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For the model of a two-dimensional Coulomb gas made up of finite-size ions fixed on the sites of a
lattice, and of classical mobile electrons, the dielectric-plasma (or Kosterlitz-Thouless) transition
takes place at a value of the coupling constant which is I'=4 in the low-density limit, as for the
standard model in which both the ions and the electrons are mobile.

Clérouin, Hansen, and Piller! have studied by
molecular-dynamics simulations a two-dimensional
Coulomb system made up of finite-size ions of charge e,
fixed on the sites of a lattice, and of mobile classical point
electrons of charge —e. This system is a modification of
the usual Coulomb gas? in which both the ions and the
electrons and mobile. In two dimensions, the Coulomb
potential between two particles of charge e is
—e?lln(r/L), where L is some arbitrary length scale
which defines the zero of the potential; in the following,
we choose L =1. The dimensionless coupling constant is
I’ =fe?, where S is the inverse temperature. Both models
are expected to exhibit a phase transition between a
high-temperature plasma phase and a low-temperature
dielectric phase in which oppositely charged particles are
bound in pairs in the following sense. According to the
linear response theory, the dielectric constant € is given
by

e '=1-27x, (1)

where X is a “susceptibility” defined in terms of the
charge-charge correlation function S (r),

B
X=—7 [drrisa). @)

The transition is not signaled by thermodynamical singu-
larities but by the discontinuity of €~!; in the plasma
phase an infinitesimal external charge is perfectly
screened by the charges of the system and €~ !=0 (the
Stillinger-Lovett rule is satisfied), whereas in the dielec-
tric phase € "!£0 and depends on the density. The value
of ' at which the dielectric-plasma transition occurs is a
function of the density via € and is predicted to be I,
such that I' . =4e, for the usual symmetric Coulomb gas;
in the low-density limit, € approaches 1 in the dielectric
phase and I', =4. On the other hand, the simulations of
Clérouin et al.! suggested that, in the low-density limit,
the transition may take place at the coupling value
I'. =2, for their fixed-ion model.

In this comment, we argue that the correct value for
the fixed-ion model is also I', =4. Essentially, we show
that fixing the ions on a lattice does not alter the large-
scale behavior and therefore the location of the
Kosterlitz-Thouless transition, which is governed by
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long-range effects.
proaches.

(a) The fixed-ion model is very similar to the symmetric
Coulomb gas, when the relevant configurations of the
fixed-ion model are such that the proportion of Wigner-
Seitz cells containing no electron is small; we can then
neglect the probability of having more than two electrons
in a cell. Therefore, on a scale large compared to the size
of the cell, the model can be viewed as a symmetric
Coulomb lattice gas, with mostly empty sites (cells con-
taining one ion and one electron), some positive “parti-
cles” (cells containing one ion only), and an equal number
of negative *‘particles” (cells containing one ion and two
electrons).

A more quantitative correspondence can be obtained.
In the fixed-ion model, let o be the radius of an ion (for
simplicity, we assume the ions to be impenetrable) and let
a be the ion-disk radius [the definition of a is that the
number of ions per unit area is (ra?)~!]. We consider
here the low-density case 0 /a << 1, and assume I' > 2. In
the low-density limit, the Boltzmann factor for an elec-
tron near an ion has the independent pair value
C exp(—TInr), where C is a constant and r the ion-
electron distance, and the probability that the electron is
outside *“its” cell is

0
f r~Trdr
—.___—u —_—
@
f r~Trdr
0

Therefore, the corresponding symmetric lattice gas will
have a density of particles of each sign approximately
equal ton =(o /a)' 2.

Such a low-density lattice gas has its transition near
I’'=4. This well-known result can be obtained, for in-
stance, by using a “‘spin-block” method. One looks at the
lattice of N, cells of size a, on a larger scale, as a lattice
of N, =N,(a/a’)? larger cells of size a’. The number of
dipoles of size larger than a is nN,, and, by the same ar-
gument as the one which leads to (3), one sees that the
number of dipoles of size larger than a’ is smaller by a
factor (a/a’)T~2 this number is nN,(a/a’)f 2
=nN_(a/a')"~* If the lattice spacing a’ is scaled to
infinity, the average number of free electrons per cell,
n(a/a')'=*, vanishes when I'>4: their renormalized

We use three complementary ap-
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fugacity vanishes, which means that the free energy need-
ed to break a pair becomes infinite, as will be shown in
the following paragraphs.

(b) A slightly rephrased version of the original thermo-
dynamical argument by Kosterlitz and Thouless’ is as
follows. We consider a symmetric Coulomb gas in a
large box of size R. If there are only bound pairs, the free
energy per pair is finite. If one electron-ion pair is bro-
ken, and the density is sufficiently small so that e~1,
then its free energy becomes of the order
e’InR —2ky T InR? (the interaction Coulomb energy is
e’InR, and the entropy is kzInR? for the free electron
and kgInR? for the free ion). Therefore, it is favorable to
break pairs when e?—4k, T <0, i.e., when I <4: the first
broken pair appears at I' =4, at least in the low-density
limit (for a finite density, e? must be replaced by e?/e,
where € is the dielectric constant, and this leads to the
universal rule® that the transition, when approached from
the dielectric side, occurs at I' /4e=1).

The above argument applies as well to the fixed-ion
model. The system with one broken pair has again an en-
tropy of order 2kgInR 2, because that ion which has lost
its electron can be chosen on any site, and this gives a
contribution kzInR? to the entropy as if the ions were
mobile.

(c) Finally, let us look at some simple dielectric proper-
ties in the low-temperature phase. For the symmetric
Coulomb gas, the charge-charge correlation function
S (r) is expected®* to decay like » ~T/€ (strictly speaking,
this has been shown only to the order of a first correction
to an independent-pair approximation; this lowest-order
correction is equivalent to a mean-field theory). Thus,
one might think that the susceptibility X defined by (2)
diverges as I' /e approaches 4 from the dielectric side.
Indeed, this anomaly signals a phase transition at I' =4e,
although X actually remains finite with only a discon-
tinuity (it is necessary to use renormalization-group tech-
niques to deal correctly with the vicinity of I' =4e).

Here we present some evidence that the charge-charge
correlation function S(r,r’) of the fixed-ion model also
decays as |r'—r| ~T/¢, when we apply a suitable local
averaging process. Our derivation has the same kind of
limitations as in the symmetric case, namely we work
only to first order in the density. For our purpose, it is
convenient to consider the system as made of ion-electron
pairs, with no loss of generality if the interaction between
pairs is taken into account. Thus, in terms of the fixed
positions R; of the ions and the position variables r; of
the electrons, we write the potential energy for
|r,—R; [ >0 as

Zezln lr,—R; [+ 3 Vi
i i<j
where
vj=e(In|r, —R; | +In|r,—R, |
—Infr;—r;| =In|R;—R; ).
Because of the presence of the ion lattice, we are bound

to use the canonical ensemble (in contrast with the sym-
metric Coulomb gas which can be studied more easily by
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a fugacity expansion® in the grand-canonical ensemble).

The expansion of the two-electron truncated density in
powers of (0/a)’> can be built through a cluster
expansion with respect to the Mayer functions f;;
=exp(—pPv;;)—1. However, each cluster integral is itself
a series in (o /a )%, and therefore the calculations are more
tedious than in the symmetric case.

To order zero in the density, we can replace each f;; by
1, and we obtain for the charge-charge correlation func-
tion (which depends on two electron coordinates r and r’)
the independent-dipole approximation

(F—2)o" 2
2T

S(r,r')=—e?

1
X , I#r' . (4)
2R TR

On the other hand, to order zero in the density, e=1
and S(r,r’) indeed decays as |r—r’'| ~T [this is easily
seen by noting that the sum in (4) is dominated by the
terms in which R; is close either to r or to r'].

To obtain the first correction to the independent-pair
approximation, it is enough to expand the Boltzmann fac-
tor to first order in f;;. Then two kinds of terms appear
in the large distance behavior of the charge-charge corre-
lation function S(r,r'). The first contribution has the
bare decay |r—r'| ~' with a logarithmic correction, to
the order of interest

2
1

r—-2
lr—r'| T

r—4

1412 —

In|r—r'| (5)

(this logarithmic correction comes from the interaction
with another dipole). The second contribution comes
from multipolar expansions and is peculiar to the micro-
scopic structure of the ion-lattice model. For instance,
there is a dipole-dipole interaction term proportional to

1 1 /
[T T

B (R—R'),(R—R'),
|[R—R’|? |[R—R"[* ’

where t=r—R with R the lattice site which is nearest to
r (the induces a and 3 stand for Cartesian components).
However, when we average over the cells to which r and
r’ belong, the multipolar contributions disappear to the
order of our calculation; in the same way they do not
contribute to the value of

~i_. B L ' r—r|?
el=14+ 75— [ drfarsnrr—r|?.

Thus, to the same order of approximation, € is given by
the independent-pair approximation (as expected), with
the result

2
r—2

I'=2||o
r—4

a

e !'=1-T

In the low-density limit, (5) can be reexponentiated into
|[r—r'| T/¢, and we find that the suitably averaged
S(r,r’) decays like the charge-charge correlation function
of the symmetric Coulomb gas.
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From the above, we believe that it can be safely con-
cluded that the fixed-ion model has a Kosterlitz-Thouless
transition at a value of I' which approaches 4 in the low-
density limit, as the symmetric Coulomb gas. This con-
clusion is in agreement with exact results about the sym-
metric Coulomb gas® and the fixed-ion model’ which
were both shown to be in their plasma phase at '=2.
Near I'=2, there is no phase transition, as long as the
density is finite. However, for small densities, most pairs
are tightly bound for I' >2; the fixed-ion model has a

number of delocalized electrons which becomes very
small for I > 2 [see Eq. (3)], and these electrons cannot be
seen in a computer simulation,! which attempts to
characterize the transition by dynamical diagnostics.

We are indebted to the authors of Ref. 1 for stimulat-
ing discussions. Laboratoire de Physique Théorique et
Hauts Energies is a “Laboratoire associé au Centre Na-
tional de la Recherche Scientifique.”
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