coordinate along the
chain. We normalize n,(x) in such a way that n,(x)= *=1 in the
regions between solitons far from their cores, and takes the form
7, (x) = £ f(x = xg); f(xoo)= x1 in the vicinity of a soliton with
center at the point x,. The function f(x) describes the shape of the
soliton and takes for the Peierls model the form

f(x) = th(x/&y); §o~aD /A, (1)

For polyacetylene [37] we have §,~ 7a,, where a, is the distance
between the atoms. We introduce the local linear soliton concentration
C,(x), which must satisfy for the considered dilute system the condi-
tion

£,C(x) <1 )

The average concentration C can be fixed by the composition of the
material. For example, in polyacetylene C is equal to the concentration
of the electrons injected as a result of doping. The concentration of
the spin solitons (11, §2) can be fixed in principle by the magnetization
of the system, or produced by optical pumping. We shall assume that
the energy E, of the soliton, for an isolated chain, is high enough to be
able to neglect the thermal activation of the solitons:

E>T, Cp.»C

As is usual in statistical mechanics, it is simpler to investigate the
properties of a system in a grand canonical ensemble at a given
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chemical potential . of the solitons. The value of u is fixed, e.g., in the
case of a system of two chains in one cell or at a given magnetic field
(chapter IV).

The functional of the configuration energy for an arbitrary inhomo-
geneous disposition of the solitons can be written under condition (2)

in the form

2=, = [fax (= 3 Va(me(x) + DB~ G,

B €)
N=CL, V>0

where {a, ) are the nearest interacting chains and V is the energy
difference (per unit length of one chain) between the fully ordered
(T =0, C = 0) and disordered state of the chains. For sufficiently
simple lattices the signs of 7,(x) can be redefined in a way to make
vV >0.

We introduce now a new length scale a, such that a > §, > a;, and
coarse-grain the chain, considering enly points x = x, = na. The
function n,(x,) can be regarded here as an Ising spin S, , defined at
the site (n,2). We introduce analogously in place of the soliton
concentration C,(x) the dimensionless density p, ,:

'0’7’0‘ = Cd(x")a; Sn,a = na(xn); xn = na (4)

A procedurally important circumstance is that the density p, , can be
expressed in terms of §, ,:

Sn Le Sn,a 2 1

pn,a=( - ) ) ='2—(] —Sn,aSn+l,a) (5)

In (5) it is assumed that the sites {n} of the possible locations of the

solitons are placed between the sites » and n + 1 of the spin chain S,.

Using (4) and (5) we can now write down the functional (3) in the
form of a Hamiltonian for the Ising model

H = _J_L 2 SH,B— JIIZ(Sn,aSn+1,a - ]) (6)
n,<anB> na
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where
I

For a system with a given concentration » =p, , = Ea the quantity JH
is determined from the self-consistency condition

% [1 - <Sn,aSn+1,a>H] =r= Ea (73)

where
sp A exp{~ BH }

Ay = ns;) exp{— BH }

n,a

From (3) and (6) we see that the Gibbs energy Q(u, T) for a grand
canonical ensemble of solitons is expressed in terms of the free energy
of the Ising model (6), F,. For the energy per lattice site (i.e., per
length a of the unit cell) we have

UpT)=F(K,,K,)+ TK|

(8)
Ky=pJ; K. =p,
The soliton density v is determined from the relation

which is equivalent to the condition (7a).

The parameters J, and » for the Hamiltonian (6) and for the
self-consistency condition (7a) or (9) are still not connected with the
physical parameters ¥ and C, inasmuch as the unit length a has not
been determined for the coarse-grain density (4). We shall show that a
should coincide with the equilibrium distance /, determined from the
condition that equilibrium exists between the repulsion of the soliton
cores and their attraction on account of the interaction between chains,
as investigated in §1. At distances /> £, the energy of a pair of
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solitons on one chain has a typical form
U(1)=2ZVI+ U (I);  Ugp—~Ee /% (10)

where Z is the number of nearest neighbors. The equilibrium position
Iy 18 determined from the condition

au| _,. -~ E
al e 0; lowgolnzVso, Iy > & (11)

It is important that, as a result of (10) and (11), the equilibrium per
energy is equal to

U(l) =2ZVI(1 + &/ 1) =2ZVIy(12)

i.e., it is determined mainly by the contribution of the energy (10). At
large distances /> [, the interaction ar the solitons is determined
already exclusively by the first part of the energy (10). On the other
hand, in the Ising model (6) two solitons at sites n; and n, on a chain
confine a segment of length n = n, — n, with reversed spin. Th=
minimum distance corresponds to #n = 1. The energy of such a config-
uration 1s

U(n)y=2ZJ  n (13)

To reconcile the models (3) and (6) it is necessary that (13) coincide
with (10) at / = na, and (12) coincide with (13) at n = 1. We obtain

a=1l, J, =V, v=C (14)

§3 Exact Results for a Linear System of Chains

For a linear system with nearest-chain interaction (8 = a + 1) we can
use the exact results for the two-dimensional Ising model. All the
necessary data for the anisotropic case (K | 7 K ) are contained, e.g,
in review [77].
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The model (6) has a line of phase transitions determined by the
equation

K=K(K,,K)=1 (15)

where

K=shK, shK, (16)
On this line the soliton concentration v is equal to

1 1
- ;chKJ_arctggE—I-{— (17)

Equation (17) defines the point K, () on the critical line (15). Since
J ., according to (14), is fixed, we obtain a unique connection
between the critical temperature T, and the soliton concentration »:

o

Equation (17) has a solution if

1 1
v < Pmax = -i- - —q;f-"‘d023
The numerical smallness of » allows us to assume that this value lies
within the region of applicability of the model (6), determined gener-
ally speaking by the condition » < 1. At » <1 we obtain from (17)
and (18)

n

Tp~2=, <l (19)

Consequently, at least if the concentration is not too large (v < 7_,,),
the soliton gas undergoes a phase transition at a temperature T,
determined by Egs. (17) and (18), or approximately by Eq. (19).

The value of the chemical potential i on the critical line

h=p(?)
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is determined from the conditions (15) and (16) with allowance for the
definitions (7) and (8a). Near the critical line, the compressibility « of
the soliton gas has the same singularity as the specific heat in the Ising

model

2
x=(§-’i) =L OF L, (20)
T

where

From the point of view of the structural properties of the system, it
is obvious that at T'= T.(v) a transition takes place into a three-
dimensionally ordered phase with nonzero mean value of the order

parameter

{a(x)) 70, T<T,(»)
In the disordered phase, 7" > T,(»), Eq. (7a) is of the form

K (k)
ch®K !

_ 1 _ 1 2

where II(m, k) and K (k) are complete elliptic integrals of the third and
first kind, and & is defined by formula (16) with & < 1.
At T > T, we have K|, <1 and we obtain from (21) approximately

N——...—-.—-l————_—N —
VAT e, ~exp{ B(n — E)} (22)

Consequently, in the high-temperature region the ensemble of solitons
is thermodynamically equivalent to a gas of free heavy Fermi parti-

cles.
In a disordered phase, at T < 7,(»), we have k > 1 and

1 4 - - - -
v=5 - —cth’KcthK  [TI(sh™K, ;k~") = ch 2K K (k™1 ] (23)

1
2
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At T < T.(») we can rewrite (23) approximately in the form

_ 1 ) = (e
’ D(T)sh’K, P =A D (24)

With the aid of (24) we easily obtain an approximate expression for
the free energy F, and for the internal energy U of the solitons

SF=F—:»ES=V(H—ES)—I“ v dp

5

= ~T %(\/1+VD—-1)+VIHI+\/___':J-)|— vD (25)
SU, = -é%'(BBFS) (252)

In the investigation of formulas (24) and (25) we can distinguish
between three different regions.

I J, Tk T, ~J, /v

In this region K, <1, K> 1, and we obtain

v~ 4N exp{2(p — E,)} (26)
SFSm%leln—]% — 1} 27)

SU. ~ %vaEz . 8E,=4J N (28)
N=N(T)= §JTT (29)

Formulas (26) and (27) show clearly that the solitons are bound into
pairs with energy 2E,, with a chemical potential 2u, and with a
concentration »/2, and the interaction between the pairs is of little
importance. Comparison of Eq. (28) for the internal pair energy £,
with Eq. (13) at Z = 2 shows that the quantity N defined by formula
(29) is the average thermal length of the pair. The factors N in (26)
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and (27) reflect the entropy of the internal thermal vibrations of the
pair. In fact, using formula (10) for the energy of a pair with a given
distance n, we can write for the concentration »/2 of the isolated

pairs:
_é_,w;exp{ B[2(n— E,) - 4] n]}

from which follows Eq. (26) at 8J | < 1.
II The intermediate region

4J

J . >T>Ty; TO:E_(_WL_J)— (30)
which can be determined at » <« 1. In this region
k<l; K, >1; K> 1
and we obtain
vas2exp{ B[2(p— E,)—~ 47, ]} (31)

8f, ~ % (T[ln@2v) ~1]+4J,};  8U,=20J, (32)

Equations (21) and (32) show that in the region (30) we have a gas of
soliton pairs with a frozen-in internal degree of freedom, i.e., the pairs
are separated by the minimum distance /, defined in (11).

IIT The low-temperature region

T< T,=4J, /|lnv| (33)

In this region k<« 1, K| <1, K” < 1, and we obtain

2

8f, ~ — T\/-;— e "L (35)
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The thermodynamic relations (34) and (35) no longer correspond to
the gas picture. The equation of state (34) shows that the activation
energy vanishes and the effective chemical potential tends to zero

p*=p— E~T/Ty(v)<1

The relation 6fs~\/17 given by (35) is typical of surface effects. These
results show that the solitons become aggregated in the systems into
large groups, so that a gain in the binding energy J | of the chains can
be obtained. The structure of this aggregate can be investigated
accurately by calculating the correlation function of the soliton density

Frp = {(Pra = ¥)(Poo = ¥)> (36)

According to the definition (5), the function (36) is a four-spin
correlation function for the Ising model (6). Its calculation is greatly
facilitated by the fact that in the fermion representation of the
Transfer Matrix for the Ising model that is dual to (6) the soliton
density p,, coincides with the fermion-density operator

pna = Cn+Cn

The calculations performed in [53] yield at T<K T

Fnd=%ve""/“[8n,l+8n’_1] (37)
I, =\/% ey I > (38)

Equations (37) and (38) show that the solitons gather into segments of
the type of double domain walls with the nearest distance between
them /,. The average length /|, of the segment directed perpendicular
to the chains increases with decreasing temperature.

Bearing this picture in mind, we can easily obtain the thermody-
namic relations (34) and (35) without resorting to the results of the
exact solution. We consider an ensemble of transverse segments made
up of soliton pairs. The segments can have arbitrary lengths / in the
transverse direction (a) and characterized by a distribution over the
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lengths f(/). The energy of a segment of length / is obviously equal to
E(l)=2EIl+4J, (39)

and the chemical potential u(/), by virtue of the thermodynamic
equilibrium, is equal to

p(1) = In(ly=2pl (40)
From (39) and (40) we obtain the distribution
n(l)=exp{ B[2(n— E)—4J . ]} (41)

From (41) we obtain the total concentration of all the segments:

_ as _ e—24BJJ.
n= El"(l) - e2B(E -1 _ 1 (42)
and the concentration of the solitons
o0
y = Z 2In(l) = vezﬁfl(ezﬁ(E*“z“) —~ 1) (43)
I=1
The average length of the segment is
I, = % = pe? 1 (BN 1) (44)

Formulas (42)—(44) agree fully with the results, presented above, of
the exact investigation in both regions II and III, i.e., wherever
T<J,.

3.1 Peculiarities of Three-Dimensional System of Chains

We consider now the general case, when the chains interact in both
transverse directions. The properties considered above for a linear
system of chains remain qualitatively in force in most high-tem-
perature regions: 7> T,, T,> T > J,,andJ | > T > T,. The com-
pressibility of the system k is connected as before with the Aear capacity
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of the Ising model by Eq. (20). In the three-dimensional case the
singularity takes the form

QF—~T—°‘; a=0;1;2

In the three-dimensional case, however, the region III, T < T, van-
ishes and the temperature 7, becomes a point of a new phase
transition, below which J = 0. This conclusion follows rigorously
from the inequality

V(BJ“; BJ ) <»(0; BJ.)=z:(1 —mz); m=m(BJ )=
(43)

where ¢ . .. ),; denotes the mean value for the rwo-dimensional Ising
mode! defined by the Hamiltonian (6) at J, =0 and §,, = §,. For
example, for a rectangular lattice of chains, J, = (J,,J,), we have

(46)

At T < T,, the conservation of a given » is possible only at J, =0,
under the condition of formation of infinite domain walls that pass
through the entire cross section. The linear concentration v, of the
walls can be obtained, just as the inequality (45), from Eq. (7a). In the
course of averaging we must put J, = 0, but must take the correlation
S, eSn+1. into account if the planes (n,a) and (n + 1,a) are sepa-
rated by a domain wall. We obtain

p= L [(1=90)(1 = m?) + w1+ m?)];
(47)
_2r—1+m?.
2m? ’

vy for TH>0 py—v

The difference from a linear system of chains is clearly seen when
an attempt is made to use an approximate description of the type
(39)-(44). Considering in three-dimensional space not segments but
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disks of diameter /, we obtain in place of (43)

Vexit = ;A,exp{ ~BJA,— BJ B}

(48)
[>1; A~17%; B,~1

The presence of the term B,~/, which reflects the increasing length of
the boundary of the finite domain wall, ensures, in contrast to (41) and
(43), convergence of the sum in (48) even at J; = 0. Consequently,
J(T) =0 at finite » and T'= Ty(»). At T < T, formula (48) at J;, =0
must be understood as a distribution of excitations of finite size,
whereas vy, = v — v, kinks are combined to form infinite domain
walls, and formulas (48) is disregarded.

For an ensemble of kinks, the phenomenon considered is equivalent
to condensation of an ideal Bose gas. It manifests itself in the
structural properties of the system as a return to a three-dimensionally
disordered phase at 7 < T,. From the point of view of the Ising mode!
it denotes a special phase transition with a lowering of the dimension-
ality of the system.
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Appendix

We consider the system defined by the Lagrangian (I11.2.30) and by
formulas (11.2.29, 29a, 30). We set up the equations of motion for the
operators p,(x,t) and j,(x, ), using the commutation relations

[02(X): ()] =0 [Pu(x)s 0 (»)] =0

[0n(X)s jm(7)] = 2718 8(x = ) (A1)
[/a(X)s Mn(9)] = 28,0 ()8 (x — )

[Jn)mr ()] = =20 (X)8,mb(x — ¥)
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These relations follow from the corresponding boson representations
[65]), which are valid for electrons in the vicinity of the Fermi level,
They also call for refinement in the presence of an interaction of
interatomic radius. These effects, however, as is customarily assumed,
lead omnly to changes in the numerical coefficients in the equations
that follow. What is important for us is the coefficient of dp, /dx in
(A.3), and hereafter will be renormalized as the compressibility of the
system. We obtain

9, 9
n __” = — (7
- 2772 0, (A.2)

d, . 9p, (i aq),m 2
T L i i P CRAR S SR R

Varying (II.2.30) with respect to ®,,, B,,, and B}, we obtain

®,, = 12 D[ ginen + g5 ]
| (A4)
B = 2 Dy,

Ln

We substitute (A.4) in (A.3) and put ) = 0, corresponding to neglect
of relativistic interactions. We obtain

p, | 9y
1 + '5; =0 (AS)
ajn 8 , .
= + e > [an +27> gD p, =1 (A.6)
m ie
where
M = % 2 (nn+annm - nr:R:mn") (A6a)
m
or

= 2 S (AR, — AZRETIA,)

m=nm
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and

R, = 2 & E"g) (A7)

k,I.m

At small w and k we write

Ry (k)=

o A8
e (A8)

where

g=2 (&)’ (A.82)

If the coupling constants do not have dispersion, g{¥ = g 4,,, then the
quantities 5 /@, @2, and I, in (A.8) are the correspondmg quantities
(11.2.30) averaged over a W1th a weight g2/g* Substituting (A.8) in

(A.5) we obtain
oA
(A " A,,)]

'58‘ 3 [0 + 205, (88008 o + 878,
m gco

91
ot

m =854, (A-9)

m

3 We introduce the charge density p(x) and the current J(x), both
summed over the chains

P =3 pa(x) I ()= S(x) (A.10)

If we sum (A.9) over n, then the right-hand side vanishes, and in the
left-hand side we can write for the Fourier representation

. 2

l ak 4rre?

| dar (DD (DD — : A.ll
,qu s 84 Ec (0/ @) — K emSlk2 (A0
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where a,~1, Za, = a is the relative correction to the compressibility of
the system, s, are the velocities of sound, e, is the dielectric constant of
the core, and s, is the area per filament. We obtain

0 4i LA+ A
T+ o= ;(A,,A,, A¥A,)
2 2
J 2w “p
+—<|1—-a+ + p(x
dx 2:3 w?— @k?  vik? ()
4 8 Sa+p Lo :
+— :zAn A,r=0 (A.12)
g @ n
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