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The aim of the paper is to study the renormalizations of the charge and screening length that appear in the
large-distance behavior of the effective pairwise interaction w!!! between two charges e! and e!! in a dilute
electrolyte solution, both along a dielectric wall and in the bulk. The electrolyte is described by the so-called
primitive model in the framework of classical statistical mechanics and the electrostatic response of the wall is
characterized by its dielectric constant. In a previous paper [Phys. Rev. E 68, 022133 (2003)] a graphic
reorganization of resummed Mayer diagrammatics has been devised in order to exhibit the general structure of
the 1/y3 leading tail of w!!!!x ,x! ,y" for two charges located at distances x and x! from the wall and separated
by a distance y along the wall. When all species have the same closest approach distance b to the wall, the
coefficient of the 1/y3 tail is the product D!!x"D!!!x!" of two effective dipoles. Here we use the same graphic
reorganization in order to systematically investigate the exponential large-distance behavior of w!!! in the
bulk. (We show that the reorganization also enables one to derive the basic screening rules in both cases.) Then,
in a regime of high dilution and weak coupling, the exact analytical corrections to the leading tail of w!!!, both
in the bulk or along the wall, are calculated at first order in the coupling parameter " and in the limit where b
becomes negligible with respect to the Debye screening length. (" is proportional to the so-called plasma
parameter.) The structure of corrections to the terms of order " is exhibited, and the scaling regime for the
validity of the Debye limit is specified. In the vicinity of the wall, we use the density profiles calculated
previously [J. Stat. Phys. 105, 211 (2001)] up to order " and a method devised [J. Stat. Phys. 105, 245 (2001)]
for the determination of the corresponding correction in the auxiliary screened potential, which also appears in
the linear-response theory. The first coupling correction to the effective dipole D!!x" is a function (not a mere
exponential decay) determined by the nonuniformity of the density profiles as well as by three- and four-body
screened interactions in w!!!. Though the effective screening length (beyond the Debye value) in the direction
perpendicular to the wall is the same as in the bulk, the bare solvated charges are not renormalized by the same
quantity as in the bulk, because of combined steric and electrostatic effects induced by the wall.
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I. INTRODUCTION

A. Issue at stake
The paper is devoted to the large-distance behavior of the

pairwise effective interaction between two charges in an
electrolyte solution, which is confined to the region x#0 by
a plane impenetrable dielectric wall. The electrolyte solution
is described by the usual primitive model [1] with ns species
of charges which interact via the Coulomb interaction. Every
charged particle of species ! is represented as a hard
sphere—with diameter $!—where the net bare solvated
charge e!#Z!e is concentrated at the center of the sphere.
(e is the abolute value of the electron charge and Z! may be

positive or negative.) The solvent is handled with as a con-
tinuous medium of uniform dielectric constant %solv. The wall
matter is characterized by a dielectric constant %W!%solv, and
the latter difference results in an electrostatic response of the
wall to the moving charges in the electrolyte. Moreover, the
excluded-volume sphere of every particle is assumed to be
made of a material with the same dielectric constant as that
of the solvent. (Therefore %=%solv when x#0 and %=%w when
x&0.) In the framework of statistical mechanics, the effec-
tive pairwise interaction w!!!!r ,r!" between two charges e!

and e!! located at positions r and r!, respectively, is defined
from the pair correlation function h!!! by (see, e.g.,
Ref. [2])

1 + h!!! # exp!− 'w!!!" , !1"

where '=1/kBT is the inverse temperature, in which kB is
the Boltzmann constant and T is the absolute temperature.
(w!!! is also called potential of mean force, while h!!! is
known as the Ursell function.) In the vicinity of the wall,
symmetries enforce that w!!!!r ,r!"=w!!!!x ,x! ,y", where x
and x! are the distances of r and r! from the wall and y is the
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norm of the projection y of r−r! onto the wall plane. Along
the wall, contrary to the bulk case, w!!!!x ,x! ,y" does not
decay exponentially fast: its leading behavior at large dis-
tances y takes a dipolar form f!!!!x ,x!" /y

3, as a result of the
deformation of screening clouds enforced by the presence of
the wall (see Ref. [3] for a review or, e.g., Ref. [4]).
An electrolyte solution can be considered as a dilute

charge fluid where the closest approach distance between the
center of a charge with species ! and the dielectric wall takes
the same value b for all species. The reason is that the dif-
ferences in the various ion diameters are negligible with re-
spect to all other characteristic lengths. (b!=b for all !’s,
whether b! is only determined by the radius of the excluded-
volume sphere of species ! or b! involves some other more
complicated microscopic mechanism for the short-distance
repulsion from the wall. For instance, a layer of water mol-
ecules, with a thickness of molecular dimensions, may lie
between the wall and the electrolyte solution, as has been
suggested, for instance, for another situation, the mercury-
aqueous solution interface [5].) As a consequence, as shown
in Ref. [4], called paper I in the following, the coefficient
f!!!!x ,x!" of the 1/y

3 tail of w!!!!x ,x! ,y" is a product of
effective dipoles D!!x" and D!!!x!":

w!!!!x,x!,y" $
y→+(

D!!x"D!!!x!"
y3

. !2"

[Therefore the tail of w!!!x ,x! ,y" between two particles of
the same species ! is repulsive when x=x!, as is the case for
identical point dipoles with the same direction.]
The general result (2) arises from a property about the

screened potential ) defined as follows. !*q*q! /%solv") is the
immersion free energy between two infinitesimal external
point charges *q and *q! calculated in the framework of the
linear-response theory as if the radii of the excluded-volume
spheres of the fluid charges were equal to zero [6]. [The
effect of hard cores is briefly discussed after Eq. (65).] As
shown in paper I, when all particles have the same closest
approach distance b to the wall,

)!x,x!,y" $
y→+(

D̄)!x"D̄)!x!"
y3

. !3"

[In Eq. (3), D̄)!x" vanishes for x&b.] In the following, a
quantity that is independent of charge species ! is denoted
by an overlined letter when it is analogous to another one
that depends on !, as is the case for D!!x" and D̄)!x". Since
) obeys an “inhomogeneous” Debye equation where the ef-
fective screening length depends on the distance x from the
wall through the density profiles, D̄)!x" has the same sign at
any distance x from the wall, contrarily to the effective di-
pole D!!x", the sign of which may a priori vary with dis-
tance x. Thus, the 1/y3 tail of )!x ,x! ,y" is repulsive at all
distances x and x! from the wall. Moreover, the x-dependent
screening length tends to the Debye length +D at large dis-
tances, and D̄)!x" can be rewritten, for x#b, as

D̄)!x" = −%2%W
%solv

e−,D!x−b"

,D
&1 + C) + Ḡ)

exp!x"' , !4"

where Ḡ)
exp!x" tends to zero exponentially fast over a scale of

order 1 /,D. In Gauss units, the Debye length +D reads

+ D
−1 # ,D =%4-'e2

%solv
(

!

Z!
2.!
B, !5"

where .!
B is the bulk density of species !. Here C) is a

constant which vanishes, as well as Ḡ)
exp!x", in the infinite-

dilution and vanishing-coupling limit considered hereafter.
The global minus sign in Eq. (4) has been introduced, be-
cause, in the latter limit and in the case of a plain wall !%W
=%solv", D̄)!x" is expected to have the same sign as the dipole
d!x" carried by the set made of a positive unit charge and its
screening cloud repelled from the wall. The sign of 1+C)
depends on the temperature, on the composition of the elec-
trolyte, on the value of the closest approach distance b to the
wall, and on the dielectric constants %W and %solv.
In an electrolyte solution, the Z!’s of all species !’s are of

unit order and the diameters $!’s of excluded-volume
spheres also have the same typical value, denoted by $.
Moreover, all densities .!

B’s are of the same magnitude order.
Thus, if the solution is highly diluted, the Coulomb coupling
between charges of any species separated by the mean inter-
particle distance a is weak: the condition of low densities,
$ /a/1, implies that 'e2 / !%solva"/1, if the temperature is
high enough for 'e2 / !%solv$" to be far smaller than 1 or of
unit order. Detailed scaling regimes are given in Sec. I B. In
the corresponding limit, denoted by the superscript (0) here-
after, where the fluid is infinitely diluted and extremely
weakly coupled, the large-distance behavior w!!!

as !r ,r!" of
the effective pairwise interaction w!!!!r ,r!" is the same as if
the charges e! and e!! were infinitesimal external point
charges embedded in the infinitely diluted and vanishingly
coupled fluid:

w!!!
as!0" =

e2

%solv
Z!Z!!)

as!0". !6"

Moreover, in this limit, the density profiles are uniform at
leading order and D̄)

!0"!x" is given by Eq. (4) where the con-
stant C) and the function Ḡ)

exp!x" vanish: C)
!0"=0 and

Ḡ)
exp!0"!x"=0 [7,8]. Then, by virtue of Eqs. (2) and (6),

D!
!0"!x" =

e
%%solv

Z!D̄)
!0"!x"

with D̄)
!0"!x" = −%2%W

%solv

e−,D!x−b"

,D
. !7"

As long as the dilution is high enough, the large-distance
behavior w!!!

as !r ,r!" of the effective pairwise interaction
w!!!!r ,r!" is expected to have the same functional form as
its expression w

!!!
as!0"!r ,r!" in the infinite-dilution and

vanishing-coupling limit. This assuption is supported by two
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reasons. First, since densities are low, the functional form of
the large-distance behavior w!!!

as !r ,r!" is ruled by the effect
of long-range Coulomb interactions, whereas short-ranged
hard-core repulsions are only involved in the values of the
coefficients of this leading tail. Second, the leading Coulomb
effects are due to the large-distance nonintegrability of Cou-
lomb interaction, and the leading-order contribution from
any integral involving the Boltzman factor of either the ef-
fective interaction w!!! or the bare Coulomb interaction
e!e!!v is obtained by linearizing the latter exponential fac-
tors. This is the procedure that underlies the Debye-Hückel
approximation for bulk correlations, which was initially de-
rived as a linearized Poisson-Boltzmann theory, where w!!!
is dealt with in a linear-response framework as if charges e!
and e!! were infinitesimal external charges [1,9]. [In the
Mayer diagrammatic approach of Debye-Hückel theory, the
linearized Boltzmann factor is that of the bare potential and
one must also resum the infinite series of the most divergent
integrals that arise from this linearization (see, e.g.,
Ref. [2]).] The second reason amounts to state that leading
Coulomb effects are properly described in a linearized mean-
field scheme.
In other words, as long as the dilution and temperature are

high enough, in w!!!
as the many-body effects beyond the lin-

earized mean-field structure only result in the renormaliza-
tion of charges and of the screening length with respect to
their values in the infinite-dilution and vanishing-coupling
limit—namely, with respect to the bare solvated charges Z!’s
and the Debye screening length +D. For instance, in the
bulk, w!!!

B as!r ,r!" behaves as the leading-order function
w

!!!
B as!0"!r ,r!" given by the Debye-Hückel theory for point
charges, but bare charges Z!’s and the Debye length ,D

−1 are
replaced by effective charges Z!

B eff’s and the screening
length ,B

−1, respectively:

w!!!
B !)r − r!)" $

)r−r!)→+(

e2

%solv
Z!
eff BZ!!

eff Be−,B)r−r!)

)r − r!)
, !8"

where

Z!
eff B!0" = Z! and ,B

!0" = ,D. !9"

(In the following, the superscript “B” signals all bulk quan-
tities.) In the present paper we show that the effective dipole
D!!x" in the large-distance pairwise interaction along a di-
electric wall takes the form

D!!x" = −%2%W
%solv

e
%%solv

Z!
eff We

−,!x−b"

,
&1 + G!

exp!x"' ,

!10"

where G!
exp!x" is an exponentially decaying function which

tends to 0 when x goes to infinity. At distances from the wall
larger than a few screening lengths, D!!x" takes the same
functional form as D!

!0"!x", and many-body effects reduce to
the introduction of effective charges Z!

eff W and of a screening
length ,−1.
On the other hand, in the bulk many-body effects upon

effective charges and the screening length arise only from

pair interactions between ions, whereas along the wall they
involve also the electrostatic potential and the geometric
constraint created by the wall. In order to investigate these
differences, we also determine the bulk pairwise interaction
w!!!
B up to the same order in the coupling parameter as for
the pairwise interaction along the wall.

B. Main results

In the present paper we determine w!!!
B !)r−r! ) ", D̄)!x",

and D!!x" up to first order in the dimensionless coupling
parameter

" #
1
2

,D
'e2

%solv
/ 1. !11"

in regimes where "/1, !$ /a"3/1 and ,Db/1. Here "
0 !'e2 /%solva"3/2 and Eq. (11) implies that 'e2 /%solv/a/+D.
(Up to a factor of 1 /2, " coincides with the so-called plasma
parameter of anelectron gas.) As shown in Sec. III, contribu-
tions from steric effects involving $ /a are corrections of
higher order with respect to the terms of order " in some
scaling regimes of high dilution where !$ /a"3/". Moreover,
as shown in Sec. V C 3, the first corrections involving ,Db
appear only at order " ln!,Db". In the first scaling regime,
the density vanishes while the temperature is fixed; then,
'e2 / !%solv$" and 'e2 / !%solvb" are fixed—namely,

*$

a +3 0 "2 and ,Db 0 " / 1 regime !1" . !12"

In the second case, the density vanishes while the tempera-
ture goes to infinity, but not too fast in order to ensure that
!$ /a"3/"; then, both 'e2 / !%solv$" and 'e2 / !%solvb" vanish.
These conditions can be summarized in the following way:

"2 / *$

a +3 / " / ,Db / 1 regime !2" . !13"

The expressions at leading order in " and ,Db in regime (2)
can be obtained from those derived in regime (1) for a fixed
ratio !" /,Db"0'e2 / !%solvb" by taking the limit where
'e2 / !%solvb" goes to zero while ,Db is kept fixed.We notice
that, when the solvent is water, the Bjerrum length 'e2 /%solv
at room temperature is about 7 Å and, for concentrations
around 10−4 mol/ liter, " is of order 10−2 and !$ /a"3 is of
order "2 for $$5 Å. For the sake of conciseness, both re-
gimes (1) and (2) will be referred to as the “weak-coupling ”
regime and we shall speak only in terms of " expansions.
Our exact analytical calculations are performed in the

framework of resummed Mayer diagrammatics introduced in
paper I. For the inverse screening length in the bulk we re-
trieve [10,11] that, up to order ",

,B = ,D,1 + "*13
12

+2 ln 34 + o!""- , !14"

where
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1m # (
!=1

ns

.!
BZ!

m. !15"

The leading corrections involved in the notation o!"" are
given in Eq. (64). As announced above, only screening ef-
fects of the non-integrable long-range Coulomb interaction
are involved up to order "; the diameters $!’s of charges
appear only in higher-order terms. This property holds in the
bulk as well as in the vicinity of a wall (see, e.g., Ref. [12]).
More generally, the specific form of the short-distance steric
repulsion between charges does not appear in the leading
correction of order ". The correction of order " in the bulk
screening length ,B

−1 vanishes in a charge symmetric electro-
lyte, where species with charge −Z!e has the same density as
species with charge Z!e (13=0). If the fluid is not charge
symmetric, the screening length ,B

−1 decreases when the cou-
pling strength increases.
Our main results are the following. First, we find that

Z!
eff B = Z!.1 + ",Z!

13
12

ln 3
2
+ *13

12
+2*16 − ln 38 +- + o!""/ ,

!16"

where !1/6"− !1/8"ln 3#0. In the case of a one-component
plasma, formula (16) is reduced to that found in Ref. [10] by
diagrammatic techniques. [The expression given for a multi-
component electrolyte in Ref. [11] corresponds to another
definition of the effective charge and does not coincide with
our expression (16).] As in the case of the screening length,
there is no correction at order " if the composition of the
electolyte is charge symmetric. According to the diagram-
matic origin of this correction, the contribution to Z!

eff B from
a screened interaction via one intermediate charge has the
sign of Z!13 whereas the contribution to Z!

eff B from a
screened interaction via two intermediate charges always in-
creases the effective charge. We notice that the existence of
the nonlinear term Z!

2 in Z!
eff B implies that w!!!

as cannot be
written as Z!2!! where 2!! would be the total electrostatic
potential created at r by the charge Z!!e at r! and its screen-
ing cloud in the electrolyte. 2!! does not exist beyond the
framework of linear-response theory.
Second, as expected, the screening length in the direction

perpendicular to the wall proves to be the same as in the
bulk, at least up to first order in ". Besides, the renormalized
charge Z!

eff W defined in Eq. (10) and the renormalized charge
Z!
eff B in the bulk do not coincide. However, up to order ",
their ratio is independent of the species !:

Z!
eff W = &1 + 3!1" + o!""'Z!

eff B, !17"

with

3!1" = C)
!1"* 'e2

%solvb
, ln!,Db",4el+ − "*13

12
+2,ac!4el"4

−
ln 3
8 - .

!18"

[We notice that the notation o!"" in Eq. (17) contains both
contributions such as those in Eq. (64) and terms of order
"5,Db.] As exhibited by their diagrammatic origins, the
various terms in 3!1" arise both from the nonuniformity of the

density profiles and from screened interactions via two inter-
mediate charges. These profiles, which have been calculated
explicitly in the limit of vanishing ,Db in Ref. [13], result
from the competition between, on the one hand, the screened
self-energy arising both from the electrostatic response of the
wall and its steric deformation of screening clouds, and, on
the other hand, the profile of the electrostatic potential drop
which these two effects induce in the electrolyte. More pre-
cisely, C)

!1" written in Eq. (146) is the first-order renormal-
ization of the amplitude of D̄)!x" [see Eq. (4)], which origi-
nates from the nonuniformity of the density profiles. [The
screened potential ) appears as an auxiliary object in the
resummed Mayer diagrammatics, and the expressions of C)

!1"

and Ḡ)
exp!1"!x ,x!" are calculated in Sec. V.] C)

!1" and its sign
depend on the composition of the electrolyte, on the closest
approach distance b to the wall [through the parameters ,Db
and 'e2 / !%solvb"], and on the parameter 4el, which charater-
izes the difference between the dielectric permittivity of the
wall and that of the solvent:

4el #
%W − %solv
%W + %solv

. !19"

The second term on the right-hand side (RHS) of Eq. (18)
originates from the renormalization of the screening length
and from the difference in the contributions from four-body
effective interactions in the bulk and along the wall. The
three-body effective interactions do not contribute to
3!1"—so that 3!1" is independent of the species !—because
they give the same corrections to the amplitudes of w!!!

B and
w!!!. The constant ac!4el" is written in Eq. (169). If
%solv#%W, as is the case when the solvent is water and the
wall is made of glass, ac!4el"# !1/2"ln 3 and the second
term decreases the ratio Z!

eff W/Z!
eff B. We notice that

G!
exp!1"!x" at first order in " is given in Sec. VI D. Contrarily

to D!
!0"!x", the sign of D!

!1"!x" may vary with the distance x,
and it depends on the composition of the electrolyte, on the
closest approach distance to the wall b, and on the ratio
between the dielectric constant of the wall and that of the
solvent.

C. Contents

The paper is organized as follows. The large-distance be-
haviors of the effective pairwise interactions w!!!, in the
bulk or along the wall, are investigated through the large-
distance decay of the Ursell function h!!! according to rela-
tion (1). The latter decay is conveniently studied from Mayer
diagrammatics generalized to inhomogeneous situations. In
Sec. II we recall the resummed Mayer diagrammatics intro-
duced in paper I in order to systematically handle with the
large-distance nonintegrability of the bare Coulomb potential
(far away or near the wall). There appears a screened poten-
tial ), which coincides with the interaction defined from the
immersion free energy between two infinitesimal external
point charges (see Sec. II B). In the bulk, ) is a solution of
the usual Debye equation. Near the wall ) obeys an inhomo-
geneous Debye equation, where the inverse screening length
depends on x. In Sec. II C a decomposition of h!!! into four
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contributions enables one to show how the basic internal-
and external-screening sum rules arise in resummed Mayer
diagrammatics and how they are preserved if only some sub-
class of diagrams is retained. It also allows one to show that,
for a symmetric electrolyte, (! .!!r"h!!!!r ,r!" decays faster
than h!!!!r ,r!" (see Secs. IV E and VI B). We also recall the
graphic reorganization of diagrams devised in paper I for the
study of the general structure of large-distance tails in dilute
regimes.
Systematic double expansions in the dimensionless pa-

rameters $ /a and " can be performed from resummed dia-
grams. In Sec. III we exhibit the nature of the first various
contributions. This leads us to introduce the scaling regimes
(12) and (13) where the correction proportional to the cou-
pling parameter " is the leading contribution. (We also recall
the expression of the pair correlation at any distance at lead-
ing order in ".)
Section IV is devoted to bulk correlations. We take advan-

tage of the full translational invariance in the bulk in order to
resum the four geometric series which appear in the Fourier
transform of the graphic decomposition of h!!!

B recalled in
Sec. II C. Thus, we obtain a compact formula for the large-
distance behavior of h!!!

B , where the contributions of both
charges are factorized. This formula is appropriate to obtain
systematic " expansions of the screening length and of the
renormalized charge from the " expansions of resummed
diagrams.
In Sec. IV D, we also show how to retrieve the corre-

sponding corrections of order " by a more cumbersome
method which will be useful for the calculations in the vi-
cinity of a wall, where the translational invariance is lost in
the direction perpendicular to the wall. In position space ev-
ery convolution in the graphic representation of h!!!

B decays
exponentially over the Debye screening length ,D

−1 at large
relative distances r, with an amplitude which is proportional
to 1/r times a polynomial in r. The resummation of the se-
ries of the leading tails in r at every order in " must be
performed in order to get the exponential decay over the
screening length ,B

−1 calculated up to order " (see Appendix
B). On the contrary, the correction of order " in the renor-
malized charge can be retrieved from only a finite number of
resummed Mayer diagrams.
In Sec. V we recall how the screened potential )!x ,x! ,y"

and the effective dipole D̄)!x" in its large-y tail are formally
expressed in terms of the density profiles in the vicinity of
the wall [4]. Then, the " expansion of D̄)!x" can be per-
formed from the " expansion of the density profiles, by ap-
plying the method devised in Ref. [12]. The density profiles,
which vary rapidly over the Bjerrum length 'e2 /%solv in the
vicinity of a dielectric wall, have been explicitly determined
up to order " in the limit where ,Db vanishes in Ref. [13],
and we explicitly calculate D̄)!x" up to order " in the same
limit.
In Sec. VI we recall how the structure of the effective

dipole D!!x" in the 1/y3 tail of h!!!!x ,x! ,y" is given in terms
of the graphic representation written in Sec. II C. We also
derive a sum rule for (ae!.!!x"D!!x". By using the resum-
mation method checked for the bulk situation in Sec. IV D,

we determine the renormalized value of the screening length
in the direction perpendicular to the wall at first order in ".
For that purpose, in Appendix D we show that the
leading term in x at every order "q is proportional to
!x−b"qexp&−,D!x−b"', and we resum the series of these
leading terms. Thus, we check that the correction of order "
in the screening length is indeed the same in the bulk and in
the direction perpendicular to the wall. Then, D!!x" is deter-
mined up to order " by only two resummed Mayer diagrams.
Explicit calculations are performed in the limit where ,Db
vanishes and the expressions of Z!

eff B and Z!
eff W are com-

pared. Their physical interpretation is given thanks to the
diagrammatic origins of the various contributions.

II. GENERAL FORMALISM

A. Model

In the primitive model defined above, the hard-core effect
between two species ! and !! can be taken into account in
the pair energy by an interaction vSR which is infinitely re-
pulsive at distances shorter than the sum !$!+$!!" /2 of the
sphere radii of both species. Its Boltzmann factor reads

exp&− 'vSR!)r − r!);!,!!"' = .0 if )r − r!) & !$! + $!!"/2,

1 if )r − r!) # !$! + $!!"/2.

!20"

Since charges are reduced to points at the centers of
excluded-volume spheres with the same dielectric constant
as the solvent, the Coulomb interaction between two charges
can be written in the whole space (even for x&0 or x!&0)
as !Z!Z!!e

2 /%solv"v!r ,r!", where v!r ,r!" is the solution of
Poisson equation for unit point charges with the adequate
electrostatic boundary conditions. Since the half-space x&0
is occupied by a material with a dielectric constant %W,
v!r ,r!" in Gauss units reads, for x#0 and x!#0 and for any
)r−r! ) #0 [14],

v!r,r!" =
1

)r − r!)
− 4el

1
)r − r!!)

. !21"

4el, defined in Eq. (19), lies between −1 and 1, and r!! is the
image of the position r! with respect to the plane interface
between the solution and dielectric material. In the bulk the
Coulomb potential reads

vB!)r − r!)" =
1

)r − r!)
. !22"

The total pair energy Upair is

Upair =
1
2(i!j

vSR!)ri − r j);!i,! j" +
1
2(i!j

e2

%solv
Z!i
Z!j

v!ri,r j" ,

!23"

where i is the index of a particle.
In the vicinity of the wall, one-body potentials appear in

the total energy of the system. For every charge a self-energy
Z!
2!e2 /%solv"Vself arises from the work necessary to bring a

CHARGE RENORMALIZATION AND OTHER EXACT… PHYSICAL REVIEW E 70, 056117 (2004)

056117-5



charge Z!e from x= +( (in the solvent) to a point r in the
vicinity of the wall. According to Eq. (21), the wall electro-
static response is equivalent to the presence of an image
charge −4elZ!e at point r! inside a wall that would have the
same dielectric constant %solv as the solvent and

Vself!x" = − 4el
1
4x
. !24"

In the case of a glass wall in contact with water, the relative
dielectric constant %W /%solv of the wall with respect to the
solvent is of order !1/80"&1, 4el defined in Eq. (19) is
negative, and Vself is a repulsive potential. The impenetrabil-
ity of the wall corresponds to a short-ranged potential VSR!x",
the Boltzmann factor of which is

exp&− 'VSR!x"' = .0 if x & b ,
1 if x # b ,

!25"

where b is the closest approach distance to the wall for the
centers of spherical particles, which is the same for all spe-
cies. The confinement of all particles to the positive-x region
and the electrostatic self-energy may be gathered in a one-
body potential Vwall:

Vwall =(
i
VSR!xi;!i" +(

i

e2

%solv
Z!i
2 Vself!xi" . !26"

B. Generalized resummed Mayer diagrams

By virtue of definition (1), the leading large-distance be-
havior w!!!

as of w!!! is proportional to the large-distance be-
havior h!!!

as of h!!!,

h!!!
as = − 'w!!!

as , !27"

because any power &w!!!
as 'n, with n62, has a faster decay

than w!!!
as . In an inhomogeneous situation h!!!

as is conve-
niently studied by means of the Mayer diagrammatic repre-
sentation of h!!!. However, the large-distance behavior of
the Coulomb pair interaction v!r ,r!" is not integrable, and
every integral corresponding to a standard Mayer diagram
that is not sufficiently connected diverges when the volume
of the region occupied by the fluid becomes infinite.
As shown in paper I, thanks to a generalization of the

procedure introduced by Meeron [15] in order to calculate
h!!! in the bulk, the density expansion of h!!! in the vicinity
of the wall can be expressed in terms of resummed Mayer
diagrams with integrable bonds F. Since the procedure for
the systematic resummation of Coulomb divergences relies
on topological considerations, the definitions of Mayer dia-
grams with resummed bonds are formally the same ones in
the bulk or near the wall. The two differences between re-
summed diagrams in the bulk and near the wall are the fol-
lowing. First, near the wall the point weights are not constant
densities but x-dependent density profiles. Second, the
screened potential ) arising from collective effects described
by the systematic resummation of Coulomb divergences is
no longer the Debye potential, but it obeys an “inhomoge-
neous” Debye equation

4r)!r,r!" − ,̄2!x")!r,r!" = − 4-*!r − r!" . !28"

In Eq. (28), ,̄2!x" is defined as

,̄2!x" # 4-'
e2

%solv
(

!

Z!
2.!!x" , !29"

where all densities .!!x"’s vanish for x&b. Here ) obeys the
same boundary conditions as the Coulomb potential v:
)!r ,r!" is continuous everywhere and tends to 0 when )r
−r!) goes to +(, while its gradient times the dielectric con-
stant is continuous at the interface with dielectric walls. We
recall that particles are supposed to be made of a material
with the same dielectric constant as the solvent.
The two resummed bonds F, called Fcc and FR, respec-

tively, are written in terms of the screened potential ) as

Fcc!n,m" = −
'e2

%solv
Z!n

Z!m
)!rn,rm" !30"

and

FR!n,m" = exp,− 'vSR!)rn − rm)" −
'e2

%solv
Z!n

Z!m
)!rn,rm"- − 1

+
'e2

%solv
Z!n

Z!m
)!rn,rm" , !31"

where n and m are point indices in the Mayer diagrams. [In
the bond notation, the superscript “cc” stands for “charge-
charge” and “R” means “resummed.” Indeed, Fcc is propor-
tional to the resummed interaction )!r ,r!" between point
charges; FR+Fcc is equal to the original Mayer bond where
the Coulomb pair interaction v!r ,r!" is replaced by its re-
summed expression )!r ,r!", while the short-range repulsion
is left unchanged.] The resummed Mayer diagrammatics of
h!!! is

h!!!!x,x!,y" =(
7

1
S7
0

8
,1
n=1

N

drn (
!n=1

ns

.!n
!xn"-&1 F'7

.

!32"

In Eq. (32) the sum runs over all the unlabeled topologically
different connected diagrams 7 with two root points !r ,!"
and !r! ,!!" (which arenot integrated over) and N internal
points (which are integrated over) with N=0, . . . ,(, and
which are built according to the following rules. Each pair of
points in 7 is linked by at most one bond F, and there is no
articulation point. (An articulation point is defined by the
fact that, if it is taken out of the diagram, then the latter is
split into two pieces, one of which at least is no longer linked
to any root point.) Moreover, in order to avoid double count-
ing in the resummation process, diagrams 7 must be built
with an “excluded-composition” rule: there is no point at-
tached by only two bonds Fcc to the rest of the diagram.
&1F'7 is the product of the bonds F in the 7 diagram and S7

is its symmetry factor—i.e., the number of permutations of
the internal points rn that do not change this product. Every
point has a weight equal to .!!x" that is summed over all
species. We have used the convention that, if N is equal to 0,
no 28 drn .!n

!xn" appears and !1/S7"&1F'7 is reduced to
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F!r ,r!" Near the wall, 8 denotes a finite-size region
bounded by the wall on the left, whereas, in the bulk, 8
stands for a finite-size region far away from the wall. The
screened potential ) is integrable at large distances. [In the
bulk ) decays exponentially fast in all directions; near the
wall in the large-distance behavior given in Eq. (4), D̄)!x"
has an exponential decay and the 1/y3 tail is integrable.] As
a consequence, 7 diagrams correspond to convergent inte-
grals in the limit where the volume 8 extends to infinity
inside the bulk or on the right of the wall.

C. Graphic reorganization of resummed diagrammatics

In h!!!!ra ,ra!! " we can distinguish four classes of dia-
grams by considering whether a single bond Fcc is attached
to root point a or to root point a!. [a and a! are short nota-
tions for the couple of variables !ra ,!" and !ra! ,!!", respec-
tively, which are associated with the root points in a Mayer
diagram.] h!!! can be rewritten as the sum

h!!! # h!!!
cc + h!!!

c− + h!!!
−c + h!!!

−− , !33"

where in h!!!
cc both a and a! carry a single bond Fcc, in h!!!

c−

!h!!!
−c " only a!a!" is linked to the rest of the diagram by a

single bond Fcc, and in h!!!
−− neither a nor a! is linked to the

rest of the diagram by only one bond Fcc.

1. Screening rules

A first interest of decomposition (33) is that it enables one
to derive the basic screening rules (recalled hereafter) from
the fact that they are already fulfilled by the diagram made of
a single bond Fcc [because of the corresponding sum rules
obeyed by the screened potential )!r ,r!"]. Moreover, since
the sum rules are linked to the large-distance behavior of the
charge-charge correlation function, decomposition (33) also
enables one to show that if some diagrams are to be kept for
their contributions to h!!!

−−as in some dilute regime, then the
corresponding diagrams “dressed” with Fcc bonds in h!!!

cc ,
h!!!
c− , and h!!!

−c are also to be retained, together with the bond
Fcc, in order to ensure that the screening rules are still satis-
fied.
The basic screening rules are the following. In a charge

fluid with Coulomb interactions, an internal charge of the
system, as well as an infinitesimal external charge, is per-
fectly screened by the fluid: each charge is surrounded by a
cloud which carries exactly the opposite charge. These prop-
erties can be written in a compact form in terms of the
charge-charge correlation defined as

C!r,r!" # e2.(
!

Z!
2.!!r"*!r − r!"

+(
!,!!

Z!Z!!.!!r".!!!r!"h!!!!r,r!"/ . !34"

The internal-screening rule reads

0 dr(
!

Z!.!!r"h!!!!r,r!" = − Z!!, !35"

and, by performing the summation (!!Z!!.!!!r!"5 Eq. (35),
the internal-screening sum rule implies that

0 dr C!r,r!" = 0. !36"

By virtue of the linear response theory, the external-
screening sum rule reads

'

%solv
0 dr0 dr! v!r0,r!"C!r!,r" = 1. !37"

The latter equation, derived for inhomogeneous systems by
Carnie and Chan [16], is the generalization of the sum rule
first settled by Stillinger and Lovett [17] for the second mo-
ment of C!r ,r!" in the homogeneous case (see next para-
graph). As a consequence of the internal screening sum rule,
Eq. (37) holds whatever short-distance regularization may be
added to the pure Coulomb interaction v!r0 ,r!" [3].
In the bulk, the translational invariance in all directions

implies that sum rules (36) and (37) are relative, respectively,
to the k=0 value and to the coefficient of the k2 term in the
k expansion of CB!k". Both sum rules are summarized in the
following small-k behavior:

CB!k" $
k→0

%solv
4-'

k2. !38"

In the vicinity of a wall, there is translational invariance only
in directions parallel to the plane interface, and the Carnie-
Chan sum rule (37) takes the form of a dipole sum rule
[3,18]:

0
0

+(

dx0
0

+(

dx!0 dy x!C!x,x!,y" = −
%solv
4-'

. !39"

As shown in Ref. [19], the first moment of C!x ,x! ,y" is
linked to the amplitude fC!x ,x!" of the 1/y3 tail of
C!x ,x! ,y":

0
0

+(

dx!0 dy x!C!x,x!,y" =
%solv
%W
2-0

0

+(

dx! fC!x,x!" .

!40"

fC!x ,x!" coincides with −'(!!! e
2Z!Z!!.!!x"

5.!!!x!"f!!!!x ,x!", where −'f!!!!x ,x!" /y
3 is the large-

distance behavior of h!!!!x ,x! ,y". Therefore, the moment
rule (39) can be rewritten as a sum rule for the amplitude
f!!!!x ,x!", first derived in Ref. [20]:

0
0

+(

dx0
0

+(

dx!(
!!!

e2Z!Z!!.!!x".!!!x!"f!!!!x,x!" =
%W

8-2'2
.

!41"

[We notice that there is a misprint in paper I, where the
above sum rule is written in Eq. (4) with an extra spurious
coefficient 1 /%solv on the RHS.]
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Now, we show how the combination of decomposition
(33) with sum rules obeyed by ) enables one to derive the
two basic screening rules. A key ingredient of the derivation
is the relations between hcc and h−c, on the one hand, and hc−
and h−− on the other hand, which arise from their definitions.
In the bulk, because of the full translational invariance,

the latter relations take simple forms in Fourier space. They
read

h!!!
cc !k" = F !!!

cc !k" +(
31

.31
B F !31

cc !k"h31!!
−c !k" !42"

and

h!!!
c− !k" =(

31

.31
B F !31

cc !k"h31!!
−− !k" . !43"

(For the sake of clarity, in the present paragraph, we forget
the superscripts “B”, except in the densities, in h!!! and in
C.) On the other hand, by virtue of the explicit expression
(59) of )B,

(
!

Z!.!
BF !!!

cc !k = 0" = − Z!!. !44"

In other words, the part F cc in h!!!
B already fulfills the

internal-screening sum rule. When relations (42) and (43) are
inserted in decomposition (33) of h!!!

B ,

h!!!
B !k" = F !!!

cc !k" + ,(
31

.31
B F !31

cc !k"h31!!
−c !k" + h!!!

−c !k"-
+ ,(

31

.31
B F !31

cc !k"h31!!
−− !k" + h!!!

−− !k"- . !45"

Then property (44) implies that, in (! Z!.!
Bh!!!
B !k=0", the

contribution from hcc−F cc, given in Eq. (42), cancels that
from h−c, and the contribution from hc−, given in Eq. (43),
compensates that from h−−, so that the internal-screening rule
is indeed satisfied.
In the case of the bulk external-screening rule (38), the

same mechanism operates when the k2 term in the small- k
expansion of CB!k" is considered. The charge-charge corre-
lation CF cc

B , where h!!!
B is replaced by F !!!

cc , fulfills the
second-moment sum rule:

CF cc
B !k" $

k→0

%solv
4-'

k2. !46"

Again, by virtue of Eq. (44), decomposition (45) implies that
the k2 term in h−c is canceled by the part of the k2 term in
hcc−F cc=(31

.31
B F !31

cc !k"h31!!
−c !k" that arises from the k2 term

in h−c. Similarly, the k2 term in h−− is canceled by the part of
the k2 term in hc−=(31

.31
B F !31

cc !k"h31!!
−− !k" that arises from

the k2 term in h−−. Moreover, Eqs. (43) and (44) imply that

(!!Z!!.!!
B h3!!

−c !k=0"=−(3!Z3!.3!
B h33!

−− !k=0", so that the part
of the k2 term in hcc−F cc that comes from the k2 term in F cc

is opposite to the part of the k2 term in hc− that is generated
by the k2 term in F cc. We notice that the present argument is
analogous to that found in Ref. [21] for an analogous decom-
position in a quantum charge fluid.
In the vicinity of the wall, the derivation of screening

rules (35) and (41) also relies on the analog of decomposi-
tion (45) and on two sum rules derived for ) in paper
I—namely, if x!#b,

0
0

+(

dx ,̄2!x"0 dy )!x,x!,y" = 4- !47"

and

0
0

+(

dx0
0

+(

dx! ,̄2!x",̄2!x!"f)!x,x!" = 2
%W

%solv
. !48"

The Fourier transform of a function f!y" at wave vector l is
defined as f!l"#2dy exp!il ·y"f!y". Thanks to the transla-
tional invariance in the direction y parallel to the plane in-
terface, the relations, which arise from their definitions, be-
tween hcc and h−c, on the one hand and hc− and h−− on the
other hand, take the simple form

h!!!
cc !x,x!,l" = F !!!

cc !x,x!,l"

+ 0
0

+(

dx1(
31

.31
!x1"F !31

cc !x,x1,l"h31!!
−c !x1,x!,l"

!49"

and

h!!!
c− !x,x!,l" = 0

0

+(

dx1(
31

.31
!x1"F !31

cc !x,x1,l"h31!!
−− !x1,x!,l" .

!50"

Equations (47) and (48) imply that F cc saturates the internal
sum rule (35) and the external sum rule (41), respectively.
The external-screening sum rule (41) in the vicinity of the

wall is studied again in Sec. VI B. We show that, in the case
where all species have the same closest approach distance to
the wall, decomposition (33) enables one to derive a sum
rule fulfilled by the effective dipole amplitude D̄!!x".

2. Large-distance tails

Another interest of decomposition (33) is that the large-
distance behavior of the Ursell function h!!! can be conve-
niently analyzed from this decomposition, after a suitable
reorganization of resummed Mayer diagrams, which has

FIG. 1. Representation of h!!!
cc !r ,r!" as the graph series defined in Eq. (51). A wavy line represents a bond Fcc and a gray disk stands for

a bond I. A couple of variables !ri ,3i" is associated with every circle. For a white circle a= !r ,!" [or a!= !r! ,!!"], r and ! are fixed, whereas,
for a black circle i= !ri ,3i", ri and 3i are integrated over with the measure 2dri (!i

.!i
!ri".
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been introduced in paper I. The resummed Mayer diagram-
matics (32) for h!!! is reexpressed in terms of “graphs”
made of two kinds of bonds: the bond F cc and the bond I
that is defined as the sum of all subdiagrams that either con-
tain no F cc bond or remain connected in a single piece when
a bond F cc is cut. FR falls off faster than F cc at large dis-
tances (namely, as &F cc'2 /2) and the topology of subdia-

grams involved in I implies that I decays faster than F cc at
large distances in a sufficiently dilute regime. Since the re-
organization is purely topological, it is valid for correlations
in the bulk as well as in the vicinity of the wall. According to
the excluded-composition rule obeyed by resummed 7 dia-
grams, the functions on the RHS of Eq. (33) are equal to the
series represented in Figs. 1–3, respectively,

h!!!
cc !r,r!" = F cc!a,a!" +0 dr1dr1! (

31,31!

.31
!r1".31!

!r1!"F cc!a,1"I!1,1!"F cc!1!,a!"

+0 dr1 dr1! (
31,31!

.31
!r1".31!

!r1!" 0 dr2 dr2! (
32,32!

.32
!r2".32!

!r2!"F cc!a,1"I!1,1!"F cc!1!,2"I!2,2!"F cc!2!,a!" + ¯ ,

!51"

h!!!
c− !r,r!" # 0 drc!(

3!

.3!!rc!"F
cc!a,c!"I!c!,a!"

+0 drc!(
3!

.3!!rc!" 0 dr1 dr1! (
31,31!

.31
!r1".31!

!r1!"F cc!a,1"I!1,1!"F cc!1!,c!"I!c!,a!" + ¯ , !52"

while h−c is defined in a symmetric way, and

h!!!
−− !r,r!" # I!a,a!" +0 drc0 drc!(

3,3!

.3!rc".3!!rc!"I!a,c"F
cc!c,c!"I!c!,a!"

+0 drc0 drc!(
3,3!

.3!rc".3!!rc!" 0 dr1 dr1! (
31,31!

.31
!r1".31!

!r1!"I!a,c"F cc!c,1"I!1,1!"F cc!1!,c!"I!c!,a!" + ¯ .

!53"

In the previous definitions c is a short notation for !rc ,3",
and i stands for !ri ,!i".
We notice that, according to previous section, any contri-

bution to I automatically generates a change in h!!! that
preserves the two basic screening sum rules. In the bulk, the
external-screening rule (38) is also retrieved from the com-
pact formulas obtained by resummations in the graphic ex-
pansion (51)–(53), as shown in Sec. IV E.

III. WEAK-COUPLING REGIME

A. Small parameters

Now we take into account the fact that in an electrolyte all
species have charges and diameters of the same magnitude
orders e and $, respectively. Moreover, all bulk densities are

comparable, and the typical interparticle distance does not
depend on species: it is denoted by a. First, we assume that
the densities are so low that the volume fraction !$ /a"3 of
particles is small;

*$

a +3 / 1. !54"

Our second assumption is that the temperature is high
enough for the mean closest approach distance between
charges of the same sign at temperature T, of order
'e2 /%solv,to be small compared with the mean interparticle
distance a. In other words, the Coulombic coupling param-
eter 9 between charges of the fluid is negligible:

FIG. 2. Graphic representation of definition (52) for h!!!
c− !r ,r!".
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9 #
'e2

%solva
0 * a

+D
+2 / 1. !55"

[The proportionality relation in Eq. (55) arises from defini-
tion (5).] The high-dilution condition (54) implies the weak-
coupling condition 93/1, if 'e2 / !%solv$" is of order unity or
smaller than 1.
In fact, conditions (54) and (55) can be realized in two

different kinds of expansions in the density and temperature
parameters. In the first situation, the density vanishes at fixed
temperature; then, the ratio between the pair energy at con-
tact and the mean kinetic energy, 'e2 / !%solv$", is also
fixed—namely,

*$

a +3 0 93 case !1" . !56"

In the second situation the density vanishes while the tem-
perature goes to infinity, so that 'e2 / !%solv$" also vanishes—
namely,

93 / *$

a +3 case !2" . !57"

B. Expansions of resummed diagrams

The discussion of the 9 and !$ /a" expansions of the in-
tegrals associated with resummed 7 diagrams is easier if we
split the bond FR into two pieces

FR =
1
2

&F cc'2 + FRT. !58"

(The notation FRT refers to the truncation with respect to FR.)
Diagrams built with bonds F cc, &F cc'2 /2, and FRT—and
with the same exclusion rule for bonds F cc as in 7

diagrams—will be called 7̃. The Ursell function h!!! is rep-
resented in terms of 7̃ diagrams by the same formula (32) as
in the case of 7 diagrams. The splitting (58) has already
been used for a classical plasma in the vicinity of a dielectric
wall in Ref. [12], and its use was detailed for quantum plas-
mas in the bulk in Refs. [22,26].
For the sake of simplicity, the scaling analysis of dia-

grams is now discussed in the case of the bulk. The bulk
screened potential )B obeys Eq. (28) far away from any
boundary, where ,̄!x" no longer depends on x and coincides
with the inverse Debye screening length ,D. Then, Eq. (28)
is reduced to the usual Debye equation, and since )B is a
function of )r−r!) that vanishes when )r−r!) goes to infinity,
it is equal to the well-known Debye potential )D:

)B!)r − r!)" = )D!)r − r!)" #
e−,D)r−r!)

)r − r!)
. !59"

The integrals of the diagrams with a single bond can be
calculated explicitly, and their orders in 9 and $ /a are the
following:

0 dr! .!
BF cc!r,r!" = O!90" !60"

and

0 dr! .!
B1
2

&F cc'2!r,r!" = O!93/2" , !61"

where O!90" and O!93/2" denote terms of orders unity and
93/2, respectively. According to Eq. (31),

FRT!r,r!;!,!!" = 3− 1 − F cc!r,r!" −
1
2

&F cc'2!r,r!" if )r − r!) & !$! + $!!"/2,

(
n=3

+( 1
n!

&F cc'n!r,r!" if )r − r!) # !$! + $!!"/2.
!62"

If we assume, for the sake of simplicity, that all particles have the same diameter $, the expression FRT
B of FRT in the bulk leads

to [23]

0 dr! FRT
B !r,r!;!,!!" = −

4-

3
$3 + 2-

'e2Z!Z!!

%solv
$2 − 2-*'e2Z!Z!!

%solv
+2$+ 2-

3
*'e2Z! Z!!

%solv
+3&C + ln!3,D$"'

− 4-*'e2Z! Z!!

%solv
+3(

n=1

+( !− 1"n

!n + 3" ! n
*'e2Z! Z!!

%solv$
+n + R93/2, !63"

where R93/2 denotes terms which are of relative order 93/2 with respect to those written on the RHS of Eq. (63). Therefore,

FIG. 3. Graphic representation of definition (53) for h!!!
−− !r ,r!".
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since .!
B is of order 1 /a3, at leading order 2dr! .!

BFRT!r ,r!" is a sum of terms with respective orders

*$

a +3, *$

a +29, $

a
92, 93, 93 ln,*$

a +29-, 93f* 'e2

%solv$
+ , !64"

where 'e2 / !%solv$"=9 / !$ /a" and the function f!u"
#(n=1

+( !−1"nun / &!n+3" !n' vanishes for u=0. The last term
in Eq. (64) arises from the short-distance behavior of the
Boltzmann factor, the explosion of which for oppositely
charged species is prevented by the cutoff distance $ pro-
vided by the hard-core repulsion.
As already noticed in paper I, the contributions from

excluded-volume effects in the primitive model are not in-
volved in F cc but they are contained in FR. Indeed,the po-
tential ) solution of Eq. (28) describes resummed interhyac-
tions between point charges at the centers of penetrable
spheres, because it corresponds to the integral equation

)!r,r!" = v!r,r!" −
'e2

%solv
0 dr"(

!

Z!
2.!!x""v!r,r"")!r",r!" .

!65"

We notice that, in the bulk, for the primitive model again, in
a linearized mean-field Poisson-Boltzmann theory where
excluded-volume spheres are taken into account [1], an extra
Heaviside function :()r"−r!)− !$!"+$!!" /2") appears in an
equation analogous to Eq. (65), and the effective inter-
action between two charges e! and e!! behaves as
e!e!! exp4−,D&r− !$!+$!!" /2"'5 / 4&1+,D!$!+$!!" /2'r5 at
large relative distances r. The latter interaction is equal to
e!e!!)B!r" up to a steric correction of order !,D$"2
09!$ /a"2. This is also the case in the so-called Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory [24,25] for an-
other model where every charge is spread over the surface of
the excluded-volume sphere instead of being concentrated at
its center. In the corresponding effective interaction at large
distances, the denominator of the steric factor which multi-
plies exp!−,Dr" /r takes the slightly different form &1
+,D!$!+$!!" /4'2. The order 9!$ /a"2 of this steric correc-
tion is one among the contributions listed in Eq. (64).
By using the variable change r# r̃ /,D, it can be shown

that, when the number of internal points in a 7̃ diagram
increases, then the lowest order in 9 at which it contributes
to various integrals also increases. (See, e.g., Ref. [22] or
[26].)

C. Scaling regimes

As shown in previous section, in the bulk the leading
coupling correction is of order 93/2, and the next correction
without any steric contribution is of order 93. The orders of
the first corrections induced by steric effects involve $ /a and
9 through the combinations written in Eq. (64).
In the first scaling regime (56), all terms in Eq. (64) are of

order 93, and the leading correction is indeed provided by

the correction of order 93/2 arising only from Coulomb inter-
actions for point charges in the Debye approximation. More-
over, we notice that in this regime, where the temperature T
is fixed, 93/2 is proportional to %(! .!

BZ!
2: the density expan-

sions prove to involve powers of the square root of a linear
combination of densities. (The appearance of such square
roots instead of integer powers in density expansions is an
effect of the long range of Coulomb interactions, which
makes the infinite-dilution and vanishing-coupling limit sin-
gular.)
In the second case (57), 'e2 / !%solv$" vanishes, and terms

in Eq. (64) are of orders !$ /a"3 and !$ /a"3 times a function
of 'e2 / !%solv$" which tends to zero when 'e2 / !%solv$" goes
to zero. The explicit calculations will be performed in a sub-
case where the leading coupling correction of order 93/2 is
large compared with all corrections involving steric effects.
This property is fulfilled if !$ /a"3 /93/2 goes to zero, and the
corresponding subregime reads

93 / *$

a +3 / 93/2 subcase !2" . !66"

In place of 9, we shall use the parameter " defined in Eq.
(11), because the first coupling correction is of order

93/2 0 " . !67"

[See Eq. (55) and the definition (5) of ,D.] In the first scaling
regime, relation (56) can be written as !$ /a"30"2. Then all
terms in Eq. (64) are of order "2, "2 ln ", and
"2f!'e2 /%solv$", and the whole double expansion in powers
of " and $ /a proves to be a series in integer powers of "
times some possible powers of ln ", at fixed 'e2 / !%solv$". In
the second regime, condition (57) reads "2/ !$ /a"3 and the
extra condition in Eq. (66) is !$ /a"3/".
In the following, the so-called “weak-coupling” regime

refers to the scaling limit (12) or (13). Moreover, the term
“" expansions” refers to " and $ /a expansions, as if they
were always performed in the scaling regime (12).

D. Pair correlation at any distance in the weak-coupling limit

The scaling analysis of " expansions for resummed 7̃
diagrams (see Sec. III B) shows that the " expansions of
integrals involving I start at least at relative order ". As a
consequence, at any relative distance, the pair correlation
h

!!!
!0" in the infinite-dilution and vanishing-coupling limit
arises only from the sum of 7 diagrams with a single bond
and where the screened potential ) is replaced by its leading
value )!0": h

!!!
!0" =Fcc!0"+FR

!0". [In other words, only the graph
with one bond Fcc in hcc and the graph I in h!!!

−− where I is
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replaced by FR do contribute at finite distances: h
!!!
cc!0"

=Fcc!0", h
!!!
c−!0"=h

!!!
−c!0"=0, and h

!!!
−−!0"= !1/2"&Fcc!0"'2+FRT

!0"

=FR
!0".] At any finite distance )r−r!), h!!!

!0" reads

h!!!
!0" !r,r!" = :*)r − r!) −

$! + $!!
2

+
5exp,− 'e2

%solv
Z!Z!!)

!0"!r,r!"- − 1. !68"

In the bulk the inverse screening length ,̄ in Eq. (28) does
not depend on x, ,̄=,D and )B

!0"=)B given in Eq. (59),
where )B obeys the Debye equation with the same boundary
conditions as the bare Coulomb potential vB far away from
any vessel surface. Near the wall, since the density profiles
created by interactions depend on the coupling strength,
,̄2!x" has an " expansion and has )!x ,x! ,y". In the infinite-
dilution and vanishing-coupling limit, ,̄2!x" tends to ,D

2 and
)!0" obeys Debye equation with the same boundary condi-
tions as the bare Coulomb potential v, which take into ac-
count the dielectric response of the wall.
The large-distance behavior of h!!! at leading order, h!!!

as!0",
is equal to the large-distance behavior of h

!!!
!0" —namely,

h!!!
as!0"!r,r!" = −

'e2

%solv
Z!Z!!)

!0" as!r,r!" . !69"

In other words, since FR decays only as the square of F cc, in
the diagrammatic representation h

!!!
as !0" arises only from the

diagram with one bond F cc, where ) is replaced by )!0".
(The diagram with one bond F cc is called 7̃a in the follow-
ing and is shown in Fig. 7.) Subsequently, the first term in
the " expansion of , is

,!0" = ,D. !70"

IV. BULK CORRELATIONS

In the bulk, the Ursell function h!!! decays exponentially
fast in all directions [27]. In the high-dilution and weak-
coupling regime, the leading tail at large distances is a mono-
tonic exponential decay over the screening length 1/,B (see
Ref. [28] for a review), while damping might become oscil-
latory in regimes with higher densities, as expected from
various approximate theories (see, e.g., Refs. [11,29]).
The resummed Meeron diagrammatic expansions used in

the present paper enable one to retrieve the existence of an
exponential decay in the dilute regime. Indeed, all resummed
Mayer diagrams 7 are built with bonds F cc, Eq. (30), and
FR, Eq. (31), the large-distance decays of which are ruled by
the screened potential )B that is the solution of Eq. (28) in
the bulk. By virtue of Eq. (59), )B falls off exponentially
over the length scale 1 /,D defined in Eq. (5). The monotonic
exponential decay of h!!! over the length scale 1 /,B in the
dilute regime is expected to be given by partially resumming
the tails of 7 diagrams, which decrease exponentially over
the scale 1 /,D, though the convergence of the corresponding
series is not controlled.

Before going into details, we introduce the following defi-
nitions. Let f!r" be a rotationally invariant function that de-
cays exponentially fast at large distances r. Let ,D be the
smallest inverse screening length in the exponential tails of f .
f may contain several tails exp&−,Dr' /r3 with various expo-
nents 3’s, which may be negative. We define the slowest of
the exponential tails of f , denoted by f slow!r" hereafter, as the
sum of all tails exp!−,Dr" /r3, with any exponent 3. In other
words, f slow!r"is the large-distance behavior with the largest
screening length in the exponential and all possible powers
of r. The notation f as!r" will be restricted to the leading tail
in the large-distance behavior of f!r": f as!r" is the leading
term in f slow!r"—namely, the contribution in f slow!r" with
the smallest exponent 3. For instance, as argued in Appendix
A, if f =)D!&)D'2, f slow!r"=a exp!−,Dr" /r and f as= f slow,
whereas, if f =)D!&)D'2!)D, f slow!r"= &b+cr'exp!−,Dr" /r
and f as=c exp!−,Dr".

A. Resummations of geometric series in Fourier space

The translational invariance in the bulk implies that the
graph series in the decomposition (33)–(53) of h!!! are sums
of convolutions. In Fourier space, they become geometric
series which are resummed into compact formulas. h!!!

ccB !k"
merely reads

h!!!
ccB !k" = −

'e2

%solv
Z!Z!!

)D!k"

1 + )D!k"Ī!k"
, !71"

where

)D!k" =
4-

k2 + ,D
2 !72"

and

Ī!k" #
'e2

%solv
(
3,3!

.3
B.3!
B Z3Z3!I!k;3,3!" . !73"

h!!!
ccB !k" is reduced to a fraction

h!!!
ccB !k" = −

'e2

%solv

4-

k2 + ,D
2 + 4-Ī!k"

Z!Z!!. !74"

The same geometric series appears in the case of h!!!
c−B and

h!!!
−−B with the results

h!!!
c−B!k" = −

'e2

%solv

4-

k2 + ,D
2 + 4-Ī!k"

Z!(
3!

.3!
B Z3!I!k;3!,!!"

!75"

and

h!!!
−−B!k" = I!k;!,!!" −

'e2

%solv

4-

k2 + ,D
2 + 4-Ī!k"

5(
3

.3
BZ3 I!k;3,!"(

3!

.3!
B Z3!I!k;3!,!!" .

!76"

Finally, h!!!
B !k" takes the half-factorized form
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h!!!
B !k" = I!k;!,!!" −

'e2

%solv

4-

k2 + ,D
2 + 4-Ī!k"

5,Z! +(
3

.3
BZ3 I!k;3,!"-

5,Z!! +(
3!

.3!
B Z3!I!k;3!,!!"- . !77"

From this expression we readily get that (!Z!.!
Bh!!!
B !k=0"

=−Z!!, which is another writing of the internal-screening
sum rule (35) in the bulk case. [We also notice that the writ-
ing of h!!!

B !k" in Eq. (77) is analogous to Eq. (2.110) of Ref.
[30], where the authors consider the Feynman diagrammatics
for a field theory, with some short-distance regularization,
which modelizes a charge fluid.]

B. Large-distance behavior of bulk correlations

When the bulk Ursell function h!!!!r ,r!" is only a func-
tion of )r−r!) and decays faster than any inverse power of
)r−r!) when )r−r!) becomes infinite, its large-distance be-
havior h!!!

as !r ,r!" is determined by the general formulas re-
called in Appendix A. As checked at first order in " in next
section, the singular points of I!k ;3 ,3!" in the weak-
coupling regime are more distant from the real axis in the
upper complex half-plane k=k!+ ik" than the pole k0 of the
fraction 1/ &k2+,D

2 + Ī!k"' that has the smallest positive
imaginary part. Moreover, k0 is purely imaginary, k0= i,B,
and k0 is a pole of rank 1.
Therefore, in the weak-coupling regime, the slowest ex-

ponential tail of h!!!
B is a purely exp!−,Br" /r function, as

well as the slowest exponential tails of h!!!
ccB , h!!!

−cB, h!!!
c−B, and

h!!!
−−B. By inserting the property

Res), 1

k2 + ,D
2 + 4-Ī!k"

-
k=k0

= ,2k0 + 4-6 " Ī!k"
" k

6
k0
-−1

!78"

into the general formula (A2) applied to f =h!!! given in Eq.
(77) with k0= i,B, we find that the large-distance behavior
h!!!
B as!r" of h!!!

B !r" takes the form

h!!!
B as!r" = −

'e2

%solv
Z!
eff BZ!!

eff Be−,Br

r
, !79"

where i,B is the pole of 1 / &k2+,D
2 + Ī!k"' with the positive

imaginary part and

Z!
eff B =

Z! +(3
.3
BZ3 I!i,B;3,!"

%1 − i!2-/,B" " Ī!k"/" k)i ,B

. !80"

C. Large-distance tail at order !

According to the scaling analysis of Sec. III B, the first
term in the " expansion of I!k" is I!1"!k" with I!1"= &Fcc'2 /2.

Ī!1" is calculated from the definition (73) of Ī!k" with I!1" in
place of I. By using

&)D
2 '!k" =

4-

k
arctan* k

2,D
+ !81"

and

1
2* 'e2

%solv
+3*4-(

3

.3
BZ3

3+2 = ,D
3 "*13

12
+2, !82"

where 1m is defined in Eq. (15), we get

4-Ī!1"!k" = ",D
2 *13

12
+2,D

k
arctan* k

2,D
+ . !83"

I!1" and Ī!1"!k" have a branch point at k=2i,D, while &k2

+,D
2 +4-Ī!1"!k"'−1 has a pole at the value of k equal to

i,D,1 + 2-

,D
2 Ī

!1"!i,D" + o!""- . !84"

The leading corrections involved in the notation o!"" are
given in Eq. (64). The latter pole is closer to the real axis
than the branch point at k= i2,D. Therefore, at first order in
", the singular point in h!!!

B !k" that is the closest one to the
real axis in the upper complex half-plane of k is the pole of
1 / &k2+,D

2 +4-Ī!1"!k"'.
The scenario of Sec. IV B does happen at leading order in

" and the large-distance behavior h!!!
B as!r" up to order " takes

the form (79) where k0= i&,D+*,B
!1"' with

*,B
!1" =

2-

,D
Ī!1"!i,D" . !85"

According to Eq. (83) we find

*,B
!1"

,D
= "*13

12
+2 ln 34 . !86"

We retrieve the formula of Ref. [11] obtained from integral
equations. It is reduced to the results obtained by Mitchell
and Ninham through diagrammatic techniques for the one-
component plasma [10] or for a two-component electrolyte
[31]. (The formulas for the one-component plasma can be
derived from those calculated for a two-component plasma
with charges e+ and e− and densities .+ and .− by taking the
limit where e− vanishes while .− diverges under the con-
straint e−.−=−e+.+.) The correction *,B

!1" vanishes in the
case of a 1:1 electrolyte. If the electrolyte is not charge sym-
metric, the expression (86) shows that the screening length
1/,B is a decreasing function of the coupling parameter " at
first order in ".
The bulk effective charge Z!

eff B up to order " is calculated
by formula (80). The explicit result is written in Eq. (16). In
view of the discussion of next section, we rewrite Z!

eff B as

Z!
eff B = Z!&1 + A!

!1" + o!""' . !87"

The amplitude (79) of h!!!
B as!r" up to order " can be rewritten

as
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h!!!
B as!r" = −

'e2

%solv

Z!Z!!

r
4&1 + A!

!1" + A!!
!1"'e−!,D+*,B

!1""r + o!""5 .

!88"

To our knowledge, the amplitude of h!!!
B as!r" for a multicom-

ponent plasma has not been calculated in the literature pre-
viously. In the limit of the one-component plasma, it is the
same as that found by Mitchell and Ninham in Ref. [10] by a
diagrammatic method.
We notice that the use of Eq. (80) with Ī!1" in place of Ī is

equivalent to replacing the diagrammatic series of h!!!
ccB , h!!!

c−B,
and h!!!

−−B shown in Figs. 1–3 by the corresponding series
represented in Figs. 4–6. As shown in Appendix B, the cor-
rection *,B

!1" to the screening length in hccB, hc−B, and h−−B
arises from the whole series in Figs. 4–6, respectively.
On the contrary, the first corrections to the effective bulk

charges can be seen as arising from only a finite number of
diagrams in Figs. 4 and 5. This will be shown in next section.
The property relies on the following rewriting of h!!!

B as!r":

h!!!
B as!r" = −

'e2

%solv

Z!Z!!

r
4&1 + A!

!1" + A!!
!1" − *,B

!1"r'e−,Dr + o!""5 .

!89"

We point out that Eq. (89) is valid for any distance r. Indeed
exp&−!,D+*,B

!1""r'= !1−*,B
!1"r"exp!−,Dr"+o!"" for any dis-

tance, whereas exp&−!,D+*,B
!1""r'= &1−*,B

!1"r+o!""'
5exp!−,Dr" only for distances r&Lmax#+D /"; with
;&1/2. The condition ;&1/2 ensures that for r&Lmax ev-
ery nth term with n62 in the expansion of the exponential
exp&−*,B

!1"r' is indeed a correction, of order "n!1−;"=o!"",
with respect to the O!"1−;" term *,B

!1"r.

D. Alternative derivation of the bulk large-distance tail
at order !

In view of calculations in the vicinity of a wall, where the
infinite series in f =hccB, hc−B, or h−−B can no longer be re-
summed in Fourier space, because of the loss of translational
invariance in the direction perpendicular to the wall, we
show how to retrieve the expression (88) for h!!!

B as in a less
systematic way than the method involving the resummed for-
mulas (79) and (80). (For the sake of simplicity we omit the
indices ! and !! for charge species in the notation f .)
In the general method of Secs. IV A and IV B, we per-

formed Fourier transforms; then, we resummed the four in-

finite series f =hccB, hc−B, h−cB, and h−−B that define h!!!
B

through the graphs shown in Figs. 1–3, and we got a compact
formula for h!!!

B !k" from which we calculated the large-
distance behavior h!!!

B as!r" of h!!!
B !r". Here, on the contrary,

in each series f we formally calculate the slowest exponen-
tial tail f m

slow!r" of everygraph fm, with m bonds Fcc, directly
in position space by using the residue theorem, and the large-
distance behavior f as of f =hcc, hc−, h−c, or h−− is given by
the sum (over m) of the slowest tails fm

slow!r"’s in each case.
(The slowest exponential tail is defined in the introduction of
Sec. IV.)
The second procedure is more cumbersome, because the

series sums f!k"’s have a pole of rank 1 at k= i,B and their
inverse Fourier transform decay as exp!−,Br" /r, whereas
each term fm!k" in the series has a multiple pole of rank m at
k= i,D and its inverse Fourier transform behaves as
exp!−,Dr" /r times a polynomial in r of degree m−1. We
point out that, in the present " expansion of f as!r" around its
exp&−,Dr' /r limit behavior in the infinite-dilution and
vanishing-coupling limit (where only the bond Fcc contrib-
utes), for every graph fm we must retain the entire slowest
tail f m

slow—namely, the entire polynomial in r—and we only
disregard tails exp&−l,Dr' /r with l62. [See the example in
Eq. (A5).] The procedure is legitimate as long as dilution is
sufficiently high. Details are given in Appendix B and we
give only a summary in the present section.

1. General structure of the ! expansion of h""!
as

As long as densities are low enough, the graph I decays
faster than the bond F cc, and as shown in Appendix B, the
slowest tail f m

slow!r" of fm!r" is equal to exp&−,Dr' /r times a
polynomial in r of rank m−1, (p=0

m−1 Fm,pr p. As a conse-
quence, the " expansion of the large-distance behavior of
h!!!
B reads

h!!!
B as!r" =

e−,Dr

r (
p=0

+(

r pHp!!,!!;"" , !90"

where the coefficient Hp!! ,!! ;""—which is the sum of the
contributions from hccB, hc−B, h−cB, and h−−B—arises only
from thegraphs fm with m6p+1 in the series representations
shown in Figs. 1–3. [We recall that " is a short notation for
parameters " and $ /a in the scaling regimes (56) and (66), as
explained at the end of Sec. III C.]
Moreover, according to the scaling analysis for " expan-

sions in Sec. III B, all coefficients Fm,p in the polynomial in

FIG. 4. Diagrams in h!!!
cc !r ,r!" that contribute to the correction of order " in the screening length. A double wavy line denotes a bond

!1/2"&Fcc'2.

FIG. 5. Diagrams in h!!!
c− !r ,r!" that contribute to the correction of order " in the screening length.
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the slowest tail of every graph fm with m61 start at order
"n0+m−1, where n0=0 if f =hccB, n0=1 if f =hc−B or h−cB, and
n0=2 if f =h−−B. Therefore, the " expansion of Hp!! ,!! ;""
starts at order "p, and after reversing the summation orders,

h!!!
B as!r" =

e−,Dr

r (
q=0

+(

"q(
p=0

q

r pHp
!q"!!,!!" , !91"

with

Hq
!q"!!,!!" = Fq+1,q

!q" !f = h!!!
ccB " . !92"

Equation (91) displays that, in the " expansion of h!!!
B as!r"

around its exp&−,Dr' /r behavior in the limit where " van-
ishes, the leading tail of h!!!

B as!r" at order "q behaves as r q
times exp&−,Dr' /r. Moreover, by virtue of Eq. (92), it coin-
cides with the first term in the " expansion of the leading tail
in the slowest exponential decay f q+1

slow!r" of the graph fq+1
with !q+1" bonds Fcc in f =h!!!

ccB .

2. Renormalization of the screening length

As shown in Appendix B, for each f =hccB, hc−B, h−cB, or
h−−B, the sum fas!!r" of the leading tails at every order "n0+q

in the " expansion of fas!r" around its lowest-order
"n0 exp&−,Dr' /r limit can be performed explicitly. (Indeed,
the coefficient aq

!n0+q""n0+q of the leading r q exp&−,Dr' /r tail
at order "n0+q in the " expansion of f as coincides with the
first term in the " expansion of the coefficient Fq+1,q of the
leading r q exp&−,Dr' /r term in the slowest exponential de-
cay f q+1

slow!r" of the graph fq+1 with !q+1" bonds F cc, and the
formal expression of Fq+1,q in terms of I is given in Eq.
(B7).) f as!!r" proves to be equal to exp&−*,B

! r' times f1
as!n0",

the value at the first order "n0 of the large-distance behavior
of the graph f1 with only one bond Fcc. As a consequence,
the sum h!!!

B as!!r" of the leading r q exp&−,Dr' /r tails at every
order "q in the " expansion of h!!!

B as!r" around its lowest-
order exp&−,Dr' /r limit, namely,

h!!!
B as!!r" # (

q=0

+(

Hq
!q"!!,!!""qrq

e−,Dr

r
, !93"

reads

h!!!
B as!!r" = Fcc!0"!r"e−*,B

! r. !94"

It arises from the leading "qr q exp&−,Dr' /r tails of h!!!
ccB

only.

Moreover, *,B
! coincides with the first-order correction

*,B
!1" to the bulk screening length [see Eq. (85)] calculated

from the exact procedure of Sec. IV B:

*,B
! = *,B

!1". !95"

Eventually, the resummation of the series of leading tails at
every order in " for hccB proves to be a way to retrieve the
value of *,B

!1".

3. Diagrams with slowest exponential tails of order !

As already seen in Sec. III D, diagram 7̃a in Fig. 7 is the
only diagram whose slowest exponential tail [proportional to
exp!−,Dr" /r] has an amplitude of order "05'e2 /%solv. Dia-
grams whose slowest exponential tails have amplitudes of
order " are diagrams 7̃b, 7̃b!, and 7̃c shown in Figs. 8 and 9
(which come from the series hc−, h−c, and hcc, respectively,
where I is replaced by I!1", as shown in Figs. 4 and 5). The
contribution of 7̃b to h!!!

B as!r" reads

−
'e2

%solv
Z!Z!!

2 "
13
12

ln 3
2

e−,Dr

r
, !96"

while the contribution of 7̃c is

−
'e2

%solv
Z!Z!!,− "*13

12
+2 ln 34 ,Dr + 2"*13

12
+2

5*16 − ln 38 +- e−,Dr

r
. !97"

Indeed, the contribution of diagram 7̃b is proportional to the
convolution )D!&)D'2 calculated in Eq. (A3), while the dia-
gram 7̃c involves the convolution )D!&)D'2!)D, whose ex-
pression at any distance is given by Eq. (A5). We notice that
the diagrams 7̃b, 7̃b!, and 7̃c have already been calculated
in the case of the electron gas [10].
By virtue of Eqs. (96) and (97), the sum of the slowest

exponential tails of diagrams 7̃b, 7̃b!, and 7̃c coincides with
the expression (89) of h!!!

B as up to order ", where *,B
!1" is

given in Eq. (86) and

A!
!1" = Z!Ā&b'

!1" + A&c'
!1", !98"

with

Ā&b'
!1" = "

13
12

ln 3
2

!99"

and

FIG. 6. Diagrams in h!!!
−− !r ,r!" that contribute to the correction of order " in the screening length.

FIG. 7. Diagram 7̃a. FIG. 8. Diagrams 7̃b (on the left) and 7̃b* (on the right).
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A&c'
!1" = "*13

12
+2*16 − ln 38 + . !100"

The −*,B
!1"r term in Eq. (89) comes from diagram 7̃c. The

term Z!Ā&b'
!1"!Z!!Ā&b'

!1"" proportional to Z! !Z!!" in A!
!1" comes

from 7̃b !7̃b*", whereas the other term A&c'
!1" arises from 7̃c.

Therefore, the constants A!
!1" and A

!!
!1" are determined by

the exponential tails of only three diagrams 7̃b, 7̃b!, and 7̃c.
[See the comment after Eq. (89) for a comparison with the
exact method of Sec. IV C.] Moreover, as a consequence of
the analysis summarized in Sec. IV D 2, the coefficient of the
r term in the amplitude of the slowest tail of diagram 7̃c with
two Fcc bonds (see Fig. 9) must coincide with the opposite of
the first-order correction *,B

!1" in the inverse screening
length.

E. Density-density and charge-charge correlation

By virtue of the bulk local charge neutrality,

(
!

e!.!
B = 0, !101"

the Fourier transform of the density-density correlation func-
tion takes the form

(
!,!!

.!
B.!!
B h!!!

B !k" =(
!,!!

.!
B.!!
B I!k;!,!!"

−
'e2

%solv

4-

k2 + ,D
2 + 4-Ī!k"

5,(
!

.!
B(

3

.3
BZ3I!k;3,!"-2,

!102"

while the charge-charge structure factor, defined from Eq.
(34),

CB!k" # e2.(
!

.!
BZ!

2 +(
!,!!

.!
B.!!
B Z!Z!!h!!!!k"/ ,

!103"

reads

CB!k" =
%solv
4-'.,D

2 + 4-Ī!k" −
&,D
2 + 4-Ī!k"'2

k2 + ,D
2 + 4-Ī!k"

/ .
!104"

As announced in Sec. II C 1, the expression (104) of the
charge-charge structure factor CB!k" indeed obeys the sum
rule (38), which summarizes both the internal-screening sum
rule (36) and the external-screening sum rule (37). [If a

phase transition gave rise to nonintegrable algebraic tails in
Ī!r" and subsequent nonanalytic terms of order k< with <

=0 in the Fourier transform Ī!k", then CB!k" would still
vanish at k=0, but the coefficient of the k2 term would be
different from the universal value in Eq. (38), as exhibited in
the exactly soluble spherical model of Ref. [32].]
We stress that the k2 term in the Fourier expansion of

CB!k" is independent of the short-range potential vSR!)r
−r!) ;! ,!!", which must be introduced in three dimensions
in order to avoid the collapse under the attraction between
charges with opposite signs. This property is a consequence
of the internal screening rule [3], and it is retrieved from the
structure of expression (104). On the contrary, the k2 term in
(!,!!.!

B.!!
B h!!!

B !k" given in Eq. (102) does not have any uni-
versal value: it depends on the short-distance repulsion in the
generic case. However, this is not the case for a symmetric
1:1 electrolyte in two dimensions [33,34], where the pure
logarithmic Coulomb interaction needs not be regularized at
short distances and is scale invariant. Then, for point
charges, scale-invariance arguments lead to a value of the
dimensionless second moment of (!,!!.!

B.!!
B h!!!

B !r" that de-
pends only on the coupling parameter 'e2. We also notice
that formulas (102) and (104) enable one to retrieve the lead-
ing low-density values of the coefficients of the k2 and k4
terms in the Fourier transforms of the density-density corre-
lation and of the charge-charge structure factor derived for a
symmetric 1:1 electrolyte in Ref. [35].
When there is no charge symmetry in the composition of

the electrolyte, the same argument as that used in Sec. IV B
implies that, according to Eqs. (102) and (104), the large-
distance behaviors of the density-density and charge-charge
correlations in the high-dilution and weak-coupling regime
are determined by the zero k0= i,B of k2+,D

2 + Ī!k": they de-
cay over the same screeninglength as the correlation h!!!

B .
In the case of a symmetric electrolyte made of two species

with opposite charges +Ze and −Ze and with the same radii,
(! .!

B(3 .3
BZ3I!k ;3 ,!" vanishes by virtue of the local neu-

trality (101) and of the symmetries [I!k ; + + "= I!k ;−−" and
I!k ; +−"= I!k ;−+ "]. As a consequence, (! .!

Bh!!!!r" and
(!,!!.!

B.!!
B h!!!!r" decay as I!r ;! ,!!" by virtue of Eq. (102).

I!r ;! ,!!" is expected to decay over the length 1/ !2,B", by
analogy with the infinite-dilution and vanishing-coupling
limit where it behaves as the diagram &Fcc'2 /2, which falls
off over the scale 1 / !2,D". Therefore, in this peculiar case,
the “screening” length of the density-density correlation is
expected to be 1/ !2,B" at low density, in agreement with the
result of Ref. [35].

V. SCREENED POTENTIAL ALONG THE WALL

A. Formal expression of the screened potential

Near the plane dielectric wall located at x=0, interactions
create density profiles and Eq. (28) is an inhomogeneous
Debye equation, where the inverse squared screening length
,̄2 depends on the distance x to the wall. Moreover, )!r ,r!"
obeys the same boundary conditions as v!r ,r!" [defined after
Eq. (20)]:

FIG. 9. Diagram 7̃c.
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lim
x→0−

%W
%solv

" )

" x
!r,r!" = lim

x→0+

" )

" x
!r,r!" !105"

and

lim
x→b−

" )

" x
!r,r!" = lim

x→b+

" )

" x
!r,r!" , !106"

since particles are made of a material with the same dielec-
tric constant as the solvent. In order to take advantage of the
invariance along directions parallel to the wall, we introduce
the Fourier transform with respect to the y variable, and we
write

)!x,x!,y" = ,D0 d2q
!2-"2

e−iq·!,Dy"e)̃!,Dx,,Dx!;q" .

!107"

In the following, the tilde index denotes dimensionless quan-
tities, such as the Fourier transform )̃!,Dx ,,Dx! ;q" and the
dimensionless coordinate x̃#,Dx.
The solution of the inhomogeneous Debye equation (28)

requires one to distinguish only three regions: region I for
x&0, region II for 0&x&b, and region III for b&x. In
regions I and II, ,̄!x" vanishes by virtue of Eq. (29). Accord-
ing to Eq. (28), the dimensionless Fourier transform
)̃!x̃ , x̃! ;q" obeys a one-dimensional differential equation.
When x!#b it reads

. " 2

" x̃2
− q2/)̃!x̃,x!̃;q" = 0 if x̃ & b̃ . !108"

The solution with boundary conditions (105) and (106) is

)̃!x̃, x̃!, )q)" = .B!x̃!, )q)"!1 − 4el"e)q)x̃ if x̃ & 0,

B!x̃!, )q)"&e)q)x̃ − 4ele−)q)x̃' if 0& x̃ & b̃ .
!109"

[A similar equation is solved in Ref. [12] with a misprint in
Eq. (4.20).]
In region III, when x goes to +(, ,̄!x" tends to the inverse

Debye length ,D
−1, Eq. (5), and we rewrite the Fourier trans-

form of Eq. (28) as

. " 2

" x̃ 2
− !1 + q2" − U!x̃"/)̃!x̃, x̃!;q"

= − 4-*!x̃ − x̃!" if x̃ # b̃ , !110"

with

U!x̃" #
4-'e2

%solv,D
2 (

!

Z!
2&.!!x" − .!

B' . !111"

The solution of the one-dimensional equation (110) can be
written in terms of the solutions h of the associated “homo-
geneous” equation (with a zero in place of the Dirac distri-
bution) which is valid for −(&x& +(. Indeed, the general
solution of Eq. (110) for x#b and x!#b is the following
sum: a linear combination of two independent solutions h+
and h− plus a particular solution )sing of Eq. (110), which is

singular when x=x! and which is calculated in terms of h+
and h− by the so-called Wronskian method [36]. In the fol-
lowing, h+ !h−" is chosen to be a solution which vanishes
(diverges) when x tends to +(. In the bulk, ,̄!x" is a constant
equal to the inverse Debye length ,D: h+ and h− can be
chosen to be equal to exp&>x%1+q2'.When ,̄ depends on x,
we look for the solutions h+ and h− in terms of the bulk
solutions as

e>x̃%1+q2&1 + H±!x̃,q2"' . !112"

Moreover, the particular solutions H+ and H− can be chosen
to vanish at x̃= b̃. As shown in Ref. [12], when x̃#b and
x̃!#b,

)̃!x̃, x̃!,q" = )̃sing!x̃, x̃!,q2" + Z!)q)"e−!x̃+x̃!"%1+q2&1 + H+!x̃,q2"'

5&1 + H+!x̃!,q2"' !113"

and

)̃sing!x̃, x̃!,q" = −
4-

W!q2"
e−)x̃−x̃!)%1+q2&1 + H−„inf!x̃, x̃!",q2…'

5&1 + H+!sup!x̃, x̃!",q2"' , !114"

where inf!x̃ , x̃!" &sup!x̃ , x̃!"' is the infimum [supremum] of x̃
and x̃!. Since H+ and H− vanish at x̃= b̃, "H− /"x̃)x̃=b̃ is also
equal to zero, as can be checked from the formal solutions
given in next paragraph. Therefore the Wronskian W!q2"
takes the simple form

W!q2" = − 2%1 + q2 + 6 " H+!x̃,q2"
" x̃

6
x̃=b̃
. !115"

For the same reasons, the value of Z!)q)" depends only on
"H+ /"x̃)x̃=b̃. Indeed, Z!)q)" is entirely determined by the ratio
of the continuity equations (105) and (106) obeyed by )̃ and
")̃ /"x̃ at x̃= b̃, and the amplitude B!x̃! , )q)" in region
0& x̃& b̃ [see Eq. (109)] disappears in the latter ratio.
As shown in Ref. [12], H+ can be represented by a formal

alternating series, which will be used in the following:

H+!x̃,q2" = − T +&1'!x̃;q2" + T +&T +&1''!x̃;q2" − ¯ ,
!116"

where the operator T + acting on a function f!x̃" reads

T +&f'!x̃;q2" # 0
b̃

x̃
dv e2%1+q2 v0

v

+(

dt e−2%1+q2 tU!t"f!t" .

!117"

Similarly H−!x̃ ,q2" is equal to the series

H−!x̃,q2" = T −&1'!x̃;q2" + T −&T −&1''!x̃;q2" + ¯ ,
!118"

with

CHARGE RENORMALIZATION AND OTHER EXACT… PHYSICAL REVIEW E 70, 056117 (2004)

056117-17



T −&f'!x̃;q2" # 0
b̃

x̃
dv e−2%1+q2 v0

b̃

v

dt e2%1+q2 tU!t"f!t" .

!119"

In the infinite-dilution and vanishing-coupling limit, den-
sity profiles become uniform and ,̄2!x" tends to ,D

2 . The cor-
responding screened potential )!0" obeys the Debye equation
and satisfies the same boundary conditions as the bare Cou-
lomb potential v. In other words, H+ and H− in expressions
(113) vanish for )̃!0"!x̃ , x̃! ,q" according to their definitions
(112), while the expression (115) is reduced to −2%1+q2 for
W!0"!q2". Z!0"!)q)" is then determined by the continuity equa-
tions (105) and (106). The result reads

)!0"!x,x!,y" = )sing
!0" !r − r!" + ,D0 d2q

!2-"2
e−iq·!,Dy"

5Z!0"!)q)"e−!x̃+x̃!"%1+q2, !120"

where

Z!0"!)q)" =
2-

%1 + q2e
2b̃%1+q21 − 4ele−2b̃)q)!%1 + q2 + )q)"2

!%1 + q2 + )q)"2 − 4ele−2b̃)q)
.

!121"

The particular solution )sing
!0" !r−r!" that is singular when r

=r! coincides with the bulk screened potential in Debye
theory:

)sing
!0" !r − r!" = ,D0 d2q

!2-"2
e−iq·!,Dy" 2-

%1 + q2e
−)x̃−x̃!)%1+q2

= )D!r − r!" , !122"

where )D is written in Eq. (59).

B. Large-distance tail of the screened potential

When x#b and x!#b, )!x ,x! ,y" falls off as 1 /y3, be-
cause of the boundary conditions at the interface x=b. The
reason is the following. The appearance of an 1/y3 tail in the
large-y behavior of a function f!y" corresponds to the exis-
tence of a term proportional to )q), which is not analytical in
the Cartesian components of q, in the small-q expansion of
f!q" [37]. Functions different from Z!q" in )̃!x̃ , x̃! ,q" [see
Eq. (113)] prove to be functions of q2, but the boundary
conditions at x̃= b̃ imply that, as well as the small-q expan-
sion of )̃!x̃ , x̃! ,q" when x̃& b̃ (and x̃# b̃) [see Eq. (109)], the
small-q expansion of Z!q" contains a term proportional to
)q).
As shown in paper I, the 1/y3 tail of ) takes the product

structure (3) where

D̄)!x" = −%!− BZ"
2-

e−x̃

,D
&1 + H+!x̃,q2 = 0"' . !123"

In Eq. (123) BZ is the coefficient of the )q) term in the small-
q expansion of Z!)q)":

Z!)q)" = Z!q = 0" + BZ)q) + O!)q)2" . !124"

We notice that, as shown in paper I, sum rules obeyed by
)!x ,x! ,y" imply that D̄)!x" has the same sign for all x’s, and
the 1/y3 tail of )!x ,x! ,y" is repulsive at all distances x and
x! from the wall. In Eq. (123) the minus sign in front of the
square root is a priori arbitrary. It has been introduced, be-
cause in the infinite-dilution and vanishing-coupling limit
and in the case of a plain wall !%W=%solv", D̄)!x" is expected
to have the same sign as the dipole d!x" carried by the set
made of a positive unit charge and its screening cloud re-
pelled from the wall, and H+!x̃ ,q2=0" vanishes in this limit.
The large-distance behavior of )!x ,x! ,y" at leading order,

)as !0", is equal to the leading tail )!0" as of )!0": )as !0"

= D̄)
!0"!x"D̄)

!0"!x!" /y3 with D̄)
!0"= D̄)!0". Here D̄)!0"!x" is given

by Eq. (123), where H+ vanishes and BZ is calculated for
)!0"; namely, BZ

!0" is equal to the coefficient of the )q) term in
the small-q expansion of Z)!0"!q"#Z!0"!q". According to Eq.
(121),

Z!0"!)q)" = 2-e2b̃,1 – 2 %W
%solv

)q)- + O!)q)2" , !125"

and the resulting expression for D̄)!0" is written in Eq. (7).
The expression of the distance y!

!0"!x" at which the 1/y3 tail
in )!0" overcomes the exponential tails in )!0" has been esti-
mated in paper I. In the case where the solvent is water and
where the dielectric wall is made of glass, %W /%solv$1/80
and y!

!0"!x=b"=7+D, y!
!0"!x=b++D"=10+D, y!

!0"!x=b+3+D"
=15+D, and y!

!0"!x=b+5+D"=20+D.

C. Large-distance tail of the screened potential up to order !

1. Formal ! expansion of the tail

Because of the nonuniformity of the density profiles in the
vicinity of the wall, ) has an " expansion. More precisely,
the " expansion of the screened potential ) originating from
the " expansion of density profiles can be determined by Eq.
(113) from the " expansion of the functions H+ and H−,
which themselves are derived from the formal series (116)
and (118), respectively.
According to Eq. (123) and with the notations of Eq. (4),

the first correction D̄)
!1"!x" in the " expansion of D̄)!x" is

obtained from H+!1"!x̃ ,q2=0" and from the " expansion of
the coefficient of )q) in the small-q expansion (124) of Z!)q)",
BZ=BZ

!0"+BZ
!1"+o!"". It reads

D̄)
!1"!x" = D̄)

!0"!x"&C)
!1" + Ḡ)

exp!1"!x̃"' , !126"

where the constant C)
!1" is equal to

C)
!1" =

BZ
!1"

2BZ
!0" + lim

x̃→+(
H+!1"!x̃,q2 = 0" , !127"

and the function Ḡ)
exp!1"!x̃", which vanishes exponentially fast

when x̃ goes to infinity, is
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Ḡ)
exp!1"!x̃" = H+!1"!x̃,q2 = 0" − lim

x̃→+(
H+!1"!x̃,q2 = 0" .

!128"

If we write the " expansion of Z!)q)" up to order " as
Z!)q)"=Z!0"!)q)"+Z!1"!)q)"+o!"", then BZ

!0"=BZ!0" and BZ
!1"

=BZ!1". By virtue of Eq. (125), BZ!0"=−4-!%W /%solv"exp!2b̃".
As already mentioned in Sec. V A, Z!)q)"—and subsequently
BZ—is entirely determined from the expression of "H+ /"x̃ at
x̃= b̃ by the ratio of the continuity equations (105) and (106).
When the " expansions of Z!)q)" and "H+ /"x̃)b̃ up to order "

are introduced in the expression (113) of )̃!x̃ , x̃! ,y", the con-
tinuity equations at x̃= b̃ lead to

Z!1"!)q)" = Z!0"!)q)"6 " H+!x̃,q2"
" x̃

6
x̃=b̃

!1" 1
2%1 + q2

5
3%1 + q2 + )q) − 4ele−2b̃)q)!3%1 + q2 − )q)"
%1 + q2 + )q) − 4ele−2b̃)q)!%1 + q2 − )q)"

.

!129"

Then the coefficient BZ!1" of the )q) term in the q expansion
of Z!1"!)q)" is determined by using Eq. (125), and the expres-
sion of C)

!1" is given by Eq. (127) where

BZ
!1"

2BZ
!0" = 6 " H+!x̃,q2 = 0"

" x̃
6
x̃=b̃

!1"

. !130"

The expression of H+!1"!,Dx ,q2=0" is calculated from
(! Z!

2.!!x" as the term of order " in the " expansion of the
formal series (116). The first term in the latter series reads

T +&1'!x̃;q2" = 0
b̃

x̃
dv e2v%1+q20

v

+(

dt e−2 t%1+q2

5, ,̄2!t/,D"
,D
2 − 1- . !131"

As shown in the next section, the contribution to ,̄2!x" from
each species varies over two length scales, 'e2 /%solv (times
Z!
2) and 1/,D. Therefore, T +&1'!x̃ ;q", as well as all other
terms in the series (116), can be expanded in powers of the
ratio 2"=,D'e2 /%solv of these two lengths. As shown in Ref.
[12], for an operator T + associated with a function similar to
,̄2!x", the " expansion of T +&1'!x̃ ;q" starts at order " (for
anyvalue of b̃), and the " expansions of the next terms in the
formal series (116) are of larger order in ". Therefore H+!1" is
reduced to the contribution from T +&1'

H+!1"!x̃,q2" = − T +&1'!x̃;q")!1". !132"

Similarly, "H+ /"x̃)
x̃=b̃
!1" =−"T +&1'!x̃ ;q" /"x)!1". We notice that

the latter derivative originates both from the derivative of
T +&1'!x̃ ;q")!1" and of T +&1'!x̃ ;q")!2", because the latter term
can be written as " times a function of the two arguments x̃
and x̃ /" (see Appendix C). Similar results hold for H−!1",
with H−!1"!x̃ ,q2"=T −&1'!x̃ ;q")!1".

2. ! expansion of density profiles

The density profiles in the vicinity of a dielectric wall
have been calculated in the high-dilution and weak-coupling
regime in Refs. [12,13]. (The systematic approach in [12] is
based on the Mayer diagrammatics for the fugacity expan-
sions of density profiles. Resummations of Coulomb diver-
gences are performed along a scheme which is similar to—
but more complicated than—the procedure used in Sec. II B,
because of differences in the topological definition of Mayer
diagrams in the two cases.) Up to corrections of first order in
the coupling parameter ", for ,Db and 'e2 / !%solvb" fixed, the
density profile reads

.!!x" = .!
B exp,− Z!

2 'e2

%solv
Vim
B sc!x;,D"-,1 − Z!

2"L̄!,Dx;,Db"

− Z!'e?!1"*x;,D,,Db, 'e2

%solvb
+ + O!"2"- . !133"

In Eq. (133), O!"2" is a short notation for terms of orders
written in Eq. (64) with 90"2/3.
More precisely, in Eq. (133) !Z!

2e2 /%solv"Vim
B sc!x ;,D",

called the bulk-screened self-image interaction in the follow-
ing, is the part of the screened self-energy that is reduced to
a mere bulk Debye exponential screening of the bare self-
image interaction (24) due to the dielectric response of the
wall. For two charges separated by a distance 2x, the bulk
screening factor at leading order is exp!−2,Dx". After multi-
plication by ',

'
!Z!e"2

%solv
Vim
B sc!x;,D" = − Z!

24el
'e2

%solv

e−2,Dx

4x

= Z!
2 f im*,Dx,

'e2

%solvx
+ . !134"

The other part of the screened self-energy comes from the
deformation of the set made by a charge, its screening cloud
inside the electrolyte, and their images inside the wall, with
respect to the spherical symmetry of a charge and its screen-
ing cloud in the bulk. The deformation stems both from the
impenetrability of the wall (steric effect) and from the con-
tribution of its electrostatic response if 4el!0 (polarization
effect). When it is multiplied by ', one gets

'
!Z!e"2

%solv

1
2

,DL̄!,Dx;,Db" = Z!
2"L̄!,Dx;,Db" . !135"

?!1" is the electrostatic potential created by the charge-
density profile at first order in ". It is given by

?!1"*x;,D,,Db, 'e2

%solvb
+ = e

%solv
0
b

+(

dx!0 dy

5)!0"!x,x!,y"(
3

Z3.3
B

5exp,− Z3
2 'e2

%solv
Vim
B sc!x!;,D"-

541 − Z3
2"L̄!,Dx!;,Db"5)!1",

!136"
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where )!0"!x ,x! ,y" is written in Eq. (120) and )!1" means that
the integral must be calculated at first order in " with ,Db
and 'e2 / !%solvb" kept fixed. As a consequence,

Z! 'e?!1"*x;,D,,Db, 'e2

%solvb
+ = Z!" f?*,Dx;,Db,

'e2

%solvb
+ .

!137"

L̄ and ?!1" are functions of x which are bounded in the in-
terval 0&x& +( and which decay exponentially fast over a
few ,D

−1’s when x goes to +(. In the case of an electrolyte
confined between two walls, the density profile exhibits an
analogous structure [38].

3. Explicit results in the limit #Db™1 at fixed $e2 / „%solvb…
Density profiles have been explicitly calculated at leading

order in a double expansion in " and ,Db with 'e2 / !%solvb"
fixed in Ref. [13]. Indeed, in regimes where ,Db/1 the
density profile written in Eq. (133) can be explicitly calcu-
lated at leading order by considering the limit of
"L̄!,Dx ;,Db" and of " f?(,Dx ;,Db ,'e2 / !%solvb") when ,Db
vanishes at fixed 'e2 / !%solvb" and by keeping only the terms
of order " ln!,Db" and ". The corresponding expressions are
valid in regime (1) where the temperature is fixed [see Eq.
(12)]. In regime (2) [see Eq. (13)], the temperature goes go
infinity, and the density profiles are obtained from those of
regime (1) by taking the limit where 'e2 / !%solvb" vanishes
while ,Db is kept fixed.
We notice that the corresponding results enable one to

calculate the surface tension of the electrolyte-wall interface
at leading order in " and ,Db at fixed 'e2 / !%solvb"0" / b̃ [39].
From the generic expression, one retrieves results already
known in some special cases.
In regime (1), ,Db vanishes at fixed 'e2 / !%solvb", and the

explicit expressions of functions in Eq. (133) are

L̄!x̃; b̃" = !1 − 4el
2 "0

1

(

dt
e−2tx̃

!t + %t2 − 1"2 − 4el
+ O!b̃"

!138"

and

− 'e?!1"*x;,D, b̃, 'e2

%solvb
+

= ".13
12
M̄!x̃" +

4el
2
,13

12
*C + ln 32 + ln b̃+

+
(3

Z3
3.3
Bg3

12
-e−x̃ + 4el

4
13
12
e−2x̃S−!x̃"/ + O!"b̃" ,

!139"

where O!"b̃" stands for a term of order "b̃. By virtue of Eq.
(136), the electrostatic potential profile ?!1"!x" at first order
in " arises from the screened self-energy: the term with M̄
comes from the deformation of screening clouds with respect
to the bulk spherical symmetry, which is described by L̄, Eq.

(135), and the other terms originate from the bulk-screened
self-image interaction Vim

B sc!x", Eq. (134). If 4el=0 ?!1"!x" is
reduced to "!13 /12"M̄!x̃". In Eq. (139),

M̄!x̃" = 0
1

(

dt
e−2tx̃ − 2te−x̃

1 − !2t"2
1 − 4el

2

!t + %t2 − 1"2 − 4el
, !140"

and C is the Euler constant,

g3 # g*4el
4
Z3
2 'e2

%solvb
+ , !141"

where

g!u" # − 1 +
eu − 1
u

− 0
0

u

dt
et − 1
t
. !142"

S− is defined by

S±!u" # e3uEi!− 3u" ± euEi!− u" , !143"

where Ei!−x" is the exponential-integral function: for x#0,

Ei!− x" # − 0
x

+(

dt
e−t

t
= C + ln x + 0

0

x

dt
e−t − 1
t

.

!144"

S−!u" decays proportionally to 1/u when u goes to (, since
Ei!−u" behaves as exp!−u" /u for large u.
We notice that, in the calculation of the part in ?!1"!x" that

comes from the bulk-screened image contribution Vim
B sc, a

key ingredient is the decomposition (C13) combined with the
expression of the exponential-integral function (144). Here
g!u" arises because

0
b̃

+(

dv,e!</v" − 1 −
<

v
- = − <g*<

b̃
+ . !145"

We point out that g!u=0"=0.
In regime (2) [see Eq. (13)], 'e2 / !%solvb" vanishes, what-

ever the sign of 4el is, because !'e2 /%solv"/b/+D. In this
regime, " vanishes faster than b̃, and " / b̃ must be set to zero
while b̃ is kept fixed in ln b̃+g3!" / b̃"; then, the latter sum is
reduced to ln b̃. The result is the same as if the exponential
involving the bulk-screened self-image interaction Vim

B sc!x!"
in the expression (139) ?!1"!x" had been linearized at all
distances x!, as is the case in the second integral in decom-
position (C13). In the following, we write expressions only
for the more general regime where " and b̃ vanish with their
ratio kept fixed.
In regime (1) [see Eq. (12)], 'e2 / !%solvb" is finite. For an

electrostatically attractive wall !4el#0", we cannot consider
the limit b/ !'e2 /%solv"/+D, where 4el'e2 / !%solvb" tends to
+(: there is an irreducible dependence on b. On the contrary,
for an electrostatically repulsive wall !4el&0", we can take
the previous limit, where 4el'e2 / !%solvb" goes to −(. In this
limit, b̃ vanishes faster than ", and we must set ,Db=0 at
fixed " in the term ln b̃+g3!" / b̃" in Eq. (139); then, this term
becomes equal to ln!)4el )Z3

2" /2"+C−1.

J.-N. AQUA AND F. CORNU PHYSICAL REVIEW E 70, 056117 (2004)

056117-20



From the expression of the density profiles up to order "

in the vanishing-b̃ limit, we explicitly calculate the
vanishing-b̃ limit of the term D̄)

!1"!x" of order " in the coef-
ficient D̄)!x". The formal expression of D̄)

!1"!x" has been de-

rived in Sec. V C 1. The calculations of the zero-b̃ limits of
H+!1"!x̃ ,q2=0" and "H+ /"x̃)!1"!b̃ ,q2=0" are performed in Ap-
pendix C. C)

!1" and Ḡ)
exp!1"!x̃" in Eq. (126) are given by

C)
!1"

"
=

4el
2
,14

12
*C + 32ln 2 + lnb̃+ + (3

.3
BZ3

4 g3

12
- !146a"

+
14
12
0
1

(

dt
1 − 4el

2

!t + %t2 − 1"2 − 4el
, t + 1/2
2t!t + 1"- !146b"

+
1
4*13

12
+2.0

1

(

dt
1 − 4el

2

!t + %t2 − 1"2 − 4el

1
t2 − 1/4, t + 1/2

2t!t + 1"
−
4
3
t-/ !146c"

−
4el
3

13
12
,(3

.3
BZ3

3 g3

12
+

13
12

*C + ln 32 + ln b̃+- !146d"

+
4el
4 *13

12
+2,23ln 2 − ln 3- !146e"

and

Ḡ)
exp!1"!x̃"

"
=

4el
4

14
12

4e2x̃Ei!− 4x̃" − Ei!− 2x̃"5 !147a"

−
14
12
0
1

(

dt
1 − 4el

2

!t + %t2 − 1"2 − 4el

e−2tx̃

4t!t + 1"
!147b"

+
1
4*13

12
+2.0

1

(

dt
1 − 4el

2

!t + %t2 − 1"2 − 4el

1
t2 − 1/4,23 te−x̃ − e−2tx̃

4t!t + 1"-/ !147c"

+
4el
6

13
12
,(3

.3
BZ3

3 g3

12
+

13
12

*C + ln 32 + ln b̃+-e−x̃ !147d"

+
4el
4 *13

12
+2,13e2x̃Ei!− 4x̃" + Ei!− 2x̃" − 13e−x̃Ei!− x̃" − ex̃Ei!− 3x̃"- . !147e"
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The expressions (146a) and (147a) arise from the contribu-
tion of the screened self-image interaction Vim

B sc, Eq. (134),
to the density profile (133). The terms (146b) and (147b)
originate from the deformation of screening clouds described
by the function L̄ given in Eq. (138), which does not vanish
even when %W=%solv. The three last lines in C)

!1" /" and
Ḡ)
exp!1"!x̃" /" come from the contribution of the electrostatic

potential ?!x" to the density profile. More precisely, Eqs.
(146c), (147c), (146d), (147d), (146e), and (147e) originate
from the functions M̄!x̃", exp!−x̃", and exp!−2x̃"S−!x̃", in Eq.
(139), respectively.

VI. CORRELATIONS ALONG THE WALL

A. Tails at large distances along the wall

The Ursell function h!!! cannot decay faster than 1/y
3.

Indeed, by an argument based on linear-response theory and
screening in macroscopic electrostatics, the correlation be-
tween global surface-charge densities at points separated by
a distance y is shown to decay as 1/y3 with a universal
negative amplitude [20]: f!!! in the amplitude −'f!!! of the
1/y3 tail of h!!! obeys sum rule (41). The latter sum rule
holds whether all species have the same closest approach
distance b! to the wall or not. We recall that it is a conse-
quence of external screening, as sum rule (38).
On the other hand, as a consequence of the 1/y3 decay of

the screened potential ), according to Eqs. (30) and (31), the
bonds Fcc and FR in resummed Mayer diagrams behave as
1/y3 and 1/y6, respectively, at large distances y. Since h!!!
does not fall off faster than 1/y3, no compensation mecha-
nism destroys the 1/y3 tail arising from the slowest one
among the algebraic bonds in the Mayer diagrammatics.
Thereore, in a regime where only a finite number of Mayer
diagrams—or only some infinite class of diagrams—
contribute to the large-distance behavior of h!!!, h!!! indeed
decays as 1/y3. This is the case in the dilute regime studied
hereafter. [We notice that if, in some regime, the summation
of some infinite series of subdiagrams led to an infinite con-
tribution to f!!!!x ,x!", then h!!! would fall off more slowly
than 1/y3. However, since h!!! is integrable by definition, it
cannot decay more slowly than 1/y2.]
As shown in paper I, the large-y behavior of h!!! along

the wall is conveniently studied from the decomposition de-
scribed by Eqs. (33)–(53), as in the case of bulk correlations.
In the latter graphic representation of h!!!, the topology of
diagrams involved in I implies that the bond I decays alge-
braically faster than Fcc at large distances y (see Sec. II C).
Moreover, as exhibited in Figs. 1–3, all graphs in hcc, h−c,
hc−, and h−− are chain graphs, and because of the translation
invariance in the direction parallel to the wall, the chain
graphs can be seen as multiple convolutions with respect to
the variable y. Therefore, every term, except I, in the graphic
representation of hcc, h−c, hc−, and h−− has 1/y3 tails arising
from all its Fcc bonds. The 1/y3 tail of every graph in hcc,
hc−, h−c, and h−− (see Figs. 1–3) is a sum of contributions,
each of which is determined by replacing one of the bonds
Fcc by its 1 /y3 behavior at large y, while the other part of the
graph is replaced by its Fourier transform at the value q=0.

Eventually, as shown in paper I, when all species have the
same closest approach distance to the wall,

h!!!!x,x!,y" $
y→+(

− '
D!!x"D!!!x!"

y3
!148"

and

D!!x" =
e

%%solv
4Z!&D̄)!x" + C̄ c−!x"' + C !

−−!x"5 , !149"

where C !
−−!x" and C̄ c−!x" are related to h!!!

−− and h!!!
c− , re-

spectively, by

C !
−−!x" # 0 dx"(

3"

.3"!x""Z3"D̄)!x""h!3"
−− !x,x",,Dq = 0"

!150"

and

Z!C̄ c−!x" # 0 dx"(
3"

.3"!x""Z3"D̄)!x""h!3"
c− !x,x",,Dq = 0" .

!151"

An advantage of the resummed Mayer diagrammatic rep-
resentation is that the contribution from every diagram 7̃ can
be associated with some physical effect. For instance, dia-
gram 7̃a made of the single bond Fcc describes Coulomb
screening at leading order, and the sum of the two diagrams
made of bonds &Fcc'2 /2 and FRT, respectively, contains the
short-distance repulsion, while diagrams 7̃b, 7̃b*, and 7̃c
shown in Figs. 8 and 9 involve many-body corrections to the
mean-field contribution from 7̃a.
In order to trace back the physical effects, we have to

identify the contributions to D!!x"D!!!x!" from the various
diagrams 7̃ defined in Sec. III B. In other words, we have to
recognize in Eqs. (148) and (149) the tails of h!!!

cc , h!!!
c− , h!!!

−c ,
and h!!!

−− , the sum of which is equal to h!!!. As shown in the
Appendix of paper I, the latter tails read

h!!!
cc !x,x!,y" $

y→+(
−

'e2

%solv
Z!Z!!&D̄)!x" + C̄c−!x"'&D̄)!x!"

+ C̄c−!x!"'
1
y3
, !152"

h!!!
c− !x,x!,y" $

y→+(
−

'e2

%solv
Z!&D̄)!x" + C̄c−!x"'C!!

−−!x!"
1
y3
,

!153"

h!!!
−− !x,x!,y" $

y→+(
−

'e2

%solv
C !
−−!x"C !!

−−!x!"
1
y3
. !154"

B. Sum rule for the effective dipole D"„x…
According to Eq. (148), f!!!!x ,x!"=D!!x"D!!!x!" so that

the sum rule (41) for f!!!!x ,x!" can be rewritten as
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0
0

+(

dx(
!

e!.!!x"D!!x" =% %W
8-2'2

. !155"

Similarly to what happens for the internal-screening rule
(35), the latter external-screening sum rule can be derived
from the decomposition (149), the integral relation (50) be-
tween hc− and h−−, and two sum rules obeyed by )—namely,
Eq. (47) and a sum rule for D̄)!x" in the f)!x ,x!" /y3 tail of
)!x ,x! ,y":

0
0

+(

dx ,̄2!x"D̄)!x" =%2%W
%solv

. !156"

The latter equation arises from the sum rule (48) obeyed by
the amplitude f)!x ,x!" (derived in paper I) and from the fact
that f)!x ,x!" takes the factorized form D̄)!x"D̄)!x!" in the
case where all species have the same closest approach dis-
tance b to the wall.
More precisely, the derivation of Eq. (155) is as follows.

The integral relation (50) between hc− and h−− and sum rule
(47) imply that the contributions from C !

−−!x" and Z!C̄c−!x"
to the integral in Eq. (155) cancel each other. On the other
hand, sum rule (156) ensures that the contribution from
Z!D̄)!x" to the integral in Eq. (155) is already equal to the
constant in the RHS of the equation. In other words, the bond
Fcc—namely, diagram 7̃a—already fulfills sum rule (155).
As a consequence, if some diagrams are to be kept for

their contributions to C!
−−!x" in some dilute regime, then the

corresponding diagrams “dressed” with a bond Fcc must also
be retained in Z!C̄c−!x" in order to ensure that screening rule
(155) is still obeyed.
In the case of a symmetric electrolyte made of two species

with opposite charges +Ze and −Ze and with the same radii,
(! .!!x"h!!!!r ,r!" decays faster than h!!!!r ,r!" in the y di-
rection, similarly to what happens in the bulk (see Sec.
IV E). Indeed, symmetries enforce that the local neutrality is
satisfied not only in the bulk, where .+

B=.−
B, but also in the

vicinity of the wall, where .+!x"=.−!x". As a consequence,
by virtue of Eq. (149), .+!x"D+!x"+.−!x"D−!x"
= !e /%%solv"(! .!!x"C!

−−!x". Symmetries also imply that h++
−−

=h−−
−− and h+−

−−=h−+
−−, and the definition (150) of C!

−−!x" yields
.+!x"D+!x"+.−!x"D−!x"=0. Subsequently, .+h+!!+.−h−!!
decays faster than 1/y3. The latter property has been exhib-
ited in Eq. (3.4) of Ref. [40], where the density-density cor-
relation (!,!! .!!x".!!!x!"h!!!!r ,r!" in the infinite-dilution
and vanishing-coupling limit (where .!!x"=.!

B) is shown to
decay as exp&−2,D!x+x!"' /y6.

C. ! expansions

1. Method

In the general formula (149) for D!!x", Z!C̄c−!x", as well
as C!

−−!x", is a series of functions, each of which decays as a
polynomial in x times exp!−,Dx", plus functions which van-
ish faster [see the general structure (4) of D̄)!x" in the Intro-
duction]. However, since there is no translational invariance

in the direction perpendicular to the wall, the series C!
−−!x"

and Z!C̄c−!x" cannot be expressed as sums of geometric se-
ries that could be calculated by such a simple formula as Eq.
(77). Therefore, the expression of !Z!

eff W/,"exp&−,!x−b"' in
the large-distance behavior (10) of D!!x" cannot be calcu-
lated by the mere determination of the pole of an analytic
function and the calculation of a residue.
Though the loss of translational invariance in the direction

perpendicular to the wall prevents one from performing sys-
tematic resummations, D!!x" can be determined up to order
" at any distance x [in the sense of the comment after Eq.
(89)] by the alternative procedure derived for bulk correla-
tions in Sec. IV D. In a first step, the correction of order " in
the screening length ,−1 of the leading exponential decay of
D!!x" has to be calculated by the partial resummation
mechanism whose validity has been checked in the case of
bulk correlations (see Sec. IV D 2). In a second step, the
amplitude factor in D!!x" up to order " is determined as
follows. First, we calculate D!

!1"!x" in a form analogous to
Eq. (89), which arises from the contributions of only a few
diagrams whose amplitude is of order " and which decay at
large x as exp&−,D!x−b"' times a possible linear term in x; in
a second step, we check that the coefficient of the !x
−b"exp&−,D!x−b"' term, which arises from the second dia-
gram 7̃c in hcc, indeed coincides with the opposite of the first
correction to the screening length in the direction perpen-
dicular to the wall, which has already been calculated inde-
pendently.
The " expansions of 7̃ diagrams are more complicated

than in the case of the bulk, because the screened potential )
also has an " expansion when the vicinity of the wall is
studied. The first correction to )!0" yields D̄)

!1"!x" in the ex-
pression (149) of D!

!1"!x". The leading term in the " expan-
sion of C!

−−!x" or Z!C̄c−!x" is obtained as follows: densities
.3’s are replaced by their bulk values .3

B’s and both functions
)!x ,x! ,q=0" and I!x ,x! ,q=0" are replaced by their
leading values )!0"!x ,x! ,q=0" and I!1"!x ,x! ,q=0"
= !1/2"&Fc c!0"'2!x ,x! ,q=0", respectively. As in the bulk
case, only the subseries shown in Figs. 4–6 do contribute to
D!

!1"!x".

2. Renormalization of the screening length
We recall that, in the bulk case, the leading tail at order "q

in the " expansion of the large-distance behavior h!!!
ccB as of

h!!!
ccB around its exp&−,Dr' /r limit decays as rq times
exp&−,Dr' /r, and the sum h!!!

ccB as* of the latter tails decays as
exp&−!,D+*,B

*"r', with *,B
* =*,B

!1" (see Sec. IV D 2). In the
vicinity of the wall, the contribution from h!!!

cc to D!!x" is
equal to Z!&D̄)!x"+ C̄c−!x"' according to Eq. (152). As shown
in Appendix D, in the " expansion of Z!C̄c−!x", at
order "q the leading term at large x is proportional to
!x−b"q exp&−,D!x−b"'. The sum over q of the latter leading
terms is proportional to exp&−!,D+*,*"!x−b"' with

*,* = *,B
!1". !157"

According to the discussion of Sec. IV D 2, the latter partial
resummation determines the correction *,!1" of order " to ,D
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in the x direction, *,*=*,!1". According to Eq. (157), the
correction *,!1" to the screening length in the direction per-
pendicular to the wall coincides at first order in " with the
value found for bulk correlations:

*,!1" = *,B
!1". !158"

3. Renormalization of the amplitude of D"„x…
According to the general method summarized above, the

amplitude of D!
!1"!x" can be determined from only a few dia-

grams in C!
−−!x" and Z!C̄c−!x". Before turning to the explicit

calculations in the regime b̃/1, we interpret the various
contributions in D!!x"D!!!x!" /y

3 in terms of diagrams which
are representative of physical effects. The diagrams that are
involved in the determination of the 1/y3 tail of h!!!!x ,x! ,y"
up to order in " are the same as in the case of the bulk.
Diagram 7̃a in Fig. 7 describes the leading screening effect
and therefore gives the zeroth-order contribution

D!
!0"!x"D!!

!0"!x!" =
e2

%solv
Z!Z!!D̄)

!0"!x"D̄)
!0"!x!" . !159"

Contrary to the bulk case, because of the nonuniformity of
the density profiles in the vicinity of the wall, ) has an "
expansion, and the first correction )!1" to )!0" gives a correc-
tion of order " in the 1/y3 tail of 7̃a.The contribution from
diagram 7̃a to the correction of order ",

&D!!x"D!!!x!"'
!1" = D!

!0"!x"D!!
!1"!x!" + D!

!1"!x"D!!
!0"!x!" ,

!160"

reads

e2

%solv
Z!Z!!&D̄)

!0"!x"D̄)
!1"!x!" + D̄)

!1"!x"D̄)
!0"!x!"' . !161"

The other contributions to Eq. (160) arise from diagrams 7̃b,
7̃b*, and 7̃c, shown in Figs. 8 and 9, where fixed charges

interact through screened interactions via one or two other
charges. (The " expansions of the contributions from the
latter diagrams to the 1/y3 tail of h!!!!x" start at the order ",
because they all involve a bond !1/2"&Fcc'2.) The contribu-
tion to Eq. (160) from diagram 7̃b reads

e2

%solv
Z!D̄)

!0"!x"C̄!!
−−!1"!x!" , !162"

while 7̃b* leads to a symmetric term in the variables x and
x!, and 7̃c yields

e2

%solv
Z!Z!!&C̄!

−c!1"!x"D̄)
!0"!x!" + D̄)

!0"!x"C̄!!
−c!1"!x!"' .

!163"

D. Explicit results in the limit #D b™1 at fixed $e2 / „%solvb…
1. Separate contributions

In the limit b̃/1, D!
!0"!x" is given by Eq. (7) where the

exp!,Db" term disappears in the expression of D̄)
!0"!x". Here

D!
!1"!x" is calculated from formula (149). D̄)

!1"!x" has been
studied in Sec. V, and in the limit b̃/1, D̄)

!1"!x" is given by
Eqs. (126), (146), and (147). The other contributions
C !
−−!1"!x" and Z!C̄c−!1"!x" are obtained by replacing .3"!x""

by .3"
B , ) by )!0", h−− and hc− by the graphs with one I in

their series representations, and I by &F cc!0"'2 /2 in the ex-
pressions (150) and (151) for C!

−−!x" and Z!C̄c−!x", respec-
tively. The contribution from C!

−−!x" is

C!
−−!1"!x" = D̄)

!0"!x"Z!
2&B̄&b'

!1" + Ḡ&b'
exp!1"!x̃"' , !164"

where

B̄&b'
!1" = "

ln 3
2

13
12

!165"

and

Ḡ&b'
exp!1"!x̃" = "

13
12

1
2.− e−x̃S−!x̃" + 01( dt e!1–2t"x̃

&t + %t2 − 1 − 4el!t − %t2 − 1"'2
,2!1 − 4el"2

+
!1 − 4el"2!1 – 2e−x̃" − 84el!t2 − 1"!1 − e−x̃"

t + 1/2 -/ , !166"

with S−!x̃" defined in Eq. (143). The contribution from Z!C̄c−!x" reads

Z!C̄c−!1"!x" = Z!D̄)
!0"!x",− "

ln 3
4 *13

12
+2x̃ + B&c'

!1" + G&c'
exp!1"!x̃"- . !167"

In Eq. (167) the coefficient of the linear term x̃ coincides with −*,B
!1" given by Eq. (86), while

B&c'
!1" = "

1
2,13 − ln 32 −

ac!4el"
2 -*13

12
+2, !168"

with
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ac!4el" # 0
1

(

dt
1

&t + %t2 − 1 − 4el!t − %t2 − 1"'2
, !1 − 4el"2&16t4!t + 1/2" − 1'
8t!t − 1/2"2!t + 1/2"2!t + 1"

−
4el!t − 1"!4t2 + 2t + 1"
t!t − 1/2"!t + 1/2"2 - . !169"

If %solv /%W=80, ac=1.2, and if %solv=%W, ac=0.84. Here G&c'
exp!1"!x̃" is the exponentially decaying function:

G&c'
exp!1"!x̃" = −

"

4*13
12

+2. 43e−x̃ + 01( dt e!1–2t"x̃

&t + %t2 − 1 − 4el!t − %t2 − 1"'2
44el!t2 − 1" − !1 − 4el"2!t + 1"

!t − 1/2"!t + 1/2"2
+ e−x̃&− S−!x̃" + x̃S+!x̃"'

+ 0
1

(

dt
e−2tx̃&!1 − 4el"2 − 44el!t2 − 1"'

t!t + 1"!t + 1/2"&t + %t2 − 1 − 4el!t − %t2 − 1"'2/ . !170"

2. Global results

Eventually, the sum of the various contributions at order "
reads

D!
!1"!x" = ,− "

ln 3
4 *13

12
+2x̃ + B!

!1" + G!
exp!1"!x̃"-D!

!0"!x" ,

!171"

where B!
!1" is the sum of the various constants:

B!
!1" # C)

!1" + Z!B̄&b'
!1" + B&c'

!1" !172"

and

G!
exp!1"!x̃" # G&a'

exp!1"!x̃" + Z!Ḡ&b'
exp!1"!x̃" + G&c'

exp!1"!x̃" .

!173"

G!
exp!1"!x̃" is a bounded function of order " which decays to

zero at least as exp!−x̃" when x̃ goes to infinity. The coeffi-
cient of the term !−x"exp&−,Dx' in D!

!1"!x" indeed coincides
with the first-order correction *,!1" to the screening length in
the direction perpendicular to the wall calculated in Appen-
dix D with the result (158). Therefore the " expansion of
D!!x" can be rewritten in terms of the explicit expression (7)
of D!

!0"!x" as

D!!x" = −%2%W
%solv

e
%%solv

Z!

,D

54e−!,B+*,B
!1""x&1 + B!

!1" + G!
exp!1"!x̃"' + o!""5 .

!174"

The effective dipole associated with a charge at leading
order in ", D!

!0"!x", is proportional to the mere exponential
function exp!−,Dx". Equation (174) shows that, when first-
order corrections are taken into account, the effective dipole
varies with the distance from the wall in a more complicated
way described by G!

exp!1"!x̃", the value of which is derived
from Eq. (173). The sign of B!

!1"+G!
exp!1"!x̃" may vary with

the distance x from the wall and depends drastically upon the
composition of the electrolyte, the value of the closest ap-
proach distance b, and the relative dielectric constant of the
wall with respect to that of the solvent.

Since G!
exp !1"!x̃" tends to zero at large x, the effective

charge near the wall Z!
eff W, defined from the dipolar interac-

tion by Eq. (10), reads

Z!
eff W = Z!,1 + B!

!1" +
*,B

!1"

,B
+ o!""- , !175"

where the term *,B
!1" /,B arises from the 1/, coefficient in

the definition (10). By virtue of Eqs. (172) and (86),

Z!
eff W = Z!.1 + C)

!1" + Z!"
ln 3
2

13
12
− ",ac!4el"4

−
1
6-*13

12
+2

+ o!""/ . !176"

As exhibited by their diagrammatic origins, the various terms
in Z!

eff W arise both from the nonuniformity of the density
profiles described by diagram 7̃a at order " and from the
leading screened interactions via one or two other charges
that appear in diagrams 7̃b and 7̃b* (Fig. 8) and in diagram
7̃c (Fig. 9). If %solv#%W, ac!4el"# !2/3" and the four-body
effective interactions tend to decrease Z!

eff W with respect to
its bulk value.
The comparison of the effective charge Z!

eff W near the
wall with its value Z!

eff B in the bulk given in Eq. (87) leads
to

Z!
eff W

Z!
eff B = 1 + B!

!1" − A!
!1" +

*,B
!1"

,B
+ o!"" , !177"

where

B!
!1" − A!

!1" = C)
!1" + B&c'

!1" − A&c'
!1". !178"

Indeed, according to Eqs. (99) and (165), B̄&b'
!1"= Ā&b'

!1": the con-

tributions in the bulk and along the wall from diagram 7̃b
compensate each other and there is no term proportional to
Z!
2 in the ratio Z!

eff W/Z!
eff B. The final result is written in

Eq. (18).

VII. CONCLUSION

In the present paper we have introduced the renormalized
charge Z!

eff W associated with the large-distance dipolar-like
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effective interaction between two charges along an insulating
wall, when all charges have the same closest approach dis-
tance to the wall. This charge has been explicitly calculated
up to order " in some limit of infinite dilution and weak
coupling when the wall is neutral.
The renormalized charge could also be calculated in the

case of an insulating wall with an external surface charge on
it, as is the case for instance when the wall mimicks a cell
membrane. Indeed, the general method presently devised for
the calculation of Z!

eff W holds for any density profiles when
the " expansions of the latter are known. On the other hand,
such " expansions could be obtained by a generalization of
the method presented in Refs. [12,13], where the external
one-body potential created by the surface charge would be
incorporated in the fugacity.

APPENDIX A

The present appendix is devoted to the determination of
the large-distance behaviors of exponentially decaying func-
tions, such as those which appear in the resummed Mayer
diagrammatics for bulk correlations. When a function
f!r" is rotationally invariant, its Fourier transform f!k"
#2dr exp&−ik ·r' f!r" depends only on the modulus k of k.
On the other hand, when f!r" decays faster than any inverse
power law of the modulus r of r, then its Fourier transform is
an analytic function of the components of k. When both
conditions arefulfilled by f!r", the k expansion of f!k" con-
tains only powers of k2. Then the analytic continuation of
f!k"= f!k" to negative values of k is an even function of k
and its inverse Fourier transform can be rewritten as the fol-
lowing integral:

f!r" = −
i
4-2

1
r0−(

+(

dk eikrkf!k" , !A1"

where f!k" is a derivable function of k. The one-dimensional
integral in Eq. (A1) can be performed by the method of
contour integrals in the complex plane k=k!+ ik". [We notice
that, when f!r" decays algebraically, then the small-k expan-
sion of f!k" contains nonanalytic terms involving either ln )k)
or odd powers of )k) [37], and the present method does not
hold.]
The slowest exponential tail f slow!r" of f , defined at the

begining of Sec. IV, is determined by the singular point of
f!k" that is the closest one to the real axis k"=0 in the upper
complex half-plane. If the latter singular point is a pole k0, its
contribution to f!r" is given by the residue theorem

f slow!r" =
1
2-r

Res&eikrkf!k"'k=k0. !A2"

In the present paper we consider functions f!k" that contain
no exponential term and such that k0 is purely imaginary,
k0= i,D. In that case the inverse decay length of f slow!r" is
equal to the imaginary part of the pole k0. [If there were two
poles with the same imaginary part and opposite real parts,
then f slow!r" would be an oscillatory exponential tail.]
Moreover, when k0= i,D is a pole of rank 1, f slow!r" is a

pure exp!−,Dr" /r function, whereas if k0= i,D is a pole of

rank m, fslow!r" is equal to exp!−,Dr" /r times a polynomial
in r of rank m−1. For instance, if f is equal to the convolu-
tion )D!&)D'2, the complete contour integral which deter-
mines the RHS of Eq. (A1) gives the expression of )D!&)D'2
at any distance r. According to Eqs. (72) and (81), )D has a
pole at k= i,D, while &)D'2 has a cut that starts at k=2i,D
and goes along the imaginary axis up to +i(. As a conse-
quence,

, e−,Dr

r
** e−,Dr

r +2-!r" = 2- ln 3
e−,Dr

,Dr
+
e−2,Dr

,Dr
Fb!,Dr" ,

!A3"

where the first term comes from the residue of exp&ikr'kf!k"
at the pole k= i,D of )D!k", while the second term arises
from the cut in the definition of &)D

2 '!k". At large distances
the first term falls off as )D and the second term as &)D

2 ',
because Fb!,Dr" decays as a constant times 1/ !,Dr". Indeed,

Fb!,Dr" # − 8-0
0

+(

dt
e−2,Dr t

4!1 + t"2 − 1
= − 2-&e3,DrEi!− 3,Dr"

− e,DrEi!− ,Dr"' , !A4"

where Ei!−x" is the exponential-integral function defined in
Eq. (144). (The large-distance behavior of the convolution
)D!&)D'2 is indeed dominated by the pole of )D!k" at k
= i,D and not by the branch point of the Fourier transform of
&)D!r"'2 at k=2i,D.) In the case of )D!&)D'2, the corre-
sponding slowest exponential tail f slow!r" is exactly propor-
tional to )D=exp&−,Dr' /r, since the pole at k0= i,D is of
rank 1.
For the convolution )D!&)D'2!)D, &)D!k"'2 has a pole of

rank 2, and a calculation similar to the previous one gives

, e−,Dr

r
!* e−,Dr

r +2!e−,Dr

r -!r"

= 16-2
1

,D
2 , ln 34 ,Dr + * ln 34 −

1
3+-

5
e−,Dr

,Dr
+
e−2,Dr

,Dr
Fc!,Dr" , !A5"

where Fc!,Dr" decays as a constant times 1/ !,Dr", since

Fc!,Dr" # 32-2
1

,D
2 0

0

+(

dt
e−2,Drt

&4!1 + t"2 − 1'2
. !A6"

The slowest exponential tail f slow!r" of f!r"=)D!&)D'2!)D
is given by the pole of f!k" at k= i,D, which is of order 2, and
f slow!r" is equal to exp&−,Dr' /r times a polynomial in r of
rank 1: it is not merely equal to )D.

APPENDIX B

In the present appendix we study the " expansion of the
large-distance behavior h!!!

as . The meaning of " expansions is
detailed in Sec. III C.
First, we calculate the expression of the slowest exponen-

tial tail of the graph fm with exactly m bonds Fcc in the
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definitions (51)–(53) of f =hccB, hc−B, h−cB, or h−−B. (For the
sake of simplicity we omit the indices for charge species.)
The slowest exponential tail has been defined at the begin-
ning of Sec. IV. For hccB and hc−B, f1 corresponds to the first
graph in Figs. 1 and 2, respectively, whereas, in the case of
h−−B, f1 corresponds to the second graph in Fig. 3. Since Fcc
decays slower than I (at least in the high-dilution and weak-
coupling regime),

f1!k" =
4-

k2 + ,D
2 g!k" , !B1"

where the poles or branch points of g!k" in the upper com-
plex half-plane are more distant from the real axis than the
pole k= i,D of 1/ !k2+,D

2 ". [For hccB, g!k"=1, while, for
hc−B, g!k" is given by Eq. (75) with Ī!k"=0 and, for h−−B,
g!k" is given by the second term in the RHS of Eq. (76) with
Ī!k"=0.] Subsequently, the slowest exponential tail f 1

slow!r"
of f1!r" is obtained from Eq. (A2) by calculating the residue
of exp&ikr'kf1!k" at k= i,D, with the result

f 1
slow!r" =

1
2-r

&eikrkf1!k"!k − i,D"'k=i,D. !B2"

f 1
slow!r" takes the form

f 1
slow!r" =

e−,Dr

r
F1,0. !B3"

According to definitions (51)–(53) and (73), the Fourier
transform of the graph fm with m bonds Fcc!m61" reads

fm!k" = ,− 4-Ī!k"
k2 + ,D

2 -m−1f1!k" . !B4"

According to the argument leading to Eq. (B2), k= i,D is the
singular point of fm!k" that is the closest one to the real axis
in the complex upper-half plane, and the slowest exponential
tail f m

slow!r" of fm!r" is given by the residue of
exp&ikr'kfm!k" / !2-" at k= i,D according to Eq. (A2). Since
k= i,D is a simple pole for f1, it is a multiple pole of rank m
for fm, and the latter residue is equal to

1
2-

1
!m − 1"!6, " m−1

" km−1
&eikrkfm!k"!k − i,D"m'-6

k=i,D

.

!B5"

The expression (B5) is equal to exp&−,Dr' times a polyno-
mial in r of rank m−1, (p=0

m−1 Fm,prp, so that

f m
slow!r" =

e−,Dr

r (
p=0

m−1

Fm,pr p. !B6"

The leading term Fm,m−1rm−1 exp&−,Dr' in the residue (B5)
arises from the !m−1"th derivativeof exp&ikr'. Relation (B4)
and comparison of Eqs. (B2) and (B5) imply that

Fm,m−1 =
1

!m − 1"!
,− 2-

Ī!i,D"
,D

-m−1F1,0. !B7"

The large-distance behavior f as!r" of f!r" is the sum of
the slowest exponential tails of all graphs fm:

f as!r" = (
m=1

+(

f m
slow!r" . !B8"

It reads

f as!r" =
e−,Dr

r (
p=0

+(

r p (
m=p+1

+(

Fm,p, !B9"

and the large-distance behavior h!!!
B as of h!!!

B takes the form
(90).
We now turn to " expansions of the previous slowest tails.

The " expansion of Ī!k", written as ,D
2 times a function of

k /,D [see Eq. (83)], generates an " expansion for fm through
Eqs. (B1) and (B4). We recall that f1!k" is the generic nota-
tion for the Fourier transform of the graphs with only one
bond Fcc in Figs. 1–3. Since the " expansion of Ī!k" starts at
order " [see Eq. (83)], the " expansion of f1!k" begins at
order "n0 with n0=0 if f =hccB, n0=1 if f =hc−B or f =h−cB,
and n0=2 if f =h−−B. For the same reason, the " expansion of
fm starts at the order "n0+m−1 and so does the " expansion of
the coefficient Fm,p of r p in Eq. (B6):

Fm,p = "n0 (
q=m−1

+(

Fm,p
!n0+q""q. !B10"

As a consequence, the large-distance tail f as!r" of f!r" de-
fined in Eq. (B8) has an " expansion of the form

f as!r" =
e−,Dr

r
"n0(

p=0

+(

r p(
q=p

+(

ap
!n0+q""q

=
e−,Dr

r
"n0(

q=0

+(

"q(
p=0

q

ap
!n0+q"r p, !B11"

with ap
!n0+q"=(m=p+1

q+1 Fm,p
!n0+q", and the " expansion of h!!!

B as!r"
has the structure (91). In Eq. (B11) the coefficient aq

!n0+q" of
"n0+qr q has a simple expression

aq
!n0+q" = Fq+1,q

!n0+q". !B12"

The leading tail at order "n0+q in the " expansion of f as is
proportional to r q exp&−,Dr' /r. It comes from the leading r q
term in the slowest tail f q+1

slow!r" of the graph with q+1 bonds
calculated at its lowest order in "—namely, "n0+q.
The sum f as*!r" of the leading tails at every order in " in

the " expansion of f as reads

f as!!r" #
e−,Dr

r
"n0(

q=0

+(

aq
!n0+q"!"r"q. !B13"

It can be calculated explicitly by virtue of Eq. (B12), because
Fq+1,q

!n0+q" is given by Eq. (B7), where Ī!k" is replaced by
Ī!1"!k", while F1,0 is replaced by the first term in its "
expansion—namely, F1,0

!n0". We get
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"n0+qFq+1,q
!n0+q" =

1
q!
,− 2-

Ī!1"!i,D"
,D

-q "n0F1,0
!n0". !B14"

Equation (B14) implies that the coefficient of r q in the defi-
nition (B13) of f as!!r" is indeed such that f as!!r" coincides
with the series of an exponential:

f as!!r" =
1
r
e−!,D+*,B

* "r"n0F1,0
!n0" with *,B

* = 2-
Ī!1"!i,D"

,D
.

!B15"

According to Eq. (85), *,B
* coincides with the correction of

order " in ,B, *,B
* =*,B

!1". By comparison with Eq. (B3), the
relation (B15) can be rewritten as

f as!!r" = e−*,B
!1"r f 1

as!n0"!r" , !B16"

where f 1
as!n0"= f 1

slow!n0" is proportional to exp&−,Dr' /r. In
other words, the sum f as!!r" of the leading tails at every
order in " in the " expansion of f as!r" around its
exp&−,Dr' /r behavior in the vanishing-" limit is equal to
exp&−*,B

!1"r' times the large-distance behavior of the graph
f1 with only one bond Fcc calculated at the first order "n0.
When f =hccB, n0=0 and f 1

as!n0" coincides with the diagram
7̃a=F cc shown in Fig. 7. When f =hc−B or h−cB, n0=1 and
f 1
as!n0" is the exp&−,Dr' /r tail of diagram 7̃b or 7̃b*, respec-
tively (see Fig. 8), the amplitude of which is of order " with
respect to that of Fcc. When f =h−−B, n0=2 and f 1

as!n0" is the
exp&−,Dr' /r tail of the diagram built with !1/2"
5&F cc'2!F cc!!1/2"&Fcc'2, the amplitude of which is of order
"2 with respect to that of Fcc.

APPENDIX C

In the present appendix, we consider the limit b̃/1 at
fixed 'e2 / !%solvb" and we calculate the explicit values of C)

!1"

and Ḡ)
exp!1"!x̃" [see definition (126)] up to terms of order "

times ln b̃ plus a function of 'e2 / !%solvb". According to Eqs.
(127), (128), and (130), the values are determined from
H+!x̃ ,q2=0" and from its derivative with respect to x̃ at point
x̃= b̃.
First, we calculate H+!1"!x̃ ,q2=0". According to Eq. (132),

at first order in ", H+!1"=−T +&1')!1". In the following, the
definition (131) of T +&1' is rewritten for q2=0, thanks to an
integration by parts, as

T +&1'!x̃;q2 = 0" = K!b̃" − K!x̃" , !C1"

with

K!x̃" =
1
212

0
x̃

+(

du&1 − e−2!u−x̃"'(
!

.!
BZ!

2,.!!u/,D"
.!
B − 1- .

!C2"

With these definitions,

lim
x̃→+(

H+!1"!x̃,q2 = 0" = − K!1"!b̃" , !C3"

and Eq. (128) is rewritten as

Ḡ)
exp!1"!x̃" = K!1"!x̃" . !C4"

From now on, we consider the regime b̃/1 at fixed
'e2 / !%solvb". K!1"!x̃" is determined from the density profiles
up to order " given in Eq. (133). At leading order in the limit
where b̃ vanishes, by virtue of Eqs. (138) and (139),

− Z!
2"L̄!x̃; b̃" − Z!'e?!1"*x;,D, b̃, 'e2

%solvb
+ = "R!!x̃" + O!"b̃" ,

!C5"

where R!!x̃" is a linear combination of functions of x̃, where
one coefficient involves ln b̃ plus a function of 'e2 / !%solvb"
in such a way that the limit of this sum is finite if 4el=0 and
b̃=0. Here O!"b̃" is a short notation for terms of order "b̃.
Then, the expression of the density profiles at order " can be
rewritten at leading order in b̃ as

.!!x"
.!
B − 1 = .exp,− Z!

2 'e2

%solv
Vim
B sc!x"- − 1/ + "R!!x̃"

+ .exp,− Z!
2 'e2

%solv
Vim
B sc!x"- − 1/

5"R!!x̃" + O!"b̃,"2" , !C6"

where O!"2" stands both for terms of orders written in Eq.
(64) with 90"2/3 [as in Eq. (133)], and for terms of order "2

times a possible sum of a ln b̃ term and a function of
!'e2 /%solv", which is similar to the coefficient in R!!x̃" [see
the comment after Eq. (C5)]. "R!!x̃" is a bounded integrable
function of only x̃=,Dx, while !'e2 /%solv"Vim

B sc!x" is a func-
tion of both x / !'e2 /%solv" and ,Dx. As already noticed in
Sec. 3.3 of Ref. [13], an integral where
4exp&−Z!

2!'e2 /%solv"Vim
B sc!x"'−15 is multiplied by " times a

bounded integrable function of x̃ is of order "2 times a func-
tion of b̃ and 'e2 / !%solvb", which has a structure similar to
R!!x̃" in Eq. (C6). Thus, according to Eqs. (C2) and (C6), the
expression of K!x̃" at order ", K!1"!x̃", can be written at lead-
ing order in b̃ as the sum of only two contributions

K!1"!x̃" = Kim
!1"!x̃" + "KR!x̃" + O!"b̃" , !C7"

where Kim!x̃" and KR!x̃" are defined as K!x̃" by
replacing &.!!u /,D" /.!

B'−1 in Eq. (C2) by
4exp&−Z!

2!'e2 /%solv"Vim
B sc!u /,D"'−15 and R!!u", respectively.

R!!u" defined in Eq. (C5) is given by the explicit expressions
(138) and (139). KR!x̃" is calculated by reversing the order of
the integrations 2du from the definition of KR and 2dt from
the expressions of L̄ and ?!1" in R!!u /,D". Eventually,
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KR!x̃" = KL̄!x̃" + KM̄!x̃" + KExp!x̃" + KS−!x̃" , !C8"

where the four contributions arising from the terms in the
density profiles involving either L̄!x", M̄!x", exp!−x̃", or S−
are written in Eqs. (147b)–(147e), respectively, by virtue of
Eq. (C4).
Now we show that

Kim
!1"!x̃" = Kim

lin!x̃" + O!"b̃" , !C9"

where Kim
lin!x̃" is deduced from Kim!x̃", defined after Eq. (C7),

by linearizing the exponential that contains the bulk-screened
self-image interaction Z!

2!e2 /%solv"Vim
B sc. Indeed, Kim!x̃"

−Kim
lin!x̃"=Q!x̃" with

Q!x̃" #
1
212

0
x̃

+(

du&1 − e−2!u−x̃"'(
!

.!
BZ!

2,exp*4el
2
Z!
2 "

u
e−2u+

− 1 −
4el
2
Z!
2 "

u
e−2u- . !C10"

Since the functions in the square brackets are positive and
1−exp&−2!u− x̃"'=1−exp&−2!u− b̃"' for x̃6 b̃,

0= Q!x̃" = Q!b̃" = Q*b̃,"; 'e2

%solvb
+ . !C11"

The double expansion of Q(b̃ ," ;'e2 / !%solvb") in powers of "

and b̃ at fixed 'e2 / !%solvb" can be calculated thanks to the
following formula (already used in Ref. [12]). We set "!

#Z!
2" /2. The function f in the integrand of Eq. (C10) is a

function of u that depends on "! as if f were a function of the
two independent variables u and u1=u /"!. We write it as

f*u, u
"!
+ = g!"!u1,u1" . !C12"

Since b̃/1, the integral 2b̃
+( can be split into the sum of

integrals 2b̃
l̃ and 2l̃

+( with b̃& l̃ and "!/ l̃/1. Then,

Exp
"!→0

,0
b̃

+(

du f*u, u"!
+-

= Exp
!l̃/"!"→+(

!"!0
b̃/"!

l̃/"!
du1 Exp

"!→0
&g!"!u1,u1"'"

+ Exp
l̃→0
.0

l̃

+(

duExp
"!→0

, f*u, u"!
+-/ , !C13"

where Exp*→0 denotes an * expansion. The identity holds,
because when u1& l̃ /"! then "!u1/1, and when u# l̃, then
!"! /u"/1. When Eq. (C13) is applied to the calculation of
Q(b̃ ," ;'e2 / !%solvb"), the second integral in Eq. (C13) gives a
term of order "!

20"2, while Exp"!→041−exp&−2!"!u1− b̃'5
behaves as −2b̃, so that the first integral provides a contribu-
tion which starts at order "b̃; more precisely,

Q*b̃,"; 'e2

%solvb
+ = "b̃

4el
2

(!
.!
BZ!

4g!

12
+ O!"2" , !C14"

where g! has been defined in Eqs. (141)–(145), and O!"2" is
equal to "2 times a function with a structure similar to that of
R!!x" in Eq. (C5). The result (C14) combined with inequali-
ties (C11) leads to Eq. (C9). Eventually Eq. (C7) can be
written as

K!1"!x̃" # Kim
lin!x̃" + "KR!x̃" + O!"b̃" . !C15"

KR!x̃" is given in Eq. (C8) and, according to its definition,

Kim
lin!x̃" = "

4el
4

14
12

&e2x̃Ei!− 4x̃" − Ei!− 2x̃"' , !C16"

where Ei!u" is the exponential-integral function defined in
Eq. (144).
The derivative "H+!x̃ ,q2=0" /"x̃ at first order in " must be

performed more carefully. The reason that leads to H+!1"=
−T +!1"&1' also implies that

6 " H+

" x̃
6!1"

= 6dK
dx̃
6!1"

!C17"

and, similarly to Eq. (C7),

6dK
dx̃
6!1"

= 6dKim
dx̃

6!1"
+ "

dKR
dx̃

+ O!"b̃" . !C18"

The decomposition (C13) leads to

6dKim
dx̃

6
x̃=b̃

!1"
=

4el
2

".(3
.3
BZ3

4 g3

12
−

14
12

&C + ln!4b̃"'/ .
!C19"

We notice that

6dKim
dx̃

6!1"
!
dKim

!1"

dx̃
. !C20"

The reason is that, though Kim
!1" is only a function of x̃, Kim

!2"

involves a contribution that is equal to "2 times a function of
the two variables x̃ and x̃ /", and the derivative of the latter
contribution with respect to the second argument x̃ /" is of
order ". The existence of such a contribution in Kim

!2" is due to
the fact that the function Z!

2!'e2 /%solv"Vim
B sc!x ;,D" in the ex-

pression (134) of the density profile varies both over the
Bjerrum length 'e2 /%solv and over the screening length +D.
(This structure arises directly when the equation obeyed by
H+ is solved by a multiscale expansion method.)

APPENDIX D

In the present appendix we consider the large-x behavior
D!
c as!x" of the dipole D!

c !x" that appears in the large-y tail
D!
c !x"D!!

c !x!" /y3 of h!!!
cc . Calculations are not as straightfor-

ward as for h!!!
ccB in the bulk, and we calculate only the sum

D!
c as*!x" of the leading large-x terms at every order "q in the
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" expansion of D!
c as!x" around its infinite-dilution and

vanishing-coupling limit D!
c as!0"!x". According to Eq. (152),

D!
c !x" #

e
%%solv

Z!&D̄)!x" + C̄c−!x"' . !D1"

After insertion of the graphic representation (52) of hc− in the
definition (151) of C̄c−!x", the latter can be written as

C̄c−!x" = (
m=1

+(

Jm!x" , !D2"

where Jm!x" is the contribution to C̄c−!x" from the graph in
h!3"
c− with m bonds Fcc (see Fig. 2).
The graph with m bonds Fcc in h!3"

c− also contains m bonds
I. Therefore, according to the scaling analysis of
Sec. III B, the " expansion of Jm!x" starts at order "m,
Jm!x"=(q=m

+( Jm
!q"!x", where Jm

!q"!x" denotes the term of order
"q. Therefore, the leading tail at order "q in the large- x
behavior C̄c−as!x" of C̄c−!x" can arise only from the leading
tails of the Jm!x"’s with m=q. Though we are not able to
derive the leading tail of Jm!x" systematically, we expect, by
analogy with the Fm’s in the bulk case, that the leading tail of
Jm!x" has the same x dependence as the leading tail of the
first term Jm

!m"!x" in the " expansion of Jm!x". As shown here-
fafter, the leading tail Jm

!m" as!x" of Jm
!m"!x" is proportional to

"m!x̃− b̃"m exp&−!x̃− b̃"'. As a consequence, the leading tail at
order "q in the large- x behavior C̄c−as!x" of C̄c−!x" coincides
with the leading tail Jq

!q" as!x" of Jq
!q"!x", and the sum C̄c−as!!x"

of the leading tails at every order "q in C̄c−as!x" is C̄c−as!!x"
=(q=1

+( Jq
!q" as!x". Similarly, for D!

c !x" defined in Eq. (D1),

D!
c as!!x" =

e
%%solv

Z!,D̄)
!0"!x" +(

q=1

+(

Jq
!q" as!x"- . !D3"

The term Jq
!q"!x" of order "q in the " expansion of Jq!x" is

obtained by replacing every bond Fcc by its zeroth-order ex-
pression Fcc!0", every I by its lowest-order value &Fcc!0"'2 /2,
and every weight .!!xn" by its bulk value .!

B. Inspection of
Jq

!q"!x" for small values of q shows that only the part )sing
!0"

=)D of )!0" does contribute to the leading tail Jq
!q" as!x". Let

us denote by J̃q
!q"!x" the corresponding part in Jq

!q"!x". For the
sake of simplicity, we relabel point pairs 4p ,p!5
#4!rp ,3p" , !rp! ,3p!"5, with p=1, . . . ,q, xq=xc!, and xq!=x", in
the opposite sense and we set up# x̃q−!p−1" and up!# x̃q−!p−1"! .
By using Eqs. (7) and (122) and the change of variable t
=2%1+q2, we get

J̃!q"
q !x" = −

1
,D
%2%W

%solv
,− "

1
4*13

12
+2-q0

2

+( dtq
tq
0
b̃

+(

duq e−)x̃−uq)

50
b̃

+(

duq! e−tq)uq−uq!) ¯ 0
2

+( dt1
t1
0
b̃

+(

du1 e−)u2!−u1)

50
b̃

+(

du1! e−t1)u1−u1!)e−!u1!−b̃". !D4"

The next steps of the calculations involve the following for-
mulas:

I!u1" # 0
b̃

+(

du1! e−t1)u1−u1!) e−!u1!−b̃"

=
2t1
t1
2 − 1

e−!u1−b̃" −
1

t1 − 1
e−t1!u1−b̃" !D5"

and

0
b̃

+(

du1 e−)u2!−u1)I!u1" =
2t1
t1
2 − 1

!u2! − b̃"e−!u2!−b̃" + R0!u2! − b̃" ,

!D6"

where Rp!u" denotes a function whose slowest exponential
tail is equal to exp!−u" times a polynomial of rank p in the
variable x. More generally, we find

0
b̃

+(

dup! e−tp)up−up!)!up! − b̃"p−1e−!up!−b̃"

=
2tp
tp
2 − 1

!up − b̃"p−1e−!up−b̃" + Rp−2!up − b̃" !D7"

and

0
b̃

+(

dup e−)up+1! −up)!up − b̃"p−1e−!up−b̃"

=
1
p

!up+1! − b̃"pe−!up+1! −b̃" + Rp−1!up+1! − b̃" . !D8"

Eventually, the multiple integral in Eq. (D4) is equal to

*0
2

+(

dt
2

t2 − 1+q !x̃ − b̃"q

q!
e−!x̃−b̃" + Rq−1!x̃ − b̃" , !D9"

where 22
+(dt 2/ !t2−1"=ln 3 and

Jq
!q" as!x" = −

1
,D
%2%W

%solv
,− "

ln 3
4 *13

12
+2-q !x̃ − b̃"q

q!
e−!x̃−b̃".

!D10"

Therefore, D!
c as!!x", given by Eq. (D3) with D̄)

!0"!x" written
in Eq. (7), proves to be the series of an exponential whose
argument is proportional to "!x̃− b̃":

D!
c as!!x" = −

e
%%solv

Z!%2%W
%solv

e−!,D+*,*"!x−b"

,D
, !D11"

with
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*,*

,D
= "
ln 3
4 *13

12
+2. !D12"

By virtue of Eq. (86), *,* coincides with the first-order cor-
rection *,B

!1" to the screening length in the bulk. We notice
that Eq. (D11) can be rewritten as

D!
c as*!x" = D!

!0"!x"e−*,*!x−b". !D13"

Equation (D13) corresponds to the relation (94) in the bulk
case.
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