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Part I. The 2D Classical Coulomb Gas near the 
Zero-Density Kosterlitz-Thouless Critical Point: 
Correlations and Critical Line 

The 2D classical Coulomb gas undergoes the famous Kosterlitz-Thouless (KT) 
transition between a high-temperature conducting phase and a low-temperature 
insulating phase. We present various studies of the correlations in the insulating 
phase near the zero-density critical point. First, we briefly recall the phenome- 
nological approach of Kosterlitz and Thouless. This theory predicts that the 
decay of the charge correlation is entirely controlled by the bare Coulomb 
potential between opposite charges only renormalized by the dielectric constant 
e. Then, we present an analysis of the low-fugacity expansions of the correla- 
tions. The particle correlations are found to decay as l/r 4. The large-distance 
decay of the charge correlation is shown to be tightly related to the behavior of 
1/e in the regime of interest. Systematic resummations allow one to recover the 
algebraic decay predicted by the heuristic KT model. This settles on a rigorous 
basis various assumptions of this model. In particular, the nested pair 
mechanism naturally arises in the resummation scheme. Finally, we describe the 
phase diagram of the system according to the most recent calculations which 
include finite-density effects. 

KEY WORDS: Coulomb gas; Kosterlitz-Thouless transition; correlations; 
fugacity expansions; critical line. 

1. I N T R O D U C T I O N  

The Coulomb Gas is a charge-symmetric two-component plasma with 
charges e and - e ,  which interact through the two-body logarithmic poten- 
tial, defined as the solution of the Poisson equation in 2 dimension, 

dye(r) = - 2~z~(r) ( 1.1 ) 

namely vc(r)=-In(r/L) (L is an irrelevant scale length which fixes the zero 
of the potential.) When the temperature is sufficiently high, the system of 
point charges is well-behaved, t~) The scaling invariance of the logarithmic 
potential implies that the excess properties of the system depend only on 
the dimensionless coupling constant F=fle 2. Moreover, the equation of 
state is then exactly known,  t1'2) However, because of the short-ranged 
attraction between opposite charges, this system collapses when F = 2. Sub- 
sequently, for lower temperatures, a system of charged hard disks with 
diameter a is to be considered. (The interaction between two disks is 
infinite, if the distance is smaller than a, and it reduces to the Coulomb 
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interaction at larger distances). Then the state of the system is charac- 
terized by two dimensionless parameters, F and pO "2, where p is the total 
particle density p = p  + + p  . (In the following L is chosen to be equal 
to a.) 

On the other hand, because of the long range of the confining 
logarithmic interaction, the system undergoes the famous Kosterlitz- 
Thouless (KT) transition ~3'4~ between a high-temperature conducting 
phase, where the dielectric constant e is infinite, and a low-temperature 
dielectric phase, where e has a finite value. The theorem of Mermin and 
Wagner ~5~ shows that, in two-dimensional systems with continuous sym- 
metries, any order parameter vanishes in zero-field. (For instance, there is 
no spontaneous magnetization in a 2D X Y  magnet.) In fact, the KT trans- 
ition is characterized by a singularity in the response to an external excita- 
tion. Moreover the transition is of infinite order. The KT transition is of 
great interest, since it is the archetype of a universality class of 2D trans- 
itions induced by a condensation of topological excitations (such as defects 
in quasicrystals, vortices in He n films). For the present system of charged 
hard disks, at low density, the conducting and dielectric phases are 
separated by a line of critical points which ends at F = 4  for p =0. (This 
zero-density critical value remains unchanged if one species of particles is 
fixed on a lattice. ~6~) At higher density, this critical line bifurcates into a 
first order liquid-gas coexistence c u r v e ,  t7` 8, 9) 

From the microscopic point of view, the effective potential between 
infinitesimal external charges decays exponentially in the conducting phase, 
whereas, in the dielectric phase, this effective potential is proportional to 
the bare logarithmic potential, as shown rigorously by Fr6hlich and Spencer 
in 1981. t ~o) By definition, the renormalized multiplicative constant is equal 
to 1/e which is related to the internal correlations through the linear 
response theory, 

l= le  + ~fl2 f d r r 2 C ( r ) " (1.2) 

In (1.2), C(r) is the internal charge correlation, 

C(r)= (Q(r)  Q(0)) (1.3) 

where Q(r) is the total microscopic charge density at point r and 
(...) denotes a thermal equilibrium average. In terms of the internal 
particle correlations, namely the two-body truncated distribution functions 
pr+ r T = r C(r) reads + = p _ _  a n d p + _  p _ + ,  

C ( r ) = e 2 { 2 [ p  r ( r ) - p  r ( r ) ]+p~(r)}  
+ 4 -  - 4 - - -  " 

(1.4) 
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In the conducting phase, the internal correlations decay exponentially, 
as in the meanfield Debye-Htickel theory. ~ )  This was rigorously shown in 
the high-temperature limit, ~12) and it was also explicitly checked in solvable 
models for F = 2 .  ~13'14) On the other hand, Martin and Gruber t~5) have 
shown that, if the two-body correlations decay faster than 1/r 4 and if the 
three- and four-body correlations decay faster than 1/r 3, then 1/e is zero. 
Thus, in the dielectric phase where 1/e is finite, some particle correlations 
must fall off algebraically. However, the exact structure of this algebraic tail 
has been an open question for a long time. 

In this brief review, we describe various approaches dealing with the 
large-distance behavior of the internal correlations in the dielectric phase. 
First, in Section 2, we recall the phenomenological approach by Kosterlitz 
and Thouless, t3) which is based on an iterated mean-field theory for the 
charge correlation. Their picture of nested pairs leads to a model of inde- 
pendent pairs embedded in a polarizable continuous medium. Then, as 
expected, C(r) is found to decay algebraically, namely as 1/r r/~. However, 
in this analysis, various crucial assumptions remain to be settled from the 
first principles of Statistical Mechanics. Moreover, the method does not 
provide any information about the particle correlations. In Section 3, we 
present an analysis of the latter correlations starting from expansions with 
respect to the fugacity z. t~6) The large-distance behavior of the particle 
correlations is shown to be controlled by the fluctuations of dipolar poten- 
tials. Thus, p r and p r decay as 1/r 4 with the same coefficient, so that + +  + -  

C(r) falls off faster. Near the zero-density critical point, where both F - 4  
and z are small parameters, systematic resummations for C(r) at all orders 
in z exhibit the nested-pair mechanism introduced heuristically by 
Kosterlitz and Thouless. The leading term in the large-r expansion of C(r) 
does coincide with the mean-field prediction. Furthermore, an infinite set of 
algebraic subleading terms contributes to the behaviour of 1/e near the 
zero-density critical point. Finally, in Section 4, we present some recent 
results about the phase diagram, and we briefly discuss some open questions. 

2. THE KT PHENOMENOLOGICAL APPROACH 

2.1. The KT Model 

The first coherent model which described the dielectric phase was a 
phenomenological approach by Kosterlitz and Thouless. ~3) These authors 
supposed that, in the dielectric phase, the charges form some kind of pairs, 
because of the confining logarithmic potential, and they assumed that a 
given pair is screened only by pairs which are smaller. For instance, in 
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Fig. 1. The pair ( q)O, •r) screened by nested smaller ones. 

Fig. 1, the largest pair is screened directly by two pairs, which are them- 
selves screened by smaller ones. The charge correlation C(r) is supposed to 
be entirely controlled by such configurations. The physical picture that 
emerges from the latter configurations is that of independent neutral pairs 
embedded in a polarizable continuous medium in which the dielectric con- 
stant e(r) depends on the distance r between the charges of the pair. This 
picture is also called an iterated mean-field theory. 

More precisely, by analogy with the result of the linear response 
theory (1.2), the dielectric constant e(r) is related to a truncated second- 
moment of the charge correlation, where only neutral pairs smaller than 
the distance r contribute so that 

~ , ( r ) -  1 "3L <r' <r dr' r'2C(r ') (2.1) 

Notice that e(oo) is nothing but the macroscopic dielectic constant given 
by (1.2). On the other hand, the charge correlation is calculated in the 
independent neutral pair approximation, 

z2[  C(r) = - 2e 2 ~-~ exp - 
< r t  < r  

r] 
dr' ir,)r, (2.2) 

In the Boltzmann factor, the effective potential of a pair with size r is equal 
to the work which is necessary to form the pair in a polarizable medium 
with dielectric constant e(r). 

The coupled equations (2.1)-(2.2) allow one to describe the famous 
KT transition. ~7) They are equivalent to the flow equations of the Renor- 
malization Group approach developed by Kosterlitz for the Coulomb 
gas ~4) and by Amit, Goldschmidt and Grinstein for the equivalent Sine- 
Gordon model in field theory. ~8) In particular, these equations lead to the 
weU-known equation of the critical line, 

Frr(Z) - 4 = 8zcz (2.3) 

Moreover, we mention that there exists another phenomenological 
approach based on some kind of chemical picture. ~9) In this approach, the 
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system is viewed as a mixture of free charges and neutral dipoles, and the 
correlations are determined from a closed set of integral equations. The 
results for the KT, transition are shown to be equivalent to those derived 
from (2.1) and (2.2), while the singular nature of the correlations on the 
critical line is also investigated. 

2.2. What About First Principles? 

However, the validity of the basic assumptions in the KT phenome- 
nological approach is to be proved. Indeed, several questions may be 
asked. First, why is one pair screened only by smaller ones? (Note that the 
integral in (2.1) is restricted to r' < r.) Second, what about the correlations 
between charges with the same sign, which appear in the definition of the 
charge correlation and which are missing in the formula (2.2). Another 
question concerns the validity of the independent pair approximation in the 
description of a collective effect which causes a transition. And at last, why 
does the effective potential between particles of the medium behave as the 
effective potential between infinitesimal external charges (with the same 
dielectric constant)? Indeed, a straightforward combination of (2.1) and 
(2.2) leads to 

const  
C(r)  r ~oo rr/ ,  , (2.4) 

while the correlation between two infinitesimal external charges q~ and q2 
behaves similarly a s  r #q~q2/r. All these questions have been addressed by 
using low-fugacity expansions, as described in the next section. Notice that, 
in (2.4), the symbol ~r-.oo denotes the leading asymptotic term in the 
large-r expansion of C(r).  In other words, the terms that are dropped out 
in (2.4) decay faster than 1/r r/~ when r ---, oo. In part I, as well as in part II, 
this notation will be used with the same meaning. 

3. RESUMMATIONS OF THE LOW-FUGACITY EXPANSIONS 
NEAR THE ZERO-DENSITY CRITICAL POINT 

3.1. Method 

We consider the system in the Neutral Grand Canonical ensemble, 
where the parameters are the inverse temperature fl and the fugacity z. 
As shown by Speer, (2~ every low-fugacity Mayer graph is finite when F is 
greater than 4. This result holds without any chain resummations of long- 
range contributions, which are necessary at high temperature. (~) In ref. 16, 
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we start from the low-fugacity Mayer expansions of the particle and charge 
correlations. Through the relation (1.2) of the linear response theory which 
links the dielectric constant to the second moment of the charge correlation, 
we derive the low-fugacity expansion of the inverse dielectric constant. 
Then, we proceed to a term-by-term analysis of the quantities of interest in 
the limit when F - 4  goes to zero. 

At the order z 2, the correlation between particles of the same sign 
vanishes, because only neutral systems appear in the grand canonical 
ensemble. Thus, the charge correlation reduces to the correlation between 
particles with opposite signs, and it reads 

C(2)(r) = --2e 2 ~-~ (3.1) 

The corresponding value of (l/e) (z) at the order z 2 is obviously 

/~/ (2) Z 2 
= - 2rc2/-' F - - ~  (3.2) 

where we have used that C(2)(r), and more generally C(r), vanish for r < a. 
So, w h e n / ' - 4  goes to zero, (l/e) t2~ diverges as 

(~)(2) _7 (3.3) 
' ~ ' - - 8 ~ 2 Z  F - - 4  

The analysis at higher orders is much more cumbersome and is sum- 
marized in Sections 3.2 and 3.3. 

3.2. Exac t  Ana lys is  at  the  O r d e r  z 4 

First, we consider the leading asymptotic behavior of the particle 
correlations at the order z 4. The most probable configurations are those 
where every particle is paired with another one that has the opposite sign, 
as shown in Fig. 2. The positions of two particles are fixed at points 0_ 
and r, while the positions of the other two particles must be integrated 
over. In these configurations, the total Coulomb potential between the 
charges contains a dipolar term associated with the dipoles carried by the 
neutral pairs. When expanding the Boltzmann factor with respect to this 
dipolar interaction, the linear term vanishes for symmetry reasons, and we 
find, 

z4 E 1 (t)r] 2 T(4) 7"(4) dt t 2 (3.4) 
T <, 
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Fig. 2. The most probable configurations which contribute to the large distance behavior of 
p++,v,n4~n r) and p+~(0, r). 

Thus, after integration over the orientation of the fluctuations of the 
relative position t of the particles inside a neutral pair, the particle correla- 
tions at large distances behave as the Boltzmann factor of a pair in the 
vacuum times the square of the dipolar interaction. We recall that the latter 
quantity is proportional to the polarizability of a single pair, which is finite 
when F is greater than 4. 

A remarkable property is that the dipolar 1/ra-contributions (3.4) 
cancel out in the difference that appears in the charge correlation. As a 
consequence, Cr decreases faster than 1/r  4. It can be shown that this 
asymptotic behavior is determined by the configurations shown in Fig. 3. 
In these configurations, the two particles whose positions must be 

/ \| ",\ , \ 

/ {1} \ /  \ 
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\ 0 r /\ / 
\ / \ / 

\ / 
X / \ / 

/ \ J 

Fig. 3. The most probable configurations which contribute to the large distance behavior of 
C~4)(r). The integrated pair { 1 } lies in the disks centered at 0(r) with radius r/2. 
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integrated over form a pair with a size smaller than the distance between 
the two fixed particles. These configurations exist only in the correlation 
between particles with opposite signs. 

An exact calculation shows that C(4)(r) can be rewritten as 

C(4)(r) = z4A(r; F) + z4R(r; F) (3.5) 

where 

1 Ia, , (;) 
A(r; F)=~--? F .L4 In 

b(F) c(F) 1 ] 
+ (F_4)--------~ + ( F _  4)---------- ~ rr---~_ 4 , (3.6) 

while R decays faster than 1/r 2r-4. So A contains both the leading term 
and the first two subleading terms in the large-r behaviour of C(4)(r). The 
leading term behaves as In r/r r, and the subleading terms are proportional 
to 1/r r and 1/r 2r-4. respectively. Moreover, the coefficients a, b and c 
remain finite when F goes to 4. 

The decomposition (3.5) not only provides the large-r expansion of 
C(4)(r), but it is also useful for evaluating (l/e) ~4) in the limit where F - 4  
goes to zero. Indeed, by using uniform bounds with respect to r and F, the 
contributions of R(r; F) to the linear response expression (1.2) are found 
to diverge only as 1 / ( F - 4 )  2. At the same time, the contributions of 
A(r; F) diverge faster, namely as 1 / ( F - 4 )  3. Thus, the most divergent con- 
tribution to (1/e) t4) behaves as z 4 / ( F - 4 )  3 =z(z/(F--4)) 3, and is of the 
same order as for (l/e) rE) in the double limit where both z and F - 4  go to 
zero (see Eq. (3.3)). An important point is that this divergent contribution 
exactly arises from both the leading and subleading terms of C(4)(r) at 
large distances. 

The present exact study of the z 4 terms suggests that the large-distance 
behavior of C(r) and the behavior of 1/e when F - 4  goes to zero are 
tightly related. This is illustrated in the following section which extends the 
present results to arbitrary orders z 2~. 

3.3. Nested-Pai r  Mechan ism at the Order Z 2n 

T(2n) The large-distance behaviors of p~2n)+ and p +_ are obtained by a 
straightforward generalization of the previous calculation at the order z 4. 
Again, the configurations that contribute to the leading term are made of 
neutral clusters surrounding the two fixed particles. By using the har- 
monicity of the Coulomb potential and the symmetries, it is shown that the 
resulting correlations are proportional to the fluctuations of the dipolar 
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rt2~) and p r+t2~) decay interactions between the neutral clusters. Therefore, p + + 
as 1/r 4 with the same prefactor, which diverges when F goes to 4. 

The 1/r 4 algebraic tails cancel out in C ~2~), as in C r In order to 
derive the large-r behavior of C ~2~), it is most convenient to interpret the 
results at order z 4, in terms of a nested-pair mechanism. The part C~ 4) of 
C ~4) that gives the most divergent term in 1/e coincides with the leading 
and subleading terms, z4A(r; F), in the large-r expansion of C ~4), and it 
can be written as 

z4 
C~4)( r )  = --2e2 ~-a f dx dy 6e~0(~ ) (3.7) 

C~ 4) appears as the product of the Boltzmann factor of a single pair 
~o=(_0, r) in the vacuum times the integral of a screening factor See,0(~ ) 
which describes how the pair of particles ~0 = (_0, r) is screened by a smaller 
pair ~ = (x, y) (See Fig. 3). We point out that the screening factor is non- 
zero"only if the integrated pair is smaller than the nonintegrated pair. 

This mechanism can be generalized at higher orders. We emphasize 
that we do not perform a complete analysis of the large-r behaviors and of 
their contributions to l/e, contrarily to what was done in Section 3.2 for 
Ct4)(r). For instance, (3.5) is an exact equation and the contribution of the 
rest R(r; F) to  ( l / e )  t4) is controlled rigorously. In the following we will 
only determine the quantities of interest in the double limit z--+ 0 and 
F - 4  ~ 0 ,  without a rigorous study of the discarded contributions. We 
introduce the part C~ 2") of the charge correlation that gives the most 
divergent contribution to (l/e) t2n) near the critical point at zero density. 
C~ 2") coincides with the first terms in the large-r expansion of C t2~). The 
most divergent contribution to (l/e) t2~) behaves as 

r z ),n-1 
zx  --4 (3.8) 

which is of the same order as (l/e) t2) in the double limit where both z and 
F - 4  go to zero. This property is a signal of collective effects at critical 
points. Usually, these effects are dealt with through Renormalization 
Group approachs. In the field-theory method, which describes the 
Kosterlitz-Thouless transition by using the equivalence with the Sine- 
Gordon model, the collective effects are indeed handled by a double expan- 
sion in the fugacity and i n / ' - - 4 ,  tl8) 

Similarly to C~ 4), C~ 2n) is entirely determ_ined by nested pair configura- 
tions. Furthermore, for any given pair we need retain only the interaction 
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(b)  {2} 

(9 
Fig. 4. (a) A configuration which contributes to C~61(r). The white circles denote the fixed 
neutral pair ~o. The straight lines that connect the integrated pairs { 1} and { 2} to ~o repre- 
sent the screening factor 6e. (b) Another configuration which contributes to CIp.6)(r) with the 
same notations as in Fig. 4a. 

with the pair in which it is nested, and the latter interaction is described by 
the screening factor ~ (See (3.7)). For instance, C~ 6~ is the product of the 
Boltzmann factor of a single pair in the vacuum times an integral over the 
positions of four particles. The integrand is the sum of two contributions: 
a first one comes from configurations where the pair which is not 
integrated over is screened by two smaller pairs independently, whereas the 
second contribution arises from configurations where an integrated pair 
screens a larger integrated pair, which itself screens the nonintegrated pair. 
These configurations are shown in Fig. 4a and 4b, and the corresponding 
integrands respectively read 

x [ r a x2,.  (3.9) 

and 

f dx~ dy~ ~ o ( ~ )  f dx2 dY2 '9~ (3.10) 

822/89/1-2-2 
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3.4. Resummat ions  

T(2n) 1/r 4, the particle correlations T(2n) and p decays as Since every p + + +_ 
pr and pr + + +_ are expected also to decay as 1/r 4. The corresponding coef- 
ficient, which is the sum of the contributions from all orders in z, should 
remain finite in the dielectric phase near the zero density critical point. This 
perturbative result is corroborated by a recent rigorous analysis, t2~) The 
three- and four-particle correlations can be also studied in a similar per- 
turbative framework, t~6) In particular, algebraic 1/r2-tails appear in the 
four-particle correlation when two neutral clusters are separated by a large 
distance r. 

On the contrary, C(e 2n) decays more and more slowly as n increases, 
namely as 

r-g In (3.11) 

with a prefactor which diverges faster and faster, namely as 1 / ( F - 4 ) " - t ,  
when F goes to 4. Consequently, the coupled resummations for C(r) and 
1/e are more cumbersome. In fact, the above nested-pair mechanism leads 
to a recurrence relation between C (2n) and C (2p). , with p<,n-1 .  This 
recurrence relation is equivalent to a system of coupled equations for C~(r) 
and for an inverse dielectric constant which depends on the distance. This 
latter quantity, which naturally appears in the recurrence scheme, is defined 
as the truncated second moment of C,(r). In fact, it turns out that this 
system is identical to the system of coupled equations (2.1)-(2.2) in the 
iterated mean-field model introduced by Kosterlitz and Thouless. 

The full resummation of the zE-expansion of 1/e leads to 

1 - 1 + ~  1 - ~  - 1  (3.12) 
e - 4 ( / - ' -4 )  2 

Notice that, at the order z 2, the r.h.s, of (3.12) reduces to the expression 
(3.3) of (l/e) J2). The signal of the KT transition, which is characterized by 
the singularity of l/e, coincides with the divergence of the series which gives 
1/e in terms of the parameter z/(F-4).  The corresponding radius of 
convergence is indeed given by Eq. (2.3). Moreover, the value of Fie on the 
critical line is equal to 4, as conjectured in the literature. 

3.5. C o m m e n t s  

According to the systematic low-fugacity survey, the charge correlation 
which appears in the phenomenological approach of Kosterlitz and Thouless 
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must be identified with the part C~(r) of the charge correlation C(r) that 
gives the most divergent contributions to the inverse dielectric constant, 
near the zero-density critical point. Moreover, we point out that C,:(r) is 
the large-r behavior of C(r) in this region, and reads 

C~(r) = -2e2  ~--~ 
F/e. 

A o ( z / ( F - 4 ) )  1 + ~ A~(z/(r-4)) 
p=! 

p[ (f'/~:)--4]] 

(3.13) 

Thus, the resummation scheme allows one to answer the questions 
presented in Section 2.2. Indeed, the leading term in (3.13) coincides with 
the mean-field prediction (2.4), and only the correlation between particles 
with opposite signs does contribute. This term has an exponent similar to 
that of the correlation between two external charges. We stress that this 
result was not obvious a priori, because the charge correlation involves 
internal (and not external) charges. Moreover, the relevant charge correla- 
tion (3.13) does not reduce to a single algebraic term. The nested-pair 
mechanism generates a series of algebraic subleading terms with increasing 
exponents, because F/e > 4 in the dielectric phase. When the transition line 
is approached, all exponents collapse to 4 and all coefficients A p vanish. 
There might appear marginal logarithmic terms on the critical line in 
agreement with the analysis of H0ye and Olaussen. 1~9~ In principle, the 
coefficients of the 1/r 4 tails in p r and p r  should also vanish on the ++ + -  

c r i t i c a l  line. (The corresponding resummations with respect to the param- 
eter z / ( F -  4) remain to be carried out.) 

4. PHASE D I A G R A M  NEAR THE Z E R O - D E N S I T Y  
CRITICAL POINT 

The equation of the KT critical line near the zero-density critical point 
has been exactly derived, t22) In fact, all theories give the equation (2.3) of 
the transition "line in terms of the coupling constant F and the fugacity z. 
On the other hand, the fugacity expansions give 

(z2) 
p ~ 2 n  ~ (4.1) 

The combination of (2.3) and (4.1) leads t o  {22) 

FKr(P) -- 4 ~ 4 J27rpo "2 (4.2) 
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On the transition line, F - 4  is proportional to the square root of the 
density, and the tangent to the critical line at (p = 0, F = 4 )  is vertical in 
the plane temperature versus density. A similar result can be found in 
ref. 19 which deals with a system of charged soft disks. (The Coulomb 
potential is smoothly regularized at short distances r < tr.) 

At higher densities, the resummation scheme is no longer valid. All the 
corresponding predictions have to be revisited. At the moment, numerical 
simulations t7) suggest that a first order transition between a conducting 
liquid and a dielectric gas occurs at some tricritical point. Recently, Fisher 
et al. ~9) have studied finite-density effects by using the Bjerrum model, 
which is a mixture of free charges and neutral dipoles. In Fig. 5, we draw 
the phase diagram for charged hard disks according to most recent 

.ZOO 

UCTOK 

_T BZIs 

. 50 
o . . . . .  i b  

p o  --~ 

Fig. 5. The phase diagram in the plane (po "2, kaTie2). Dashed curve: the KT critical line 
extrapolated from the exact low-density behavior (3.15). Solid curve: the KT critical line and 
the liquid-gas coexistence curve computed in ref. 23. Hatched zone: the liquid-gas coexistence 
region. Circle: the tricritical point (pttr 2 ~  -- .00456, k B T t / e 2 ~  .2138). 
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theoretical calculations, t23) The exact extrapolated low-density K T  line 
(4.2) is close to the transition line incorporating finite-density effects. 

Of course, there still remain some open questions from the point of view 
of first principles of Statistical Mechanics. First, another kind of resummation 
of low-fugacity expansions should be performed in the conducting phase 
near the zero-density critical point. This would provide an exact expression 
for the finite correlation length, which could be compared with the prediction 
of the phenomenological KT theory. In addition, it would be interesting to 
produce a derivation of the Bjerrum model according to first principles. 
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