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Equilibrium particle densities near a hard wall are studied for a quantum fluid
made of point charges which interact via Coulomb potential without any regular-
ization. In the framework of the grand-canonical ensemble, we use an equivalence
with a classical system of loops with random shapes, based on the Feynman–Kac
path-integral representation of the quantum Gibbs factor. After systematic
resummations of Coulomb divergences in the Mayer fugacity expansions of loop
densities, there appears a screened potential f. It obeys an inhomogeneous
Debye–Hückel equation with an effective screening length which depends on the
distance from the wall. The formal solution for f can be expanded in powers of
the ratios of the de Broglie thermal wavelengths la’s of each species a and the
limit of the screening length far away from the wall. In a regime of low degeneracy
and weak coupling, exact analytical density profiles are calculated at first order in
two independent parameters. Because of the vanishing of wave-functions close to
the wall, density profiles vanish gaussianly fast in the vicinity of the wall over dis-
tances la’s, with an essential singularity in Planck constant (. When species have
different masses, this effect is equivalent to the appearance of a quantum surface
charge localized on the wall and proportional to ( at leading order. Then, density
profiles, as well as the electrostatic potential drop created by the charge-density
profile, also involve a term linear in ( and which decays exponentially fast over
the classical Debye screening length tD. The corresponding contribution to the
global surface charge exactly compensates the charge in the very vicinity of the
surface, so that the net electric field vanishes in the bulk, as it should.

KEY WORDS: Coulomb interactions; quantum mechanics; hard wall; grand-
canonical ensemble; inhomogeneous Debye equation; surface charge.



1. INTRODUCTION

1.1. Issue at Stake

In the present paper, an extended version of which can be found on the
web, (1) the equilibrium density profiles in a quantum fluid of point charges
are studied in the vicinity of an impenetrable hard wall. The wall, which
occupies the semi-infinite region x < 0, has no internal structure and its
dielectric constant is the same as that of the medium where charges move.
On the contrary, the fluid made of ns particle species is described at the
microscopic level in the framework of quantum statistical mechanics. Two
point charges ea and eaŒ (where a is a species index) interact via the electro-
static interaction eaeaŒ v(r − rŒ), where

v(r − rŒ)=
1

|r − rŒ|
(1.1)

in Gauss units. ( The charge ea includes a factor 1/`Em in energy terms
when charges are embedded in a continuous medium with a relative dielec-
tric constant Em with respect to the vacuum.) The interaction is translatio-
nally invariant, and the anisotropy lies only in the geometric constraint
enforced by the presence of the wall. The exact analytical expressions of the
density profiles ra(x)’s are obtained in a regime where exchange effects are
negligible and where Coulomb coupling is weak. Results hold for the elec-
tron-hole gas in an intrinsic semi-conductor in the vicinity of a junction or
for a dilute and hot quantum plasma near a vessel wall.

The interesting point of the model is that it exhibits how a quantum
charge effect, gaussianly localized over de Broglie thermal wavelengths in
the vicinity of the wall, is carried by long-range Coulomb interactions up to
larger distances from the wall, with an exponential decay over a scale equal
to the coulombic screening length. Indeed, whereas the density in a classical
ideal gas is uniform in the whole region x > 0 and is discontinuous on the
wall surface, the quantum density is continuous and vanishes at x=0,
because of the continuity of wave-functions and their cancellation inside
the impenetrable wall. At the inverse temperature b=1/kBT (where kB

is Boltzmann constant), in a low-degeneracy limit quantum statistics is
reduced to Maxwell–Boltzmann statistics, and the density r id

a (x) of species
a in an ideal gas with quantum dynamics vanishes gaussianly fast over the
scale of the thermal de Broglie wavelength la,

r id
a (x)=rB

a (1 − e−2x2/l
2
a)+rB

a O
11la

aa

232 . (1.2)
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In (1.2) rB
a is the bulk density for species a, and

la=( = b

ma

, (1.3)

where ( is Planck constant and ma is the mass of species a. The quantum
expression with Maxwell–Boltzmann statistics (1.2) is valid up to terms of
order (la/aa)3, where aa is the mean interparticle distance between particles
of the same species a ((4/3) prB

a a3
a=1).

When Coulomb interactions are taken into account, there arises only
one third typical length scale, because Coulomb interactions are scale-
invariant. Then only two independent dimensionless parameters rule the
physical regimes of the system: the degeneracy parameter and the Coulomb
coupling parameter. The degeneracy parameter is (l/a)3, where l=supa {la}
and a is a typical mean interparticle distance. When exchange effects are
negligible,

1l

a
23

° 1. (1.4)

The third length scale may be chosen to be either the classical screening
length tD

t−1
D =oD — =4pb C

ns

a=1
rB

a e2
a (1.5)

or the Landau length be2, namely the classical closest approach distance
between two typical like-charges e with kinetic energy of order 1/b. Hence-
forth, the classical Coulomb coupling parameter can be chosen to be equal
either to the ratios (a/tD)3, be2/a — C, or be2/tD — 2eD. These ratios are
proportional to one another,

1 a
tD

23

3 eD 3 C3/2. (1.6)

More precisely they are linked by the relations (a/tD)3=CeD and eD=
[C/8]1/2 C3/2, where C is a numerical factor which depends on the com-
position of the fluid through tD and on the relation between a and bulk
densities. In a weak-coupling regime

1 a
tD

23

° 1. (1.7)
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When both (1.4) and (1.7) are satisfied,

l ° a ° tD. (1.8)

Therefore, the low-degeneracy and weak-coupling regime is also a regime
where oDl ° 1.

1.2. Results

In the low-degeneracy and weak-coupling regime defined by (1.4) and
(1.7), the analytical expression for the profile density ra(x) is calculated in
a subregime where the first coupling correction, of order eD=oDbe2/2, and
the first diffraction correction, of order oDl, dominate other coupling and
exchange corrections. At order eD classical contributions do not involve the
short-range cut-off that must be introduced in order to prevent the collapse
of the system in the limit where ( tends to zero. As shown in Section 5, the
subregime corresponds to a scaling where

e2
D [ 1l

a
23

° eD. (1.9)

(1.9) can be reexpressed as e3
D [ (oDl)3 ° e2

D, since (l/a) 3 oDl/e1/3
D by

virtue of (1.6). In the subregime (1.9) the density profile in the region x > 0
reads

ra(x)=rB
a (1 − e−2x2/l

2
a)

× [1 − 1
2 oDbe2

a L̄(oDx) − beaF(x)]+rB
a o(eD, oDl) (1.10)

where o(eD, oDl) denotes a sum of terms which tend to zero faster than
either eD or oDl when these parameters vanish (see (5.2)). When the latter
terms are neglected, ra(x) appears as the product of the ideal-gas density
(1.2) with a function arising from interaction corrections. ( The generic
properties of density profiles are discussed in Section 6.)

The density profile (1.10) results from the combination of three effects:
first, the vanishing of quantum wave-functions in the vicinity of the wall;
second, the geometric repulsion from the wall, (2) described by the classical
part of the screened self-energy due to the deformation of screening clouds,
(1/2) oDbe2

a L̄(u), given in (5.14); third, the interaction eaF(x) with the
electrostatic potential drop F(x) with respect to the bulk, which is created
by the charge density profile ;c ec rc(x) itself. ( The sign of the latter
interaction depends on the sign of ea.) The potential drop F(x) in (1.10)
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is the sum of a classical contribution (2) and a quantum ‘‘diffraction’’ effect,
linear in (,

F(x)=Fcl(eD)(x)+Fqu(oDl)(x). (1.11)

Fcl(eD)(x), of order eD/(be), is written in (5.45) and Fqu(oDl)(x), of order
oDl/(be), reads

Fqu(oDl)(x)=−(Be−oDx with B=
p

`2

;c (ec/`mc) rB
c

`;a e2
arB

a

. (1.12)

Fqu(oDl)(x) appears only when species have different masses, because of the
bulk local neutrality

C
a

ea rB
a =0. (1.13)

The density profile (1.10) can be rewritten as

ra(x)=(1 − e−2x2/l
2
a)[rcl(eD)

a (x)+(rB
a beaBe−oDx]+rB

a o(eD, oDl), (1.14)

where rcl(eD)
a (x) is the classical density profile calculated up to relative order

eD
(2) and written in (5.52). We stress that the direct contribution (1.2) from

the vanishing of wave-functions in the ranges la’s from the wall has an
essential singularity in (, whereas the quantum part of the electrostatic
potential at leading order, Fqu(oDl)(x), is linear in (. (We recall that for
systems invariant under translations—which is not the case here—and with
sufficiently smooth potentials—such as the Coulomb interaction—(-expan-
sions involve only even powers of (, as can be seen for instance in Wigner–
Kirkwood expansions.)

The appearance in the electrostatic potential F(x) of a (-term which
decays exponentially fast over the classical Debye screening length tD has
the following physical interpretation. When species have different masses,
the global charge s< carried by the fluid (per unit area) over all distances
x < a from the wall is essentially created at leading order by the differences
in the Gaussian density profiles and is concentrated over a width of order l.
Since l is negligible with respect to the bulk mean interparticle distance a,
the leading-order charge squ(oDl)

< can be seen as a surface charge localized at
x=0. As shown in Section 6.4, the surface charge squ(oDl)

< , which appears
even in the zero-coupling limit, creates an electrostatic potential through
the classically-screened Coulomb interaction (calculated at leading order),
and this potential is equal to the leading (-term Fqu(oDl)(x) in the electro-
static potential F(x) created by the charge-density profile ;a ea ra(x).
Moreover Fqu(oDl)(x) is involved in the density profiles in such a way that
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the leading-order global charge squ(oDl)
> carried by the fluid (per unit area)

over all distances x > a, and which is dilute over the scale tD, compensates
squ(oDl)

< (see Section 6.4). Indeed, since the wall is made of an insulating
material and carries no external charge, the global surface charge s carried
by the fluid per unit area vanishes at equilibrium (3)

s — F
.

0
dx C

a

ea ra(x)=0. (1.15)

squ(oDl)
< and Fqu(oDl)(x=0) are estimated in the case of the intrinsic semi-

conductor GaSb. The case where the wall has not the same dielectric con-
stant as the medium where the fluid is embedded is commented in Section 7.

1.3. Methods

Before going into details, we summarize the general methods displayed
in Sections 2–5.

First, a formalism based on path integrals and devised for the study of
bulk properties in Coulomb fluids—with Maxwell–Boltzmann statistics (4) then
quantum statistics(5)—is generalized to a semi-infinite geometry (Section 2).
The system is studied in the grand-canonical ensemble (Section 2.1). A degen-
eracy of physical quantities with respect to fugacities arises from the neu-
trality constraints enforced by the long-range of Coulomb interactions. We
investigate the nature of this degeneracy, and we show that we are allowed
to split the latter degeneracy in order to impose the local neutrality in the
zero-coupling limit (Section 2.2). ( This trick allows to simplify weak-cou-
pling expansions performed in Section 5.) By use of the Feynman–Kac
formula (Section 2.3), quantum dynamics can be described by a functional
integral over Brownian paths, which correspond to quantum position fluc-
tuations. As in the bulk situation, the quantum system of point charges is
equivalent to a classical system of loops with random shapes (Section 2.4).
The only difference in formulae for the bulk or for the vicinity of the wall is
that the path measure is anisotropic and depends on the distance from the
wall in the second case.

Then methods originally devised for classical fluids with internal
degrees of freedom can be used (Section 3). In Section 3.1 we introduce
generalized Mayer diagrams for the fugacity expansion of the loop density
of each species. Point weights in those diagrams depend both on the inter-
nal degrees of freedom of loops—charge and shape—and on the distance x
from the wall. Because of the long range of Coulomb interaction, every
Mayer diagram that is not sufficiently connected corresponds to a diver-
gent integral in the thermodynamical limit. These divergences disappear
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after exact systematic resummations analogous to those performed in ref. 5
(Section 3.2). (Details are provided in the extended web version of the
present paper. (1)) Resummations introduce a screened potential f(r, rŒ),
solution of an inhomogeneous Debye equation

[Dr − ō2(x)] f(r, rŒ)=−4pd(r − rŒ), (1.16)

where the effective screening length 1/ō(x) depends on the distance x to
the wall because of the vanishing of wave-functions at the wall surface
(see (1.2)).

At this point the difficulty to be circumvented is the resolution of
equation (1.16) (Section 4). The equation can be turned into a one-dimen-
sional differential equation by considering the Fourier transform f(x, xŒ, k)
of f(x, xŒ, y) in the directions parallel to the wall surface (Section 4.1). Let
f (0)(x, xŒ, y) be the expression that f(x, xŒ, y) would take if the profile ō(x)
were uniform and equal to its bulk value o in the region x > 0. A formal
series representation of the solution f(x, xŒ, k) − f (0)(x, xŒ, k) has been
given in ref. 6, where a similar equation arises in the case of a classical
charge fluid in the vicinity of a wall with an electrostatic response. This
series provides an expansion of the solution f(x, xŒ, k) around f (0)(x, xŒ, k)
in powers of the small parameter ol, where o is the limit of ō(x) when x
goes to infinity, while l is the length scale over which ō(x) varies quickly
when x approaches 0. The expansion of f(x, xŒ, k) − f (0)(x, xŒ, k) in powers
of ol is uniform in x and xŒ.

In the low-degeneracy and weak-coupling regime to be studied
(Section 5.1), the condition ol ° 1 is met. The screened self-energy is
purely classical at leading order and the quantum correction appears
only at order e × ol, where e is defined as eD with o in place of oD, e —

(1/2) obe2 (Section 5.2). A scaling analysis performed in the low-degener-
acy and weak-coupling limit (Section 5.3) shows that only one resummed
Mayer diagram contributes to density profiles at first order in e and ol.
The electrostatic potential drop F(x) created by the charge-density profile
is identified in the formal expression of the contribution from this diagram
(Section 5.4). Because of the local neutrality condition in the bulk, only the
classical zeroth-order term in the ol-expansion of f − f (0) proves to contri-
bute to the potential drop F(x) at leading orders e and ol.

2. GENERAL FORMALISM

2.1. Grand-Canonical Ensemble and Statistics

We recall that we consider a fluid made of ns species (indexed by a),
each of which is characterized by its mass ma, its charge ea, and its spin
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Sa(. (In the following, interactions involving spins will be neglected and
spin will only determine the nature of quantum statistics.) The Hamiltonian
operator H1 {Na} of a system which contains Na particles of each species a

reads

H1 {Na}=C
i

p̂ 2
i

2ma i

+C
i

VSR
5(xi)+C

i < j
ea i

eaj
v̂(ri − rj). (2.1)

({Na} is a shorthand notation for {Na}a=1,..., ns
and the particle index i runs

from 1 to N=;a Na.) In (2.1) the first term which involves the momentum
operator p̂ is the global kinetic energy of the system. The second term is a
sum of one-body potentials VSR

5(xi) which describe the particle-wall inter-
actions. We choose a simple classical hard-wall modelization, where the
atomic structure of the wall is ignored. The effect of the wall is only to
prevent particle wave-functions from propagating inside the negative-x
region occupied by the wall,

VSR(x)=˛+. if x < 0

0 if x > 0.
(2.2)

The wall repulsion is independent of the particle species. The sum of pair
interactions in the third term involves only Coulomb potential (1.1).

The fixed parameters of the system are the volume |L| of the region L

that the fluid occupies, the area |“WL| of the fluid-wall interface, the tem-
perature, and the densities rB

a ’s far away from the boundaries of L. We
use the grand-canonical ensemble where the parameters are the volume |L|,
the area |“WL|, the inverse temperature b, and the chemical potentials
{ma(VR)}a=1,..., ns

of particles in a reservoir where the electrostatic potential
takes the uniform value VR. The grand partition function reads

X(b, {ma}, |L|, |“WL|)= C
{Na}

Tr sym
L, {Na} e−b[H1 {Na} − ;a maN1 a], (2.3)

where the trace Tr sym
L, {Na} is restricted to the quantum states that are properly

symmetrized according to the Bose–Einstein or Fermi–Dirac statistics
obeyed by each species. (Na

5 is the particle-number operator for species a.)
As in the classical case, the density profile ra(x) can be determined by
using a functional derivation of X[ma6], where ;a maN1a is replaced by
>L dr ma6(x) ra5(x). The relation is

ra(x)= lim
|L| Q+.

1
b

d ln X[ma6]
dma6(x)

:
6ma(x)=ma

. (2.4)
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The formalism and results presented in Sections 2 and 3 can be
obtained with quantum statistics (as detailed in Section 2.4). However, our
aim is to produce explicit analytical results in the low-degeneracy regime
(1.4). We have checked that quantum statistics effects arise only at order
(l/a)3. In other words (4)

X=XMB+O 11l

a
232 , (2.5)

where the Maxwell–Boltzmann grand partition function XMB is a trace over
tensorial products of one-particle wavefunctions which are not symme-
trized according to species statistics. If the tensorial product of N=;a Na

one-particle states in position representation is denoted by |{ri}P, the grand
partition function XMB, where only dynamics is quantum, reads

XMB(b, {ma}, |L|, |“WL|)

= C
{Na}

5D
a

ebmaNa(2Sa+1)Na

Na!
6 F 5D

N

i=1
dri

6 O{ri}| e−bH1 {Na} |{ri}P (2.6)

where 2Sa+1 is the spin degeneracy factor, which arises because spin does
not appear in the expression (2.1) of the Hamiltonian. In (2.6) we have
used the commutativity of the operators H1 {Na} and N1a’s.

2.2. Degeneracy with Respect to Fugacities

In the following we will take advantage of a degeneracy of physical
quantities with respect to fugacities that arises from the vanishing of the
global volumic and surfacic charges of the system in the thermodynamic
limit. If O · · ·P denotes a grand-canonical average, the thermodynamic limit
of the charge in the fluid is

lim
th

7C
a

eaNa
8=1C

a

ea rB
a
2 |L|+s |“WL|+o(|“WL|), (2.7)

where o(|“WL|) denotes a term which diverges more slowly than the area
|“WL| when the size of the domain L becomes infinite. The expression of s

in terms of the thermodynamic limits of density profiles is given in (1.15).
As a consequence of the existence of the thermodynamical limit, (7) the
macroscopic volumic charge (;a ea rB

a ) |L| vanishes, and, in the case of an
insulating hard wall that is not externally charged, the surfacic charge in
the fluid s |“WL| is also equal to zero (whether the dielectric constants in
the wall and in the medium where the fluid is embedded are equal or not).
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Indeed, in the grand canonical ensemble (2.3), the summation over micro-
scopic states involves non-neutral configurations, but the self-energies of
these globally charged configurations give them exponentially vanishing
weights in the thermodynamic limit, because they are not compensated by
interaction energies with external charges inside the walls.

Since the bulk charge neutrality (1.13) is satisfied for any set of chem-
ical potentials, the bulk densities rB

a ’s are determined by only ns − 1 inde-
pendent functions of the ns chemical potentials ma’s. In the present para-
graph we investigate more precisely the nature of the corresponding
degeneracy.

By definition, the electrostatic energy in the Hamiltonian (2.1) used in
X (2.3) is the difference between the electrostatic energy of the interacting
system and the energy VR ;a eaNa of the noninteracting system in the
reservoir where the electrostatic potential takes the uniform value VR. In
other words, the dependence of chemical potentials with respect to the
potential VR in the reservoir is just

ma(VR)=ma(0)+eaVR. (2.8)

The global volumic and surfacic neutralities are linked to the
invariance of the thermodynamic limits of observables under a translation
of the origin for the electrostatic potentials. Indeed, if the latter origin is
translated by an amount − DV, then, the reference potential VR of the
reservoir becomes VR+DV, the Hamiltonian is unchanged (since the
insulating wall carries no external charge), and the only change in X (2.3)
is an extra contribution DV ;a eaNa arising from ;a ma(VR) Na. Then the
thermodynamic limit of ln X is increased by

D(lim
th

ln X)=b DV lim
th

7C
a

eaNa
8 . (2.9)

According to (2.7), (1.13), and (1.15), the latter variation vanishes up to
order |“WL| included.

Since a translation − DV of the origin for the electrostatic potentials is
equivalent to an increase ea DV of every ma, the nature of the degeneracy
of physical quantities with respect to chemical potentials is that physical
quantities are invariant under the addition of an energy ea DV to every
chemical potential ma. The corresponding degeneracy with respect to fuga-
cities za’s comes from the definition

za(VR) —
(2Sa+1)
(2pl2

a)3/2 exp[bma(VR)]. (2.10)
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The dependence of fugacities upon VR is given by (2.8). The system involves
charges of both signs, so that the continuous function f(VR)=;a eaza(VR)
varies from − . up to +. when VR varies from − . to +.. Therefore
there exists a value of VR which fulfills the condition f(VR)=0.

As a consequence, since physical quantities are invariant under a
translation of VR in the fugacities, we can choose a set of fugacities which
ensures that the local charge neutrality in the bulk is enforced even in the
zero-coupling limit, namely we can arbitrarily split the degeneracy with
respect to fugacities by imposing

C
a

eaza=0. (2.11)

We notice that, as shown in ref. 8, in the case of an insulating wall with an
external charge or in the case of a conducting wall, which becomes charged
by influence, the global neutrality of the full system (the fluid plus the wall)
in the thermodynamic limit implies that condition (2.11) can also be ful-
filled when X is written with the full Hamiltonian. The ‘‘neutrality’’ condi-
tion about fugacities (2.11) will cause major simplifications in the following
calculations.

2.3. Feynman–Kac Formula

The non-commutativity between the kinetic and interaction operators
in (2.6) can be circumvented by using Feynman–Kac formula. (9, 10) The
quantum Gibbs factor can be rewritten in terms of path integrals,

O{ri}| e−bH1 {Na} |{ri}P

=5D
i

1
(2pl2

a i
)3/2

6 F 5D
i
Dxi, a i

(t i)6

× exp 5− b C
i < j

ea i
eaj

F
1

0
ds v(ri+la i

t i(s) − rj − laj
tj(s))6 . (2.12)

The kinetic part of the Hamiltonian and the particle-wall interaction are
taken into account in the measure Dxi, a i

(t i) of the closed Brownian path t i

with dimensionless abscissa s: t(s=0)=t(s=1)=0. The random path
la i

t i(s) with typical extent la i
describes the quantum position fluctuations

of particle i at position ri. As discussed in Section 2.4, the interaction
between paths on the r.h.s. of (2.12) is not the usual Coulomb interaction
between charged wires, since it involves only path elements with the same
abscissa s.
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The repulsion from the wall causes the anisotropy of the Brownian-
path measure. The constraint about the quantum particle position, which is
described by VSR(x), enforces that the x-component tx of vector t obeys the
inequality

x+latx(s) > 0 (2.13)

for every s between 0 and 1. The Brownian path measure can be factorized
as

Dx, a(t)=Dx, a(tx) D(t ||), (2.14)

where t || is the projection of t onto the wall. As in the bulk, the Gaussian
measure D(t ||) is independent of the position r. Moreover it is rotational-
invariant and normalized to unity

F D(t ||)=1. (2.15)

On the contrary, as recalled in ref. 11, the measure Dx, a(tx) depends on x,
with for instance

F Dx, a(tx)=1 − e−2x2/l
2
a. (2.16)

Moreover, the mean extent of the path in the x-direction does not vanish

F Dx, a(tx) tx ] 0. (2.17)

All moments of the measure tend gaussianly fast to their bulk values over
the scale of the de Broglie wavelengths. For instance

F
1

0
ds F Dx, a(tx) tx(s)==p

2
1 x

la

22

Erfc 1`2
x
la

2 , (2.18)

where Erfc(u) is the complementary error function defined as

Erfc(u)=
2

`p
F

.

u
dt e−t2

. (2.19)

Erfc(u) decays as exp[− u2]/(u `p) when u goes to +..
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2.4. Equivalence with a Classical Gas of Loops

In the present paragraph we recall that the quantum grand partition
function X for point particles can be written as a classical grand partition
function Xloop for randomly shaped loops. (5) The latter formalism including
quantum statistics allows one to retrieve property (2.5): quantum statistics
effects appear only at order (l/a)3 in the low-degeneracy regime. In other
words, results at leading order in the low-degeneracy regime (1.4) are
the same when the starting partition function is written with Maxwell–
Boltzmann statistics. Therefore, for the sake of simplicity, we shall directly
consider XMB and we shall drop the index MB from now on.

The quantum grand partition function (2.6) can be rewritten by use of
the Feynman–Kac formula (2.12) as

X(b, {za}, L)=Xloop — C
.

N=0

1
N!

F 5D
N

n=1
dLn z(Ln)6

× exp 5− b C
i < j

ea i
eaj

V(Li, Lj)6 . (2.20)

In (2.20) the notation L — (r, t, a) stands for the loop position r, the loop
shape t and the loop species a. When the measure is defined as

F dL — C
ns

a=1
F

L

dr F Dx, a(t), (2.21)

simple combinatorics allows one to replace the summation over the Na’s by
a single summation over N=;a Na. The loop fugacity depends on the
distance from the wall as

z(L)=za h(x), (2.22)

where h(x) is the unit Heaviside function. The interaction between loops
arising from the Feynman–Kac formula couples only line elements with the
same abscissa s

V(Li, Lj) — F
1

0
ds v(ri+la i

t i(s) − rj − laj
tj(s)). (2.23)

Thus it is different from the electrostatic potential Velect(Li, Lj) between
uniformly charged wires where any line element of a loop interacts with
every line element of the other loop,

Velect(Li, Lj) — F
1

0
ds F

1

0
dsŒ v(ri+la i

t i(s) − rj − laj
tj(sŒ)). (2.24)
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For a system with quantum statistics, Xloop has the general expression
written in (2.20) where loops L and their fugacities z(L) have more
complex expressions than in the case of Maxwell–Boltzmann statistics. (5)

Quantum statistics is taken into account thanks to an extra internal degree
of freedom, the number of particles exchanged in the same permutation
cycle.

Equality (2.20) between the grand partition function of a quantum gas
of point particles and the grand partition function of a classical system of
loops with random shapes is the root of an equivalence between both
systems. As derived in ref. 5, the quantum density ra(x) can be determined
from the loop density r(L) defined as a grand-canonical average cal-
culated with Xloop. When exchange effects are neglected,

r(L) — 7C
n

d(rn − r) d(tn − t) dan, a
8

X loop

, (2.25)

and the relation between particle and loop densities reads

ra(x)=F Dx, a(t) r(L), (2.26)

where r(L), with L=(r, t, a), does not depend on the projection y of r
onto the wall plane.

2.5. Ideal Gas

In the case of an ideal quantum gas, the grand partition function
(2.20) is reduced to

X id=exp 3C
a

za F
L

dr F Dx, a(t)4+O 11la

aa

232 , (2.27)

and, by virtue of (2.25), r id(L)=z(L) given in (2.22). The density profiles
of an ideal gas with fugacities za’s are given by (2.4) (or equivalently by
(2.26)), and by using (2.14)–(2.16) we retrieve that

r id
a (x)=za[1 − e−2x2/l

2
a]+zaO 11la

aa

232 . (2.28)

We stress that, in the vicinity of the wall, the quantum charge fluid
cannot be handled with as a system made of independent charges, because
it cannot simultaneously obey the volumic global neutrality (1.13) and the
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surfacic global neutrality (1.15). Indeed, the bulk densities in the ideal gas
are equal to the za’s. If the constraint (2.11) is arbitrarily enforced upon
fugacities, though there is no degeneracy with respect to fugacities in the
purely noninteracting case, the bulk densities satisfy the bulk local neu-
trality relation (1.13). However, the global surface charge of the corre-
sponding ideal gas does not vanish when species have different masses:
according to (2.11) and (2.28), it is equal to

s id — F
.

0
dx C

a

ea r id
a (x)=−

1
2
=p

2
C
a

eazala. (2.29)

3. DIAGRAMMATIC REPRESENTATION

The main lines of the following diagrammatic expansions are analo-
gous to the formalisms devised for bulk quantum properties and classical
density profiles in refs. 5 and 6, respectively.

3.1. Generalized Fugacity-Expansions

The equivalence with the classical loop system allows one to use tech-
niques originally introduced for classical fluids. For instance, the Mayer
diagrammatics initially built for point particles can be generalized to
objects with internal degrees of freedom, such as the species a or the loop
shape t. A generalized Mayer diagram for the loop density r(L) contains
one root point L which is not integrated over and N internal points
(N=1,..., .) which are integrated over, while each pair of points is linked
by at most one bond

f(Li, Lj)=e−beai
eaj

V(Li, Lj) − 1. (3.1)

We choose to write the loop-fugacity expansion of the loop density as

r(L)=z(L) exp 3C
G

1
SG

F 5D
N

n=1
dLn z(Ln)65D f6

G

4 . (3.2)

The summation is performed over all unlabeled, topologically different,
connected diagrams G where the root point L is not an articulation point.
An articulation point is defined by the following property: if it is taken out
of the diagram, the latter is split into at least two pieces not linked together
by any bond. (In another diagrammatic representation, (5) which is analo-
gous to (3.2) but without the exponential, the root point L may be an
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articulation point.) [< f]G is the product of the f-bonds in diagram G
and SG is the symmetry factor, i.e., the number of permutations of internal
points Ln that do not change this product.

At large distances with respect to de Broglie thermal wavelengths, the
loop potential V(L, LŒ) behaves as the Coulomb potential between the
total charges of loops, as if they were concentrated at positions r and rŒ.
Because of the latter 1/|r − rŒ| interactions, the integrals associated with
generic diagrams G in (3.2) diverge in the thermodynamical limit.

3.2. Systematic Resummations of Large-Distance Coulomb

Divergences

The large-distance divergences arising from the long-range of Coulomb
potential can be dealt with by introducing auxiliary bonds and by system-
atically resumming subclasses of auxiliary diagrams G4 . The method is a
generalization of the procedure introduced by Meeron for bulk quantities
in a classical Coulomb fluid. (12) The systematic resummation procedure
is displayed in the extended web version of the present paper. (1) In the
following similarities and differences with the process used in ref. 5 are
stressed.

As in ref. 5, the decomposition into auxiliary bonds relies on the mul-
tipolar decomposition of the loop interaction. This decomposition allows
one to exhibit classical screening through the appearance of a screened
potential f arising from the resummation process. f is defined as the sum
of all chains built with the auxiliary bond f c c(L, LŒ)=−beaeaŒv(r − rŒ).
The properties of f are studied hereafter.

When resummed bonds are defined, associated resummed weights and
‘‘excluded-composition’’ rules ensure a one-to-one correspondence between
each class in the partition of auxiliary diagrams G4 and each resummed
diagram Pa. Contrary to what is done in ref. 5, we choose to consider nine
resummed bonds defined herafter. The reason is that the choice of these
nine bonds is associated with renormalized weights which are more conve-
nient for dealing with the case of a wall with an electrostatic response than
the renormalized weights which appear when only the five resummed bonds
of ref. 5 are retained (see Section 7).

The nine resummed bonds are expressed as follows. First,

Fc c(L, LŒ)=−beaeaŒ f(r, rŒ), (3.3a)

where eaeaŒ f(r, rŒ) is the charge-charge—i.e., monopole-monopole—
screened interaction between the total loop charges. Fm c corresponds to the
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multipole-charge screened interaction between a charged wire which has
the same shape as loop L and a point charge at rŒ,

Fm c(L, LŒ)=−beaeaŒ F
1

0
ds[f(r+lat(s), rŒ) − f(r, rŒ)] (3.3b)

with a symmetric definition for Fc m. The other bonds are (1/2)[Fc c]2,
(1/2)[Fc m]2, (1/2)[Fm c]2, Fc c.Fc m, Fc c.Fm c, and

FRT(L, LŒ)={exp[Felect+W] − 1 − Fc c − Fc m − Fm c − 1
2 [Fc c]2

− 1
2 [Fc m]2 − 1

2 [Fm c]2 − Fc c.Fc m − Fc c.Fm c}(L, LŒ).
(3.3c)

As shown in ref. 5, Felect is proportional to the classical screened interaction
between uniformly charged wires which have the same shapes as the loops
L and LŒ. In this classical interaction any line element of a loop interacts
with every line element of the other loop (see (2.24)),

Felect=−beaeaŒ F
1

0
ds F

1

0
dsŒ f(r+lat(s), rŒ+laŒtŒ(sŒ)). (3.4)

W is a purely quantum contribution proportional to the difference between
the bare loop interaction V(L, LŒ) (2.23) arising from the Feynman–Kac
formula and the electrostatic interaction Velect(L, LŒ) (2.24),

W(L, LŒ)= − beaeaŒ [V(L, LŒ) −Velect(L, LŒ)]

= − beaeaŒ F
1

0
ds F

1

0
dsŒ[d(s − sŒ) − 1] C

+.

q=1
C
+.

qŒ=1

1
q!

1
qŒ!

× [lat(s).Nr]q [laŒtŒ(sŒ).NrŒ]qŒ v(r − rŒ). (3.5)

Eventually, the Mayer fugacity-expansion (3.2) of the loop density can
be rewritten as

r(L)=z sc(L) exp 3C
P

a

1
SP

a
F 5D

N

j=1
dLj w(Lj)65D F6

P
a
4 . (3.6)

The effective screened fugacity arising from the resummation of Coulomb
ring diagrams is equal to

z sc(L)=z(L) e−be2
aV

sc
cloud(L), (3.7)
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where

V sc
cloud(L)=1

2 F
1

0
ds F

1

0
dsŒ[f − v](r+lat(s), r+lat(sŒ)). (3.8)

The Pa diagrams are defined as the G diagrams in (3.2) apart from the
following two differences. First the f-bond is replaced by the nine F-bonds.
Second, Pa diagrams obey an ‘‘excluded-composition’’ rule associated with
the fact that all points have not the same weight w(L) (in order to avoid
double-counting),

w(L)=˛z sc(L) − z(L) if L is involved only in a product

Fa c(Li, L) Fc b(L, Lj)

z sc(L) otherwise.

(3.9)

In (3.9) superscripts a and b stand either for c or m, and the points Li and
Lj may coincide.

The vicinity of the wall replaces the bulk exponential screening by an
integrable algebraic screening in the directions parallel to the wall. Indeed,
the translational invariance along the wall ensures that f(r, rŒ)=f(x, xŒ, y)
where y is the projection of r − rŒ onto the wall, and, according to the
general results obtained in a classical inhomogeneous situation, (13) when |y|
goes to infinity while the values of x and xŒ are kept fixed, f(r, rŒ) decays as

f(r, rŒ) ’
|y| Q+.

f(x, xŒ)
|y|3 . (3.10)

Far away from the wall the x-dependent screening length tends to a non-
zero value, so that f(x, xŒ) decays exponentially fast to zero at large x or xŒ.
Moreover, the Brownian path measure Dx, a(t) ensures that all moments
of t are finite. Eventually, all diagrams with resummed bonds are finite in
the thermodynamical limit, when integrations are performed first over loop
shapes and then over loop positions. (1) Therefore, we will consider the
infinite-volume limit from now on.

4. SCREENED POTENTIAL

4.1. Debye Equation for an Inhomogeneous Fluid

By an argument similar to that displayed in an analogous classical
situation, (6) where the inhomogeneity in the zero-coupling limit arises from
the electrostatic response of the wall, f(r, rŒ) is shown to be a solution of
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an inhomogeneous Debye equation where the effective screening length
1/ō(x) depends on the distance x. For xŒ > 0,

Drf(r, rŒ) − ō2(x) f(r, rŒ)=−4pd(r − rŒ) for x > 0 (4.1a)

and

Drf(r, rŒ)=0 for x < 0. (4.1b)

In (4.1a) the positive function ō2(x) reads

ō2(x) — 4pb C
a

e2
a F Dx, a(t) z(L)

=h(x) 4pb C
a

e2
aza[1 − e−2x2/l

2
a], (4.2)

where the second equality arises from (2.14)–(2.16). Far away from the wall
ō2(x) tends towards its bulk value

o2 — 4pb C
a

e2
aza. (4.3)

Moreover, the diagrammatic definition of f implies that f obeys the same
boundary conditions as the electrostatic potential v(r, rŒ),

f(r, rŒ) and
“f(r, rŒ)

“x
:
x ] xŒ

are continuous at x=0 (4.4a)

lim
|r| Q .

f(r, rŒ)=0. (4.4b)

The invariance of the system in directions parallel to the interface
implies that the Fourier transform of f along these directions obeys a one-
dimensional differential equation with respect to x. We introduce the
dimensionless coordinates x̃ — ox, ỹ — oy, and r̃ — or and the dimensionless
screened potential f̃ defined by

f̃(x̃, x̃Œ, ỹ)=
1
o

f(x, xŒ, y). (4.5)

The dimensionless Fourier transform of f̃ along directions parallel to the
wall reads

f̃(x̃, x̃Œ, q)=F dỹ e−iq · ỹ f̃(x̃, x̃Œ, ỹ). (4.6)
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For x̃Œ > 0 it is a solution of the differential equations

3 “
2

“x̃2 − (1+q2) −5ō2(x)
o2 − 164 f̃(x̃, x̃Œ, q)=−4pd(x̃ − x̃Œ) for x̃ > 0

(4.7a)

and

3 “
2

“x̃2 − q24 f̃(x̃, x̃Œ, q)=0 for x̃ < 0. (4.7b)

As shown in ref. 6, f(r, rŒ) can be written as the sum of the expression
f (0)(r, rŒ) that it would take if density profiles in the ideal gas r id

a (x)’s were
uniform in the region x > 0 (and equal to their bulk limit za’s) plus a
boundary contribution arising from the difference ō2(x) − o2. The ‘‘homo-
geneous’’ equation associated with (4.7a) (by replacing the Dirac distribu-
tion on the r.h.s. by zero) can be solved by iteration, and the difference
between f(r, rŒ) and f (0)(r, rŒ) can be written in terms of formal series which
are bounded by geometric series of ol (with l=sup a {la}), because
ō2(x) − o2 is integrable at any distance x. (Details are provided in the
extended version (1) of the present paper.)

4.2. ol-Expansion of the Screened Potential

In Section 5 we will restrict our explicit calculations to a low-degener-
acy and weak-coupling regime (see (1.4) and (1.7)). In this regime ol is also
negligible with respect to 1: the de Broglie thermal wavelengths la’s are
small compared with the typical screening length o−1.

The above formal series for f − f (0) provides a systematic expansion in
terms of the ratios of the length scales la’s, over which ō2(x) varies, and
the length scale o−1, which is the limit of ō−1(x) when x goes to infinity.
(See ref. 6 for the discussion of a generic ō2(x).) The expansion is abso-
lutely and uniformly convergent with respect to the variable x for values of
ol smaller than some finite value, because it is bounded by products of
geometric series. As a result,

f̃(x̃, x̃Œ, ỹ)=f̃ (0)(x̃, x̃Œ, ỹ)+O(ol), (4.8)

where the leading-order term f̃ (0) is equal to o−1f (0)(r, rŒ) (see (4.5)). By
definition f (0)(r, rŒ) is the solution of

Drf
(0)(r, rŒ) − h(x) o2f (0)(r, rŒ)=−4pd(r − rŒ) (4.9)
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with the same boundary conditions as f(r, rŒ). Its Fourier transform reads

f̃ (0)(x̃, x̃Œ, q)=
2p

`1+q2
3e−|x̃ − x̃Œ| `1+q2

+
`1+q2 − q

`1+q2+q
e−(x̃+x̃Œ) `1+q24 . (4.10)

Moreover, by definition of the screened potential, the correction O(ol)
in (4.8) is independent of the root-point species a and aŒ. As shown in
Section 5.3, the latter property implies that the contribution to density
profiles from this O(ol)-correction in f̃ is canceled at first order in ol by
the neutrality constraint (2.11) on fugacities. It is the reason why we do not
write the explicit expression of the term O(ol) in (4.8).

5. WEAK-COUPLING EXPANSIONS

5.1. Subregime for Parameters e and (l/a)3

In the weak-coupling and low-degeneracy regime (1.7) and (1.4), only
a finite number of resummed Mayer diagrams in the representation (3.6) of
the loop-density r(L) contribute at lowest orders in the classical coupling
parameter e — (1/2) obe2. Moreover diagram contributions may be also
expanded in powers of ol.

Indeed, ol is a function of the two independent parameters (l/a)3 and e:
by virtue of (1.6),

ol 3
l

a
e1/3, (5.1)

and ol ° 1 in the considered regime (1.7) and (1.4). Then the screened
potential f, which is involved both in screened fugacities and in resummed
bonds, can be expanded in powers of ol, as well as the functions resulting
from integrations over Brownian paths. As shown by the scaling analysis
performed in next Sections 5.2 and 5.3, the diagrammatic representation of
the particle density derived from (2.26) and (3.6) provides a systematic
expansion of ra(x) in powers of parameters e and ol, where exchange
effects are neglected.

More precisely, we will show that, because of quantum dynamics, the
first coupling corrections to the ideal-gas particle density is a sum of two
terms of order e and ol respectively, and the next contributions are of
order

e2, e2 |ln(ol)|, e · ol, (ol)2, 1l

a
23

QW
1−

be2

l
2 , (5.2)
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with

1l

a
23

3
(ol)3

e
and

be2

l
3

e

ol
(5.3)

QW(t) is expected to vanish at t=0 by analogy with the bulk function Q
defined in ref. 14. On the other hand, exchange corrections, which have
been neglected from the start, are of order

1l

a
23

EW
1−

be2

l
2 (5.4)

where EW(t) is expected to vanish as t goes to zero, for the same reason as
QW(t).

As a consequence, we shall be allowed to retain only the corrections
linear in e and ol in ra(x), if these terms are larger than the exchange
corrections of order (5.4) and the coupling corrections of order (5.3). We
consider the subregime where

e2 [ 1l

a
23

° e. (5.5)

In (5.5) e2 [ (l/a)3 means that the ratio of e2 and (l/a)3 is either kept fixed
or tends to zero when both e and l/a vanish. In other words, be2/l is kept
fixed—i.e., the temperature remains fixed—or vanishes—i.e., the tempera-
ture goes to infinity. In this subregime the condition

1l

a
23

F 1−
be2

l
2 ° e, (5.6)

with F=QW or EW, is met, as well as the condition

1l

a
23

F( − be2/l) ° ol. (5.7)

Similarly, inequalities e2 ° ol, e2 |ln(ol)| ° e, e2 |ln(ol)| ° ol, and (ol)2

° e, are also satisfied. Eventually, in the subregime (5.5), which can be
rewritten as e3 [ (ol)3 ° e2 by virtue of (5.1), we may retain only contribu-
tions of order e and ol, and the neglected terms are of order O(g2), where g2 is
a generic notation for the terms in (5.2) and (5.4),

O(g2) — O((5.2), (5.4)). (5.8)
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5.2. Screened Loop Fugacity

In this section we calculate the ol-expansion of the screened fugacities
(3.7). As shown in ref. 2, the free energy e2

aV
sc
cloud is associated with the ‘‘geo-

metric’’ repulsion from the wall due to the deformation of the screening cloud
surrounding every charge near a boundary. According to (3.8) and the fact
that (f − v) and its derivative are continuous (because f and v have the same
singularity when r=rŒ),

Vsc
cloud(L)=Vsc

cloud(r)+
1
o
O(ol). (5.9)

(5.9) is the Taylor expansion of Vsc
cloud around its classical value

Vsc
cloud(r) — 1

2 [f − v](r, r). (5.10)

(We stress that Vsc
cloud(r) has no singularity in the range 0 [ x so that no

classical spurious singularity is introduced by the expansion (5.9).) The
ol-expansion (4.8) of the screened potential f̃ leads to

Vsc
cloud(r)=Vsc(0)

cloud(r)+
1
o
O(ol), (5.11)

where at first order

− be2
aVsc(0)

cloud(r)=−
be2

a

2
[f(0) − v](r, r)=ea[1 − L̄(ox)]. (5.12)

In (5.12) we have used the definition

ea — 1
2 obe2

a. (5.13)

By virtue of (4.10),

L̄(u) — F
.

1
dt

e−2tu

(t+`t2 − 1)2

=e−2u 5 1
2u

+
1
u2+

1
2u3

6−
1
u

K2(2u), (5.14)

where K2(2u) is a Bessel function, which decays proportionally to
exp(−2u)/`u at large u. L̄(u) is a continuous positive decreasing function
for u \ 0. Therefore L̄(u) is bounded by L̄(0)=1/3 and, since ea is small,
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we can expand the exponential function in the definition (3.7) of screened
loop fugacities. We get

z sc(L)=h(x) za{1+ea[1 − L̄(ox)]+O(e · ol)}. (5.15)

Since L̄(u) vanishes exponentially fast when u goes to infinity, z sc(L) tends
to za{1+ea} far away from the wall.

5.3. Diagram Contributions at Leading Orders

5.3.1. Bond F c c

The integral associated with the diagram with one Fc c-bond reads

F dLŒ z sc(LŒ) Fc c(L, LŒ)=−bea C
c

ec F drŒ f(r, rŒ) z̄ sc
c (xŒ), (5.16)

where the screened fugacity z̄ sc
a (x) is defined as

z̄ sc
a (x) — F Dx, a(t) z sc(L). (5.17)

By using the value (5.15) of the screened loop fugacity and the integral
(2.16) of the path measure, we get

z̄ sc
a (x)=za[1 − e−2x2/l

2
a]{1+ea[1 − L̄(ox)]}+zaO(e · ol). (5.18)

By virtue of (4.8), the leading-order terms in (5.16) arise from the structure

− bea C
c

eczc F
xŒ > 0

drŒ[f (0)(r, rŒ)+O(ol)][1 − e−2xŒ
2/l

2
c][1+Oc(e)], (5.19)

where Oc(e) is a term of order e which depends on the species c. (Oc(e) is
the screened self-energy term in z̄ sc

c (x).)
The a priori leading-order term in (5.19) is obtained by retaining only

the two constants 1 in brackets and f (0)(r, rŒ). This term is independent of
the de Broglie wavelengths, because f (0)(r, rŒ) is purely classical and invol-
ves only the length scale 1/oD. By virtue of (4.10),

F
xŒ > 0

drŒ f (0)(r, rŒ)=
2p

o2 F
+.

0
dx̃Œ{e−|x̃ − x̃Œ|+e−(x̃+x̃Œ)}. (5.20)
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As a consequence, the leading term in (5.19) is both O(e0) and O((ol)0),
namely, before summation over c,

F drŒ F DxŒ, c(tŒ) z sc(LŒ) Fc c(L, LŒ)=O(1). (5.21)

However, after summation over species, the O(1) contribution in
(5.16), where the quantity ;c eczc is factorized, is exactly equal to zero
because of the neutrality condition (2.11) imposed on fugacities. Moreover,
without condition (2.11), we would have to consider an infinite number of
diagrams at leading order, because the addition of a ‘‘star’’ subdiagram
<n

i=2 [> dLi z sc(Li) Fc c(LŒ, Li)], with an arbitrary number n, to the
diagram > dLŒ z sc(LŒ) Fc c(L, LŒ) would also yield a contribution of
leading order O(1). Nevertheless, we notice that, after summation over all
diagrams, the final expansion of the density must be independent of
whether the condition on fugacities is fulfilled or not, because of the
degeneracy among fugacities discussed in Section 2.2.

In fact, the diagram with one bond Fc c contributes at orders e and ol,

F dLŒ z sc(LŒ) Fc c(L, LŒ)=O(e, ol). (5.22)

The contribution of order O(e) comes from f (0)(r, rŒ) ×Oc(e) in (5.19), and
it has been calculated in ref. 6. The contribution of order ol arising from
the product of constants 1 in (5.19) times the term of order ol in the
expansion of f(r, rŒ) is canceled by the neutrality condition (2.11). ( This
is also true for the whole ol-expansion of f(r, rŒ), because all terms which
depend on a species c only through the product eczc are canceled when the
summation over c is performed.) Therefore, the contribution of order ol

arises only from f (0)(r, rŒ) exp[− 2xŒ
2/l2

c ] in (5.19). The factor ol is yielded
by the xŒ-integration of the Gaussian term which arises from the integrated
quantum measure (2.16). Indeed, for any bounded and integrable function
f which decays more slowly than exp[− 2x2/l2

a] at large x

F
+.

0
o dx e−2x2/l

2
af(ox) ’

ola Q 0
ola × f(0) F

+.

0
dt e−2t2

= O(ola) ×O 1F
+.

0
du f(u)2 . (5.23)

( The Gaussian factor in the integral on the l.h.s. of (5.23) makes this
integral convergent over the scale lc, and not o−1 as it would be the case
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if this factor were not here.) The same mechanism also operates for the
xŒ-integration of odd moments of a Brownian path tŒ (involved in dia-
grams with F c m-bonds), because these moments decay gaussianly fast to
zero at large xŒ over the scales la ’s (see for instance (2.18)), contrary to
even moments which tend to their nonzero bulk values away from the
wall.

5.3.2. Other Resummed Bonds

By combining previous arguments, Taylor expansions around classical
expressions and construction rule (3.9) about fugacities, where z sc(LŒ) −
z(LŒ)=zaO(e), a simple scaling analysis shows that diagrams with one
bond, Fc m, Fm c, [Fc c]2/2, Fc cFc m, [Fc m]2/2, Fc cFm c, or [Fm c]2/2 are of
orders equal to either (ol)2, e · ol, e2, e(ol)2, e2 · ol, or e2 · (ol)2 (see the
extended web version (1)).

We now discuss the diagram made of a single bond FRT with some
detail. The integration over the Brownian path tŒ makes the integral over rŒ

convergent at small distances |r − rŒ|. The order of the contribution from
this diagram can be inferred from the known results about the bond Fa

RT

obtained by adding to FRT the double bonds different from [Fc c]2/2,
which do not contribute to the integrability of FRT at large distances |r − rŒ|
in the limit where e vanishes. Fa

RT is defined by

FRT=Fa
RT − 1

2 [Fc m]2 − 1
2 [Fm c]2 − Fc c.Fc m − Fc c.Fm c (5.24)

where FRT is given in (3.3c).
The order of the contribution of > drŒ > Dx, a(t) > DxŒ, c(tŒ) Fa

RT(L, LŒ)
has been studied in the bulk situation in ref. 15 (and a similar calculation
also appears in ref. 16). Let us introduce the thermal de Broglie wavelength
lac associated with the reduced mass mamc/(ma+mc). In the bulk, the
considered integral proves to be the sum of a term of order l3

ac times an
analytic function Q(tac) of the parameter tac — − beaec/lac, (14) plus a term
of order (beaec) l2 (with two contributions where l=la or l=lc). The
latter ‘‘diffraction’’ term arises from the second moments of the Brownian
paths. There is no term proportional to (beaec)2 l, because the first
moment of a Brownian path vanishes in the bulk, by virtue of the spherical
symmetry.

In the vicinity of the wall, the precise calculation is more delicate than
in the bulk. However, we may expect to obtain the same orders l3

ac and
(beaec) l2 as in the bulk, plus a term of order (beaec)2 l allowed by the
anisotropy introduced by the presence of the wall. Since the fugacity
z sc(LŒ) is of order O(r)=O(a−3), the contribution from the diagram made
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of a single FRT-bond can be viewed as the sum of four terms with respective
orders

1l

a
23

QW
1−

beaec

lac

2 , (5.25)

where QW is defined similarly to Q mentioned previously (14) with the only
difference that space integrals are restricted to x > 0 and xŒ > 0,

1beaec

a
21l

a
22

=O((ol)2), (5.26)

1beaec

a
22 1l

a
2=O(e · ol), (5.27)

and

1beaec

a
23

ln(ol)=O(e2 ln(ol)). (5.28)

In these equalities we have used the relations (1.6) and (5.1).
Eventually, diagrams with one bond F different from Fc c contribute

at orders O((5.2)). An analysis similar to that performed in ref. 15 would
show that diagrams with more than one internal point also give contribu-
tions at orders larger than e or ol.

5.3.3. Global Results

As a result, the complete scaling analysis shows that, at first order in e

and ol, the loop density comes from (3.6) where only one diagram, namely
the diagram with a single Fc c-bond, is retained in the argument of the
exponential. Moreover, the expression of this first-order contribution
involves only the lowest-order term f (0)(r, rŒ) in the ol-expansion (4.8) of
the screened potential. The loop density reads

r(L)=z sc(L) exp 3− bea C
c

ec F drŒ f (0)(r, rŒ)

×1F DxŒ, c(tŒ) z sc(LŒ)2+O((5.2))4 . (5.29)

Since the argument of the exponential in (5.29) proves to be a bounded
function of order e and ol, the loop density is given at first order in e and
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ol by linearizing the exponential in (5.29). According to (2.26), the particle
density profile is obtained by performing the path integration > Dx, c(t) with
the result

ra(x)=z̄ sc
a (x) 31 − bea C

c

ec F drŒ z̄ sc
c (xŒ) f (0)(r, rŒ)+O(g2)4 , (5.30)

where z̄ sc
a (x) is given in (5.18) and g2 is defined in (5.8).

5.4. Electrostatic Potential

In this section we show how the integral involved in the expression
(5.30) is related to the potential F(x), which is defined as the difference
between the electrostatic potential created by the fluid and the electrostatic
potential VR in the particle reservoir ( located in the bulk). This potential
obeys Poisson equation

d2F

dx2 (x)=−4p C
a

ea ra(x) (5.31)

with the boundary conditions: F and dF/dx tend to 0 when x goes to +..
The condition about the derivative of F arises from the absence of any net
electrostatic field in the bulk for a Coulomb fluid at equilibrium. The con-
dition about F fixes the electrostatic potential reference. The definition of
F(x) leads to the integral representation

F(x)=−4p F
+.

x
dxŒ(xŒ − x) C

a

ea ra(xŒ). (5.32)

As in the classical case, (6) the structure (5.30) of density profiles can be
rewritten in the form

ra(x)=z̄ sc
a (x)[1 − bea G(x)] (5.33)

with

G(x) — C
c

ec F drŒ z̄ sc
c (xŒ) f (0)(r, rŒ). (5.34)

As checked in Section 5.5, at leading order G(x) is a function of ox.
Therefore, according to (5.18) and (5.23), the contribution from
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− b ;a e2
a[z̄ sc

a (x) − za] G(x) to the integral in (5.32) is a correction of rela-
tive orders O(ol) and O(e) with respect to the leading contribution from

C
a

ea z̄ sc
a (x) − b 1C

a

e2
aza

2 G(x). (5.35)

Therefore, the argument of Section 5.4 in ref. 6 holds. It reads as follows.
According to its definition and the partial derivative equation (4.9) satisfied
by f (0), G(x) obeys the differential equation

d2G(x)
dx2 =−4p C

a

ea z̄ sc
a (x)+o2G(x). (5.36)

Since dG(x)/dx is finite and decays to zero when x goes to infinity, com-
bination of (5.32), (5.35), and (5.36) implies that the electrostatic potential
is merely

F(x)=[G(x) − lim
x Q+.

G(x)]+
1

be
O(e, ol), (5.37)

where O(e, ol) denotes a sum of terms of order e and ol respectively.
Eventually, by virtue of (5.18) and (5.37), the density profile (5.33) can

be rewritten in terms of the bulk density and the electrostatic potential
drop F(x) created by the fluid as

ra(x)=rB
a [1 − e−2x2/l

2
a]{1 − eaL̄(ox) − beaF(x)}+rB

a O(g2), (5.38)

where the bulk density is given by

rB
a — lim

x Q+.

ra(x)=za{1+ea − bea lim
x Q+.

G(x)+O(g2)}. (5.39)

Since the bulk density rB
a coincides with za at leading order, oD defined in

(1.5) is also equal to o at leading order

oD=o[1+O(e)] and eD=e[1+O(e)]. (5.40)

This will enable us to consider the Debye screening length as the reference
length scale for classical effects when writing the final results in next
section.
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5.5. Decomposition into Classical and Quantum Contributions

In the density profile (5.38), the term involving L̄ is purely classical,
whereas the electrostatic potential can be split into a classical contribution
Fcl(e) of order O(e/(be)) and a quantum contribution Fqu(ol) of order
O(ol/(be)),

F(x)=Fqu(ol)(x)+Fcl(e)(x)+
1

be
O(g2). (5.41)

According to (5.37), Fcl(e)(x)=Gcl (e)(x) − limx Q+. Gcl (e)(x) with, by virtue
of (5.34), (5.18), and of the neutrality constraint (2.11) upon fugacities,

Gcl (e)(x)=C
c

ec F drŒ h(xŒ) zcec[1 − L̄(oxŒ)] f (0)(r, rŒ), (5.42)

whereas Fqu(ol) is the leading term in the expansion of

− C
c

ec F drŒ h(xŒ) zc e−2xŒ
2/l

2
c f (0)(r, rŒ). (5.43)

Since > dyŒ f (0)(r, rŒ) is a function of oxŒ which decays exponentially fast
when oxŒ goes to infinity, according to (5.23),

Fqu(ol)(x)=F
+.

0
dxŒ 1− C

c

eczc e−2xŒ
2/l

2
c 2 F dy f (0)(x, xŒ=0, y). (5.44)

The classical part Fcl(e) in the electrostatic potential has already been
calculated in ref. 2 with the result

Fcl(e)(x)=−AMa (oDx), (5.45)

where the function Ma is

Ma (u)=F
.

1
dt

e−2tu − 2te−u

1 − (2t)2

1

(t+`t2 − 1)2
, (5.46)

and the constant A reads

A=`pb
;c e3

c rB
c

`;a e2
arB

a

. (5.47)

In (5.45), the argument of Ma has been written oDx in place of ox, by virtue
of (5.40).
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The purely quantum part of the electrostatic potential drop is derived
from (5.44). According to the expression of > dy f (0)(x, xŒ, y) already used
in (5.20),

Fqu(ol)(x)=−(Be−oDx, (5.48)

where the constant B depends only on the fluid composition

B=
p

`2

;c (ec/`mc) rB
c

`;a e2
arB

a

. (5.49)

We notice that the total electrostatic potential drop between the wall and
the fluid bulk (set as the reference of electrostatic potentials) is equal at
leading order to

F(0)=−
A
2
1 ln 3 − 1 −

p

`3
2− (B. (5.50)

F(0) includes both classical and quantum corrections.
The structure of quantum particle densities derived from (5.38), (5.45),

and (5.48) is summarized in (1.10). In the fugacity expansion of the bulk
density rB

a , the explicit first-order correction to the value za in an ideal gas
is derived from (5.39) and the explicit value of G(x). Since Gqu(ol)(x) tends
towards zero when x goes to infinity, the relation between rB

a and za does
not include quantum contributions proportional to ( and reads

rB
a =za

31+be2
a `pb C

c

e2
c rB

c − bea `pb
;c e3

c rB
c

`;a e2
arB

a

+O(g2)4 . (5.51)

Indeed, in the bulk, the spherical symmetry enforces quantum-dynamical
coupling effects to be at least of order (ol)2, proportional to (

2, whereas
exchange effects are at least of order (l/a)3, proportional to (

3. The
expression (5.51) is in agreement with the result (5.28) of ref. 4 calculated
directly in the bulk. It does satisfy the electroneutrality condition (1.13).

The expression (1.10) of the quantum density profile at first order in e

and ol can be rewritten in terms of the densities rcl
a ’s at first order in e in

the corresponding classical system,

rcl(e)
a (x)=rB

a [1 − eaL̄(oDx) − beaFcl(e)(x)], (5.52)

where L̄ is defined in (5.14). At this leading order the classical density
profile does not involve the short-range repulsion that must be introduced
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in order to prevent the collapse of the system in the limit where ( tends to
zero (see, e.g., ref. 2). Indeed, (5.52) is obtained in a subregime where the
range s of the short-distance repulsion is such that e2 [ (s/a)3 ° e. We get

ra(x)=[1 − e−2x2/l
2
a]{rcl(e)

a (x) − rB
a beaFqu(ol)(x)}+rB

a O(g2). (5.53)

The latter expression displays two quantum effects. We stress that the
effect linked to the vanishing of wave-functions has an essential singularity
in (. The quantum contribution linear in ( in the electrostatic potential is
allowed by the breakdown of spherical symmetry, whereas bulk quantum
effects in the physical regime of interest appear only at order (

2, (4) as
already mentioned.

6. GENERIC PROPERTIES

6.1. Density Profiles

The structure (1.10) of density profiles is ruled by the competition
between three effects. The purely quantum contribution [1 − e−2x2/l

2
a] arises

from the vanishing of wave-functions inside the wall. In the physical regime
of interest this effect is the same one as in an ideal gas (see (1.2)), up to
amplitude corrections arising from Coulomb coupling. The second term,
involving the function L̄, describes the geometric repulsion due to the
deformation of screening clouds near a wall. (2) Indeed, a charge and its
surrounding screening cloud are more stable in a spherical geometry than
in the dissymmetric configurations enforced by the presence of a wall. This
effect is purely classical at the order of the present calculation. The term
eaF(x) describes the interaction between a particle with a charge ea and the
electrostatic potential drop, created by the fluid itself, with respect to the
bulk (set as the reference of electrostatic potentials). This contribution
contains both quantum and classical effects.

In the very vicinity of the wall, for x [ l ° tD (with l=sup a {la}),
densities are mostly ruled by the quantum effect of the cancellation of wave-
functions inside the wall,

ra(x) ’
x [ l ° tD

rB
a [1 − e−2x2/l

2
a]{1 − 1

6 oDbe2
a − beaF(0)}, (6.1)

where F(0) is given in (5.50). The heavier a particle species is, the steeper
the vanishing of its density occurs, since dynamical quantum effects are less
important for heavy particles. Densities and their first derivatives are con-
tinuous on the wall, as expected, since densities involve the squared moduli
of wavefunctions and the latter ones are continuous at the boundary of a
wall with a possible step variation in their first derivatives.
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At distances from the wall large compared with the quantum de
Broglie wavelengths, x ± l, densities vary over the classical Debye screen-
ing length

ra(x) ’
l ° x [ tD

rB
a {1 − 1

2 oDbe2
aL̄(oDx)+bea[AMa (oDx)+(Be−oDx]}, (6.2)

where A and B are given in (5.47) and (5.49) respectively. In this region,
density profiles are determined by the interplay between the effect of the
classical geometric repulsion described by L̄(oDx) and the effect of the
electrostatic potential, with both classical and quantum origins. L̄(oDx) and
Ma (oDx) vanish exponentially fast over the scales tD/2 and tD respectively.

As a consequence, at distances from the wall large compared with the
classical Debye screening length tD, the contribution from the electrostatic
potential dominates in the density profiles

ra(x) − rB
a

rB
a

’
x ± tD

− beaFas e−oDx, (6.3)

where

Fas=−
A
8
5ln 3+

p

`3
− 26− (B. (6.4)

Equation (6.3) is valid in the generic case where Fas ] 0. According to
(5.47) and (5.49), Fas is likely to vanish only in a two-component plasma
where charges are opposite, e− =−e+ (A=0), and where both species have
the same mass (B=0). When Fas ] 0, if the charge ea has a sign opposite
to that of Fas, ra(x) > rB

a at sufficiently large distances x, as shown by (6.3).

6.2. Profile of the Total Particle Density

At the order of calculations, the wall is repulsive for the global particle
density everywhere in the Coulomb fluid, as in the classical case, (2)

C
a

ra(x) < C
a

rB
a . (6.5)

Indeed, according to the structure (1.10) of densities, since ra(x) and
1 − exp[− 2x2/l2

a] are positive, the second factor on the r.h.s. of (1.10) is
also positive in the considered regime of small parameters. Therefore the
effect of the vanishing of wavefunctions near the wall is to lower the
density ra(x): (1.10) implies that at any distance x from the wall

C
a

ra(x) < C
a

rB
a [1 − 1

2 oDbe2
a L̄(oDx) − beaF(x)]. (6.6)
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The contribution from the electrostatic potential drop F(x) to the bound
in (6.6) vanishes because of the bulk electroneutrality (1.13), as in the case
of ;a rcl(e)

a (x). Thus the bound involves only the sum of the contributions
from classical screened self-energies. The corresponding geometric repul-
sion from the wall tends to reduce the density of each species with respect
to its bulk value, and we get (6.5).

6.3. Charge Density Profile

Even if the Coulomb fluid remains globally neutral, when species have
different masses, the local charge density ;a ea ra(x) is non zero, as well as
the associated electrostatic potential drop F(x). The property holds even in
the case of a charge-symmetric two-component plasma where the classical
charge density ;a ea rcl

a (x) vanishes for symmetry reasons (because the two
species have opposite charges). ( The latter cancellation can be checked at
first order in e where, by virtue of (5.52), ;a ea rcl(e)

a is proportional to
;c e3

c rB
c .) The charge density profile is organized in various layers with

opposite signs which depend on the composition of the fluid.
In the very vicinity of the wall (x [ l), when species have different

masses, the charge-density profile exhibits a zeroth-order effect arising
from the cancellations of the various wave-functions over different scales.
Indeed, according to (6.1) and (1.13),

C
a

ea ra(x) ’
x [ l [ tD

− C
a

ea rB
a e−2x2/l

2
a+erO(e, ol), (6.7)

where r is the typical particle density. When all masses are equal,
;a ea ra(x) is only of order erO(e, ol) in this region, by virtue of the bulk
local charge neutrality.

At distances from the wall large with respect to the quantum lengths,
x ± l, the charge density is an effect of order erO(e, ol) which is ruled
by the competition between the geometric repulsion from the wall and the
electrostatic potential drop (see (6.2)). According to (5.53) and (5.48),

C
a

ea ra(x) ’
l ° x [ tD

C
a

ea rcl(e)
a (x)+(B

o2
D

4p
e−oDx,

where, by virtue of (5.52) and (5.45),

C
a

ea rcl(e)
a (x)=− 1

2 oDb 1C
c

e3
c rB

c
2 [L̄(oDx) − Ma (oDx)]. (6.8)
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In the case of a charge-symmetric two-component plasma ;a ea ra(x) is
purely quantum at distances x ± l.

Eventually, the large-distance behavior of ;a ea ra(x) is merely ruled
by the electrostatic potential drop F(x), which includes both quantum and
classical effects,

C
a

ea ra(x) ’
x ± tD

−
o2

D

4p
[Fcl(e)

as − (B] e−oDx, (6.9)

where Fcl(e)
as is given in (6.4). As it is the case for the electrostatic potential

drop and for particle densities, the charge density includes quantum effects,
linear in (, which exist far away from the wall over a few Debye screening
lengths.

6.4. Global Charge

The wall that we consider does not carry any external surface charge
and the global surface electroneutrality (1.15) of the Coulomb fluid is
fulfilled, as checked in the present section. At leading order O(e, ol) the
global surface charge s can be decomposed into leading classical and
quantum contributions: s=scl(e)+squ(ol), where

scl(e) — F
+.

0
dx C

a

ea rcl(e)
a (x), (6.10)

and squ(ol) is the term of order ol in

F
+.

0
dx C

a

ea[ra(x) − rcl(e)
a (x)]. (6.11)

We recall that, as mentioned after (5.52), the hard-core that must be
introduced in order to prevent the classical collapse between opposite
charges does not appear at order e in rcl

a (x).
Since the classical densities already obey (1.15), which is enforced by

macroscopic electrostatics, scl(e) and squ(ol) must vanish separately. As
checked in ref. 2, the classical contribution scl(e) of order e arising from
;a ea rcl(e)

a (x) does vanish.
The quantum term squ(ol) of order ol arises only from the two quantum

terms − rB
a exp[− 2x2/l2

a] and − rB
a beaFqu(ol)(x) in ra(x) − rcl(e)

a (x). Indeed,
according to (5.53),

ra(x) − rcl(e)
a (x)= − rB

a e−2x2/l
2
a − rB

a beaFqu(ol)(x)

− {[rcl(e)
a (x) − rB

a ] − rB
a beaFqu(ol)(x)} e−2x2/l

2
a. (6.12)
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The term in curly brackets is a function of order rB
a O(e, ol) which decays

exponentially fast over the scale o−1; by virtue of (5.23), after multiplica-
tion by exp[− 2x2/l2

a] this term gives a contribution of relative order
O(e · ol, (ol)2) to squ(ol) defined in (6.11). Therefore squ(ol)=squ(ol)

< +squ(ol)
>

with

squ(ol)
< — − F

+.

0
dx C

a

ea rB
a e−2x2/l

2
a=−(

1
2
=pb

2
C
a

ea

`ma

rB
a (6.13)

and

squ(ol)
> — − F

+.

0
dx C

a

e2
arB

a bFqu(ol)(x), (6.14)

where Fqu(ol)(x) is given in (5.48).
The (-contribution squ(ol)

< to the global charge s is canceled by the
contribution squ(ol)

> . Therefore, the quantum term beaFqu(ol)(x) in density
profiles, which varies over the classical Debye screening length, can be seen
as being enforced by the interplay between the global surfacic electroneu-
trality condition and the fact that, when wave-functions vanish over dif-
ferent length scales, a charge-density profile appears in the very vicinity of
the wall even in the zero-coupling limit (see (2.29)).

The previous calculation can also be interpreted as follows. We notice
that squ(ol)

< and squ(ol)
> can be viewed as the leading (-terms in the contribu-

tions to squ from the regions x < l and x > l respectively, with l ° l ° tD.
Indeed,

squ(ol)
< = lim

(l/l) Q 0
lim

(l/tD) Q 0

1F
l

0
dx C

a

ea[ra(x) − rcl(e)
a (x)]2

(ol)

, (6.15)

whereas

squ(ol)
> = lim

(l/l) Q 0
lim

(l/tD) Q 0

1F
+.

l
dx C

a

ea[ra(x) − rcl(e)
a (x)]2

(ol)

, (6.16)

where ra(x) − rcl(e)
a (x) is given in (6.12). l can be identified with the mean

interparticle distance a, by virtue of (1.8). Therefore, since l ° a, squ(ol)
<

can be seen as a surface charge located in the plane x=0, whereas squ(ol)
> is

spread in the fluid over the scale tD. On the other hand, according to (5.44)
and (6.13), Fqu(ol)(x) may be written as

Fqu(ol)(x)=F drŒ squ(ol)
< d(xŒ) f (0)(r, rŒ). (6.17)
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The interpretation of the latter equation is that Fqu(ol)(x) is the classically-
screened electrostatic potential created by the part of the fluid charge-
density profile which is concentrated near the wall.

In the case of an intrinsic semiconductor near a junction, the system of
electrons and positive holes in the conduction band can be considered as
a two-component Coulomb fluid of charges − qe and +qe embedded in a
medium of relative dielectric constant Em. qe is the absolute value of the
electron charge and energy terms involve e — qe/`Em (see the comment
after (1.1)). Since the semiconductor is intrinsic, the densities r− and r+ are
equal to each other. They are determined from the energy gap EG and from
the effective masses meff

− and meff
+ by (17)

r=r± (b)=
1
4
1 2

pb(
2
23/2

(meff
− meff

+ )3/4 e−bEG/2. (6.18)

Since the system is charge-symmetric, there is no classical contribution to
the potential drop F(x) and (1.10) becomes

r± (x)=r(1 − e−2x2/l
2
± ) 51 − eL̄(oDx) + b

qe

`Em

Fqu(0) e−oDx6 , (6.19)

where e — bq2
e /(2Em) and, according to (5.48) and (5.49),

b
qe

`Em

Fqu(0)=
1
4
=p

2
oDl−

51 −=meff
−

meff
+

6 . (6.20)

(We notice that on principle the expression (6.19) is valid only when the
wall has the same dielectric constant as the medium where charge carriers
move.)

In the case of GaSb, EG=0.67 eV at 273 K, meff
− =0.047 me, meff

+ =0.5 me

(where me is the electron mass), and Em=15. This system is in the regime
(1.9) for which explicit analytical expressions are calculated in the present
paper: oDl− =2.5 · 10−3, e=6 · 10−4, (l− /a)3=2 · 10−6 (with (4/3) pa3

− r−

=1). ( The length scales are l+ ’ 2.5 nm, l− ’ 8.3 nm, a ’ 640 nm, and
tD ’ 3300 nm.) The vanishing of particle densities occurs on two different
scales l+ and l− ’ 3.3l+. According to (6.13), where ea=± qe, the resul-
tant surface charge located on the wall (over the width l− ) is squ(ol)

< =
5 · 10−14 C cm−2=3 · 105 qe cm−2. The bulk density of charge carriers is
r− +r+ ’ 2 · 1012 cm−3 and the charge density at distances x > a is
rc exp[− oDx] with, according to (6.19) and (6.20), rc=109 qe cm−3. Thus
rcl− ’ 1 qe cm−2 is indeed negligible compared with squ(ol)

< . The potential
drop Fqu(0)=1.3 · 10−5 eV remains negligible with respect to the energy gap.
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7. COMMENT

In this section, we comment on the case where the wall is made of a
dielectric material, characterized by a relative dielectric constant EW with
respect to the vacuum, when EW is different from the relative dielectric
constant Em of the medium where charges move. Then the Coulomb
interaction reads

vW(r, rŒ)=
1

|r − rŒ|
− Del

1
|r − rŒ

a|
(7.1)

with Del=(EW − Em)/(EW+Em). The response of the wall induced by the
presence of a particle with charge ea (which includes a factor 1/`Em in
interaction terms) is equivalent to the presence of an image charge at posi-
tion ra, symmetric of the real-particle position r with respect to the wall,
and which carries a charge − Del ea. The Hamiltonian also involves the self-
energy − Del e

2
a/4x, due to the interaction of a particle with its own image

charge. The corresponding loop self-energy can be incorporated in the loop
fugacity z(L), which now reads

z(L)=zah(x) exp 5Del
be2

a

4
F

1

0
ds

1
x+latx(s)

6 . (7.2)

In order to exhibit the screening of the self-energy, which is not inte-
grable at large distances x from the wall, we have performed a resumma-
tion in two steps, which generalizes the method devised for classical
systems in ref. 6. The choice of the same nine resummed bonds as those in
Section 3.2 combined with the two-step resummation leads to resummed
weights which are integrable, because they involve only screened loop-
fugacities.

Indeed, in the one-step resummation of Section 3.2 the weights corre-
sponding to the nine resummed bonds are z sc(L) and z sc(L) − z(L),
instead of the weights z(L) and z sc(L) − z(L) that arise when there are
only five resummed bonds without any ‘‘double’’ bond, such as [Fc c]2/2,
as it is done in ref. 5. At the end of the two-step resummation process, the
construction rules for resummed diagrams are the same ones as in the one-
step resummation of Section 3.2, with the only difference that weights
z sc(L) and z sc(L) − z(L) are replaced by weights z sc[2](L) and z sc[2](L) −
z sc[1](L). These weights are integrable at large distances x from the wall,
because both z sc[2](L) and z sc[1](L) result from resummations of Coulomb
ring subdiagrams.

More precisely, the expressions of the resummed loop fugacities
z sc[i](L) (with i=1, 2) are given by (3.7) and (3.8) where the value of z(L)
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is that given in (7.2) and f − v in V sc
cloud(L) is replaced by f[i]

W − vW; the
f[i]

W ’s have the same boundary conditions as vW written in (7.1) and they
obey the inhomogeneous Debye equation (1.16) where o[1]

2
(x) — 4pb ;a e2

a

× > Dx, a(t) z(L) and o[2]
2
(x) — 4pb ;a e2

a > Dx, a(t) z sc[1](L). (Resummed
bonds are defined with f[2]

W in place of f.)
As a consequence of quantum dynamics, screened loop self-energies

(and subsequently particle densities) are found to approach their bulk
values only with an integrable 1/x3 tail, whereas the particle self-energy
due to the electrostatic response of the wall is exponentially screened in
classical systems. (2, 18) Even for bulk properties, (19, 20) screening in quantum
systems is less efficient than in classical fluids.

More precisely, the screened loop self-energy in z sc[1](L) or z sc[2](L)
is the sum of two contributions. The exponentially-decaying part has the
same decay at large distances from the wall as the screened self-energy of a
classical charge. (6) The algebraic 1/x3 tail arises from the other part, which
reads

Del
e2

a

2
F

1

0
ds F

1

0
dsŒ(1 − d(s − sŒ))

1
|r+lat(s) − ra − lata(sŒ)|

. (7.3)

(See the analogous term (3.5) in the screened pair interaction.) In the low-
degeneracy and weak-coupling regime the particle density ra(x) does not
seem to have a simple explicit value, because of the self-energy contribu-
tions arising from the dielectric response of the wall.
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