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Laboratoire de Physique,† École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France

F. Cornu
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Static correlations in a classical fluid of charged spheres at equilibrium are studied in the vicinity of an
insulating wall characterized by its dielectric constant. It is well known that the deformations of screening
clouds induced by the presence of the wall result into an effective f ##!(x ,x!)/y

3 interaction in the pair
distribution function between two charges e# and e#! located at distances x and x! from the wall and separated
by a large distance y along the wall. We investigate the structure of f ##!(x ,x!). The method is based on
systematic resummations in the Mayer diagrammatics, which are valid both in the bulk and in an inhomoge-
neous situation. The screened potential $ arising in the formalism happens to coincide with the linearized
mean-field approximation for the immersion free energy of two external unit charges. $ is shown to decay as
a repulsive f $(x ,x!)/y3 interaction, whatever the density profiles may be. f $(x ,x!) takes a factorized dipolar
structure f $(x ,x!)!D̄$(x)D̄$(x!) for distances x and x! larger than the maximum of the closest approach
distances b#’s to the wall for every species # . Moreover, we devise a reorganization of resummed diagram-
matics, which is adequate for the determination of the large-distance behavior of correlations, and we prove
that, when all species have the same approach distance b to the wall, f ##!(x ,x!;b)!D#(x)D#!(x!). In this
case, the leading tail of the effective electrostatic interaction between two like charges at the same distance x
from a single wall is repulsive. Results are independent of charge magnitudes, of excluded-volume sphere
sizes, and of the existence of a surface charge on the wall. It holds whether charges are concentrated at sphere
centers or uniformly spread over their surfaces. Comparison is made with an experiment about dilute colloids
where the linearized mean-field approximation proves to be relevant. At equilibrium attraction between like
charges in confined geometry might arise from purely electrostatic charge-charge interactions only through
correlation effects not taken into account in the latter approximation.
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I. INTRODUCTION

A. Issue at stake

The paper provides exact analytical results about the equi-
librium pair correlation in a fluid of charged spheres in the
vicinity of an insulating wall. The first motivation for the
work was to cast the lightening of statistical mechanics of
charge fluids on experiments that reported attractions be-
tween like-charge colloids in confined geometries. These col-
loids are mesoscopic spheres whose individual motion can
be tracked with a conventional microscope and a video
camera. Hence, the static pair distribution function 1
"hcol col(r,r!) between two colloidal spheres located at po-
sitions r and r!, respectively, can be experimentally assessed
when colloids are constrained to move in a given plane. %The
static correlation hcol col(r,r!) is also known as the Ursell
function; see e.g., Ref. %1&.& The quantity of interest in ex-
periments was the effective pairwise interaction
wcol col(r,r!), also called potential of mean force. Quite gen-

erally, the effective interaction w##! between two charges of
species # and #! is defined from the Ursell function h##! by

1"h##!'exp!#(w##!". !1"

When species # has a packing fraction so high that the
nearest-neighbor distance a# is of the order of the range )#
of short-ranged repulsions, w## and h## have oscillations
with period a# over a scale equal to a few a#’s %1&. When
species # is very dilute, the oscillatory excluded-volume ef-
fect disappears, and, if other species have not far larger hard-
core sizes, the functional forms of w## and h## at distances
larger than )# are controlled by long-ranged pairwise inter-
actions. For the considered colloids, which acquire a surface
charge by solvatation, the long-range interaction is of elec-
trostatic origin.
In an experiment carried in 1997 with dilute colloids in

the vicinity of a glass wall %2&, Larsen and Grier showed that
wcol col for two colloids at the same distance x from the wall
becomes attractive at large relative distances y. This result
raised a debate !see Sec. VI A for more details" where all
theoretical works predicted that there was no attraction at
equilibrium. Eventually Squires and Brenner %3& argued that
the attraction determined in Ref. %2& could be accounted for
by an electrohydrodynamical effect linked to the electrostatic
repulsion of colloids from the surface charge of the wall
!which has the same sign as that of colloids". However, at-
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traction between like-charge colloids has also been observed
in several experiments where suspensions are confined be-
tween two plates !see references quoted in Ref. %4&". In the
latest one %4&, Han and Grier still find an attraction, though
kinematic effects are negligible. Therefore, a question re-
mains open: at equilibrium might confinement combined
with many-body effects induce an effective attraction be-
tween like charges at large relative distances?
The aim of the present paper is to revisit the structure of

the large-distance behavior of the equilibrium correlation be-
tween dilute colloids in the vicinity of a single glass wall,
thanks to exact results derived in the framework of statistical
mechanics of charged fluids. We consider a fluid of charged
spheres at equilibrium in the vicinity of an insulating wall
characterized by its dielectric constant *W . Microscopic pair
interactions are sums of purely charge-charge Coulomb
forces and hard-core repulsions. Coulomb interaction be-
tween two charges e# and e#! of species # and #! located
at positions r and r!, respectively, is written as
(e#e#! /*solv)v(r,r!), where *solv is the solvent dielectric
constant and v(r,r!) is the solution of the Poisson equation
with adequate boundary conditions. For point charges, the
Poisson equation in the Gauss units reads

+rv!r,r!"!#4,-!r#r!". !2"

For charges spread over spheres, the Dirac distribution -(r
#r!) is to be replaced by a surface distribution. In the vi-
cinity of a wall, symmetries enforce that h##!(r,r!)
!h##!(x ,x!,y), where x and x! are the distances of r and r!
from the wall, while y is the norm of the projection of r
#r! onto the wall plane.
It is well known that, far away from the wall, correlations

decay exponentially fast when the distance between charges
goes to infinity. On the contrary, in the vicinity of a wall,
deformations of screening clouds enforced by the presence of
the wall is expected to generate algebraic effective interac-
tions between charges !see Ref. %5& for a review". At suffi-
ciently large distances y along the wall, the 1/y3 interactions
dominate all other tails, which decay either algebraically or
exponentially,

h##!!x ,x!,y " .
y→"/

#(
f ##!!x ,x!"

y3
, !3"

where (!1/kBT is the inverse temperature. (kB is the Bolt-
zmann constant and T is the absolute temperature." On one
hand, property !3" can be inferred from explicit calculations
in the weak-coupling limit %6–8&. On the other hand, the
existence of the 1/y3 decay is confirmed by a mesoscopic
result. By an argument based on linear response theory and
macroscopic electrostatics, Jancovici %9& settled that the cor-
relation between the densities of global surface charges sepa-
rated by a distance y decays as 1/y3 with a universal negative
coefficient. The property can be written as

!
0

"/

dx!
0

"/

dx!0
##!

e#1#!x "e#!1#!!x!" f ##!!x ,x!"

!
!*W /*solv"
8,2(2

!4"

and the corresponding interaction is repulsive. Indeed, prop-
erty !3" and relation !1" between h##! and w##! imply that in
a dilute fluid

w##!!x ,x!,y " .
y→"/

f ##!!x ,x!"
y3

. !5"

We notice that the limit y→"/ means that y is larger than
the radii of particles, the screening length and the distance
y!(x ,x!) where exponential tails are overcome by the
1/y3 tail.

B. Main results

The structure of the function f ##!(x ,x!) is investigated
for any value of the Coulomb coupling in the dilute fluid
phase. The main results of our analysis and their conse-
quences in the case of dilute colloid suspensions are the fol-
lowing.
First, the immersion free energy uqq of two external

charges q in a dilute electrolytic solution has a 1/y3 tail,
which is repulsive for any x or x! when it is calculated in a
linearized mean-field scheme. When the electrolyte is dilute,
the large-distance behavior of uqq!(q2/*solv)2 can be cal-
culated by a mean-field theory, because of the long range of
the Coulomb interaction. Moreover, if the Coulomb coupling
is weak at considered distances or if q is infinitesimal, a
linearization in q can be performed. In a linearized mean-
field approximation %10& 2LMF is independent of q and coin-
cides with the screened potential $ that arises in the formal-
ism devised in Sec. II. In Sec. III we show that, at large
distances y along the wall, $(x ,x!,y) has a 1/y3 tail with a
positive coefficient at all distances x and x! from the wall

$!x ,x!,y " .
y→"/

f$!x ,x!"
y3

with f$!x ,x!"$0. !6"

In the case of a suspension of colloids with bare solvated
charge Zcole !where e denotes the absolute value of the elec-
tron charge", in the limit where colloids are infinitely diluted
wcol col tends to the immersion free energy of an isolated pair
ucol col!(%Zcole&2/*solv)2 ion , where 2 ion is calculated in a
fluid that does not contain any colloid. In a linearized mean-
field approximation, 2 ion

LMF!$ ion and the free energy ucol col
LMF

has a repulsive tail by virtue of Eq. !6". Besides, in a colloi-
dal suspension at finite dilution, the linearized mean-field
approximation wcol col

LMF for the effective interaction between
colloids also has a repulsive 1/y3 tail. Indeed, wcol col

LMF is pro-
portional to $ %6,11&: as for any species # , wcol col

LMF !
#hcol col

LMF /(!(%Zcole&2/*solv)$ , where $ is calculated in a
fluid that contains colloids.
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Second, the coefficient f$(x ,x!) of the 1/y3 tail of
$(x ,x!,y) is shown to take a dipolar form when both x and
x! are larger than bmax , the biggest one among the closest
approach distances b#’s to the wall for every species # ,

f $!x ,x!"!D̄$!x "D̄$!x!" !7"

when x$bmax and x!$bmax .

The effective dipole D̄$(x) has a constant sign when x varies
from bmax to "/ .
If all species have the same closest approach distance b to

the wall—as it is the case in an electrolyte where the differ-
ences in the various ion diameters are negligible with respect
to all other characteristic lengths—Eq. !7" implies that
$(x ,x!,y) has the dipolar structure D̄$(x)D̄$(x!)/y3 at all
distances x and x! in the fluid. Then, as shown in Sec. IV,
f ##!(x ,x!) defined in Eq. !3" is, in fact, equal to the product

f ##!!x ,x!;b "!D#!x "D#!!x!" !8"

if b#!b for all species.

The function D#(x) in Eq. !8" is to be interpreted as the
dipole associated with a charge and its screening cloud. Its
shape is a function of x more complicated than the mere
exponential decay !74", with A$!1, calculated in the weak-
coupling and high-dilution limit. %The first correction to Eq.
!74" is calculated in a forthcoming paper %12& for the primi-
tive model defined hereafter when the wall carries no surface
charge.& The sign of D#(x) may vary with x.
Results !6"–!8" are valid for any strength of the Coulomb

coupling in a dilute fluid phase and for species with various
excluded-volume sizes. !The closest approach distance of a
particle to the wall is not necessarily determined only by its
size."As discussed in Sec. V, these results also hold when the
wall carries a surface charge, or when the charge of some
species is not concentrated at a point, but spread on a sphere.
When all species have the same closest approach distance

to the wall, an important consequence of factorization !8" of
f ##! into a product of dipoles is that the effective interaction
between like charges (#!#!) is repulsive when x!x!. On
the contrary, when the species have different closest ap-
proach distances b#’s to the wall, as it is the case in a col-
loidal suspension, f ##!(x ,x!) is not factorized contrarily to
Eq. !8" and f ##(x ,x!) for like charges may have any sign a
priori, even when x!x!.
The behavior of electrostatic correlations in the experi-

ment of Ref. %2& about dilute colloids is discussed in Sec. VI.
The relevance of the present model is checked from the ex-
perimental data in the bulk. At investigated relative dis-
tances, electrostatic forces dominate short-range interactions
and the functional form of the effective interaction is con-
troled by the monopole-monopole part of electrostatic forces.
The crossover from exponential to algebraic tails is numeri-
cally estimated. Comparison with experimental curves shows
that the linearized mean-field scheme is relevant. We point
out differences with the case where the colloidal suspension
is confined between two plates.
The latter discussion is postponed to Sec. VI, since it is

performed in the lightning of the exact results about h##!
that are derived through Secs. II to V. However, Sec. VI is

written in a rather self-contained way and the reader not
interested in formalism developments may skip Secs. II to V.

C. Methods

Before going into details, we summarize the general
method displayed in Secs. II–IV. The Ursell function h##!
for the so-called primitive model !Sec. II A", in the bulk as
well as near the wall, is studied from the Mayer diagrammat-
ics !Sec. II B". !In the Mayer diagrams, the difference be-
tween both situations is just that, in the second case, species
densities depend on the distance x from the wall." Integrals
corresponding to the Mayer diagrams diverge, because of the
long range of the Coulomb potential far away from the wall
as well as in its vicinity. Then systematic resummations of
long-ranged Coulomb divergences similar to that performed
by Meeron for bulk quantities %13& provide diagrammatics
where there appears a screened potential $ !Sec. II C". !Re-
summations rely on the same topological principles in both
cases." In the bulk, $ is a solution of the usual Debye equa-
tion. Near the wall $ obeys an ‘‘inhomogeneous’’ Debye
equation !25", where the inverse screening length depends on
x !Sec. II D". The large-distance behavior of h##! can be
conveniently studied by the new reorganization of diagrams
that we introduce in Sec. II E. In Sec. III A we give the
formal expression of the screened potential in the vicinity of
the wall. !It has been determined in Ref. %14& in a simpler
situation, namely, for an analogous screened potential that
arises in a resummed fugacity Mayer expansion for the den-
sity when all closest approach distances b#’s are equal to the
same value." An analysis of the Fourier transform of $
shows that $ decays as f$(x ,x!)/y3 at large distances y with
a constant sign !Sec. III B". Two sum rules for 3dy$(x ,x!,y)
and f$(x ,x!), respectively, are settled in Sec. III C. These
sum rules ensure that in the linearized mean-field approxi-
mation h##!

LMF obeys the local electroneutrality sum rule !52"
and sum rule !4". The sum rule satisfied by f$(x ,x!) allows
one to derive its sign !6". In Sec. IV we show, thanks to the
diagrammatic reorganization introduced in Sec. II E, that di-
polar structure !7" of the 1/y3 tail of $ enforces that, when
all species have the same closest approach distance to the
wall, the coefficient of the 1/y3 tail in the correlation func-
tion h##! takes form !8" for any value of the coupling pa-
rameter !temperature and bulk densities" in the fluid phase.
Technical details are given in the Appendix.

II. GENERAL FORMALISM

A. Primitive model

Our system is a three-dimensional charge fluid confined to
the region x$0 by a plane impenetrable dielectric wall, the
electrostatic response of which is taken into account by a
dielectric constant *W . Up to Sec. V A included, the solution
is described by the usual primitive model %15& with ns spe-
cies of charges. In this model every charged particle of spe-
cies # is represented as a hard sphere—with diameter
)#—where the net charge e#'Z#e is concentrated at the
center of the sphere. !We recall that e denotes the absolute
value of the electron charge and Z# may be negative." The
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extension of our results to the case where the charge of one
species is uniformly spread on the surface of the hard-core
sphere is discussed in Sec. V B. In the primitive model the
solvent !water" is handled with as a continuous medium with
a uniform dielectric constant *solv . Moreover, particles are
assumed to be made of a material with the same dielectric
constant as the solvent. Therefore, *!*solv when x$0 and
*!*W when x%0.
Since a half space is occupied by a dielectric material,

v(r,r!) in the Coulomb pair interaction (e#e#! /*solv)v(r,r!)
is solution of Poisson equation !2" with the adequate bound-
ary conditions and it reads for x$0 and x!$0 %16&

v!r,r!"!
1

"r#r!"
#+el

1

"r#r!!"
!9"

with

+el'
*W#*solv
*W"*solv

. !10"

In Eq. !9" r!! is the image of the position r! by the reflection
with respect to the plane interface between the solution and
the dielectric material. A priori +el ranges from #1 to 1. In
the case of a glass wall in contact with water, *solv.80,
while *W is equal to a few units; then the relative dielectric
constant *W /*solv of the wall with respect to the solvent is of
order 1/80 and +el.#0.98. In the bulk, far away from the
wall, the expression of v(r,r!) is reduced to 1/"r#r!". The
hard-core interaction vSR between two species # and #! is
infinitely repulsive at distances shorter than the sum ()#
")#!)/2 of the sphere radii of both species:

(vSR! "r#r!";# ,#!"!# "/ , if "r#r!"%!)#")#!"/2
0, if "r#r!"$!)#")#!"/2.

!11"

In fact, as discussed at the end of Sec. IV, the specific form
of vSR("r#r!";# ,#!) has no consequence upon results !6"–
!8". The expression !11" could be replaced by a more general
soft short-ranged repulsion, the range of which would be of
the order of ()#")#!)/2. In the primitive model defined just
above, the total pair energy Upair reads

Upair!0
i% j

vSR! "ri#rj";# i ,# j""
e2

*solv
0
i% j

Z# i
Z# j

v!ri ,rj",

!12"

where i is the index of a particle.
In the vicinity of the wall, one-body potentials appear in

the total energy of the system. For every charge a self-energy
Z#
2 (e2/*solv)Vself(x) arises from the work necessary to bring
a charge Z#e from x!"/ !in the solvent" to a point r in the
vicinity of the wall. According to Eq. !9", the wall electro-
static response is equivalent to the presence of an image
charge #+elZ#(e/!*solv) at point r!, and

Vself!x "!#+el
1
4x . !13"

As mentioned above, when the solvent is water and the wall
is made of glass, +el defined in Eq. !10" is negative, and
Vself(x) is a repulsive potential. The impenetrability of the
wall corresponds to a short-ranged potential

(VSR!x;#"!# "/ , if x%b#

0, if x$b#,
!14"

where b# is the closest approach distance of the center of a
particle # to the wall. The confinement of all particles to the
positive-x region and the electrostatic self-energy may be
gathered into a one-body potential Vwall :

Vwall!0
i
VSR!xi ;# i""

e2

*solv
0
i
Z# i
2 Vself!xi". !15"

B. Generalized Mayer diagrams

The system at equilibrium at inverse temperature ( in a
finite volume 4 can be studied in the grand canonical en-
semble where each species # has a fixed fugacity z# . The
grand canonical function 5 is defined by

5!( ,6z#7#!1, . . . ,ns,4"

! 0
6N#7#!1, . . . ,ns

$8
#

z#
N#

N#!
% !

4
$ 8
i!1

0#N#

dri%
&e#([Upair"Vwall]. !16"

In Eq. !16" N# is the total number of particles with species #
and 06N#7#!1, . . . ,ns

denotes the summation over all possible
combinations of ns N#’s. Near the wall, 4 denotes a finite-
size region bounded by the wall on the left. In the bulk, 4
stands for a finite-size region far away from the wall, v(r,r!)
is reduced to its bulk value and Vwall does not appear
in Eq. !16".
In order to write a single formula for 5 , whether 4 lies

near the wall or in the bulk, we introduce a generalized
fugacity that incorporates the one-body potential created by
the wall, as we have already done in Ref. %14&. The general-
ized fugacity z̄#(x) depends only on the distance x to the
wall, and reads

z̄#!x "!z#exp$#(VSR!x;#"#
(e2

*solv
Z#
2Vself!x "% . !17"

Moreover, the summation over the N#’s can be replaced by a
summation over N!0#N# with the result

5!( ,6z#7#!1, . . . ns,4"

! 0
N!0

"/ 1
N!!4

$8
n!1

N

drn& 0
#n!1

ns

z̄#n!xn"' %e#(Upair.

!18"

We use the convention that when N!0 the integral is re-
duced to 1. Then the fugacity expansion of the density pro-
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file 1#(x) can be represented by the generalized Mayer dia-
grams where each pair of points labeled by n and m is linked
by at most one bond

f !n ,m "!exp$#(& vSR! "rn#rm";#n ,#m"

"
e2

*solv
Z#n

Z#m
v!rn ,rm" ' %#1. !19"

In the integral associated with every diagram, each point has
an x-dependent weight z̄#(x), which is summed over all spe-
cies. Because of the long range of the Coulomb potential,
every integral corresponding to a Mayer diagram that is not
sufficiently connected diverges when the volume 4 becomes
infinite—inside the bulk or on the right of the wall—
but systematic resummations remove these divergences
!see Ref. %14&".
The density expansion of h##! can also be expressed in

terms of the Mayer diagrams with bonds !19" !see, e.g., Ref.
%1& for the homogeneous case". The general formula, where
uniform densities are replaced by density profiles in the
present case, is

h##!!x ,x!,y"!09
1
S9
!
4
$8
n!1

N

drn& 0
#n!1

ns

1#n
!xn"' %

&$8 f %
9
. !20"

In Eq. !20" the sum runs over all unlabeled topologically
different connected diagrams 9 with two root points (r,#)
and (r!,#!) !which are not integrated over" and N internal
points !which are integrated over" with N!0, . . . ,/ . A dia-
gram 9 is built according to the following rules. Each pair of
points in 9 is linked by at most one f bond, there is no
articulation point and every internal point has a weight equal
to 0#n!1

ns 1#n
(xn). !An articulation point is defined by the

fact that, if it is taken out of the diagram, then the diagram is
split into two pieces, one of which at least is no longer linked
to any root point." %8 f &9 is the product of the f bonds in the
9 diagram and S9 is its symmetry factor, i.e., the number of
permutations of the internal points rn that do not change this
product. We have used the convention that, if N is equal to 0,
no 3drn%0#n!1

ns 1#n
(xn)& appears and (1/S9)%8 f &9 is re-

duced to f (r,r!). Similar to what happens for the Mayer
diagrammatic representations of fugacity expansions for den-
sity profiles, integrals in Eq. !20" diverge in the infinite vol-
ume limit, because of the long range of the Coulomb inter-
action. Then systematic partial resummations must be
performed, as shown in the following subsection.

C. Systematic resummations of Coulomb divergences

The method that we use is a generalization of the proce-
dure introduced by Meeron %13& to calculate h##! in the
bulk; the only difference is that point weights in the Mayer
diagrams are now x dependent. The starting trick is to split

the Mayer bond !19" into two auxiliary bonds: the ‘‘Cou-
lomb’’ bond f cc'#(e2Z#n

Z#m
v(rn ,rm) and its complemen-

tary function f# f cc. Then subdiagrams containing chains of
the Coulomb bonds f cc are resummed inside equivalence
classes. The potential $ , which arises as the sum of chains
with all possible lengths made with f cc bonds, can be viewed
as the solution of the integral equation

$!r,r!"!v!r,r!"

#
(e2

*solv
!
4
dr"0

#!1

ns

Z#
21#!x""v!r,r""$!r",r!",

!21"

$(r,r!) is also the solution of another integral equation,
which is obtained from Eq. !21" by exchanging the roles of r
and r!. Equation !21" coincides with the equation obeyed by
a linearized mean-field approximation for the immersion free
energy of two external charges %10&. It also coincides with
the equation obeyed by the linearized mean-field Ursell func-
tion #((e2/*solv)Z#Z#!$ %6,11&.
Topological considerations used by Meeron !and reformu-

lated in Refs. %17& for bulk correlations in quantum Coulomb
fluids" lead to the following resummed diagrammatic repre-
sentation of h##! ,

h##!!x ,x!,y"!0:
1
S:
!
4
$8
n!1

N

drn& 0
#n!1

ns

1#n
!xn"' %

&$8 F %
:
. !22"

Diagrams : are defined as diagrams 9 in the initial diagram-
matic representation !20" with only two differences. First, the
bond f is replaced by two resummed bonds F called Fcc and
FR with

Fcc!n ,m "!#
(e2

*solv
Z#n

Z#m
$!rn ,rm" !23"

and

FR!n ,m "!exp$#(& vSR! "rn#rm";#n ,#m"

"
e2

*solv
Z#n

Z#m
$!rn ,rm" ' %#1

"
(e2

*solv
Z#n

Z#m
$!rn ,rm". !24"

Second, in order to avoid double counting in the resumma-
tion process, diagrams : must be built with an ‘‘excluded-
composition’’ rule: there is no point linked to the rest of the
diagram by only two Fcc bonds. As can be checked from the
properties derived in Sec. III, the screened potential $ is
integrable at large distances and : diagrams correspond to
convergent integrals in the limit where the volume 4 extends
to infinity inside the bulk or on the right of the wall.
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D. Screened potential

Since Coulomb potential v(r,r!) for point charges is a
solution of Poisson equation !2", integral equation !21"
which defines the screened potential $ can be turned into the
partial derivative equation

+r$!r,r!"#;̄2!x "$!r,r!"!#4,-!r#r!", !25"

where ;̄2(x) is defined as

;̄2!x "'4,(
e2

*solv
0
#
Z#
21#!x ". !26"

The presence of the hard-core repulsion !14" from the wall
enforces that 1#(x) vanishes for x%b# . Since $ arises as
the infinite sum of the Coulomb chains defined in Sec. II C,
$ obeys the same boundary conditions as Coulomb potential
v . $(r,r!) tends to 0 when "r#r!" goes to "/ , it is con-
tinuous everywhere while its normal gradient times the di-
electric constant is continuous at the interface with dielectric
walls. We recall that particles are supposed to be made of a
material with the same dielectric constant as the solvent.
In the bulk, far away from any boundary, ;̄(x) becomes a

constant equal to the inverse Debye screening length ;D :

;D!!4,(e2

*solv
0
#
Z#
21#

B, !27"

where 1#
B is the bulk density of species # . Then Eq. !25" is

the usual Debye equation. Since $ in the bulk is a function
of "r#r!" that vanishes when "r#r!" goes to infinity, it is
equal to the well-known Debye potential

$D! "r#r!""!
e#;D"r#r!"

"r#r!"
. !28"

Near the plane dielectric wall located at x!0, Eq. !25" is
an ‘‘inhomogeneous’’ Debye equation, where the inverse
squared screening length ;̄2 depends on the distance x from
the wall. The function ;̄2(x) has finite steps at points x
!b# with #!1, . . . ,ns . $(r,r!) is continuous everywhere
and obeys the boundary condition

lim
x→0#

*W
*solv

<$

<x !r,r!"! lim
x→0"

<$

<x !r,r!", !29"

where x!=0. <$/<x(r,r!) is continuous at every b# when
r=r!.

E. Reorganization of resummed diagrammatics

In the absence of any compensation mechanism, the
Ursell function h##! is expected to decay at large distances
as the slowest bond in its resummed diagrammatic represen-
tation !22", namely, as Fcc. %FR falls off as the squared tail of
Fcc by virtue of !23" and !24".& In order to analyze the large-
distance behavior of h##! , we proceed to the following dia-
grammatic reorganization.
In a first step, we reorganize the resummed Mayer dia-

grammatics !22" for h##! into a sum of graphs built with the
bond Fcc and with the bond I defined as the sum of all sub-
diagrams that either contain no Fcc bond or remain con-
nected in a single piece when anyone among its Fcc bonds is
cut. !In the following, we use the word ‘‘graph’’ for an object
built with Fcc and I bonds, and we keep the term ‘‘diagram’’
for a resummed Mayer diagram made of Fcc and FR bonds."
Since the reorganization is purely topological, it is valid for
correlations in the bulk as well as in the vicinity of the wall.
The reason for this first reorganization is that the topology

of subdiagrams involved in I has the following consequence.
If Fcc decays algebraically in some direction, FR decreases
as the square of the decay law of Fcc in the same direction,
and so does I. !A similar property has already been used in
Refs. %18& and %19& for the investigation of algebraic decays
in quantum bulk correlations." If Fcc falls off exponentially
fast at large distances "r#r!", then I decays faster than Fcc at
least in weak-coupling and high-dilution regimes. !The latter
case will be investigated in detail in a forthcoming
paper %12&."
In a second step, four classes of graphs in this new rep-

resentation of h##!(ra ,ra!) are distinguished by considering
whether a single bond Fcc is attached either to root point
(ra ,#) or to root point (ra! ,#!). According to the excluded-
composition rule obeyed by resummed : diagrams, h##!
can be rewritten as the sum

h##!'h##!
cc "h##!

c# "h##!
#c "h##!

## , !30"

where the functions on the right hand side of Eq. !30" are
equal to the graph series represented in Figs. 1–3 respec-
tively. %In the following a (a!) is a short notation for the
couple of variables (r,#) %(r!,#!)& associated with a root
point, c represents (rc ,>), and i stands for (ri ,# i).& The
analytical definitions of the series are

FIG. 2. Graphic representation
of definition !32" for h##!

c# (r,r!).

FIG. 1. Representation of h##!
cc (r,r!) as the graph series defined in Eq. !31". A wavy line represents a bond Fcc and a gray disk stands

for a bond I. A couple of variables (ri ,> i) are associated with every circle. For a white circle a!(r,#) %or a!!(r!,#!)], r and # are fixed,
whereas, for a black circle i!(ri ,> i), ri and > i are integrated with the measure 3dri0# i

1# i
(ri).
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h##!
cc !r,r!"'Fcc!a ,a!""! dr1dr1! 0

>1 ,>1!
1>1

!r1"1>1!
!r1!"

&Fcc!a ,1"I!1,1!"Fcc!1!,a!"

"! dr1dr1! 0
>1 ,>1!

1>1
!r1"1>1!

!r1!"

&! dr2dr2! 0
>2 ,>2!

1>2
!r2"1>2!

!r2!"

&Fcc!a ,1"I!1,1!"Fcc!1!,2"I!2,2!"Fcc!2!,a!"

"••• , !31"

h##!
c# !r,r!"'! drc!0

>!
1>!!rc!"F

cc!a ,c!"I!c!,a!"

"! drc!0
>!

1>!!rc!"! dr1dr1! 0
>1 ,>1!

1>1
!r1"

&1>1!
!r1!"Fcc!a ,1"I!1,1!"Fcc!1!,c!"I!c!,a!"

"••• , !32"

while h#c is defined in a symmetric way, and

h##!
##!r,r!"'I!a ,a!"

"! drc! drc!0
> ,>!

1>!rc"1>!!rc!"I!a ,c "

&Fcc!c ,c!"I!c!,a!"

"! drc! drc!0
> ,>!

1>!rc"1>!!rc!"

&! dr1dr1! 0
>1 ,>1!

1>1
!r1"1>1!

!r1!"I!a ,c "

&Fcc!c ,1"I!1,1!"Fcc!1!,c!"I!c!,a!""••• .
!33"

We notice that I is the analog of the so-called single-particle
irreducible function in the Feynman diagrammatics for the
two-point propagator of an equivalent field theory !see, e.g.,
Ref. %20&".

III. PROPERTIES OF THE SCREENED POTENTIAL

In order to take advantage of the invariance along the
directions parallel to the wall, we introduce the Fourier trans-
form with respect to the y variable, and we write

$!x ,x!,y"!! d2k
!2,"2

e#ik•y$!x ,x!,k". !34"

After Fourier transformation !25" becomes the linear differ-
ential equation

# <2

<x2
#k2#;̄2!x "( $!x ,x!,k"!#4,-!x#x!". !35"

In the following, we assume that the species are labeled in
such a way that bmin!b1%b2%•••%bns!bmax . ;̄2(x) and its
first derivative are continuous in each interval bi%x%bi"1
!with the convention bns"1!"/) and have only finite steps
at every bi .

A. Formal expression of !

The explicit resolution of the inhomogeneous Debye
equation !35" requires one to distinguish several regions. For
our discussion we need to consider only four regions: region
I for x%0, region II for 0%x%bmin , region III for bmin
%x%bmax , and region IV for bmax%x. The results summa-
rized in the present subsection are a generalization of those
derived in more detail for a similar but simpler equation in
Ref. %14&.
In the above regions I and II , ;̄2(x) vanishes by virtue of

Eq. !26". When x!$bmin Eq. !35" reads

# <2

<x2
#k2( $!x ,x!,k"!0 if x%bmin. !36"

The solution with boundary conditions recalled after Eq. !26"
%in particular, condition !29"& is

$!x ,x!,k"!A!x!,"k""!1#+el"e "k"x if x%0!x!$bmin"
!37"

and

$!x ,x!,k"!A!x!,"k""%e "k"x#+ele#"k"x&

if 0%x%bmin !x!$bmin". !38"

%In Ref. %14& there is a sign misprint in Eq. !4.20", which has
to coincide with Eq. !38".&
When both x$bmin and x!$bmin , -(x#x!) does not van-

ish for every x. The explicit solution for $(x ,x!,k) is ob-
tained by distinguishing the subregions separated by the
planes x!bi . Let us call !i" the subregion bi%x%bi"1 !with
bns"1'"/). When x varies in subregion (i), h (i) denotes
the continuous solution of the ‘‘homogeneous’’ equation as-
sociated with equation !35"—namely, the equation without
the Dirac distribution term—and extended to the range #/
%x%"/ ,

FIG. 3. Graphic representation
of definition !33" for h##!

##(r,r!).
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# <2

<x2
#k2#;̄2!x "( h (i)!x ,k2"!0. !39"

In Eq. !39" only species #!1, . . . ,i do contribute to ;̄2(x)
defined in Eq. !26". The general solution of Eq. !35" for x in
subregion !i" and x! in subregion (i!) is the sum of a linear
combination of two independent solutions h (i)

" and h (i)
# plus,

if (i)!(i!), a particular solution $sing(i) of Eq. !35", which is
singular when x!x! and which is calculated in terms of h (i)

"

and h (i)
# by the so-called Wronskian method %21&. In the fol-

lowing, h (i)
" (h (i)

# ) is chosen to be a solution that vanishes
!diverges" when x tends to "/ . !In the bulk, ;̄(x) is a con-
stant equal to the inverse Debye length ;D : h" and h# can
be chosen to be equal to exp%'x!;D

2 "k2& ." Since
$(x ,x!,k) also obeys a second equation given by Eq. !35"
where the roles of x and x! are exchanged %see the comment
after Eq. !21"&, $(x ,x!,k) for x in subregion !i" and for x! in
subregion (i!) is equal to

$!x ,x!,k"!- i ,i!$sing(i)!x ,x!,k2"

" 0
?!" ,#

0
?!!" ,#

Z (ii!)
??! ! "k""

&h (i)
? !x ,k2"h (i!)

?! !x!,k2". !40"

The coefficients Z (ii!)
(( are determined by the continuity of

$(x ,x!,k) at the planes x!b1 , . . . ,bns and x!
!b1 , . . . ,bns, the continuity of <$(x ,x!,k)/<x and
<$(x ,x!,k)/<x! at the same planes, and the vanishing of
$(x ,x!,k) when x or x! goes to infinity. When both x
$bmax and x!$bmax , namely, when x and x! are in region
IV , the vanishing of $(x ,x!,k) at large distances x and x!
enforces a simpler expression,

$ IV!x ,x!,k"!$singIV!x ,x!,k2"

"ZIV! "k""hIV
" !x ,k2"hIV

" !x!,k2"

if x$bmax and x!$bmax !41"

with

$singIV!x ,x!,k2"!#
4,

WIV!k2"
hIV

# ! inf!x ,x!",k2"

&hIV
" !sup!x ,x!",k2", !42"

where inf(x ,x!) %sup(x ,x!)& is the infimum !supremum" of x
and x! and WIV(k2) is the Wronskian of solutions hIV

" (x ,k2)
and hIV

# (x ,k2) defined as WIV(k2)!hIV
# (<hIV

" /<x)
#hIV

" (<hIV
# /<x).

B. Small-k expansion of !

The small-k expansions of ZIV("k") and of the various
other Z (ii!)

(( ("k")’s defined in Eq. !40" involve odd powers of
"k", whereas other functions of k in $ proves to be functions

of k2 %see Eq. !40"–!42"&. Indeed, ZIV("k") and every
Z (ii!)

(( ("k") are determined by the ratio of the boundary equa-
tions obeyed by $ , <$/<x , and <$/<x! at the various planes
x!bi and x!!bi! , while the x dependence of $ in regions I
and II involves the functions exp("k"x) and exp(#"k"x) %see
Eqs. !37" and !38"&.
We stress that the existence of odd powers of "k" in the

small-k expansion of $(x ,x!,k) is not specific to the particu-
lar form !14" of VSR(x;#). It arises through the boundary
conditions from the vanishing of the densities in region x
%0 with a corresponding solution that takes the functional
form !37".
Moreover, the coefficient BZIV

[1] of "k" in the small-k ex-
pansion of ZIV("k") does not vanish when *W is finite,

ZIV! "k""!ZIV!k!0"""k"BZIV
[1]"O!k2", !43"

and we expect that the same is true for every nonvanishing
Z (ii!)

(( ("k"). %In Eq. !43" O(k2) denotes a term of order k2.&
Property !43" can be checked from the expansions at the first
two orders in the Coulomb coupling parameter in the case
where all b#’s are equal to the same value b %12&. For the
sake of pedagogy, we give here the expression of $ at lead-
ing order in the weak-coupling regime %14& when x$b and
x!$b ,

$ IV
(0)!x ,x!,k"!

2,
!;D

2 "k2
e#"x#x!"!;D

2 "k2

"ZIV
(0)! "k""e#(x"x!)!;D

2 "k2 !44"

with

ZIV
(0)! "k""!

2,
!;D

2 "k2
e2b!;D

2 "k2

&
;D
2 #+ele#2b"k"!!;D

2 "k2""k""2

!!;D
2 "k2""k""2#+ele#2b"k";D

2 . !45"

These expressions have been derived in the case +el!0 and
b!0 in Ref. %6& and in the case +el=0 and b!0 in Ref. %7&.
%We notice that b can be set to 0 only when the electrostatic
response of the wall is repulsive %11&, namely, when *W
%*solv (+el%0).& Explicit calculations in confined geom-
etries are done in Ref. %8&. All these leading-order results
correspond to uniform density profiles in the region x$b .
As a consequence of Eqs. !37", !38", !40", and !43", the

small-k expansion of $ also contains a "k"-term,

$!x ,x!,k"!$!x ,x!,k!0"""k"B$
[1]!x ,x!""O!k2",

!46"

where B$
[1](x ,x!) takes different forms when x and x! are in

regions I ,II ,III ,IV , respectively. B$
[1](x ,x!) is continuous

everywhere as $(x ,x!,k) is. The discontinuity of
<$(x ,x!,k)/<x at x!x! is given by the part $sing(x ,x!,k2)
in $(x ,x!,k). Henceforth <B$

[1](x ,x!)/<x is continuous at
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x!x!, and the continuity of <$(x ,x!,k)/<x at the various
planes x!bi when x!” x! implies the continuity of
<B$

[1](x ,x!)/<x at every x!bi . Moreover, B$
[1](x ,x!) van-

ishes when x or x! goes to "/ , as $(x ,x!,k) does.
The fact that the small-k expansion of the Fourier trans-

form of $(x ,x!,y) contains some terms that are not analytic
in the Cartesian components of k signals the existence of
algebraic tails in the large-y behavior of $(x ,x!,y). Since
the nonanalytic term with the lowest order in powers of "k" is
proportional to "k"!!k12"k2

2 !where k1 and k2 are the Car-
tesian components of k), the slowest algebraic tail decays as
1/y3. Its coefficient reads !see p. 363 of Ref. %22&"

$!x ,x!,y" .
"y"→"/

f$!x ,x!"
"y"3

!47"

for x$bmin and x!$bmin with

f $!x ,x!"!#
1
2, B$

[1]!x ,x!", !48"

1/y3 tails have also been exhibited in expressions for $ (0) in
various confined geometries %8&.
According to Eq. !41", B$IV

[1] (x ,x!) has the factorized
structure

B$IV
[1] !x ,x!"!BZIV

[1] hIV
" !x ,k2!0 "hIV

" !x!,k2!0 "

if x$bmax and x!$bmax . !49"

%We notice that, since h"(x ,k2!0) is a solution of Eq. !39",
which tends to zero when x goes to infinity, h"(x ,k2!0) has
the same sign for any x.&
More generally, when x and x! are in regions III or IV

B$
[1](x ,x!) has an expression given by Eq. !40" where Z (ii!)

((

is replaced by BZ
(ii!)
((
[1] and k2 is set equal to 0. Since

h"(x ,k2!0) and h#(x ,k2!0) are solutions of Eq. !39",
f $(x ,x!), defined for x$bmin and x!$bmin and proportional
to B$

[1](x ,x!) %see Eq. !48"&, obeys the following equation:

<2 f$!x ,x!"
<x2

!;̄2!x " f$!x ,x!". !50"

Moreover, for any given x!$bmin , f $(x ,x!) vanishes at
large positive x, as it is the case for B$

[1](x ,x!). As a conse-
quence, for any given x!, f$(x ,x!) has the same sign for
every x$bmin . The result also holds when the roles of x and
x! are exchanged. Therefore, f$(x ,x!) has the same sign for
any x or x! larger than bmin , as written in Eq. !6".

C. Repulsive nature of the 1Õy3 tail of !

Now, in order to determine the sign of f$(x ,x!), we show
that $(x ,x!,k!0) obeys a sum rule, as well as f$(x ,x!).
These sum rules hold for any solution of Eq. !35" with
boundary conditions recalled after Eq. !26", whatever the
function ;̄2(x) with finite steps may be.

First, the sum rule for $(x ,x!,k!0) reads

!
0

/

dx;̄2!x "$!x ,x!,k!0"!4, if x!$bmin . !51"

!We notice that the lower bound 0 of the integral in Eq. !51"
can be replaced by bmin , because ;̄2(x) vanishes in the range
0%x%bmin .) The derivation of Eq. !51" is the following.
$(x ,x!,k!0) obeys Eq. !35" with k2!0, and
<$(x ,x!,k)/<x vanishes when x goes to infinity for any k.
Moreover, for x!$bmin <$(x ,x!,k!0)/<x at x!0" is given
in terms of the same derivative at x!0# by boundary con-
dition !29". <$(x ,x!,k!0)/<x vanishes for x%0, by virtue
of the explicit expression !37", which is valid for any ;̄2(x),
and so does <$(x ,x!,k!0)/<x at x!0".
We notice that in a linearized mean-field approximation

h##!(x ,x!,y) can be replaced by F
cc!#(e#e#!$(x ,x!,y).

Sum rule !51" implies that this approximated expression for
h##!(x ,x!,y) does obey the local-electroneutrality sum rule
satisfied by the exact h##!(x ,x!,y),

e#!#! dr!0
#!

e#!1#!!r!"h##!!r,r!". !52"

!See Ref. %5& for a review of the sum rules."
The sum rule for f $(x ,x!) arises from similar arguments.

By virtue of Eq. !50" and since < f $(x ,x!)/<x vanishes when
x goes to infinity %since B$

[1](x ,x!) vanishes as well as $ at
large x],

!
bmin

/

dx;̄2!x " f$!x ,x!"!#
< f$!x ,x!"

<x )
x!bmin

"
. !53"

The rhs of Eq. !53" is determined by the fact that f $(x ,x!) is
proportional to B$

[1](x ,x!) in regions III and IV by virtue of
Eq. !48". B$

[1](x ,x!) is defined everywhere through Eq. !46"
and its partial derivative with respect to x is continuous at
x!bmin . The explicit solution !38" for $(x ,x!,k) when x is
in region II and x!$bmin exhibits the following property,

<B$
[1]!x ,x!"
<x !

*W
*solv

$!x ,x!,k!0" if 0%x%bmin!x!$bmin".

!54"

%When x and x! are in the range specified in Eq. !54",
$(x ,x!,k!0) is independent of x and relation !54" has its
root in the boundary conditions for $ at x!0.& Since
$(x ,x!,k) is continuous at x!bmin for any value of k, the
rhs of Eq. !53" is equal to 1/(2,) times
(*W /*solv)$(x ,x!,k!0)"x!bmin

" . According to first sum rule

!51", the integration of ;̄2(x!) times Eq. !53" leads to the
second sum rule

!
bmin

/

dx!
bmin

/

dx!;̄2!x ";̄2!x!" f$!x ,x!"!2
*W
*solv

. !55"

We notice that, if h##!(x ,x!,y) is again approximated by
the bond Fcc!#(e#e#!$(x ,x!,y), then Eq. !55" implies
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that the corresponding approximation #(e#e#! f$(x ,x!) for
the coefficient #( f ##!(x ,x!) of the 1/y3 tail of
h##!(x ,x!,y) does obey sum rule !4".
Since f$(x ,x!) has the same sign for any x or x! larger

than bmin and obeys sum rule !55" where ;̄2(x) and ;̄2(x!)
are positive, we conclude that

f $!x ,x!"$0. !56"

In other words, for any function ;̄2(x), the 1/y3 tail of the
screened potential $(x ,x!,y) is repulsive at all distances x
and x! !larger than bmin).

D. Factorization of the 1Õy3 tail of !

When x and x! are larger than bmax , f$(x ,x!) has the
factorized structure given by Eqs. !48" and !49". BZIV

[1] has the
same sign as B$IV

[1] (bmax ,bmax). B$IV
[1] (bmax ,bmax)%0 by virtue

of Eq. !48" and of the positive sign of f$(x ,x!) for any x and
x! %see Eq. !56"&. As a consequence, for x and x! larger than
bmax , the 1/y3 tail of $(x ,x!,y) has the dipolar structure
written in Eq. !7", where D̄$(x) is defined up to an arbitrary
sign ? ,

D̄$!x "!?!!#BZIV
[1] "

2, hIV
" !x ,k2!0", !57"

D̄$(x) has the same sign for any x, as well as hIV
" (x ,k2

!0).

IV. CORRELATIONS AT LARGE DISTANCES ALONG
THE WALL

A. 1Õy3 decay of correlations

The leading f$(x ,x!)/y3 tail of the screened potential $ ,
where f $(x ,x!) is integrable, induces the same power-law
decay for the Ursell function h##! . The argument is the fol-
lowing. Since $ falls off as 1/y3 at large distances "y", bonds
Fcc and FR in resummed Mayer diagrams decay as 1/y3 and
1/y6, respectively, according to Eqs. !23" and !24". In graph
decomposition !30" of h##! where bonds are F

cc and I, the
topology of diagrams involved in I implies that I decays at
large distances y at least as 1/y6 !see Sec. II E". Then, in the
series representations of h##!

cc , h##!
#c , h##!

c# and h##!
–– shown

in Figs. 1–3, every term, except I, has 1/y3 tails arising from
all Fcc bonds in the series.
Indeed, all graphs in Figs. 1–3 are chain graphs, so that

their leading algebraic tail must be determined as follows.
Because of the translational invariance in the direction par-
allel to the wall, graphs in Figs. 1–3 can be seen as multiple
convolutions with respect to the variable y, which are inte-
grated over every x variable with a weight w(x). The Fourier
transform in direction y of a single convolution takes the
form

C!x ,x!,k"'! dx" f !x ,x",k"w!x""g!x",x!,k". !58"

If f (x ,x",y) decays as 1/y3, whereas g(x",x!,y) falls off
faster than 1/y3, then the term in the k expansion of
C(x ,x!,k) that is nonanalytic in the components of k at the
lowest order in powers of "k" comes from the corresponding
term "k"B f

[1](x ,x") in the k expansion of f (x ,x",k) and is
equal to

"k" ! dx"B f
[1]!x ,x""w!x""g!x",x!,k!0". !59"

Then, the formula already used to get Eqs. !47" and !48"
from Eq. !46" leads to

C!x ,x!,y" .
"y"→"/

#
1
2,

1

"y"3
! dx"B f

[1]!x ,x""w!x""

&g!x",x!,k!0". !60"

When both f and g behave as 1/y3, the k expansion of
C(x ,x!,k) involves two nonanalytic terms at order "k" and
the integral in Eq. !60" is replaced by

! dx"B f
[1]!x ,x""w!x""g!x",x!,k!0"

"! dx" f !x ,x",k!0"w!x""Bg
[1]!x",x!". !61"

The argument can be generalized to a convolution involving
several functions that all decay as 1/y3. !Similar consider-
ations for convolutions of algebraically decaying functions
have already been displayed in Ref. %19&."

B. Dipolar structure of the 1Õy3 tail

The formal structure of the 1/y3 tail of the Ursell function
h##!(x ,x!,y) can be derived by using decomposition !30"
together with the fundamental properties !60" and !61". Let
us call hm

••(x ,x!,y,# ,#!) the graph with m bonds Fcc in the
representations of either hcc, hc#, h#c or h## exhibited in
Figs. 1–3. According to Eq. !61", the various 1/y3 tails of
every graph hm

•• are determined by replacing one of the bonds
Fcc by its 1/y3 behavior at large y, whereas the other part of
the graph is replaced by its Fourier transform at the value
k!0 !while integrations over variables x’s are left un-
changed".
As a consequence, as shown in Appendix, when all spe-

cies have the same closest approach distance to the wall, the
dipolar structure !7" of the 1/y3 tail of the screened potential
$(x ,x!,y) induces that h##!(x ,x!,y) also has a dipolar
structure !8" with

D#!x "!
e

!*solv
6Z#%D̄$!x ""C̄c#!x "&"C#

##!x "7, !62"

where C̄c#(x) and C#
##(x) are defined in Eqs. !A10" and

!A6", respectively. The term in braces in Eq. !62" can be
rewritten as
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Z#D̄$!x ""! dr"0
>"

1>"!x""Z>"D̄$!x""%h#>"
c# !r,r""

"h#>"
##!r,r""& . !63"

In the weak-coupling limit, only a finite number of re-
summed Mayer diagrams contribute to the coefficient D# .
The calculation performed up to the first-order correction in
the forthcoming paper %12& shows that the latter coefficient
does not vanish.
We stress that results !6"–!8" are valid for species with

various excluded-volume sizes. Indeed, if all species have
not the same hard-core size, the difference appears in the
short-ranged potentials vSR("r#r!";# ,#!) and VSR(x;#),
which describe repulsive pairwise interactions and the im-
penetrability of the wall, respectively. According to its defi-
nition !21", the potential $(r,r!) may depend on vSR("r
#r!";# ,#!) and VSR(x;#) only through the explicit expres-
sion of ;̄2(x). The generic properties of the coefficient
f$(x ,x!) derived in Sec. III rely only on the positive sign of
;̄2(x) and on the boundary conditions obeyed by $ . Besides,
the detailed form of vSR("r#r!";# ,#!) involved in bond FR
never comes up in the discussion of the structure of correla-
tions at large distances y.
We recall that, as stressed in Sec. III B, the existence of a

f$(x ,x!)/y3 tail for $(x ,x!,y) does not depend on the spe-
cific form of VSR(x;#) as long as ;̄2(x) vanishes when x
%0. By virtue of the same argument as that used in previous
paragraph, the generic properties of the latter tail, as well as
the subsequent property !8" for the 1/y3 tail of h##!(x ,x!,y),
are valid even if VSR(x;#) is a soft repulsive potential in-
stead of hard-core repulsion !14".

V. GENERALIZATION OF PREVIOUS RESULTS

The main results !6"–!8" namely, the repulsive nature of
the 1/y3 tail of $ , which is always true, and the dipolar
structures of the 1/y3 tails of $ and h##! , which arise only
in some cases, also hold in the following different situations.

A. Wall with surface charge

If the wall carries an external surface charge, by virtue of
the superposition principle for solutions of the Poisson equa-
tion, one can choose to write the total electrostatic energy as
the sum of two contributions: on one hand the one-body
interactions of all fluid charges with the electrostatic poten-
tial created by the external charge on the wall and by the
electrostatic response of the wall, and on the other hand Cou-
lomb pair interactions !9", which take into account the elec-
trostatic response of the wall, but which are independent of
the external charge. It can be shown, as detailed in a forth-
coming paper, that some generalized Mayer diagrams can be
introduced as in Sec. II. !The effect of the surface charge is
dealt with thanks to a generalized fugacity in a way similar
to what is done for the electrostatic response of the glass wall
in Ref. %14&." Then the density profiles can be studied. In the
Mayer representation of the Ursell function, an auxiliary po-

tential $ , which obeys the inhomogeneous Debye equation
!25", appears after systematic resummations of the Coulomb
divergences.
The resummed electrostatic potential $ obeys the same

boundary conditions as the Coulomb pair interaction %see Eq.
!21"&, and these conditions are independent of the external
charge. Henceforth, in the determination of $ the existence
of the wall surface charge comes up only in the equation
obeyed by $ , where it arises in the function ;̄2(x) through
density profiles %see Eq. !26"&. The whole argument devel-
oped through Secs. III and IV is valid. Indeed, only the posi-
tive sign of ;̄2(x) and the boundary conditions obeyed by $
do matter in the proof of the repulsive nature !6" of the 1/y3
tail of the screened potential $ , while dipolar structures !7"
and !8" are not altered by the precise form of ;̄2(x). There-
fore, these results hold in the presence of an external surface
charge on the wall.

B. Beyond point charges

If some species, for instance, #!ns , are made of colloi-
dal spherical particles, one has to take into account not only
its mesoscopic excluded-volume size !already incorporated
in the primitive model" but also the fact that its charge is not
concentrated at the center of the particle but spread on its
surface. The microscopic Coulomb potential between two
species coincides with expression !9" only for relative dis-
tances "r#r!" larger than the sum of their radii. Since the
integral equation !21" obeyed by $(r,r!) does not involve
the short-ranged pairwise potential vSR("r#r!";# ,#!) but
only the electrostatic interaction v(r,r!), it describes re-
summed interactions between penetrable spheres with uni-
form surface charges spread on them for #!ns and point
charges for other species.
Then the solution for $ in the bulk is no longer Eq. !28".

However, its large "r#r!" behavior is expected to take the
Debye form !28" with a ‘‘geometric’’ corrective factor, as it
is the case for the large "r#r!" decay of the bulk effective
interaction between two impenetrable spheres with uniform
surface charges %see, e.g., Ref. %24& for a detailed calculation
of the expression recalled in Eq. !65"&. Similarly, the solution
in the vicinity of the wall is also altered by the fact that some
charges are distributed uniformly over spheres.
The resolution of the corresponding problems for pen-

etrable spheres !in the bulk or near the wall" is far beyond the
scope of the present paper. However, when y is large with
respect of the size of spherical charges, the monopole-
monopole part of v(r,r!) yields the leading tail in their ef-
fective screened interactions, and functional forms !6" and
!7" of the large-y behavior of $(x ,x!,y) should not be
changed.

VI. EXPERIMENTS WITH COLLOIDS

Most colloidal particles acquire a charge either from sur-
face charge groups or by specific adsorption from an electro-
lytic solution. We call Zcole the bare solvated !or ‘‘struc-
tural’’" charge, which arises from the intricate mechanism of
solvatation. In the past decade colloidal suspensions have
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been widely studied experimentally, in particular, because,
apart from their numerous industrial applications, they can
be seen as model systems for structural phase transitions.
It is well known that the effective interaction ucol col

B be-
tween two isolated colloidal particles in the bulk is well
mimicked by the DLVO !Derjaguin-Landau-Verwey-
Overbeek" potential %23&. !In the following, the superscript B
will denote bulk quantities." When colloids are separated by
more than a few screening lengths, the screened Coulomb
interaction between the two uniformly charged spheres
dominates the other contribution in the DLVO interaction.
The latter Coulomb interaction is calculated in a linearized
mean-field approximation %24& !namely, linearized Poisson-
Boltzmann theory" and the result at relative distances y large
with respect to the screening length and the charge sizes
yields the formula recalled in Eq. !65".

A. Sketch of the debate

From the experimental point of view, the main advantage
of colloids is that their mesoscopic size allows one to track
the motion of every colloidal sphere with a conventional op-
tical microscope and a video camera. Thus, the correlation
hcol col can be experimentally assessed for colloids when they
are far away from the vessel walls or when they are confined
between two glass plates or in the vicinity of a single plane
surface. !See references quoted in Ref. %4&."
In particular, in 1997 Larsen and Grier experimentally

determined the correlation hcol col between dilute negatively
charged polystyrene sulphate spheres optically trapped at the
same distance x from a glass wall with some negative charge
on its surface %2&. Since colloids are dilute in the experiment,
wcol col defined in Eq. !1" is expected to coincide, in fact,
with the effective interaction for an isolated pair, namely,
with the immersion free energy of two isolated colloidal par-
ticles in a bath made of ions. !We recall that wcol col is a
statistical average performed over microscopic configura-
tions of both microscopic ions and many colloidal particles,
whereas the immersion free energy ucol col of two colloidal
spheres arises from averaging only over counterion configu-
rations." The authors claimed that the corresponding effec-
tive pairwise interaction ucol col(x ,x!,y) between mesoscopic
like charges at the same distance x!x! from the wall was
attractive at large relative distances y.
However, theoretical works devoted to the effective inter-

action ucol col between two isolated colloids predicted that
ucol col is repulsive not only in the bulk but even in a con-
fined geometry. %These works involve mean-field !Poisson-
Boltzmann" theories %25& or local density functional approxi-
mations where correlations are included in a local free-
energy term %26&.& Theoretical results about the repulsive
nature of ucol col were supported by a second experiment in
the vicinity of a single charged glass wall published in 2001
by Behrens and Grier %27&. In the experiment, denser silica
spheres are confined at a fixed distance from the wall by the
balance between gravity and the electrostatic repulsion ex-
erted by the surface charge on the wall. Colloidal particles
are not dilute, and oscillations in wcol col , the depth of which
depends on the colloid density, appear over a length scale

equal to a few nearest-neighbor distances. Behrens and Grier
argued that the observed oscillations should be ascribed to a
mere crowding effect commonly seen in liquids even when
the electrostatic part of the immersion free energy of an iso-
lated pair ucol col is repulsive.
Eventually, Squires and Brenner %3& argued that the attrac-

tion determined in the first experiment %2& could be ac-
counted for by a nonequilibrium effect: the measured quan-
tity was, in fact, the sum of the repulsive equilibrium free
energy ucol col and an attractive phenomenological attraction
ucol col
hyd , which results from hydrodynamic flows excited by
the spheres retreat from the charged wall, whose charge has
the same sign as that of colloids.
However, attraction between like charges has also been

observed in experiments with colloidal suspensions confined
between two charged walls, and in the latest ones %4&, which
involve experimental methods similar to those used in Refs.
%2& and %27&, Han and Grier have checked the absence of any
hydrodynamical effect. Therefore, an open question is: in the
absence of any hydrodynamical effect, might confinement
combined with many-body effects mediated by colloids or
ions result into an attractive effective pairwise interaction
wcol col or ucol col in some range of distances?

B. Experiment about dilute colloids in the vicinity
of a single wall

In the present section we revisit the case of the vicinity of
a single wall studied in Ref. %2& in the light of our results
about statistical mechanics of charge fluids. In the experi-
ment of Ref. %2&, the diameter of polystyrene sulphate
spheres is )col!0.652 @m, and the mean intercolloid dis-
tance acol is greater than 25 @m. At room temperature T, the
Bjerrum length A'(e2/*solv !closest approach distance be-
tween like-charge ions with mean kinetic energy 1/() is A
!7 10#4 @m. The absolute value "Zcol" of the bare solvated
charge in electron-charge units is estimated to be much
smaller than 105, which is the number of ionizable sulphate
groups chemically bound to its surface before solvatation,
because not all sulphate groups dissociate.
The correlation hcol col between colloidal particles is mea-

sured at distances x1!9.5(1.0 @m and x2!2.5(0.5 @m
for relative distances y, which vary from 2.3 @m to 7 @ m.
wcol col at x1 is always repulsive, whereas at x2 it becomes
attractive for distances yBy inv!2.5 @m.
Colloids are dilute enough for the parameter )col /acol to

be small ()col /acol%0.03). Thus we expect that, in the range
of investigated y’s, which are indeed larger than the colloid
diameter )col , the functional form of wcol col(x ,x!,y) is de-
termined only by interactions different from the hard-core
repulsion. We recall that this is not true in the experiment of
Ref. %27& where the ratio )col /acol takes the high value 0.5.
Then, because of crowding effects, the dependance of
wcol col(x!x!,y) upon the relative distance y has oscillations
with a period equal to the nearest-neighbor distance 2)col up
to y of order 8)col %see the comment after Eq. !1"&.

1. Effective electrostatic interaction in the bulk

In the bulk, when the relative distance y between colloids
is larger than the screening length ;B

#1 , we expect that the
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effective pairwise interaction is dominated by the Coulomb
forces and, when y is also large with respect to the colloid
radius, it takes the Debye form

wcol col
B !y " .

!;B
#1,)col)%y

%Zcol
eff Be&2

*solv

e#;By

y . !64"

The difference between Zcol
eff B and the ‘‘bare’’ solvated charge

Zcol defined at the beginning of Sec. VI arises from the com-
bination of many-body effects !linked to the Coulomb cou-
pling and short-ranged repulsions" with the steric effect due
to the fact that the charge is not concentrated at a point but is
spread over a sphere.
When colloids are very dilute, many-body interactions be-

tween colloids become negligible and wcol col tends to the
immersion free energy ucol col of an isolated pair of colloids,
where many-body effects are only due to interactions medi-
ated by ions. Since functional form !64" of wcol col

B (y) in-
volves size effects only in the parameters Zcol

eff B and ;B ,
ucol col
B (y) has the same functional form as wcol col

B (y), where
;B is replaced by ;B

ion , the inverse screening length created
by ions, and Zcol

eff B is replaced by Zcol
eff B ion .

In the DLVO approximation, which is usually used for
ucol col
B in order to interpret experiments with colloids, ;B

ion is
approximated by the inverse ionic Debye length ;D

ion , while
the effective charge Zcol

eff B ion is approximated by Zcol
DLVO ,

ucol col
B DLVO!y " .

!1/;D
ion,)col)%y

%Zcol
DLVOe&2

*solv

e#;D
iony

y . !65"

In Eq. !65" ;D
ion is defined as in Eq. !27" with the summation

restricted to ionic species, and Zcol
DLVO is equal to Zcol times a

‘‘geometric’’ factor %24&:

Zcol
DLVO!Zcol

e;D
ion)col/2

1"!;D
ion)col/2"

. !66"

We notice that, as a result of the strong electrostatic coupling
between microions and the macroscopic charge of a colloid
in the vicinity of the colloid surface, nonlinearities and mi-
croion correlations can dramatically reduce Zcol

eff B ion with re-
spect to the bare solvated value Zcol !see, e.g., Ref. %28&".
When the structural charge Zcol increases, Zcol

eff B ion may even
tend to a saturation value independent of Zcol and propor-
tional to the diameter )col %29&.

2. Experimental results in the bulk

At distance x1!9.5 @m the experimental curve is prop-
erly fitted by Eq. !64". The latter fit determines the values of
the inverse screening length ;B and of the effective charge
Zcol
eff B in the bulk. Their respective values are ;B

#1

!0.275 @m and Zcol
eff B!11 000. Henceforth

)col!2.4 ;B
#1. !67"

If expression !64" with measured parameters is identified
with its approximate DLVO value !65", then ;D

ion.;B and
Zcol is of the same order as Zcol

eff B : "Zcol"!7300. The latter
value is indeed lower than the number 105 of ionizable
groups on the colloid surface before solvatation.
The values derived from the fit give various pieces of

information. First, experiments are carried at distances from
the wall equal to x1.35;B

#1 , which is indeed far away in
the bulk, and x2.9;B

#1 , while the relative distance y ranges
from about 8;B

#1 to 25;B
#1 .

Henceforth distances y are large compared with the
screening length ;B

#1 and the colloid diameter )col
.2.4;B

#1 : they are indeed in the range where electrostatic
forces are expected to dominate other short-ranged interac-
tions between colloidal particles, and where the monopole-
monopole part of electrostatic interactions is indeed the lead-
ing term.
Another information can be checked from the fit: the Cou-

lomb coupling between colloidal particles is strong.
The ‘‘bare’’ Coulomb coupling parameter 9col col
'(%Zcole&2/(*solvacol)!Zcol

2 (A/acol) ranges from 370 to
1500 when the mean intercolloid distance acol varies from
100 @m to 25 @m. Meanwhile the effective Coulomb pa-
rameter %Zcol

eff B&2;BA , which we define from 9col col by re-
placing Zcol by Zcol

eff B and acol by ;B
#1 , is of order 105, since

the effective Coulomb parameter ;BA between ions is of
order 10#3. This effective parameter arises in

wcol col
B !y "
kBT

.
!;B

#1,)col)%y

%Zcol
eff B&2Ã

e# ỹ

ỹ
, !68"

where ỹ!;By and Ã!;BA . !Weak-coupling expansions are
series in powers of Ã times possible logarithms. Ã is some-
times called the plasma parameter."
However, we notice that, since the distances y investi-

gated in the experiment are larger than 8;B
#1 , the large in-

tensity of the Coulomb interaction given by %Zcol
eff B&2Ã is ex-

ponentially reduced by the screening effect contained in
exp%#ỹ&: wcol col

B (y) is of order kBT at y.10 ;B
#1 .

3. Dilute colloids in the vicinity of the wall: modelization from
statistical mechanics of charge fluids

We stress that our model is relevant for the experimental
system of Ref. %2&. First, at the investigated distances y the
electrostatic force dominates other interactions, as previously
checked in the bulk. Second, our model takes into account
the characteristic steric and electrostatic features of the ex-
periment. On one hand, all species do not have the same
closest approach distance to the wall, and they have different
sizes !see Sec. II A". !The closest approach distance bcol of
colloids to the wall is at least of order )col/2: it is very
different from the corresponding distance b ion for micro-
scopic ions." On the other hand, the existence of a negative
surface charge on the glass wall, and the fact that the charge
of one species is not concentrated at a point but spread on a
sphere have been discussed in the generalizations of Sec. V.
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If bcol.)col/2, the leading term in the effective electro-
static interaction is controlled by the Coulomb interactions
between point effective charges, because the investigated
distances y$8;B

#1 and x2#bcol.8;B
#1 are large compared

both with the screening length ;B
#1 and the colloıd diameter

)col!2.4;B
#1 . In other words, wcol col at large distances y

and x#bcol has the same functional form as in a primitive
model where every charge is concentrated at the center of an
impenetrable sphere. The ratio between the effective charge
in the spherical-charge fluid and the effective charge in the
point-charge model is expected to be of order unity, as indi-
cated by the DLVO approximation !66" for the bulk effective
charge, the renormalization of which is equal to 1.5 in the
present experiment.
By virtue of Eq. !40", which is also valid in the presence

of a surface charge on the wall !as discussed in Sec. V A",
the screened potential $(x ,x!,y) for point charges is the sum
of a function with algebraic and exponential tails and of an
exponentially decaying term $sing(i) if x and x! are in the
same subregion (i). As a consequence, we expect that
hcol col(x ,x!,y) as well as the effective interaction
wcol col(x ,x!,y) take different forms at distances shorter or
larger than some distance y!(x ,x!):

wcol col!x ,x!,y " .
y!!x ,x!"%y

f col col!x ,x!"
y3

!69"

and

wcol col!x ,x!,y "
kBT

.
!;B

#1,)col)%y%y!(x ,x!)

zcol col!x ,x!"Ã
e# ỹ

ỹ
.

!70"

When x!x! the distance y!(x) from which the dipolar tail
!69" becomes of the same magnitude order as the exponential
tail !70" is estimated in the following. As checked in the
following subsection, when the distance x from the wall in-
creases, the range of distances 0%y%y!(x), where the ex-
ponential tail in wcol col(x!x!,y) overcomes its dipolar tail,
also increases very fast, and the exponential tail tends to its
repulsive bulk value,

zcol col!x!x!" .
!;B

#1,)col)%(x#bcol)

%Zcol
eff B&2. !71"

In other words, for (;B
#1 ,)col)%y%y!(x) and (;B

#1 ,)col)
%(x#bcol), wcol col(x!x!,y) tends to the bulk value
wcol col
B (y) given in Eq. !68".

4. Linearized mean-field estimations

In a dilute system, because of the long-range of the Cou-
lomb interaction, wcol col as well as ucol col are expected to
decay at large distances as their mean-field values. The fast
screening of the Coulomb interaction implies that, though
bare Coulomb coupling between colloids is strong, the mean-
field value of wcol col (ucol col) at large relative distances is
expected to be correctly given by linearizing functions of
(wcol col ((ucol col). !In the Mayer diagrammatic such a lin-

earized mean-field theory is equivalent to a weak-coupling
and high-dilution limit, as shown in Ref. %11&. The lineariza-
tion is legitimate for purely ionic contributions." Then

wcol col
LMF !x ,x!,y " .

!;B
#1,)col"%y

%Zcole&2$!x ,x!,y ", !72"

where $(x ,x!,y) is the solution of integral equation !21". If
charges are not concentrated at points, the effect is contained
in $(x ,x!,y). According to general property !7", since x and
x! are larger than bmax!bcol for colloidal particles,

f col col
LMF !x ,x!"!%Zcole&2D̄$!x "D̄$!x!". !73"

If bcol.)col/2, then bcol.;B
#1 in the present experiment

and, when x and x! are larger than ;B
#1 , D̄$(x) is expected

to have the same functional form as the potential D̄$(0)(x)
calculated for point charges located at the centers of
excluded-volume spheres and with uniform density profiles.
($ (0)(x ,x!,y) takes into account the various closest ap-
proach distances to the wall b#’s; henceforth $ (0) must not
be confused with the potential $ (0) written in Eq. !44" where
all b#’s are equal to the same value b." Therefore, we expect
that for y$y!

LMF(x)

%ZcoleD̄$!x "&2

y3 kBT

.
!;B

#1,)col"%!x#bcol"

2
*W
*solv

Ã%A$Zcol&2
e#2;B(x#bcol)

ỹ3
,

!74"

where ;B
#1 is the same screening length as in the bulk. In the

weak-coupling and high-dilution limit, at leading order ;B
(0)

!;D . A$Zcol is an effective charge that incorporates various
effects. At leading order in the Coulomb-coupling and dilu-
tion parameters, A$(0) is determined by the fact that all spe-
cies have not the same approach distance to the wall and that
charges are not concentrated at points. The first correction
A$(1) contains effects of the geometric repulsion and the
electrostatic response of the wall, of its surface charge and of
the nonuniform profile of the electrostatic potential created
by the charge density profile in the vicinity of the wall. In
fact, if the first correction $ (1) is considered, then
wcol col(x ,x!,y) itself must also be calculated at the same
order and then other corrections arise from screened interac-
tions mediated by colloids or ions. %The 1/y3 tail of
wcol col
(1) (x ,x!,y) is calculated in the case of charges concen-

trated at points when there is no surface charge on the wall
and when all charges have the same approach distance to the
wall b);B

#1 in the forthcoming paper %12&. We check that
the charge renormalization is not the same for the 1/y3 tail of
wcol col
(1) (x ,x!,y) and for the exponential tail of wcol col

B (1) (x
#x!,y).&
The distance y!

LMF(x) at which the linearized mean-field
dipolar tail !74" becomes of the same magnitude order as the
exponential tail in Eq. !72" can be approximatively calcu-
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lated as the distance y!
(0)(x) at which the 1/y3 algebraic tail

overcomes the exponential tails in $ (0) defined in previous
paragraph. The structure of $ (0) at x$bmax and x!$bmax is
the same as that in Eq. !44" where only the expression of
ZIV
(0)("k") depends on the fact that all b#’s are equal to the
same value b or not. y!

(0)(x) itself can be determined only
roughly, because the 1/y3 term dominates all other algebraic
tails in $ (0)#$sing

(0) at large y, but the exponential tails in
$ (0)#$sing

(0) are not easy to estimate, as can be seen in a
similar situation in Ref. %30&. We assume that the latter ex-
ponential tails are of the same order as $sing

(0) !$D %see Eq.
!28"& or negligible with respect to it. Then, if ;D in $ (0) is
replaced by ;B , an approximate value of y!

(0)(x) is the so-
lution of the equation

2
*W
*solv

e#2( x̃# b̃col)!% ỹ!
(0)!x "&2e# ỹ!

(0)(x), !75"

where the tilde denotes dimensionless lengths defined as in
Eq. !68". In the latter approximate equation we have replaced
A$(0) by 1, which is the case only when all closest approach
distances b#’s to the wall are equal. When *W /*solv is of
order 1/80, y!

(0)(x) is equal to 7;B
#1 for x!bcol , 10;B

#1 for
x#bcol!;B

#1 , 15;B
#1 for x#bcol!3;B

#1 , and 20;B
#1 for x

#bcol!5;B
#1 .

In the experiment x2!9;B
#1 . If bcol is approximated by

bcol.)col/2.1.2;B
#1 , then (x2#bcol).8;B

#1 and y!
(0)(x2)

is far larger than the y’s investigated. In other words, dipolar
tail !74" is killed by the factor exp%#2;B(x2#bcol)&
!exp(#16).10#7 and the exponential tail in Eq. !72"
dominates algebraic tail !74" in the range of investigated y’s.

5. Experimental results in the vicinity of a single wall

At the finite distance x2.9 ;B
#1 from the wall, wcol col is

again measured in the range of y’s from 8;B
#1 to 25;B

#1 . At
short distances, wcol col is repulsive and decreases when y
increases, its sign changes at y!y inv.9;B

#1 , wcol col has a
negative minimum at ymin.13 ;B

#1 , and its dependance on y
for large y’s is compatible with an algebraic law.
In the range 8;B

#1%y%y inv.9;B
#1 where wcol col is re-

pulsive, the experimental curve is fitted by the exponentially
fast bulk decay !64",

wcol col!x!x!,y " .
y%y inv

wcol col
B !x!x!,y ". !76"

If bcol.)col/2, result !76" is in agreement with the linear-
ized mean-field approach of the preceding subsection: the
exponential tail in the electrostatic pairwise interaction !72"
dominates the repulsive dipolar tail in the whole range of
investigated y. Moreover, it is well approximated by its re-
pulsive bulk value, as argued after Eq. !71".
Therefore, the origin of the attraction measured in experi-

ment %2& for y$y inv is not electrostatic interaction at equi-
librium. The granted explanation for the observed attraction
near one wall relies on a hydrodynamical effect involving
electrostatic interactions. Squires and Brenner %3& argued that
the experimental curve could be accounted for by the com-

petition between the exponential tail of the effective electro-
static interaction and the hydrodynamical force induced be-
tween colloids by the external electrostatic field created by
the surface charge on the wall. This interaction is attractive if
the surface charge on the wall has the same sign as the col-
loid charge, which is indeed the case in the experiment
where the surface charge on the wall is negative as the
charges carried by colloids. Squires and Brenner calculated
the interaction between the surface charge and a colloid in a
bath of ions by using a linearized mean-field approach with
point charges, namely, by using the same approximations as
those used in the preceding subsection for the equilibrium
effective electrostatic interactions. For the effective charge
near the wall they took the bulk DLVO expression. For the
sake of completeness, we rewrite their result where we re-
place ;D

ion by the effective inverse screening length ;B :

ucol col
hyd

kBT
!#

C

1"!;B)col/2"
%Zcole&2Ã

6!x/)col"2

!x/)col"#!9/32"

&
x̃2

%4 x̃2" ỹ2&3/2
e#[ x̃#()̃col/2)]. !77"

In Eq. !77" C is the ratio between the surface charge density
on the wall and the surface density of the charge Zcole on a
colloidal sphere. Squires and Brenner showed that Brownian
dynamics simulations account for experimental curves when
C!0.4. !The latter value of C can be explained on purely
geometrical grounds in a phenomenological theory of
effective-charge saturation %31&." When C is set to 0.4, the
magnitude order of ucol col

hyd is larger than the electrostatic ex-
ponential tail !76" when y$9;B

#1 .

C. Open questions

As a conclusion, the lightning from statistical mechanics
of charge fluids at equilibrium to the question at the end of
Sec. VI A is the following.
First, the observed attraction between dilute colloidal par-

ticles in the vicinity of a single wall cannot arise from purely
electrostatic effects if the linearized mean-field scheme for
wcol col is valid, as it is the case in previous mean-field theo-
ries for ucol col .
For the distances investigated in the experiment of Ref.

%2&, the exponential tail prevails over the algebraic tail. How-
ever, we stress that the magnitude order of the coefficient
f col col(x ,x!) in the 1/y3 tail of wcol col(x ,x!,y) is very sensi-
tive to the actual value of the closest approach distance bcol
of colloids to the wall, as it is the case for its linearized
mean-field value. If dilute silica spheres were used instead of
polystyrene sulphate spheres, the former denser colloidal
particles might sediment in a plane parallel to the glass plate,
as it is the case in the experiment %27&. !We recall that in the
experiment %27&, silica colloids are not dilute and results of
Secs. VI B 3 and VI B 4 cannot be applied." Then, although
all colloids would be constrained to lie in the plane at xbal by
the balance between gravity and the interaction with the wall
surface charge, the exponential screening in the direction x
perpendicular to the wall would still be ensured by the pres-
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ence of ions of both signs in the solution. !The localization
of colloidal particles in a plane does not cause qualitative
changes in the electrostatic screening contrarily to what hap-
pens at an air-water interface %30&." In this case, bcol would
be equal to xbal , the only accessible distance x for colloids,
and the repulsive dipolar tail !74" at x!xbal would dominate
the exponential tail in Eq. !72" in a range that can be esti-
mated to be y$y!

(0)(x!bcol).7;B
#1 .

If coupling or steric effects at higher density were such
that the linearized mean-field approximation !72" failed, then
the coefficient f col col(x ,x!) in the 1/y3 tail of wcol col would
no longer have the dipolar structure !73" and its sign might
vary. In the case of the bulk effective interaction wcol col

B ,
such coupling and steric effects have been investigated by
means of approximate closures of the integral Ornstein-
Zernicke equations for the primitive model %32,33&.
On the other hand, in the experiment of Ref. %4&, where

colloids are densely distributed and confined between two
glass walls separated by a distance equal to only a few col-
loid diameters, Han and Grier exclude any explanation for
the observed attraction that would be based on kinematic
effects, such as a hydrodynamic coupling. !The latter effect,
which disappears for symmetry reasons when colloids lie
exactly at the same distance from two equally charged sur-
faces, may arise because experiments necessarily have a de-
gree of off center. However, typical drift speeds in the ex-
periment of Ref. %4& are far too small to mediate measurable
in-plane hydrodynamic coupling."
We stress that in the case of a solution confined between

two plates carrying external negative charges, boundary con-
ditions are changed and the arguments used in Sec. III no
longer hold. Without any further investigation, we cannot
assert whether the f$(x ,x!)/y3 tail of $(x ,x!,y) is still re-
pulsive everywhere in the fluid and we expect that f$(x ,x!)
no longer has factorized structure !7". We notice that, in an
approximated calculation where density profiles are uniform
between two plates %8&, f$(0)(x ,x!) loses factorization prop-
erty !7", but it is still repulsive.
Finally, we notice that the electrostatic model with pure

charge-charge Coulomb forces is perhaps too crude. It does
not take into account the polarization of the solvent around
each colloidal particle. The latter intricate phenomenon
might be the root of the observed attraction between like-
charge colloids.
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APPENDIX

In the present Appendix, we use the principles recalled at
the beginning of Sec. IV B in order to determine the formal
structure of the 1/y3 tail of the Ursell function h##!(x ,x!,y),
when all species have the same closest approach distance to
the wall. In this case the 1/y3 tail of the bond Fcc has dipolar
structure !7" of the screened potential $

Fcc!x ,x!,y" .
y→"/

#
(e2

*solv
Z#Z#!

D̄$!x "D̄$!x!"

y3
. !A1"

The 1/y3 tail of h##!
## (x ,x!,y) is the sum of the tails of all

graphs hm
##(a ,a!) with m bonds Fcc (m!1,2, . . . ). The

1/y3 tail of hm
##(a ,a!) itself is the sum of the m tails arising

from every bond Fcc in hm
## by virtue of Eq. !61". With the

notations of definition !33", the pth bond Fcc in hm
## (p

!1, . . . ,m) in Fig. 3 links points (p#1)!!(rp#1! ,>p#1! )
and p!(rp ,>p). %With notations of Fig. 3 (r0! ,>0!)!c and
(rm ,>m)!c!.& According to Eq. !60", the tail arising from
the pth bond Fcc in hm

##(a ,a!) reads

#
(e2

*solv

1

y3
C#

## [p#1]!x "C#!
## [m#p]!x!". !A2"

In Eq. !A2" C#!
## [m#p](x!) denotes the contribution from the

part of hm
## between points p!(rp ,>p) and a!!(r!,#!).

This part contains m#p bonds Fcc and

C#!
##[m#p]!x!"'! dxp0

>p
1>p

!xp"Z>p
D̄$!xp"

&hm#p
## !xp ,x!,k!0;>p ,#!". !A3"

The contribution from the part of hm
## between points a

!(r,#) and (p#1)!!(rp#1! ,>p#1! ) is equal to the rhs of
Eq. !A3", where (xp ,>p) is replaced by (xp#1! ,>p#1! ) while
hm#p

## (xp ,x!,k!0;>p ,#!) is replaced by hp#1
## (x ,xp#1! ,k

!0;# ,>p#1! ). We have used the same notation for both con-
tributions, because hp#1

## „a ,(p#1)!… is symmetric with re-
spect to a and (p#1)!. The 1/y3 tail of h##!

## (x ,x!,y) is
equal to

#
(e2

*solv

1

y3
0
m!1

"/

0
p!1

m

C#
##[p#1]!x "C#!

##[m#p]!x!".

!A4"

The double sum in expression !A4" can be written as a prod-
uct of two sums with the result

h##!
##!x ,x!,y" .

y→"/
#

(e2

*solv

1

y3
C#

##!x "C#!
##!x!" !A5"

with C#
##(x)'0n!0

"/ C#
##[n](x). By virtue of Eq. !A3",

C#
##!x "!! dr"0

>"
1>"!x""Z>"D̄$!x""h#>"

##!r,r"".

!A6"

The 1/y3 tail of h##!
c# (x ,x!,y) appears as the sum of two

contributions, as it is the case for every hm
c# when mB2. The
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1/y3 tail arising from the bond Fcc attached to a in
hm
c#(a ,a!)!hm

c#(x ,x!,y;Z# ,Z#!) is equal to

#
(e2

*solv

1

y3
Z#D̄$!x "C#!

##[m#1]!x!" !A7"

with the same notation as in expression !A2". When m!1,
expression !A7" is the only contribution. When mB2, the
1/y3 tail that originates from the other m#1 bonds Fcc is the
sum

#
(e2

*solv

1

y3
Z#0

p!2

m

C̄c#[p#1]!x "C#!
##[m#p]!x!". !A8"

In Eq. !A8" we have exhibited the fact that the dependence
on Z# in hc# is merely a multiplicative factor Z# : we have
defined Z#C̄c#[p#1](x) similarly to C#

##[p#1](x) with hp#1
c#

in place of hp#1
## %see the comment after Eq. !A3"&. After

summation over m from 1 to "/ , we get

h##!
c# !x ,x!,y" .

y→"/
#

(e2

*solv

1

y3
Z#%D̄$!x ""C̄c#!x "&C#!

##!x!",

!A9"

with C̄c#(x)'0n!1
"/ C̄c# [n](x). Similar to Eq. !A6"

Z#C̄#
c#!x "!! dr"0

>"
1>"!x""Z>"D̄$!x""h#>"

c# !r,r"".

!A10"

The asymptotic tail of h##!
#c takes a form similar to that of

h##!
c# : the roles of # and #! are exchanged and there appears
a C̄#c(x!) defined by analogy with C̄c#(x) with
h>"#!

#c (r",r!) in place of h#>"
c# (r,r"). Since h>"#!

#c (r",r!)
!h#!>"

c# (r!,r"), C̄#c(x!)!C̄c#(x!).
The calculation of the 1/y3 tail of h##!

cc (x ,x!,y) is a gen-
eralization of the previous one. Four kinds of contributions
can be distinguished, according to whether the 1/y3 tail of
hm
cc(a ,a!) arises or not from the bond Fcc attached to x or
from the bond Fcc attached to x!. We obtain

h##!
cc !x ,x!,y" .

y→"/
#

(e2

*solv

1

y3
Z#Z#!%D̄$!x ""C̄c#!x "&

&%D̄$!x!""C̄c#!x!"& . !A11"

After summation of tails !A5", !A9" and the symmetric
one, together with tail !A11", the large-y behavior of
h##!(x ,x!,y) proves to have dipolar structure !8" where
D#(x) is given in Eq. !62".
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