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Part II. Algebraic Tails in Three-Dimensional 
Quantum Plasmas 

We review various exact results concerning the presence of algebraic tails in 
three-dimensional quantum plasmas. First, we present a solvable model of two 
quantum charges immersed in a classical plasma. The effective potential between 
the quantum charges is shown to decay a s  1/r 6 at large distances r. Then, we 
mention semiclassical expansions of the particle correlations for charged systems 
with Maxwell-Boltzmann statistics and short-ranged regularization of the 
Coulomb potential. The quantum corrections to the classical quantities, from 
order h 4 on, also decay a s  1/r 6. We also give the result of an analysis of the 
charge correlation for the one-component plasma in the framework of the usual 
many-body perturbation theory; some Feynman graphs beyond the random 
phase approximation display algebraic tails. Finally, we sketch a diagrammatic 
study of the correlations for the full many-body problem with quantum statistics 
and pure 1/r interactions. The particle correlations are found to decay as l/r 6, 
,while the charge correlation decays faster, as 1/r m. The coefficients of these tails 
can be exactly computed in the low-density limit. The absence of exponential 
screening arises from the quantum fluctuations of partially screened dipolar 
interactions. 

KEY WORDS: Coulomb systems; quantum statistical mechanics; correlations; 
algebraic tails; screening. 

1. I N T R O D U C T I O N  

We cons ide r  a q u a n t u m  nonrela t iv is t ic  m u l t i c o m p o n e n t  p l a s m a  of  po in t  
charges.  E a c h  species ~ of  part icles  is charac te r ized  by a cha rge  e=, a mass  m=, 
and  a spin S=. This  sys tem describes m a t t e r  u n d e r  usual  condi t ions ,  where  the 
f u n d a m e n t a l  cons t i tuen ts  are e lect rons  and  nuclei  in te rac t ing  via e lec t ros ta t ic  
C o u l o m b  interact ion.  The  q u a n t u m  H a m i l t o n i a n  of  the  sys tem is 

~i hz 1 ~ e i e y v c ( l r i - r j l ) .  
H =  - ~ m  i ZJ i "al- -2 i # j 

(1.1) 

In  (1.1), the  first t e rm  is the nonre la t iv is t ic  kinetic  ene rgy  of  the  part icles,  

while v c ( r )  is the pure  C o u l o m b  po ten t i a l  in three d imens ions  

1 
v c ( r ) = - .  (1.2) 

r 
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The quantum fluctuations together with Fermi statistics ensure that the 
system does not implode, as shown by Dyson and Lenard. t~) (At least all 
species with a given sign are fermions). On the other hand, the local 
neutrality makes screening effects possible, so that the system does not 
explode, as shown by Lieb and Lebowitz. t2) Thus, the quantum non- 
relativistic plasma has a well-behaved thermodynamic limit, t2) In other 
words, matter at our scale, where Coulomb interactions are most dominant, 
is stable. 

In this brief review, we are interested in the large-distance behavior of 
the static internal correlations. Since matter is stable, an integrable decay 
is expected. The usual self-consistent approximations, which are valid in 
weak coupling regimes, such as the classical Debye-Hfickel theory, ~3) the 
semiclassical Thomas-Fermi model, t4) and the Random Phase 
Approximation ~5) (RPA) for quantum plasmas at high density, have led to 
the common belief that the static correlations decay exponentially at large 
distances. However, these mean-field predictions need to be settled on fir- 
mer grounds. It turns out that, in the classical case, the rigorous results 
are in agreement with the picture of Debye screening: an exponential 
clustering of the correlations in the weak-coupling limit was established by 
Brydges and Federbush. t6~ Nevertheless, in the quantum case, strong 
doubts about an exponential fall-off were first raised in ref. 7. Then, 
Brydges and Seiler ~8) found that an infinite correlation length appears in 
some imaginary-time Green functions. They conjectured that an external 
charge is not exponentially screened and that, in nearly classical regimes, 
the exponential decay would be very close to the truth for all but 
extremely large distances. 

We present various recent results showing that algebraic decay of the 
correlations does appear in quantum plasmas. In Section 2, we describe a 
simple model consisting of two quantum charges immersed in a classical 
plasma, t9) The effective potential between the two quantum charges is 
shown to decay a s  1/r 6. In Section 3, we summarize various attempts to 
treat the full many-body problem. The same algebraic fall-off as in the 
model also arises in semiclassical expansions with Maxwell-Boltzmann 
statistics t ~0. 9) and in some corrections to the Random Phase Approximation 
for the One-Component Plasma (OCP). Cll) The full many-body problem 
with quantum statistics and pure 1/r interactions is presented in Section 4. 
Diagrammatic expansions show the existence of a 1/r 6 decay of the particle- 
particle correlation, t~2' ~3. ~4) and provide the exact form of the algebraic 
tails at low densities, t~5) We stress that these algebraic decays of the 
correlations are sufficiently fast to be compatible with the basic screening 
rules. 1~6) For instance, the charge of the polarization cloud around an 
infinitesimal external charge exactly compensates the latter charge. 
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2. A SIMPLE MODEL: TWO QUANTUM CHARGES IN A 
CLASSICAL PLASMA 

We consider two quantum point charges, with mass m~(m2) and 
charge el(e2), immersed in a classical plasma. For a given configuration 
{RN} of the classical plasma, the Hamiltonian of the system reads 

h 2 h 2 
H =  -2m---~ dl--~m2 A2 + Vc(rl, rE, aN). (2.1) 

In (2.1), the first two terms are the kinetic energies of the quantum charges 
and Vc is the Coulomb interaction energy of all charges. The kinetic 
energies of the classical charges are not included in (2.1), because they do 
not contribute to the quantities of interest, which are defined as equi- 
librium averages over the configurations { RN} of the classical plasma. 

The effective potential ~fr between the two quantum charges is defined 
as the difference between the excess free energy F2 when the pair is immersed 
in the classical bath and the excess free energy Fl of the particles when they 
are separetely immersed in the classical bath, 

~ ( I r 2 - r ~ l )  = F2(r2, rl) -- Fl(r2) -- F,(rl). (2.2) 

For instance, F2 reads 

In [J dRlv(21t3"2)3/2 (2~2)3/2 (r~r2l exp(-flH)Irlr2)] 
F2(r2, rl)---  ~ k B  T 

j dRN exp( -- ffU--~(R'~N) j L 

(2.3) 

where Uc is the Coulomb interaction energy of the classical charges, and 
2i is the de Broglie length 2~=x/flh2/m~. It is assumed that the classical 
bath is in a fluid phase invariant under translations and rotations. (The 
classical bath is either an OCP or a multieomponent plasma with short- 
ranged regularization of the Coulomb potential.) 

In order to study the large-distance behavior of ~fr, it is particularly 
convenient to use the Feynman-Kar representation of the matrix element 
in (2.3), as described in Section 2.1. 

2.1. The Charged Classical Filament Impurities 

According to the Feynman-Kac formula, the diagonal element of the 
density-matrix for the two quantum particles can be written as 
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1 f (rlr21 e x p ( - / i H ) I r l r 2 )  = (2rc22)3/2 (21r22)3/2 ~(~1) ~(~2) 

x exp --/3 ds Vc(rl + 21 ~I(S), r2 + 22 ~2(s), Ru) (2.4) 

In (2.4), the dimensionless vector functions ~,~ and ~2 represent Brownian 
paths which vanish at times s = 0  and s = 1, and D(~,) is the normalized 
Gaussian measure with covariance, 

f ~(~)  ~,,(s) ~v(t) = 6~v inf(s, t)[ 1 -- sup(s, t)]. (2.5) 

The formula (2.4) allows one to introduce a natural correspondence 
between the two quantum particles and two classical filaments ~l and ~2, 
which are defined by their positions ri and their shapes 2i ~ (see Fig. 6). In 
this equivalence, the two-body density matrix is exactly given by functional 
integration of a Boltzmann factor over the shapes of the filaments 
weighted by the Gaussian measures D(~;). 

The crucial point is that the potential between the two closed filaments 
and ~ in the vacuum is not equal to the electrostatic interaction energy 

between two uniformally charged wires with the same positions and shapes. 

�9 Z, ,fs) 

�9 

Fig. 6. The two classical filaments ~ with positions ri and shapes 2i ~(s), (i = 1, 2), immersed 
in a bath of classical charges represented by black circles. 



24 Alastuey and Cornu 

Thus, the interaction in the Maxwell-Boltzmann factor associated with the 
filaments ~ and ~2 can be decomposed as follows, 

f ds Vc(r I + ~1 ~l(S), 1"2 + )],2 ~2(s), RN)= uelect(~ll, ~2, RN) + W ( ~ ,  o~2). 

(2.6) 

The first term is the electrostatic interaction energy of the whole classical 
system made of the two charged wires immersed in the bath. The second 
term W ( ~ ,  ~2) is a purely quantum contribution. The latter is equal to the 
difference between the interaction in the vacuum between the filaments 
which appears in the Feynman-Kac formula, on the one hand, and the 
usual electrostatic interaction in the vacuum between uniformally charged 
wires, on the other hand, 

W ( ~ ,  ~ ) = e , e 2  ds, dszEO(s, - s z ) -  1] 

• Vc(Ir~ + 2, ~,l(s)- r 2 -  22 ~,z(s)l). (2.7) 

When using the Feynman-Kac formula (2.4) in the definition (2.3) 
combined with the decomposition (2.6), the fact that W does not depend 
on the classical configurations { RN} leads to 

~be~(Ir2-r, I ) -  - k . T  In 1-[ f ~(~l) ~(~2) 

x exp( m ~elect [ ~ ] - ~ , ~  ~ ,, ~ )  + W(~l,  ~ ) ) )  

where ~(~) is the effective measure 

(2.8) 

- - f l F ,  (~))  (2.9) ~(~i)-- ~(~i) exp( elect 
exp(--flFl(ri)) 

in which F,e. lect is the excess free energy of the charged wire associated with 
the filament ~ immersed in the classical bath. Moreover, ,~elect(~ ~2) is '/"eft 
the effective potential between the charged wires associated with ~ and ~2. 
(The definition is similar to (2.2).) 

2.2. Absence of Exponential Screening 

According to rigorous results, the effective potential ~elect between two '/'eft 
charged wires decays exponentially when the distance between the wires 
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becomes very large compared with their extents. On the other hand, the 
purely quantum term W decays algebraically as a 1/r 3 dipolar-like inter- 
action, 

W(~ ,  ~2) ~ el e2 Io ds, d s 2 [ a ( s , - s 2 ) -  1 ] 

x (~., ~,,(s,). v , ) ( &  ~,,(s~). v~) Ir, - r2l (2.10) 

The 1/r and 1/r 2 terms in the large-r expansion of W vanish, because the 
monopole-monopole and monopole-multipole parts of the interaction 
between the filaments coincide with their electrostatic counterparts between 
the charged wires. Since the renormalized measure @(~) decays faster than 
any inverse power of I~1 for large filaments, the leading terms in the large- 
distance behavior of the effective potential ~b~rr(r~, r2) are given by the 
expansion of the sole Boltzmann factor exp[ - f lW]  with respect to W in 
formula (2.8). After integration over the random shapes of the filaments, 
the harmonicity of the Coulomb potential turns all the a priori  algebraic 
contributions from W into short-ranged terms. Thus, the first leading term 
is given by 

~.(Ir2-r.I)'~ --~ f ~(~.)~(~2)[ W(~. ~)]2. IF 2 m r l  I ~ 00~ 

(2.11) 

where W itself is replaced by its asymptotic form (2.10). 
Finally, as shown by Eq. (2.11), the effective potential ~b~tr(Ir, 

decays as 
-r2)l 

cons t  
~bCfr(Ir,-r21)~ Ir~-r216' Ir2 rll ~ o0. (2.12) 

The coefficient of the 1/r 6 algebraic tail in (2.12) is always negative. In 
general, it depends on the thermodynamic parameters of the classical 
plasma, and it can be explicitly computed for weakly coupled systems 
(Debye-Hiickel regime). 19) This simple model exhibits a fundamental 
phenomenon: the fluctuations of the purely quantum potential W cannot 
be screened by the classical plasma. Thus, contrarily to the classical case, 
the screening is only algebraic. 
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3. TOWARDS THE TRUE PROBLEM 

3.1. Semiclassical Expansions 

A first breakthrough towards the description of correlations in quan- 
tum plasmas was obtained via Wigner-Kirkwood (WK) expansions in 
powers of h 2. Such expansions can be safely used for the OCP, since this 
model has a well-behaved classical limit, t~7' 18)The WK expansion of the 
charge correlation of the OCP was first studied by Jancovici. t~9) He showed 
that the first quantum correction of order h 2 decays exponentially fast, as 
does the purely classical term. More recently, the next correction of order 
h 4 was found to decay algebraically as ,  (1~ 

7 f12h4e2 1 
16/t  2 m E r~O �9 (3.1) 

This, result, which was derived by computing only the algebraic part of 
the h4-term has been confirmed from a complete calculation of this 
correction, t20) 

Because of the classical collapse between opposite charges, the WK 
expansions for multicomponent systems with pure 1/r interactions cannot 
be properly defined. However, this difficulty is circumvented by introducing 
an arbitrary short-ranged regularization of the Coulomb potential. Then, 
the corresponding model is well-behaved in the classical limit with 
Maxwell-Boltzmann statistics. The particle correlations can be expanded in 
powers of h 2. As in the case of the OCP, the terms of order h 2 are found 
to decay faster than any inverse power. On the contrary, all the higher 
order terms, starting from h 4, decay algebraically as l/r6. t9~ This analysis is 
carried out in the framework of the Feynman-Kac representation. The 
basic mechanism is similar to that exhibited in the simple model of 
Section 2, where now all particles are replaced by filaments with inter- 
actions regularized at short distances. 

3.2. Corrections to the RPA for the OCP 

The OCP with Fermi statistics can be studied within the standard 
perturbation formalism. (2~) At finite temperature, the RPA correlations 
decay faster than any inverse power. However, there exist corrections to 
RPA which involve diagrams with two RPA interaction lines (see Fig. 7) 
that lead to a 1/r ~~ tail in the charge correlation. {~l) In the semiclassical 
limit, the leading term in h of this tail does coincide with the formula (3.1) 
obtained by a direct WK expansion. (The exchange contributions vanish 
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Fig. 7. A Feynman graph which leads to algebraic tails in the charge correlation. A wavy 
line represents the RPA potential. A circle represents a fermionic loop built with free 
propagators. 

exponentially fast with respect to  h). (22) The above diagrams also provide 
algebraic tails at zero temperature, as noticed by several authors, t23'24) We 
mention that the oscillatory algebraic behavior of the RPA correlation at 
zero temperature t25) is due to the singularity of the Fermi distribution at 
the Fermi wave number. This effect disappears at finite temperature, and 
has nothing to do with the bad screening of the effective dipolar inter- 
actions described in Section 2 and responsible for the tails (2.12)-(3.1). 

4. MULT ICOMPONENT PLASMAS WITH Q U A N T U M  
STATISTICS AND PURE COULOMB INTERACTIONS 

Now, we turn to the true problem, where quantum statistics are taken 
into account, and no arbitrary short-ranged regularization of the Coulomb 
potential is introduced. In Section 4.1, we present the loop formalism 
which arises from the Feynman-Kac representation. In Section 4.2, we 
sketch the diagrammatic resummations which are necessary because of the 
long range of the loop potential. The particle correlations are inferred from 
the resummed diagrammatic representation of the loop distribution func- 
tions in Section 4.3. 

4.1. Loop Formalism 

At the inverse temperature fl, when a chemical potential p~ is asso- 
ciated with each species 0c, and when the system is in a finite volume A, the 
quantum grand partition function is 

Z(fl, {p~}, A)= E 1-I exp(flp~N~) TrA exp(--flH~v) 
N~ 

(4.1) 

where N~ runs from 0 to oo and HN is the Hamiltonian given in (1.1). 
The trace is taken over a basis of quantum states which are symmetric with 
respect to permutations of the particles of the same species in the case of 
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bosons, and which are antisymmetric in the case of fermions. Thus, in 
space and spin representation, the trace gives rise to a sum over permuta- 
tions of the particles of the same species. 

Then, a notion of loops emerges from two properties. First, any permu- 
tation can be expressed uniquely as a product of cycles with no common 
element. Second, the noncommutativity between the kinetic and interaction 
quantum operators is circumvented by applying the Feynman-Kac formula 
to the diagonal and nondiagonal matrix elements which appear in the trace 
in (4.1). This representation introduces Brownian paths, as it has already 
been seen in the simple model of two quantum charges embedded in a 
classical plasma. Moreover, the Hamiltonian (1.1) does not depend on the 
spin, so that a loop involves only particles that have the same spin state. 
Henceforth, spins contribute only simple degeneracy factors. 

The notion of loop is now illustrated in the case of 3 identical particles 
and of the permutation zr such that zc(1)= 1, zr(2)= 3 and lr(3)= 2. The 
path integral representation of the density-matrix element corresponding to 
the permutation n involves the Brownian paths (I~i, zr(i), where (,Oi, Tr(i)(S ) is a 
Brownian path starting from ri at time s = 0  and ending at r,~i) at time 
s =  1. Every Brownian path ~i .~)(s)  can be decomposed into a uniform 
motion on a straight line linking r i to l'n(i) plus a random contribution, 
namely, 

to,.,t,)(s) = (1 - s )  r i + sr~t,) + 2~ ~,(s) (4.2) 

In (4.2) ~(s)  is the dimensionless Brownian bridge introduced in Section 2. 
The matrix element of exp(-flH3) corresponding to the permutation 
reads 

( r l  r3 r21 exp(-flH3)Ir~ r2 r3) 

1 3 ( (r2-r3)2~ 
= ( 2 rc 2 2 ) 9 /"-~ f .~= l ~ ( ~ i ) e x p "f ~ ,,1 

x "i~j exp - f l e~  ds Vc ( l~ . ,~ i~ ( s ) -~ j . ,~ j ) ( s ) l )  �9 (4.3) 

The contribution of the kinetic terms lie in the normalization factor 1/(2rc2 ~) 9/2 
factor and in the Gaussian measure of the dimensionless Brownian 
bridges {~. The exchange in an ideal gas appears in the Gaussian term 
which depends on the distances between particles which are permuted 
directly together under a cycle. The interaction terms are disentangled from 
the kinetic terms and lie in a product where each term involves only one 
pair of Brownian paths. The interaction between two Brownian paths is the 
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r, r2 

r3 

r, 

,2 

Fig. 8. Three quantum particles and their equivalent Brownian paths in the Feynman-Kac 
representation. On the left side, the arrows denote the permutation rc involved in the corre- 
sponding matrix element of exp(-fill3). On the right side, the Brownian paths to,.~;~(s) are 
represented by lines that connect r~ to r~i~, (i = 1, 2, 3). 

integral of the Coulomb interaction between line elements with the same 
time s, as has already been seen in the simple model of two quantum 
charges. More generally, a particle, such as particle 1, that is not exchanged 
with any other one in the density-matrix element, is associated with a 
closed filament, whereas p particles, such as particles 2 and 3, that are 
permuted with one another under a cyclic permutation are described, by 
p open filaments, which can be collected in a loop. Thus, every matrix 
element is exactly given by a Boltzmann factor corresponding to loops after 
functional integration over the loop shapes. This general equivalence is 
exemplified in Eq. (4.3) and is illustrated in Fig. 8. 

Finally, the Feynman-Kac representation allows one to write the 
quantum grand partition function of the point particles as the Maxwell- 
Boltzmann grand partition function of a system of classical loops with 
random shapes and two-body interactions. This identity was first used in 
Statistical Mechanics by Ginibre, 126) in order to show that low-density 
expansions of thermodynamic functions are convergent for some class of 
integrable potentials. Recently, the interest of such a formulation has also 
been pointed out in a review paper by Hcye and Stell. 127) 

In order to study the correlations, it is convenient to write the grand 
partition function as follows, ~13) 

~ 1 f ~v Ztoop = Z ~.  1--I [d,LP,,z(,Y~,,)] 1-I exp[-fleiejv(,LPi,~.)] (4.4) 
N = 0  n = l  i < j  

A loop A a is characterized by its position R (the position of one of the 
particles involved in the loop) and its internal degrees of freedom: the 



30 Alastuey and Cornu 

species 0c of the corresponding particles, the exchange degeneracy p of the 
loop (namely, the number of particles exchanged under the corresponding 
cyclic permutation), and the shape X (the particle positions which are not 
equal to R and the Brownian paths that connect them together). The 
integration over the loop variables d ~  is a summation over the species 0c 
and the exchange degeneracy p, and an integration over the position R and 
the shape X of the loop. 

The loop fugacity z(.o.q') in (4.4) reads 

[ z ( . ~ ' ) = ( + l )  p - '  l(2S~+p 1) ~ 3 7 ~ j  

x exp[ --~Eself(oc, p, X)]. 

exp 
i=, 22~ J 

(4.5) 

The sign in the first factor is + in the case of bosons, and - in the case 
of fermions. Thus, for fermions, the sign of the loop-fugacity depends on 
the laumber of particles involved in the loop. The factor 1/p arises from 
combinatorics; it is associated with the arbitrary choice of the position R 
of the loop among the p particle positions involved in the loop. The factor 
2S~ + 1 arises from spin degeneracy, because all particles in a loop are in 
the same spin state. The presence ofp particles in the loop leads to the one- 
particle fugacity to the power p. The Gaussian describes the exchange in an 
ideal gas. Eventually, the self-energy E~r is the sum of the interactions 
between the open Brownian paths involved in the loop. The self-energy of 
a loop is positive, and the absolute value of the fugacity of interacting 
loops is lower than for noninteracting loops. In other words, the inter- 
action between identical charges is repulsive and tends to reduce the 
importance of exchange effects. 

The potential between loops in (4.4) is a two-body potential between 
extended objects. This potential is the sum of the interactions between the 
open Brownian paths belonging to different loops. Each interaction itself 
reduces to an equal-time average of the genuine Coulomb potential along 
the Brownian paths. We stress the following important point. The loop 
potential is different from the electrostatic potential between charged wires 
with the same shapes, as it was the case in the simple model of two quantum 
charges embedded in a classical bath. This will be crucial for the inhibition 
of the exponential clustering. 

The main interest of the formula (4.4) is that the classical loops obey 
Maxwell-Boltzmann statistics and interact through a two-body potential. 
This nice formula, which is magic in some sense, is very convenient for the 
study of correlations. Indeed, by functional derivation of the grand parti- 
tion function ~loop with respect to the loop fugacities, we get the density 



Janco's Disciples in Coulombland 31 

and correlations for loops. Moreover, these distribution functions can be 
represented by Mayer-like expansions in terms of the loop density p(~) .  
After integration over the internal degrees of freedom of the loops, except 
their species, we get the distribution functions for the quantum particles. 

4.2. Diagrammatic Resummations of Loop-Density Expansions 

The usual techniques of Mayer graphs introduced for point entities 
can be generalized to the system of extended loops, because the loops interact 
via a two-body potential. The loop correlations p r(~e, ~ ' )  are represented 
by Mayer series either in the fugacity z (~ )  or in the loop-density p ( ~ )  by 
virtue of the principle of topological reduction. The diagrammatic represen- 
tation of p r(~,, ~ , )  in terms of p ( ~ )  is the most convenient for studying 
large-distance behavior. The corresponding Mayer graphs are defined with 
the usual topological prescriptions, t2s'29"3~ and the Mayer bond reads 

f ( ~ ,  ~ ' ) = e x p [ - f l v ( ~ ,  ~ ' ) ]  - 1. (4.6) 

At large distances, the extent of the loops become negligible with 
respect to the distance between loops, and the potential v(~', ~ ' )  behaves 
as the pure Coulomb 1/IR-R']-interaction between the total charges of 
the loops, as if they were point charges. (The total charge of a loop is the 
sum of the charges of the corresponding particles.) The divergencies in 
the Mayer graphs, which are induced by the long-range Coulomb nature of 
the loop potential, are exactly and explicitly resummed ~ 13~ by a generalization 
of the method developed by Meeron for classical plasmas, t31~ 

The resummed graphs contain three kinds of resummed bonds between 
loop variables. The first two are a charge-charge Debye-interaction bond 
and a charge-multipole Debye interaction bond. The monopole-monopole 
and monopole-multipole parts of the loop potential are exponentially 
screened, because they coincide with their electrostatics analogs, as already 
mentioned in Section 2.2. Therefore, both of these bonds decay exponentially. 
The screening length reduces to the Debye-H/ickel value at low density, 
when exchange effects become negligible, namely in a classical regime. It 
tends to the RPA value at high density, in the quantum weak coupling regime. 

The third dressed bond involves the contributions of quantum bound 
states at short distances and multipole--multipole interactions. In this 
dressed bond, there appears the difference between the loop potential and 
the electrostatic interaction between wires, as in the simple model of two 
quantum charges embedded in a classical plasma (see Eq. (2.7)). Thus the 
dressed bond decays algebraically at large distances, with a 1/r 3 leading 
term analogous to a dipolar interaction, similar to the expression (2.10). 
Hence, the multipole-multipole interactions are partially screened. 

822/89/1-2-3 
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4.3. Q u a n t u m  Part icle Corre lat ions 

The particle-particle correlations r p~y(r) can be derived from both the 
loop density and the loop correlations by integration over the internal 
degrees of freedom. The contribution of p(..q') is obtained by fixing the 
position of the loop and the position of another particle involved in the 
loop. The loop density can be represented by resummed diagrammatic 
series in terms of the fugacities z(~) .  Such resummations are similar to 
those described in Section 4.2. Then, the contribution of p(.~) to pr~(r) 
falls off faster than any inverse power law, when r goes to infinity. This fast 
decay comes from the Gaussian terms describing exchange in an ideal gas 
and from the Gaussian weight of the Brownian paths. 

T The contribution of p r(.~,, ~ , )  to p ~y(r) is obtained by a reorganization 
of the resummed diagrammatics described in the previous section. ~4) The 
loop correlation itself decays as 1 / IR-  R'I 3, because of the presence of the 
partially screened dipolar interactions. However, after integration over the 
internal degrees of freedom of ~ and .~', the rotational invariance of both 
quantum fluctuations and interactions together with the harmonicity of the 
Coulomb potential eventually enforce the quantum particle correlations to 
decay faster than 1/r3(r = ]R - R'[). The possible 1/r 4 and 1/r 5 algebraic 
tails vanish, by similar mechanisms to those described in the simple model 
(see Section 2). Thus, the leading algebraic tail in r p~y(r) decays as 

p r(r) A~r (4.7) 
'~' F6 

This tail arises from the fluctuations of the partially screened dipolar inter- 
actions involved in the dressed bonds. 

The present diagrammatic analysis also allows one to show that the 
particle-charge correlation decays only as 1/r s, as previously conjectured. ~9) 
Moreover, the charge-charge correlation falls off only as 1/r ~~ as in the 
case of the OCP (3.1). This cascade of powers 6, 8 and 10 is due, roughly 
speaking, to a memory of classical screening which is traced by the charge- 
charge and charge-multipole Debye bonds in the diagrammatics. ~4) 

Furthermore, the general formalism allows one to generate low-density 
expansions at finite temperature, namely in regimes of weak coupling and 
weak degeneracy. ~'5) For instance, for a hydrogen plasma of electrons and 
protons, the low-density forms of the coefficients A~y are 

aep ,~app ,~aee ~p2 ~ 4h4e4960 \(m+--M)mM (4.8) 
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when the density goes to ze ro .  (12' 15) Up to order p5/2, the h dependence of 
the coefficients A~v entirely arises from the bare fluctuations of charges. The 
effects of bound states and quantum statistics emerge only from the order 
193 on. 

5. CONCLUSION 

As a conclusion, the quantum fluctuations of dipolar-like interactions 
lead to internal correlations which behave as the square of 1/r 3, namely 
1/r 6. This mechanism is indeed exhibited in the simple model, the semi- 
classical expansions and the complete diagrammatic analysis for the fully 
manybody quantum plasma. We stress that these dipolar interactions arise 
from the individual quantum fluctuations of each particle, independently of 
any recombination process. Indeed, they appear in the OCP where all 
particles repell one another. Furthermore, in physical situations in which 
atoms or molecules are present, the usual van der Waals forces are incor- 
porated in the above mechanism. More precisely, their effect is to modify 
the amplitude of the considered fluctuations, as illustrated by general 
investigation of the resummed diagrammatics at the order ,/93 and beyond. 
A model of four quantum charges ~32~ embedded in a classical bath exem- 
plifies how van der Waals forces appear in the general algebraic tails. 

We mention that, except for the solvable model of Section 2, the 
algebraic tails have been obtained through perturbative expansions with 
respect either to Planck's constant or to the density. Although these results 
strongly indicate the existence of non-exponential clustering in real 
Coulomb matter at finite temperature and finite density, they remain to be 
settled at a rigorous level, perhaps in the spirit of Ref. 33 for a simplified 
model. 

Finally, we turn to the physical consequences of this algebraic screening. 
First, there remains a perfect screening of external charges by the quantum 
plasma, but the induced charge density in the presence of an external 
infinitesimal charge decays only as 1/r 8. This can be shown from the 
diagrammatical analysis, t14) In fact, Martin and Oguey have rigorously 
shown t34) that, under weak clustering assumptions on the imaginary time- 
displaced correlations, classical external charges are perfectly screened by 
quantum plasmas. The present algebraic tails suggest that these clustering 
assumptions are indeed satisfied. 

Second, in order to estimate the quantitative importance of the 
algebraic tails, we consider the crossover distance r* at which the algebraic 
tails dominate the classical exponential tails. In weakly coupled and weakly 
degenerated plasmas, these estimates can be obtained from the low-density 
expansions (see Section 4.3). For instance, in the hydrogen plasma in the 
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core of the Sun or in the charge-carrier gas in Germanium, r* is found to 
be of the order of thirty to forty times the Debye screening length, t~2, 15) Of 
course, in other situations where quantum effects are more important, the 
exponential classical tails should be overcome at any scale. On the other 
hand, a relation between algebraic screening and dynamical effects might 
be found in solid state physics where the exchange effects are important. As 
mentioned in Section 3.2, there appear other sources of algebraic tails at 
zero temperature. Consequently, slower decays than 1/r 6 might appear, for 
instance in the case of electrons in metals. 
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