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Abstract We exhibit the invariance of cycle affinities in finite state Markov processes under
various natural probabilistic constructions, for instance under conditioning and under a new
combinatorial construction that we call “drag and drop”. We show that cycle affinities have
a natural probabilistic meaning related to first passage non-equilibrium fluctuation relations
that we establish.

Keywords Affinity · Fluctuation relations · First passage times

1 Introduction

Affinity, a term ultimately borrowed from alchemy where it described a “natural attraction”
among certain elements, and later seen in early chemistry as the “force” that causes chemical
reactions, has by now a precise thermodynamical definition, related to the rate of irreversible
variation of entropy when a chemical reaction progresses [1]. By analogy, affinity can be
defined in a much more general context for certain random processes describing the time
evolution of a probability measure, which offers striking analogies with the time evolution
of concentrations of reactants: the variation of the entropy of the probability measure as time
goes by often splits in a natural way and allows to single out irreversible entropy variations,
hence affinities [2].

The purpose of this study is twofold.

– The first is to study important invariances of affinities: affinities for single “reactions” are
in general not invariant under natural probabilistic constructions, but affinities for cycles
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704 M. Bauer, F. Cornu

of reactions are much more robust objects. We study this invariance for two important
examples. The first, related to a combinatorial construction which we call “drag and drop”
is tailored for this study and is explained in detail. The second, conditioning, relies on
well-known universal principles. Both of them allow, starting from a finite state Markov
process, to define natural processes satisfying certain constraints, while preserving cycle
affinities.

– These observations allow us to obtain a probabilistic interpretation of cycle affinities by
concentrating on a single cycle even if the initial pattern of reactions is more general.
This interpretation is our second aim, and we show that it leads to relations similar (or
better dual) to standard out-of-equilibrium fluctuation relations [3]: the efficiency of a
cycle (i.e. the preferred direction in which it is traversed, and the speed at which this
traversal is made) is quantified by studying the winding number, and the cycle affinity is
shown to be the crucial observable that relates the probability distribution of the time it
takes to observe a winding number or its opposite.

The origin of the term “dual” is that instead of looking at fluctuations of an observable
at a given time, we look at the fluctuations of the time it takes to reach a certain value of an
observable. The dual picture has some relevance: experimentally, looking at the fluctuations
of the time it takes to observe something is in fact quite common. For instance certain
experimental setups are better suited to measure the time it takes for a particle to reach a
certain displacement than to measure the displacement at a fixed time.

This article is organized as follows:

– Section 2 contains mostly standard background material. It starts by motivating and
introducing the basic notions related to affinities in the context of Markov processes:
cumulative processes, exchange quantities and processes, exchange currents. On top
of their physical importance, those objects also have deep roots in probability theory.
Restricting our attention to micro-reversible Markov processes (for which an allowed
transition from configuration C to configuration C′ goes together with an allowed tran-
sition from configuration C′ to configuration C) we recall how affinity is related to a
canonical (because it involves only that data of the Markov process itself) exchange
process via entropy and entropy variations: we reproduce the standard computations that
motivate this interpretation and add a seemingly unknown remark on the positivity of the
affinity current itself (before average) in the stationary state [see (2.4)]. From the affinity,
which is defined for each reaction, i.e. each unoriented edge of the graph associated to
the Markov process, we review the construction of the cycle affinity and its invariances,
and define a convenient technical tool which we call the affinity class.

– Section 3 shows that many natural probabilistic operations on Markov processes preserve
cycle affinities and the affinity class. We introduce a combinatorial construction which we
call “drag and drop”. It associates to every walk on a graph a walk on a given subgraph.
Then we explain what kind of process is induced by “drag and drop” applied to samples of
a Markov process. It turns out that the continuous time Markov property is lost, but a gen-
eralized renewal property survives, which is enough for all our purposes. We also review
briefly the more familiar construction of conditioning. “Drag and drop” and conditioning
amount, albeit in different ways, to discard certain reactions (i.e. transitions) occurring in
the original Markov process. We then give a list of probabilistic constructions, including
“drag and drop” and conditioning, that preserve the affinity class. We conclude with some
remarks on the observability of conditioning and “drag and drop” in real systems.

– Section 4 concentrates on the important case when the transitions in the system define a
single cycle. The relevance of this simple case is enhanced by our previous observations
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Affinity and Fluctuations in a Mesoscopic Noria 705

of the good behavior of cycle affinities when edges are discarded either by conditioning
or by “drag and drop”: what we say for a single cycle remains true for a cycle embedded
in a more general pattern of reactions. In an out-of-equilibrium situation, a current,
which deserves the name winding current, will flow through the cycle. This current is
associated to an exchange process which is indeed the winding number. After an algebraic
preliminary, we give a heuristic argument to show that if the affinity A is ≥ 0, then the
probability that the winding number will ever reach −1 is e−A while the probability to
reach any positive winding number is 1. Then we refine the heuristic argument to prove
this result, and a stronger one related to first passage times and which is a simple dual
fluctuation relation involving the affinity again [see (4.16), which can be considered as
the main equation in this work]. We conclude with a formula (4.18) for the mean of the
first passage time at winding number 1, a quantitative measure of efficiency. As already
said, instead of looking at the distribution of an observable at a given time, we look at
the distribution of the time it takes to reach a certain value of an observable. The two
approaches are related, and this allows us to check the formula (4.18) for the mean of
the first passage time against the mean of the winding at large times. More generally,
though we have not tried to prove it, there must exist relationships between the fluctuation
relations derived here and those obtained in [3].

A few basic notions, included for completeness and to fix notations, are gathered in two
appendices. The reader is advised to look in the appendices whenever in trouble with a result
used in the main text, or with terminology.

– Appendix 1 summarizes the basic notions from graph theory that we use in the text.
– Appendix 2 (resp. 3) gather notions on (time-homogeneous) finite state Markov chains

(resp. Markov processes). We stress that trajectories of Markov chains (resp. Markov
processes) can be analyzed as jumps governed by a Markov chain separated by indepen-
dent geometric (resp. exponential) waiting times. This viewpoint is most useful for our
discussion and is often less familiar to physicists than the master equation approach. We
briefly mention the graph theoretic interpretation of transitions.

There is an extensive literature dealing with the role of cycles appearing in samples of
Markov chains or processes with a countable number of states, see e.g. [4,5]. The fundamental
role played by cycles, affinity and entropy production to understand recurrence properties
and the structure of stationary measures has a number of applications to other fields including
deterministic dynamical systems.

2 Affinities and Their Invariances

This section is mostly for motivations. Our aim is mainly to recall the fundamental role played
by affinities in non-equilibrium systems.

Though the presentation itself is not totally standard, most results [in particular those
concerned with decompositions of entropy variations, with the exception of (2.4)] are.

2.1 Cumulative Processes

Consider a Markov process (C, W) (where C is a finite set of configurations and W is the
matrix of transitions rates from one configuration to another, see Appendix 3 for further
notations and definitions).
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The trajectory Ct , t ∈ [0,+∞[, a random function from [0,+∞[ to C where Ct denotes
the configuration at time t , describes a particle jumping from one configuration to another at
certain instants and an interesting class of observables just counts something at each jump.
We can describe this by introducing an arbitrary matrix Q on C with vanishing diagonal
elements. To Q, we associate a process XQ = (XQ

t )t∈[0,+∞[ defined as follows: XQ
0 = 0,

and each time there is a jump from a configuration C to a configuration C′, XQ jumps by
(C′|Q|C). Formally:

XQ
t ≡

∑

s∈]0,t]
(Cs |Q|Cs−),

so that indeed XQ changes only when the particle jumps, i.e. for those t such that Ct �= Ct− .
The sum is well-defined because on ]0, t] there are only finitely many jumps with probability
1 (this is a theorem, but the intuitive reason is clear: on average, the time between two jumps
is bounded below by the inverse of the absolute value of the smallest diagonal element of the
Markov matrix). A generic name for this type of processes would be “cumulative processes”.
They are a special case of the so-called “additive functionals” used in the mathematical
literature. A natural candidate for Q would be to take all the non diagonal matrix elements
equal to 1. Then XQ would simply count the number of jumps in ]0, t] – what some authors
call activity – surely an important observable.

Note that the value of (C′|Q|C) is immaterial if (C′|W|C) = 0. We could for instance take
the convention that (C′|Q|C) = 0 whenever (C′|W|C) = 0. With this convention, Q would
appear as a function on edges of the graph G associated to (C, W). But later, we shall give
arguments to concentrate on anti-symmetric Q’s, and this might lead to conflicts with this
convention. Under the hypothesis of micro-reversibility, which is our main interest, there is
no such conflict.

Suppose the Markov process is known up to time t . What is XQ
t+�t −XQ

t in average? By def-

inition, XQ
t+�t − XQ

t = ∑
s∈]t,t+�t](Cs |Q|Cs−). With probability 1−�t

∑
C′ �=Ct

(C′|W|Ct )+
o(�t) there has been no jump in ]t, t +�t], and with probability �t (C′|W|Ct )+o(�t) there
has been a jump to C′ �= Ct . The possibility of several jumps is negligible. So the average
of XQ

t+�t − XQ
t if the process is known up to time t , which is in the probabilistic language a

conditional expectation1 is

�t
∑

C′ �=Ct

(C′|W|Ct )(C′|Q|Ct ) + o(�t).

This leads to introduce

jQ
t ≡

∑

C′ �=Ct

(C′|W|Ct )(C′|Q|Ct ) = (Ct |Q†
W|Ct ), (2.1)

where Q
† denotes the transpose of Q.

Note that jQ
t = jQ(Ct ) if jQ(C) ≡ ∑

C′ �=C(C′|W|C)(C′|Q|C). The function jQ(C) (or the

process jQ
t ) is called the current associated to Q. By construction,

∫ t
0 jQ

s ds is a continuous

process but, though the process XQ
t has jumps, they have the same average:

〈XQ
t 〉 = 〈

t∫

0

jQ
s ds〉 =

t∫

0

〈 jQ
s 〉ds, (2.2)

1 On conditional expectations, see the general references given at the beginning of Appendix 2.
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Affinity and Fluctuations in a Mesoscopic Noria 707

where 〈·〉 denotes the expectation or average with respect to the probability law P of the
Markov process with characteristics (C, W, ν) where ν is the initial probability distribution.
The proof is simple. If 〈XQ

t+�t − XQ
t | knowing Cs, s ∈ [0, t]〉 denotes the average of XQ

t+�t −
XQ

t when the process is known up to time t , we have seen that

〈XQ
t+�t − XQ

t | knowing Cs, s ∈ [0, t]〉 = jQ
t �t + o(�t).

On the left-hand side we have already averaged over the fluctuations of the trajectory in the
time interval ]t, t + �t] so if we average now over the possible trajectories Cs, s ∈ [0, t], we
simply get 〈XQ

t+�t − XQ
t 〉. The right-hand side is insensitive to fluctuations in the trajectory

after t so if we average now over the possible trajectories Cs , s ∈ [0, t] we get 〈 jQ
t 〉�t+o(�t).

So 〈XQ
t+�t − XQ

t 〉 = 〈 jQ
t 〉�t + o(�t). The equality (2.2) follows by taking Riemann sums

and letting �t → 0.
Note that 〈 jQ

s 〉 = ∑
C,C′(C′|W|C)(C′|Q|C)P(C; s), where P(C; s) ≡ P(Cs = C) is the

probability to be in configuration C at time s, and that
∫ t

0 P(C; s)ds = 〈∫ t
0 1Cs=Cds〉 is just

the expectation of the time spent at C in the interval [0, t]. Hence, 〈XQ
t 〉 can be written in

terms of occupation times.
Though this does not play any role in the sequel, let us stress that the relation between a

cumulative process XQ and the associated current jQ has a deep probabilistic meaning.2 We
hope to return to this in a forthcoming work [6].

2.2 Exchange Processes

In the sequel, we shall concentrate on anti-symmetric Q’s (which is not the case when one
counts jumps). The physical reason is the following: we view the jumps in the Markov
process as triggered by interactions with some external reservoirs, leading to the exchange of
some conserved quantities (energy, particles,...). The reservoir responsible for a jump from
C to C′ would give to the system a quantity (C′|Q|C) which should be given back during the
reverse jump from C′ to C. Note that this is really a constraint only if (C′|W|C) and (C|W|C′)
are both non-vanishing. When Q is anti-symmetric, we call XQ

t the exchange process, and
jQ
t the exchange current, associated to Q. Note that we can rewrite jQ

t as a matrix product
jQ
t = −(Ct |QW|Ct ).

Another reason for the physical relevance of anti-symmetric Q
′s is that detailed balance

is easily formulated: suppose that μ is a probability on C. The average of jQ under μ,
〈 jQ〉μ ≡ ∑

C jQ(C)μ(C) vanishes for every anti-symmetric Q if and only if (C′|W|C)μ(C) =
(C|W|C′)μ(C′) for every C, C′ ∈ C. As usual, this implies that μ is a stationary measure for
(C, W). Hence, if P(·; t) has a limit when t → +∞, this limit satisfies detailed balance
if and only if the average of every exchange current 〈 jQ

t 〉 goes to 0 when t → +∞, and
then so does 1

t 〈XQ
t 〉 = 1

t

∫ t
0 〈 jQ

s 〉ds. Note that we use the name “detailed balance” in a

2 In proper mathematical language, XQ is a special semi-martingale, and its unique decomposition XQ
t =(

XQ
t − ∫ t

0 jQs ds
)

+ ∫ t
0 jQs ds as the sum of a martingale and a predictable finite variation process contains

more than the mere coincidence 〈XQ
t 〉 = 〈∫ t

0 jQs ds〉. Though powers of XQ are still special semi-martingales,
their decomposition as a martingale plus a predictable finite variation process involves other currents. The
systematics of this decomposition, which will be given elsewhere, is physically relevant. Indeed, in a number
of experiments, the quantity of interest is some XQ, but only jQ and possibly a few other currents are
measurable. The information carried by these currents on fluctuations of XQ (as embodied in moments

〈(XQ
t

)k 〉 for instance) is limited and some combinatorial effort is required to extract it.
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slightly generalized sense, because we have not specified an energy function on C, defined
a corresponding Boltzmann weight and so on.

There is also a mathematical reason, related to (co)homology, to focus on anti-symmetric
Q

′s. Assuming micro-reversibility, we view anti-symmetric Q’s as functions on edges of the
graph G, changing sign when the edge orientation is reversed. By definition, these are just the
1-cocycles on G. Special 1-cocycles are 1-coboundaries, when (C′|Q|C) = O(C′)−O(C) for
some observable O, i.e. for some function on C. Notice that in that case XQ

t = O(Ct )−O(C0)

depends only on the configurations at time t and time 0, but that nevertheless the compensator∫ t
0 〈 jQ

s 〉ds depends on the whole past. A sequence (C0, C1, · · · , Cn) of vertices of G is called
a walk (of length n) on G if (Cm, Cm+1) is an edge of C for 0 ≤ m < n. By construction, a
trajectory of the Markov process (C, W) up to (and including) the nth jump is a walk of length
n on G. A walk with n ≥ 3 and Cn = C0 is called a 1-cycle of G. One can “integrate” a 1-

cocycle along a walk :
∫̂

(C0,C1,··· ,Cn)
Q ≡ ∑n−1

m=0(Cm+1|Q|Cm) (the notation
∫̂

is not standard,
it is introduced here just to stress the formal analogy with more familiar line integrals). The
process XQ

t is just the “integral” of Q along the walk described by the trajectory up to time t .
The “integral” of a 1-coboundary along a 1-cycle is always 0, and one can prove that

conversely, if the integral of a 1-cocycle along any 1-cycle of G vanishes, then the 1-cocycle
is a 1-coboundary. The “integral” of a 1-coboundary along a path depends only on the
origin and end of the path. If the 1-cocycle Q is in fact a hidden 1-coboundary, one can
recover the corresponding observable by choosing one “base” configuration in each connected

component of G, and setting O(C) ≡ ∫̂
Any path from a base configuration to CQ. Of course O is only

defined up to arbitrary additive constants (one for each connected component).
One can view 1-cycles as analogs of thermodynamic cycles, and 1-coboundaries as vari-

ations of state functions, while 1-cocycles are in some sense analogs of heat exchanges.

2.3 Affinities

In this section, where we assume micro-reversibility (see Appendix 1 and 3 for reference)
all along, we come to particular exchange processes: those which can be defined solely in
terms of the basic data of the Markov process (C, W). Namely, we have at our disposal W,
and possibly a probability distribution μ on C, or the time evolved probability distribution
P(C; t).

The first exchange that comes to mind is probably W − W
†, but is does not play an

important role in the sequel.
The next one in terms of complexity is perhaps S defined by

(C′|S|C) ≡ ln
(C′|W|C)

(C|W|C′)
if {C, C′} is an edge of G and 0 if it isn’t.

The quantity S is appealing for a number of reasons.

– It is dimensionless.
– The corresponding process XS

t is exactly the Lebowitz-Spohn action functional [7] for the

trajectory up to time t . From a purely Markov process viewpoint, eXS
t is, up to boundary

terms, nothing but the ratio of the weight of the trajectory Cs , s ∈ [0, t] and its time
reversal Ct−s s ∈ [0, t] (a Radon-Nykodim derivative to be precise).

– The statement “The 1-cocycle S for (C, W) is a 1-coboundary” (for which it is enough to

check that the “integral”
∫̂

cycleS vanishes for every cycle of G) is an elegant mathematical
way to say “Detailed balance is satisfied for (C, W)”. Indeed, if S is a 1-coboundary we
can write (C′|S|C) = ln w(C′) − ln w(C) for a strictly positive function w on C. This
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means that (C′|W|C)
(C|W|C′) = w(C′)

w(C)
for each edge of G. Multiplying w by a function which is

constant on each connected component of G leaves this relation invariant. In particular,
one may assume that w is a probability (i.e.

∑
C w(C) = 1), leading to detailed balance.

– Finally, we emphasize that anti-symmetry is related to an interpretation of exchanges with
reservoirs, and simple physical models [2,8,9] support the interpretation that (C′|S|C) is
just the variation of entropy of the reservoirs when the system transits from C to C′.

Our next aim is to recall a standard entropy argument, which is essentially already in [2],
supporting this view.

2.3.1 Entropy Variations and Chemical Affinity

The first observation is that jS(C) = ∑
C′ �=C(C′|W|C)(C′|S|C), so that 〈 jS

t 〉 = ∑
C,C′(C′|W|C)

(C′|S|C)P(C; t) which by anti-symmetry can be rewritten as

〈 jS
t 〉 = 1

2

∑

C,C′
ξ̇C;C′ ln

(C′|W|C)

(C|W|C′)
,

where we have set ξ̇C;C′ ≡ −ṖC;C′(t) = −(C|W|C′)P(C′; t)+(C′|W|C)P(C; t). The rationale
for this notation is that:

– The equation for the time evolution of P(C; t) can be rewritten as

d P(C; t)

dt
=

∑

C′
ṖC;C′(t),

i.e. ṖC;C′(t) is the contribution of edge {C, C′} to the variation of P(C; t) with time.
– Consequently, viewing C, C′ as chemical species and the edge {C, C′} as a chemical

reaction,

t∫

0

ξ̇C;C′(s)ds = −
t∫

0

ṖC;C′(s)ds

is by definition the “extent of reaction” (modulo a substitution of probabilities for con-
centrations), quantifying how much the reaction C ↔ C′ has progressed between time
0 and t . The minus sign is because the extent of the reaction grows when the reactant
concentration drops down.

The next step is to introduce the (dimensionless) Shannon-Gibbs entropy at time t . Recall
that if μ is any probability distribution on C, then SSG[μ] ≡ −∑

C μ(C) ln μ(C) = −〈ln μ〉μ
where 〈·〉μ is the expectation for a function on C under the probability distribution μ, not to
be confused with 〈·〉 which denotes in this paper the expectation with respect to the Markov
process probability measure on paths.3 The entropy of the probability distribution P(C; t) is
thus

SSG[P(t)] = −
∑

C
P(C; t) ln P(C; t). (2.3)

Note that Boltzmann’s constant is set equal to 1, hence the name “dimensionless”.

3 There is a relationship though. If O is an observable, i.e. a function on C, one can associate to it a random
variable depending on the path, O(Ct ). The path dependence is only via the configuration Ct at time t , and
in that case the expectation with respect to the probability measure on paths can be computed by taking an
expectation with respect to its one-time marginal P(C, t) which is a probability on C: 〈O(Ct )〉 = 〈O〉P(t).
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Simple manipulations show that

d SSG

dt
= 1

2

∑

C,C′
ξ̇C;C′(t) ln

P(C; t)

P(C′; t)

which can be split in two:

d SSG

dt
= 1

2

∑

C,C′
ξ̇C;C′(t) ln

(C′|W|C)P(C; t)

(C|W|C′)P(C′; t)
− 〈 jS

t 〉

Each summand in the first term is ≥ 0 (it is of the form −(x ′ − x) log(x/x ′)), so it contributes
to a systematic increase of entropy, and can be interpreted as a sign of irreversibility of the
chemical reaction C ↔ C′. Then each summand in the second term can be interpreted as
the entropy change due to exchanges with reservoirs, thus recovering the usual splitting of
entropy variations as the sum of two contributions: one which is always positive and signs
irreversibility, and one leading to entropy variations in the reservoirs: d SSG = (d SSG)irr +
(d SSG)exch. Note that the interpretation of eXS

t given at the beginning of Sect. 2.3 as related
to time reversal supports strongly that (d SSG)exch is a reversible contribution. The standard
name in the literature for the irreversible contribution (d SSG)irr is simply “entropy production”
and its crucial role to understand probabilistic properties (for instance recurrence) is widely
recognized (see e.g. [2,7,4,5,10]).

The above discussion is only one of the lines of reasoning leading to this decomposition
(see e.g. [10,11]). In certain circumstances, when exchanges with reservoirs are explicitly
built in the transition rates (see e.g. [8,9]), there is a direct computation at the level of the
reservoirs leading to the equality (not just an abstract interpretation) (d SSG)exch = −d SRes ,
where d SRes is the entropy variation of the reservoirs due to exchanges with the system. Let
us stress however that even if these arguments, analogies and identifications are convincing
and well-motivated, their universal validity for out-of-equilibrium systems is not proven.

Returning to the main stream of the argument, we thus have

(d SSG)irr = 1

2

∑

C,C′
ξ̇C;C′(t) ln

(C′|W|C)P(C; t)

(C|W|C′)P(C′; t)
dt (d SSG)exch = −〈 jS

t 〉 dt.

Finally, we use the chemical definition of affinity: if ξ is the “extent of a reaction” and S is the
entropy, the affinity A is defined4 via (d S)irr = Adξ . For the reaction C ↔ C′, we have seen
that dξ = ξ̇C;C′dt . Putting all these considerations together, we obtain that the affinity of the

reaction C ↔ C′ is ln (C′|W|C)P(C;t)
(C|W|C′)P(C′;t) (there is no 1/2 because

∑
C,C′ counts every unoriented

edge, i.e. every reaction, twice).
If μ is a probability distribution on C, we define A

μ by

(C′|Aμ|C) = ln
(C′|W|C)μ(C)

(C|W|C′)μ(C′)
,

so that (C′|Aμ|C) is the affinity of the reaction C ↔ C′ when the probability distribution of
the system is μ. For fixed μ, A

μ is an exchange, or 1-cocycle, and if the system is in state μ

we can write

(d SSG)irr = 〈 jAμ〉μ dt.

4 The term “affinity” was coined by De Donder (see e.g. [1] for an introduction in English).
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The fact, recalled above, that 〈 jAμ〉μ is always ≥ 0 is well-documented in the literature.

However, we have not found there that for μ = Pst (the stationary measure) the current jAPst

itself is positive:

jAPst
(C) =

∑

C′
(C′|W|C) ln

(C′|W|C)Pst(C)

(C|W|C′)Pst(C′)
≥ 0 ∀ C. (2.4)

This fact can be proven by hand using − ln x ≥ 1 − x for x ≥ 0 and the definition of Pst:∑
C′(C|W|C′)Pst(C′) = ∑

C′(C′|W|C)Pst(C). It is also a consequence of the interpretation of

jAPst
(C) for each fixed C, rewritten as

−
∑

C′
(C′|W|C) ln

Pst(C)−1(C|W|C′)Pst(C′)
(C′|W|C)

i.e. as a relative entropy.
One can carry a similar analysis for Markov chains: if (C, P) is a Markov chain, and under

the usual assumption of micro-reversibility, one can show that the (discrete time) variation
of the entropy leads to consider

ln
(C′|P|C)

(C|P|C′)
and ln

(C′|P|C)μ(C)

(C|P|C′)μ(C′)
(2.5)

as the discrete time analogs of S and A
μ.

Note that A
μ is a 1-cocycle and that A

μ − S is a 1-coboundary, as already noticed by
Schnackenberg in a different language [2]. So the “integrals” of A

μ and S along any cycle
of G agree. As our interest in the sequel is mainly in such “integrals”, there is no reason to
consider A

μ and S as different objects. Another way to phrase this idea, maybe more familiar
for physicists, is to view 1-coboundaries as gauge transformations in an abelian gauge theory,
as emphasized in [12] as we learned after this work was completed.

In the (co)homology language, one regroups all 1-cocycles differing by a 1-coboundary
under the name “cohomology class”. All we shall keep from the concept is the name. So we
define the affinity class as the class of all exchanges that differ from S by a 1-coboundary.
As seen above, this class comprise A

μ whatever μ.
The above symmetry is somewhat formal at the moment, and our aim in the next section

is to show that the affinity class is preserved by many natural probabilistic constructions.

3 Probabilistic Constructions

3.1 A “Graphical” Construction: Drag and Drop

At the basis of our interpretation of affinities lies a simple5 general construction on (oriented
or non-oriented) graphs. We refer the reader to Appendix 1 for basic definitions and notations
for graphs. This construction has several variants. Suppose that G is a graph and H a subgraph
of G.

3.1.1 First Variant

Take a walk X = (X0, · · · , X N ) on G and let Y0 be a vertex of H. Construct recursively
a sequence Y = (Y0, · · · , YN ) of vertices of H as follows. The first term Y0 is already

5 So simple that it is likely to have already been introduced elsewhere, but we are not aware of a reference.
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defined. Suppose that, for some 0 ≤ n < N , Y0, · · · , Yn are already defined. If Xn = Yn

and (Xn, Xn+1) is an edge of H then set Yn+1 = Xn+1, otherwise, set Yn+1 = Yn . By
construction, Y0, · · · , YN is a sequence of vertices of H, but in general is does not have to
be a walk on H because Y can stay at the same place even if there can be no edge having this
vertex both as origin and extremity.

3.1.2 Second Variant

Take a walk X = (X0, · · · , X N ) on G and let Y0 be a vertex of H. Construct recursively a
walk Y = (Y0, · · · , YM ) on H and a sequence n0 = 0 < n1 < · · · < nM ≤ N for some
0 ≤ M ≤ N as follows. The first terms Y0 and n0 are already defined. Suppose that for some
0 ≤ m, Y0, · · · , Ym and n0 = 0 < n1 < · · · < nm are already defined. If it exists, let n be
the smallest integer nm ≤ n < N such that Xn = Ym and (Xn, Xn+1) is an edge of H and
set Ym+1 = Xn+1, nm+1 = n + 1. If no such n exists, set M = m and stop.

Of course, we could replace the finite walk X0, · · · , X N by an infinite walk X0, X1, · · ·
and do the same construction. The second variant is most useful for our analysis. By lack of
a better name, we choose to call it “drag and drop” along H.

The intuitive picture is that Y represents the position of an object (a box) attached to H
and the walker X carries Y along H when they meet and X moves along H. The second
variant is closely related to the first one. In the first variant, Y and X are indexed by the same
“clock”, in the second variant, the clock of Y ticks only when X carries Y along H.

There is a special case of “drag and drop” which is already of some interest. It happens
when all walks on G joining two distinct vertices of H involve at least one edge of H.6 In
that case, the box is not really needed: to go from the walk X = (X0, · · · , X N ) to the walk
Y = (Y0, · · · , YM ) first remove all vertices up to the first appearance of Y0, then all vertices
after Y0 that do not belong to H, and finally remove multiple contiguous occurrences of one
and the same vertex. This simple special case is relevant when joining two distinct vertices
of H without going through an edge of H requires rather long walks, which can be neglected
to a good approximation in practice. This could be used for instance to get a crude model of
the experiment in [13].

It is not unlikely that this kind of coupled motion is routinely performed by the biological
molecular machinery, though the microscopic understanding is still too preliminary to know
for sure [14].

In such a scenario, H models for instance some hetero-polymer within a cell and G models
H plus the relevant environment of H inside the cell. There is a ligand bound at some place
on H but that may move along it. There is a complex that moves on G. When it meets the
ligand somewhere on H, it binds to the ligand. If the complex moves along H it carries the
ligand, but if it goes somewhere else the ligand and complex unbind and the ligand waits for
another encounter with the complex.

By the way, in this interpretation, there may be several complexes that cannot occupy the
same position at the same time and it is trivial to generalize the above construction to this
more general case. Then, the process becomes close to hitch-hiking. The hitch-hiker wants
to go somewhere or make some journey, but several roads may be acceptable for him. When
a car stops and the driver offers a lift to a place that is compatible with the hitch-hiker’s goals,
they do a piece of journey together after which the driver drops the hitch-hiker and drives his
way, while the hitch-hiker waits for another driver to continue his journey.

6 For microreversible graphs, this can be stated as follows: if the edges of H are removed from G, distinct
vertices of H belong to disjoint connected component of the resulting graph.
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This generalization is also appropriate to make a connection with some recent experiments
in active matter with applications to nanotechnologies, see e.g. Ref.[13] entitled “Bacterial
Ratchet Motors”, for which the special case of “drag and drop” is already of some relevance.

3.2 Drag and Drop for Markov Processes

We would like to understand “drag and drop” when the walker moves according to a finite
state Markov process. We refer the reader to Appendix 3 for the relevant notations and basic
constructions. To avoid some trivial situations, we assume that the number of configurations
is ≥ 2. We denote by W the transition matrix and by M = W−D the infinitesimal generator of
a finite state Markov process, by P the associated stochastic matrix satisfying M = (P − I)D

and by G the associated graph. We let H be a subgraph of G and denote by W
rest
H the restriction

of the transition matrix to H, i.e. (C′|Wrest
H |C) is defined only when C, C′ are vertices of H

and then: (C′|Wrest
H |C) ≡ (C′|W|C) if (C, C′) is an edge of H and 0 otherwise. From W

rest
H

viewed as a transition matrix (indexed by vertices of H) we construct as recalled in Appendix
3 an infinitesimal generator M

rest
H = W

rest
H − D

rest
H and a stochastic matrix P

dd
H (where the

superscript dd stands for “drag and drop”) satisfying M
rest
H = (Pdd

H − IH)Drest
H .

We can apply the general construction of “drag and drop”. Take a trajectory of the Markov
process on G with infinitesimal generator M and initial probability distribution P(C, 0). If
0, T, T +T ′, · · · denotes the (finite or infinite) sequence of jump times we let (C, C′, C′′, · · · )
denote the (finite or infinite) sequence of corresponding positions on the graph: the process is
at C between 0 and T , at C′ between T and T + T ′, and so on. Keeping in mind our remarks
(see Appendix 3) on the connection between a finite state Markov process and the associated
finite state Markov chain, if the sequence (C, C′, C′′, · · · ) is finite, we turn it into an infinite
one by repeating the last member again and again. Thus we have the first ingredient for “drag
and drop”. The second ingredient is the initial configuration C̄ on H that will be “dragged
and dropped” by the walk (C, C′, C′′, · · · ). Applying the second variant of “drag and drop”
we get a (finite or infinite) sequence (C̄, C̄′, C̄′′, · · · ) on H and a (finite or infinite) sequence
0, T̄ , T̄ + T̄ ′, · · · of times at which the jumps along H occur. Note that these sequences may
be finite even though the sequence (C, C′, C′′, · · · ) is infinite. In this way, we have defined a
(continuous time) random process with the vertices of H as configurations.

The first question that comes to mind is whether this process is Markov, and a moment
thinking shows that the answer is no in general. Indeed, the waiting time between two jumps
along H is in general not exponential: it is a complicated mixture (we use the term in an
informal way) of the exponential waiting times of the original Markov process.

However, some remnant of the Markov property is preserved. To state it properly, we apply
our usual trick to the sequence of successive positions on H: if the sequence (C̄, C̄′, C̄′′, · · · )
is finite, we turn it into an infinite one by repeating the last member again and again. We have
the following (we do not try to give minimal hypotheses).

Claim Suppose that the initial point C̄ on H is recurrent for the Markov process on G, i.e. with
probability 1 configuration C̄ appears infinitely many times in the sequence (C, C′, C′′, · · · ).
Then (C̄, C̄′, C̄′′, · · · ) is a Markov chain started at C̄ with stochastic matrix P

dd
H .

Remark The hypothesis that C̄ on H is recurrent for the Markov process on G is always
fulfilled if micro-reversibility holds (in which case non-oriented graphs are the right thing to
look at) and G is connected.

Sketch of proof By hypothesis C̄ is visited infinitely many times by the Markov process on
G.
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– Either C̄ is not the origin of an outgoing edge of H, and then the sequence of positions on
H is just the repetition of C̄ forever, which is indeed a Markov chain started at C̄ because
(C̄|Pdd

H |C̄) = 1,
– Or let (Ĉ, Ĉ′, Ĉ′′, · · · ) be the sequence of vertices of G visited by jumping from C̄. These

vertices are chosen independently and according to the probability measure (·|P|C̄) on
vertices of G. The first time one of the jumps is along an edge of H, this edge is sampled
from the probability law (·|P|C̄) conditioned to H (see footnote 7), which is easily seen
to be nothing but the probability law (·|Pdd

H |C̄). Let C̄′ be the end of the chosen edge. Now
if C̄ is visited infinitely many times by the Markov process on G, then so must be C̄′ and
we can iterate the argument, which works whether or not C̄′ is the origin of an outgoing
edge of H.

To conclude, (C̄, C̄′, C̄′′, · · · ) is a Markov chain started at C̄ with transition matrix P
dd
H .

�
As for the times T̄ , T̄ ′, · · · between jumps along edges of H, we content with an informal

discussion. As already stated, they are not exponential in general (and their laws are quite
complicated even for G and H of modest size). But deep independence properties survive.

Claim The sequence
(
(C̄, T̄ ), (C̄′, T̄ ′), (C̄′′, T̄ ′′) · · ·

)
, assumed to be infinite, is a Markov

chain on the infinite configuration space C×]0,+∞[ with a stochastic matrix of a very
special form (observe that the transition matrix factorizes and contains no T̄ -dependence):

(
C̄′, T̄ ′

∣∣∣P
∣∣∣C̄, T̄

)
= (C̄′|Pdd

H |C̄)ρC̄′(T̄ ′)

where ρ·(t) is a family of probability densities on ]0,+∞[ indexed by the vertices of H.

This formulation is not fully correct, and without aiming at full rigour, we can be a bit
more formal:

Claim The sequence of pairs
(
(C̄, T̄ ), (C̄′, T̄ ′), (C̄′′, T̄ ′′) · · ·

)
is a generalized renewal

sequence.

Remark By generalized renewal sequence we mean the following. We are given a finite set
of configurations (here, the vertices of H), the stochastic matrix of some Markov chain on
these configurations, (here, P

dd
H ) and laws ν., μ. (two for each configuration i.e. here, two

for each vertex of H) for random variables with values in ]0,+∞[. Then starting from a
configuration C̄ (which can be chosen randomly), one waits a time T̄ distributed according
to νC̄ and jumps to another configuration C̄′ with probability (C̄′|Pdd

H |C̄). Then independently
of what happened before (this is renewal) one waits at C̄′ a time T̄ ′ distributed according to
μC̄′ and jumps to another configuration C̄′′ with probability (C̄′′|Pdd

H |C̄′). Then independently
of what happened before one waits at C̄′′ a time T̄ ′′ distributed according to μC̄′′ and so on.
Note that in general, the waiting time at the initial configuration (law ν) does not have to be
distributed as the waiting time at further passages at the same configuration (law μ). In our
case, this is relevant because we do not impose that the initial configuration C of the original
Markov process on G be C̄ so T̄ is the sum of two (independent) contributions: some time is

7 If K , K ′, K ′′ · · · is a sequence of independent identically distributed random elements with law μ, then the
first element of the sequence that belongs to some measurable set B with μ(B) > 0 has law μ(·|B), i.e. μ

conditioned on B. Indeed, if A ⊂ B is measurable the event that the first term belonging to B in fact belongs
to A is the disjoint union {K ∈ A} ∪ {K /∈ B, K ′ ∈ A} ∪ {K /∈ B, K ′ /∈ B, K ′′ ∈ A} ∪ · · · which by
independence has probability μ(A) + (1 − μ(B))μ(A) + (1 − μ(B))2μ(A) + · · · = μ(A)/μ(B).
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spent to reach C̄ from C, and then a time distributed according to μC̄ is spent before the jump
to C̄′, so νC̄ is a composite object. But for all further passages at C̄, the waiting times to jump
from C̄ will have law μC̄ . Note that the density ρC̄ above is the density of the law μC̄ . Note
also that Markov processes form a particular class of generalized renewal sequences, those
for which all waiting times are exponential.

We leave to the reader to deal with, i.e. make the appropriate conventions in the cases
when the sequence is finite because one of the waiting times is infinite.

Remark Though we formulated the original process as a Markov process on G, we could
in fact have started from a generalized renewal process on G as described informally above
(in that case, there would be no pressing reason to singularize the first waiting time). All the
arguments carry through, yielding a generalized renewal process on H. This looks even more
natural, because the continuous time Markov property is lost when going from G to H by
drag and drop, but the renewal property is preserved.

We have kept the discussion quite general in this subsection, but for the application to
affinities and cycles, we shall restrict to the case when H is a micro-reversible cycle, i.e. a
graph with ≥ 3 configurations arranged in cyclic order.

3.3 Conditioning for Markov Processes

This section is about a topic that is likely to be very classical, but we have not found a
standard reference. The analogous computations for Markov chains are totally elementary
because they rely solely on conditional probabilities. One could use a limiting argument to
get, at least heuristically, the result for Markov processes from the one for Markov chains.
The direct computations in continuous time require the use of conditional expectations.8

They are lengthy and slightly more delicate, so we shall only give the results. Let us note
that there are some intimate relations between conditioning and so-called taboo probabilities
and taboo Green functions, see e.g. [4].

Suppose (C, W) is a Markov process with associated Markov matrix M and graph G. As
usual, let P denote the law of this process. Take a subgraph H of G. Fix T > 0. We want to
describe the law of the process conditioned to move along H, i.e. such that all jumps between
time 0 and T are along edges of H. Let PH,T be the probability law for the conditioned
process.

We recall that it is in principle easy to collect samples of PH,T . One simply collects
samples of the original process (with law P) between 0 and T and keeps only those samples
that obey the constraint that all jumps between time 0 and time T are along edges of H.

The crucial ingredient is �H,T (C, C′) defined as the probability under the law P that a
trajectory started at C at time 0 ends at C′ at time T and jumps only along edges of H in
between. This is obviously 0 when either C or C′ is not a vertex of H.

Claim Using standard manipulations of conditional expectations, the Markov property and
homogeneity (W is time-independent) of the original process, one can prove the following:
for 0 ≤ s ≤ t ≤ T , the PH,T -probability that Ct = C′ when the process has been observed
up to time s is given by

PH,T (Ct = C′, knowing the past up to time s) =
∑

C′′ �H,t−s(Cs, C′)�H,T −t (C′, C′′)∑
C′′ �H,T −s(Cs, C′′)

.

8 On conditional expectations, see the general references given at the beginning of Appendix 2.
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Though the proof is not difficult, there are a number of steps and it would take us too
far from our main interest. We advise the interested reader to build a proof in the context of
Markov chains, instead of Markov processes.

The above formula leads to two comments:

– The right-hand side depends on the past only via Cs , meaning that the conditioned process
is still Markov.

– Time T appears explicitly on the right-hand side. This may be surprising at first sight but
a moment of thinking shows that this has to be so: even if we look only at conditioned
trajectories up to time t , their law depends on how long the process is conditioned to
move along H after t .

If a trajectory has moved along H between 0 and t , one computes easily the probability that
between t and t + dt it will either stay where it is or jump along H. Defining a matrix NH
by (C′|NH|C) = 0 if either C or C′ isn’t a vertex of H, (C|NH|C) = (C|M|C) if C is a vertex
of H and (C′|NH|C) = (C′|M|C) if (C, C′) is an edge of H, we get

d

dt
�H,t (C, C′) =

∑

C′′
(C′|NH|C′′)�H,t (C, C′′),

with initial condition �H,0(C, C′) = 1 if C = C′ is a vertex of H and 0 otherwise.
Restricting �H,t and NH to vertices of H, we have the formula

�H,t (C, C′) = (C′|etNH |C).

Thus we have:

PH,T (Ct = C′, knowing the past up to time s) =
∑

C′′(C′′|e(T −t)NH |C′)(C′|e(t−s)NH |Cs)∑
C′′(C′′|e(T −s)NH |Cs)

.

By the probabilistic interpretation, it is clear that all eigenvalues of NH have real part ≤ 0.
Under appropriate conditions, Perron-Frobenius theory will provide the existence of a unique
eigenvalue with maximal real part, say λ which will be real and correspond to left and right
eigenvectors (η| and |μ) with strictly positive components. In that case eT NH ∼ eλT |μ)(η|
for T → +∞, and

lim
T →+∞ PH,T (Ct = C′, knowing the past up to time s)

= e−λ(t−s)(η|C′)(C′|e(t−s)NH |Cs)(η|Cs)
−1.

This means precisely that conditioning the Markov process (C, W) to move (forever) along
the subgraph H leads to a Markov process with transition Matrix W

cond
H (indexed by vertices

of H) such that

(C′|Wcond
H |C) = (η|C′)(C′|W|C)(η|C)−1 if (C, C′) is an edge of H and 0 otherwise. (3.1)

Indeed, it is easy to check that the Markov matrix M
cond
H associated to W

cond
H is such that

(C′|etMcond
H |C) = e−λt (η|C′)(C′|etNH |C)(η|C)−1.

Note that Perron-Frobenius theory applies if H is connected. We do not prove this but
observe that if H is connected an argument similar to the one given at the end of Appendix
3 for etM for Markov processes shows that etNH has, for every t > 0, strictly positive matrix
elements between vertices of H.

If H splits as a disjoint union of connected components, Perron-Frobenius theory will
apply to each component separately and a limiting conditioned process on H will exist for
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T → +∞: the main difference is that λ will vary from one connected component to another.
But the formula (3.1) will survive for an appropriate collection (η|C) made by gathering the
dominant eigenvectors for each connected component.

3.4 A Summary of Affinity Class Invariances

We give a (non-exhaustive) list of probabilistic constructions that preserve the affinity class.
Most relevant for us are “drag and drop” and conditioning.

3.4.1 From a Markov Process to a Markov Chain

As recalled in Appendix 3, to every Markov process (C, W) one can associate a Markov
chain (C, P) such that M = (P − I)D where −D is the diagonal part of M = W − D. Then
W and P define the same graph, and when defined (i.e. for edges)

(C′|W|C)

(C|W|C′)
= (C′|P|C)(C|D|C)

(C|P|C′)(C′|D|C′)
.

Taking the logarithm on both sides shows that affinity and its discrete analog (2.5) define the
same class.

Our next aim is the behavior of the affinity class on subgraphs. We start from a Markov
process (C, W) with associated graph G, and take a subgraph H of G, both assumed to be
micro-reversible.

3.4.2 Restriction

This construction is trivial, but has no particular probabilistic meaning: let W
rest
H be the

restriction of the transition matrix to H. So W
rest
H is a matrix indexed by the vertices of H and

(C′|Wrest
H |C) = (C′|W|C) if (C, C′) is an edge of H and 0 otherwise.

From W
rest
H we can define the exchange S

rest
H , which is the restriction of S to edges of H.

Trivially, the integral of S
rest
H or S along any walk on H gives the same result.

3.4.3 Invariance Under “Drag and Drop”

The intuitive definition of “drag and drop” (defined formally in Section 3.1, which should be
consulted for reference) is the following. At t = 0 put a box at some vertex of H and start a
walker on G. The box remains at its vertex until the walker gets there. When the walker and
the box are at the same vertex and the next jump of the walker is along an edge of H, the
walker drags the box along. This goes on as long as the jumps of the walker are along H. But
as soon as the walker prepares for a jump along an edge in G but not H he drops the box.
Then the box remains immobile and waits for the next encounter with the walker and so on.
So by successive drags and drops, the box itself describes a walk on H. There is an analogy
that the reader may find useful between hitch-hiking and a variant of “drag and drop”(see the
end of Sect. 3.1).

As explained in detail in Sect. 3.2, under the procedure of “drag and drop”, if the walker
samples a Markov process on G, the trajectory of the box samples a generalized renewal
process on H and in particular a Markov chain on H. The corresponding stochastic matrix
P

dd
H is the Markov chain associated to the Markov process associated to the restriction W

rest
H
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of W to H. Restriction preserves edge affinities on H, and going from a Markov process to
its Markov chain may change edge affinities, but preserves the affinity class.

So the cycle affinities are left invariant under “drag and drop”.

3.4.4 Invariance Under Conditioning

As explained in detail in Appendix 2.3, if the Markov process (C, W) is conditioned to have
all its jumps along edges of H, one ends up with a new Markov process, the configuration
space being made of the vertices of H and the transition matrix W

cond
H being defined by (3.1)

which we repeat here for convenience: W
cond
H is a matrix indexed by the vertices of H

(C′|Wcond
H |C) = (η|C′)(C′|W|C)(η|C)−1 if (C, C′) is an edge of H and 0 otherwise,

where (η|C) is a strictly positive function on the set of vertices of H. It is plain that W
rest
H and

W
cond
H define the same affinity class.
So the cycle affinities are left invariant under conditioning. Let us recall that to collect

sample of the conditional probability one simply collects samples of the original process
(with law P) and keeps only those samples that obey the constraint that all jumps are along
edges of H.

3.5 Discussion

Let us pause for a moment to say a few words about the respective merits of conditioning
and “drag and drop”. Conditioning seems at first sight to be more natural, as it requires no
extraneous structure (drag and drop introduces another object, the box) and is defined for
general micro-reversible H. However, conditioning is meant above as holding at all times
(from 0 to +∞): it is obtained via a limiting procedure from finite time conditioning over
[0, T ] (see the details in 3.3). For finite time conditioning, there are corrections to the time
homogeneous description. As T → +∞ these corrections are generically exponentially
small, but the measure of the trajectories staying on H is exponentially small as well. So the
number of samples of the unconditioned system from which one selects the ones fulfilling the
constraint must be exponentially large. Hence the perspectives of measuring the conditioned
quantities are unclear (unless there is an unbiased physical way to implement the constraint
instead of simply discarding the samples which do not fulfill them). On the other hand, “drag
and drop” needs to identify physically an extra structure (the box), and the “drag and drop”
motion is slower than the original motion, but does not suffer of the exponential penalty
of conditioning. However, the “drag and drop” motion is described by a renewal process
only when the vertices of H have certain recurrence properties for the original Markov
process trajectories. We have mentioned in Sect. 3.1 that “drag and drop” possibly occurs
naturally in biological systems, and we could imagine many other situations, in work-flows
for instance. But we must admit that we have no natural interpretation in the case of general
non-equilibrium systems. However, one may hope that for certain systems in which the
dynamics is related to exchanges with specific reservoirs, these exchanges give a clue to
identify one or several objects for which “drag and drop” is naturally observable.

We do not pursue this route here, and simply view conditioning and “drag and drop” as
important examples spelled in detail, showing that the affinity class, and the corresponding
cycle affinities, are remarkably robust observables that remain invariant under a number of
natural probabilistic constructions. These two examples allow to observe processes or chains
on subgraphs in terms of processes or chains on graphs. Among all subgraphs, the simplest,
most basic but somehow most interesting for non equilibrium physics, subgraphs are cycles.
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In this context, we call random motion on a cycle a “noria”. Indeed, when a particle moves
along a cycle, one may keep track of its position, but also of its winding number, i.e. one
can count how many times the cycle has been described in a given time interval, i.e. how
many turns the noria has made. We shall see that (cycle) affinity is the crucial quantity that
describes the efficiency of the noria, i.e. how fast the turns are made in average, in which
direction, and what is the size of fluctuations. To insist on the existence of fluctuations, we
might call it more precisely a mesoscopic noria. We now turn to their detailed study, i.e.
assume that the subgraph H is a cycle.

4 A Probabilistic Interpretation of Cycle Affinities in norias

In this section, we shall use repeatedly, and often without even mentioning it, that the strong
Markov property (for a precise definition, see the general references at the beginning of
Appendix 2) holds for finite state Markov chains and finite state Markov processes. Let us
just describe informally what this statement means.

The Markov property says that knowing the present (i.e. the configuration at a given time
t , t = 0, 1, · · · for chains, t ∈ [0,+∞[ for processes) the trajectory before t and after t are
independent.

But what if t is replaced by a random time T ? For example, fix a configuration C and let
T be the first time the trajectory visits C, i.e. T is the smallest s such that Cs = C. The strong
Markov property states that CT +t , (t = 0, 1, · · · for chains, t ∈ [0,+∞[ for processes) has
exactly the same law as the original process started at C, i.e. with ν(C0) = δC0,C .

More generally, for a strong Markov process, this identity in law holds whenever T is a
stopping time (again, for a precise definition, see the general references at the beginning of
Appendix 2). Intuitively, a stopping time T is a random time for which one can decide if
T ≤ s by looking at the trajectory Ct , t ∈ [0, s], i.e. without knowledge of the future of s. A
deterministic time is a stopping time, so the strong Markov property is in principle stronger
than the Markov property.

It is a theorem (and not a triviality) that finite state Markov chains and finite state Markov
processes do have the strong Markov property.

4.1 Inhomogeneous Random Walks on Cycles

The general setting we need to study cycle affinities is a system with M ≥ 3 configurations
labeled 1, · · · , M (configuration m and m + M are identified in all subsequent formulæ). We
choose arbitrarily an orientation of the cycle: a jump from m to m + 1 (resp. m − 1) is said
to be clockwise (resp. anti-clockwise). We view the process as the motion of a particle along
the cycle, jumping from time to time from a site to one of its two neighbors. As established
in the previous subsection, whatever the initial Markov process was, as far as the cycle H in
the initial graph is concerned, the rules are of the following kind.

At t = 0 the particle starts at some m on the cycle. We make the convention that the first
waiting time does not play a special role. This is automatic for conditioning, but not for drag
and drop (in that case, either we start the walker at m, or start time at the first passage of the
walker at m). The particle waits at m for a (random) time T (whose law depends only on
m) and then jumps to m′ = m ± 1 with probability p±

m . It waits there for a random time T ′
(whose law depends on the past only via the position m′) and at T +T ′ jumps to m′′ = m′ ±1
with probability p±

m′ . It waits there for a random time T ′′ (whose law depends on the past
only via the position m′′) and so on.
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In particular the successive positions m, m′, m′′, · · · form a Markov chain with a stochastic
matrix whose only non-vanishing elements are (m±1|P|m) = p±

m (use the periodic boundary
conditions when necessary) with p±

m > 0 and p+
m + p−

m = 1 for m = 1, · · · , M . The law of
the random time spent at m could in principle be computed for each m from the knowledge
of the original Markov process, a rather simple task for conditioning (where all waiting times
are exponential and with easily computable parameters), but a very involved one for “drag
and drop”.

4.1.1 Winding Numbers

We define a sequence Wk as follows: MWk is the number of clockwise jumps minus the
number of anti-clockwise jumps among the k first jumps. The process (MWk)k=0,1,··· is an
inhomogeneous random walk on the integers, the inhomegeneity being periodic in space
with period M . If the initial position was m, m + MWk (taken modulo M) is the position
just after the kth jump. But Wk carries more information: by construction, Wk changes by
−1, 0 or 1 between two successive passages at m for m = 1, · · · , M , so it keeps a memory
of the number of turns. This is the reason why we call Wk the winding number up to (and
including) the kth jump.

There are two natural ways to measure time: time in the original Markov process, t , and
time as number of steps in the cycle Markov chain, k. If t belongs to the interval between
jump k and jump k +1, so that the winding number is Wk , we set W̃t ≡ Wk . Observe that W̃t ,
t ∈ [0,+∞[ and by extension Wk , k = 0, 1, 2, · · · are exchange processes as defined in 2.2.

The first question we shall ask is the probability that the winding number will ever reach
a certain value. This question does not involve a time parameterisation, and has a simple
answer.

The second question will be about the distribution of the time it takes to reach a certain
winding number, and this question, closely related to the efficiency of the noria, depends
on the time parameterisation. The answer is more complicated and less explicit, but exhibits
some simple general symmetries, strongly reminiscent of out-of equilibrium relations.

The quantity p+
m/p−

m+1 quantifies the relative tendency to traverse edge (m, m +1) in one
direction or another. In the rest of this section, we set

eA ≡
M∏

m=1

p+
m

p−
m

and see directly that A is the affinity along the cycle oriented clockwise. Thereafter we use
the simple name “affinity” for the quantity A.

4.1.2 Algebraic Preliminary

We start with an algebraic preliminary which is the crucial ingredient for the following
elaborations.

We suppose given a collection of indeterminates xm , m = 1, · · · , M . We look for the
solution(s) of the system

f −
m = xm(p−

m + p+
m f −

m+1 f −
m ), (4.1)

with periodic boundary conditions, for the unknown f −
m , m = 1, · · · , M , and for the solu-

tion(s) of the system

f +
m = xm(p+

m + p−
m f +

m−1 f +
m ), (4.2)
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with periodic boundary conditions, for the unknown f +
m , m = 1, · · · , M .

Later, we shall give a probabilistic interpretation of these systems, where the indetermi-
nates xm will be real numbers in [0, 1], or complex numbers in the closed unit disc. We set
F− ≡ ∏M

m=1 f −
m and F+ ≡ ∏M

m=1 f +
m .

Claim Each system (4.1) or (4.2) has generically two solutions. In particular, F+ as well
as F− can take two values. Moreover, either F−F+ = 1 or F− = F+e−A.

Proof We start with system (4.1). This system is a discrete analog of a Ricatti differential
equation, and it can be linearized by the standard trick. Let g0 be arbitrary and define iteratively
gm ≡ f −

m gm−1 for m = 1, · · · , M, M + 1. Observe that gM = F−g0 and gM+1 = F−g1 :
the sequence fm is periodic by construction but the sequence gm is not, and F− appears as
an holonomy. Then (4.1) turns into

gm = xm(p−
m gm−1 + p+

m gm+1) for m = 1, · · · , M. (4.3)

This two-terms recursion relation can be transformed in a vector one-term recursion relation:
(

gm+1

gm

)
= Fm

(
gm

gm−1

)

for m = 1, · · · , M , where

Fm ≡
(

1/(xm p+
m ) −p−

m/p+
m

1 0

)
. (4.4)

We set

F =
(

F11 F12

F21 F22

)
≡ FM · · · F1.

One finds by iterating the above formula that

F−
(

g1

g0

)
=

(
gM+1

gM

)
= F

(
g1

g0

)
(4.5)

so that F− is an eigenvalue of the transfer (or Bloch-Floquet or · · · depending on the com-
munity) matrix F, i.e. a solution of

(F−)2 − F− Tr F + Det F = 0. (4.6)

This formula shows clearly that F− is a cyclic invariant, because Tr F and Det F are. The trace
Tr F has a complicated expression in general, but the determinant Det F = ∏M

m=1 Det Fm =∏M
m=1 p−

m/p+
m = e−A, a simple function of the cycle affinity.

Eq. (4.6) is a quadratic equation, which has generically two solutions. If one is chosen,
the ratio of the components of the corresponding eigenvector g1/g0 = f −

1 is fixed, namely
f −
1 = (F− − F11)/F21, and then all other f −· ’s as well using (4.1).

To summarize, we have shown that the system (4.1) has generically exactly two solutions.
The system (4.2) can be solved in an analogous way. It is easily seen that if one takes

an arbitrary gM+1 and defines iteratively gm ≡ f +
m gm+1 for m = M, · · · , 1, 0 the g·’s do

again satisfy (4.3) (though they may differ from the g·’s introduced using the f −· ’s). This
time g0 = F+gM and g1 = F+gM+1 and we infer that

(F+)−2 − (F+)−1 Tr F + Det F = 0. (4.7)

So F− and 1/F+ are roots of the same quadratic equation, and there are two possibilities:
either F−F+ = 1 or F− = F+Det F. As Det F = e−A the proof is completed.
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�
We shall see in the sequel (see Sects. 4.1.4 and 4.1.5) that for our probabilistic aims, the

second possibility, namely F− = F+Det F, is the relevant one. Then an explicit computation
yields

f −
1

f +
0

= −F12

F21
. (4.8)

The ratios f −
m / f +

m−1 are given by analogous formulæ obtained by replacing the product
F ≡ FM · · · F1 by the appropriate circular permutation. Apart from the fact that these ratios
involve no square root and are plain rational functions of all the arguments, the explicit
expressions are complicated in general.

We return now to our primary interest, the cyclic Markov chain. The strategy in the
following sections is always the same: use the (strong) Markov property to obtain recursion
relations of the type studied above among the quantities of interest, then use the periodicity
along the cycle to solve the recursion relations.

4.1.3 Clockwise and Anti-Clockwise Cycles

The easiest question to answer is very classical and its solution can be found in textbooks
(though the proof we give is not totally standard): will the winding number will ever reach
±1 ?

Claim If A ≥ 0 (resp. ≤ 0) the probability to reach winding number 1 is 1 (resp. eA) and
the probability to reach winding number −1 is e−A (resp. 1).

The complete proof has to wait until 4.1.4, but for orientation we give a very simple
argument leading to a slightly weaker result. The (strong) Markov property is the crucial
ingredient.

Sketch of proof Let π−
m be the probability that the winding number of a trajectory started at

m ever reaches the value −1/M . Then by the Markov property

π−
m = p−

m + p+
mπ−

m+1π
−
m . (4.9)

The meaning of this equation is clear : either the first jump is anti-clockwise (probability
= p−

m ) and the winding number reaches its target −1/M or the first jump is clockwise
(probability = p+

m ), and then the particle has “lost” a winding 1/M so it has to go from m +1
to m with winding number −1/M to compensate (probability π−

m+1), and take a new chance.
Notice that (4.9) is simply (4.1) with all xm’s replaced by 1. In this simple special case,

an ad hoc argument works because f −
m = 1 for m = 1, · · · , M is obviously a solution. The

probability that starting from m the winding number reaches −1 is, by the Markov property
again,

∏M−1
l=0 π−

m−l , which is independent of m. So we denote this probability simply by

�− ≡ ∏M−1
l=0 π−

m−l . We rewrite (4.9) as

p−
m (1 − π−

m ) = p+
mπ−

m (1 − π−
m+1). (4.10)

A first consequence is that if π−
m = 1 for some m then also π−

m+1 = 1 and so on, so that all
π−

m ’s are equal to one, and the probability to reach winding number −1 is unity. On the other
hand, in the case when no π−

m equals one,

�− =
M∏

m=1

p−
m

p+
m

= e−A. (4.11)
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Indeed, in (4.10) take the product over all m’s in the cycle and simplify both sides by∏M
m=1(1 − π−

m ) �= 0 to get
∏M

m=1 p−
m = ∏M

m=1 p+
m

∏M
m=1 π−

m , i.e. �− = ∏M
m=1 p−

m/p+
m . As

�− is a probability, this is possible only if
∏M

m=1 p−
m/p+

m ≤ 1.
We have already proved the following: if A ≤ 0 then �− = 1, i.e. winding number −1 is

reached with probability 1, and if A ≥ 0 then �− ∈ {1, e−A}. We could reproduce the above
argument with π+

m , the probability that the winding of a trajectory started at m ever reaches
the value 1/M , and �+ ≡ ∏M−1

l=0 π+
m+l . We would get : if A ≥ 0 then �+ = 1, i.e. winding

number 1 is reached with probability 1 and if A ≤ 0 then �+ ∈ {1, eA}. In particular, if
A = 0 then the probability to reach winding numbers −1 and 1 is unity, and by the (strong)
Markov property, the probability to reach any winding number an infinite number of times
is also unity: the winding number Wk will oscillate and take arbitrarily large positive and
negative values as k → +∞.

�
These arguments suggest that in fact

�− = min{1, e−A} and �+ = min{1, eA}. (4.12)

Though it is intuitive that if A > 0 there is a systematic drift towards positive winding number,
hence a finite probability to never reach winding number −1, it takes a deeper argument to
get a proof. This is our next aim.

4.1.4 First Passage Times: Markov Chain Case

We generalize a bit the previous discussion. We let F− (resp. F+) be the generating function
for the number of steps it takes to reach winding number −1 (resp. 1), the parameter being z.
By definition, F− ≡ ∑

k≥1 F−
k zk where F−

k is the probability that it takes exactly k steps to
reach winding number −1. In the same way F+ ≡ ∑

k≥1 F+
k zk where F+

k is the probability
that it takes exactly k steps to reach winding number 1. Note that F±(z = 1) = �±.

Defining f −
m to be the generating function for the number of steps it takes to reach winding

number −1/M starting from m, the following holds.

Claim The f −
m ’s solve the system (4.1) for all xm’s equal to z, namely

f −
m = z(p−

m + p+
m f −

m+1 f −
m ) for m =1, · · · , M with periodic boundary conditions, (4.13)

and F− = ∏M
m=1 f −

m .

Proof That the f −
m ’s are periodic modulo M is included in their very definition. Consider

the right-hand side of (4.13). The factor z is the weight of the first step. If the first step is
anti-clockwise (probability p−

m ) winding number −1/M is reached after one step. Otherwise
(probability p+

m ) the first step takes to winding number 1/M and then the number of steps to
reach winding number −1/M is, by the (strong) Markov property, the sum of two independent
contributions, one with generating function f −

m+1 and one with generating function f −
m .

Finally, F− = ∏M
m=1 f −

m , because F− is the generating function for a sum of M independent
(the strong Markov property again) random variables with generating functions f −

m , m =
1, · · · , M .

�
Of course an analogous results holds for F+. For the rest of this discussion we set xm = z

for all m’s in the formulæ from 4.1.2.
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Claim of Our Main Result (Markov Chain Case)

The generating functions F− and F+ satisfy F− = F+e−A, and in particular (4.12)
holds.

Proof The definition of F− as a normally convergent sum in the closed unit disc |z| ≤ 1
shows immediately that F− is in fact an analytic function in the open unit disc |z| < 1,
continuous up to the boundary i.e. in the closed unit disc |z| ≤ 1 and the same holds for each
F−

m . Moreover F−(z = 1) = �−, while by definition f −
m (z) ∼ p−

m z at small z.
As F− is real for z ∈]0, 1], obviously the discriminant of the quadratic equation (4.6) has

to be ≥ 0 in this parameter range.
Now, at small z, the upper left corner is the dominant term in each Fm (defined in (4.4)

where z is substituted for xm) so that Tr F ∼ z−M/(
∏M

m=1 p+
m ) at small z. Taking z small and

positive, we see that to prevent explosion the branch in the solution of (4.6) has to be

F− = Tr F − √
(Tr F)2 − 4Det F

2
, (4.14)

where the determination of the square-root is the analytic continuation of the positive square
root at small z.

The generating function F+ for the number of steps it takes to reach winding number 1,
the parameter being z, is related to (4.2) in the same way. Now F+ is small at small z, so that
the relevant solution of (4.7) at small z is

1

F+ = Tr F + √
(Tr F)2 − 4Det F

2
. (4.15)

where the determination of the square-root is the analytic continuation of the positive square
root at small z. In particular we find that

F−

F+ = Det F = e−A

is valid everywhere by analytic continuation. As a consequence, taking z → 1− one finds

�−

�+ = Det F = e−A,

which together with the results in 4.1.3 proves (4.12).

�
A few remarks are in order:

– The proof that we have given for the identity F− = F+e−A is analytic (via generating
functions and singularity analysis), but it would deserve a good combinatorial proof. It
is clear that if we compared the generating functions for winding number ±1 (without
the restriction that it is the first passage) we would obtain a one-to-one correspondence
preserving length (i.e. the number of steps) by simply reversing paths, and the ratio would
obviously be

∏M
m=1 p−

m/p+
m . In the same way, if we compared generating functions for

winding number −1/M starting at m and for winding number 1/M starting at m − 1
(without the restriction that it is the first passage) the ratio would be p−

m/p+
m−1. Whereas

the ratio remains simple (and the same) in the first case (full cycle) when we restrict to
first passages, the ratio becomes more involved in the second case (piece of cycle) when
we restrict to first passages: by (4.8), the ratios f −

m / f +
m−1 are given by explicit but tedious

formulæ, with one salient feature however, they are rational functions of the parameters
of the Markov chain.
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– The proof we have given that if
∏M

m=1 p−
m/p+

m < 1 there is finite probability to never reach
winding number −1 is also of analytic nature, but would deserve a purely probabilistic
proof. This could be obtained either as a consequence of the individual ergodic theorem
or of the renewal theorem, or of other refinements of the strong law of large numbers.

4.1.5 First Passage Times: General Case

In the beginning of 4.1 we have explained why concentrating on a cycle for general finite
state Markov processes leads to a Markov chain on the cycle and to waiting times between
the jumps which depend only on the position on the cycle but are in general not exponential.

So take xm ≡ xm(λ) as the Laplace transform of the law of the time during which the
particle remains at m before jumping. If the probability that this time belongs to [0, t] is
um(t) then xm(λ) ≡ ∫ +∞

0 e−λt dum(t). As the um’s are derived (though in a complicated
way for “drag and drop”) from the exponential waiting times of a finite state Markov process,
they are quite nice, i.e. continuous, vanishing at 0 and going to 1 exponentially fast at large
t so that xm(λ) has finite derivatives of all orders (giving the moments) at λ = 0 and
limλ→+∞ xm(λ) = 0.

Let T − be the (random) time it takes to reach winding number −1 and T + be the (random)
time it takes to reach winding 1. We do not exclude a priori that for some trajectories, the
particle never reaches winding number −1 or +1 and on such events we define T − or T + to
be +∞.

Let f −
m ≡ f −

m (λ) (resp. F− ≡ F−(λ)) stand for the Laplace transform of the law of the
time it takes to reach winding number −1/M starting from m (resp. to reach winding number
−1), and let f +

m ≡ f +
m (λ) (resp. F+ ≡ F+(λ)) stand for the Laplace transform of the law of

the time it takes to reach winding number 1/M starting from m (resp. to reach winding number
1). In equations, F−(λ) ≡ ∫ +∞

0 e−λt d P(T − < t) and F+(λ) ≡ ∫ +∞
0 e−λt d P(T + < t).

In these definitions, time stands for the real time of the original Markov process, not for the
number of steps.

Claim of Our Main Result (General Case)
The functions f −

m (λ) [resp. f +
m (λ)] solve the system (4.1) (resp. (4.2)) with data xm(λ).

The functions F−(λ) and F+(λ) are related by F−(λ) = F+(λ)e−A.

Proof To show that the functions f −
m (λ) (resp. f +

m (λ)) solve the system (4.1) (resp. (4.2))
with data xm(λ), the same probabilistic argument as before can be repeated word for word.

Because limλ→+∞ xm(λ) = 0, the same simple argument as before allows to choose the
appropriate branch for the quadratic equation. Hence the following relation holds between
the Laplace transforms F±(λ) of the laws of the time it takes to reach winding number ±1:

F−(λ)

F+(λ)
= Det F = e−A, (4.16)

so that the cycle affinity still governs the relationship between the distribution of first passage
times at winding numbers −1 and 1. The ratio is independent from the xm’s, namely from
the distributions of the waiting times at the various positions on the cycle.

�
By (4.8), the ratios f −

m (λ)/ f +
m−1(λ) are more complicated. They are given by explicit

but tedious formulæ, with one salient feature however: they are rational functions of the
parameters of the Markov chain.

Relation (4.16) can be viewed as a random time analog (or dual) of the usual finite time
out-of-equilibrium relations. The usual question would be to ask whether there is a relation
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between the probabilities to see a winding number w versus −w at a fixed time t : time is
fixed, W̃t (as defined in Sect. 4.1.1) is random and one compares in some way p(W̃t = w)

and p(W̃t = −w). But here, T + is the time to reach winding number 1, T − is the time to
reach winding number −1 and we compare the laws of T + and T −.

To make it look even more familiar, we may define T (w) for an arbitrary integer w as the
time needed to reach winding number w, and F (w)(λ) as the Laplace transform of the law
of T (w), so that F± = F (±1). The renewal property entails that F (w) is simply the wth (resp
(−w)th) power of F+ (resp. F−) for w ≥ 0 (resp. w ≤ 0). Then, for each integer w

F (−w)(λ)

F (w)(λ)
= e−wA.

Note that this is an exact relation valid for finite winding numbers and for any cycle in a
more general system of transitions as long as the procedure to define the process of the cycle
preserves the affinity class, as shown for instance for “drag and drop” and conditioning.
However, the relation is established under the assumption that the first waiting time plays no
special role. This is natural for conditioning but not for “drag and drop” for instance. Then
letting F̂ (w)(λ) denote the “real” quantity (vaguely speaking, taking into account the time it
takes to reach the cycle) the law of large numbers leads to the fact that [F̂ (w)(λ)]1/w behaves
for large w → +∞ (resp. w → −∞) as F+(λ) (resp. F−(λ)) so that relation (4.16) is
observable as an asymptotic result in general:

lim
w→±∞

[F̂ (−w)(λ)]1/w

[F̂ (w)(λ)]1/w
= e−A.

Remark There is another interpretation of the identity F−(λ) = F+(λ)e−A. Let P+ (resp.
P−) be the law on [0,+∞] of the time T + (resp. T −) it takes to reach winding number 1
(resp. −1), so that F+(λ) (resp. F−(λ)) is nothing but the Laplace transform of P+ (resp.
P−). Then P+ is absolutely continuous with respect to P− and

P− = e−A P+ + (1 − e−A)δ+∞,

i.e. the Radon-Nykodim derivative d P+/d P− is equal to the constant eA.

4.1.6 Mean First Passage Time and Efficiency

The previous arguments have lead to a general symmetry relation between clockwise and
anti-clockwise first passage times, but as stated above the computation of the law of the
individual clockwise or anticlockwise first passage times is complicated.

We illustrate this first level of complexity by giving a formula for the mean first passage
time. This is the most straightforward measure of the efficiency of the cycle, i.e. the average
speed at which cycles are performed by the noria.

We assume here that A > 0 so that �+ = 1, �− = e−A < 1 and the winding number
grows in average. This suggests strongly that the mean first passage times at positive winding
numbers are finite. We shall not give a proof of this (this is standard and not really difficult,
but would take us too far) but we give the formula.

We let lm denote the mean waiting time at m for m = 1, · · · , M and τ+
m be the mean first

passage time at winding 1/M starting from m, so that, by the strong Markov property, the
mean first passage time at winding 1 is, whatever the starting point,

∑M
m=1 τ+

m ≡ 〈T +〉. For
an arbitrary generalized renewal process, the finiteness of lm is not guaranteed and should be
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included as an hypothesis. For the constructions we use in this work (conditioning or drag
and drop on a subgraph, starting from a finite state Markov process), it is automatic.

Claim The equation

τ+
m = p+

mlm + p−
m (lm + τ+

m−1 + τ+
m ) (4.17)

holds.

Proof We give two arguments:

– The first one is related to the generating functions in the parameter λ introduced in
4.1.5, because average times are first moments, so they can be computed by taking a
derivative with respect to λ at λ = 0. Thus lm (resp. τ+

m ) is nothing but − dxm (λ)
dλ

(λ = 0)

(resp.− d f +
m (λ)

dλ
(λ = 0)), so (4.17) can be obtained by taking the derivative of (4.2) with

respect to λ at λ = 0. Notice that xm(λ = 0) = 1 is always true, but f +
m (λ = 0) = 1

holds only because �+ = 1.
– The second argument, a direct probabilistic derivation relying on the strong Markov

property, is even more transparent: it takes in average lm units of time to make the first
step; if it is clockwise, (probability = p+

m ), we are done, but if the first step is anti-
clockwise (probability = p−

m ) reaching winding number 1/M takes in average, on top of
lm , time τ+

m−1 to hit winding number 0 and time τ+
m to hit winding number 1/M . �

Claim The mean first passage time at winding number 1, 〈T +〉, is given by

( M∏

m=1

p+
m −

M∏

m=1

p−
m

)
〈T +〉 =

M∑

m=1

M∑

k=1

( ∏

1≤i<k

p+
m+i

)
lm+k

( ∏

k< j≤M

p−
m+ j

)
. (4.18)

This formula is still elegant, but already complicated. The other moments of the first
passage time T + can be computed by analogous tricks but require more efforts, and the final
expressions require more space.

Proof Equation (4.17) can be rewritten:

τ+
m = lm

p+
m

+ p−
m

p+
m

τ+
m−1.

Using this relation repeatedly, we get τ+
M in terms of τ+

M−1, then in terms of τ+
M−2 and so on,

until we finally get a closed equation because τ+
0 = τ+

M . This leads to:

( M∏

m=1

p+
m −

M∏

m=1

p−
m

)
τ+

M =
M∑

k=1

( ∏

1≤i<k

p+
i

)
lk

( ∏

k< j≤n

p−
j

)
.

Note that
∏M

m=1 p+
m − ∏M

m=1 p−
m > 0, which is equivalent to A > O , is our working

hypothesis, leading to growth of the winding number. Under the opposite hypothesis, the
formula would be inconsistent as it would lead to negative mean first passage times. The
other τ+

m ’s are easily obtained by a cyclic permutation, finally leading to (4.18).

�
The mean first passage time at winding number w = 0, 1, 2, · · · is w〈T +〉. The strong

law of large numbers will imply that the first passage time at winding number w, which is a
sum of w independent random variables with mean 〈T +〉 will differ from its mean w〈T +〉
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by an o(w) with probability going to 1 as w → +∞. By a standard trick this results can be
expressed in an equivalent way as:

lim
t→+∞ W̃t/t = 1/〈T +〉 with probability 1. (4.19)

So when the noria works for a long time fluctuations are suppressed and a “classical” behavior
emerges : the noria turns at speed 1/〈T +〉 + o(1) and can thus be fully characterized by its
efficiency.

Formula (4.19) can be checked against a particular case: if we assume that the cycle is
described by a Markov process, i.e. that the waiting times are exponential, we may define
the current j̃t = j̃ (Ct ) associated to the exchange process W̃t . The generic formula (2.1)
specializes to j̃ (m) = 1

M l−1
m (p+

m − p−
m ). The average 〈j̃t 〉st of j̃t in the stationary state is thus

〈j̃t 〉st = 1
M

∑
m l−1

m (p+
m − p−

m )Pst(m). The equation for Pst(m) is

l−1
m Pst(m) = l−1

m+1 p−
m+1 Pst(m + 1) + l−1

m−1 p+
m−1 Pst(m − 1),

which by a simple rearrangement (using 1 = p+
m + p−

m on the left-hand side) can be rewritten:

l−1
m p+

m Pst(m) − l−1
m+1 p−

m+1 Pst(m + 1) = l−1
m−1 p+

m−1 Pst(m − 1) − l−1
m p−

m Pst(m).

Thus the quantity l−1
m p+

m Pst(m)− l−1
m+1 p−

m+1 Pst(m +1) is m-independent, i.e. constant along
the cycle, and we call it �+. Note that summing over m one finds that �+ = 〈j̃t 〉st. Moreover,
treating �+ as a parameter, the one term recursion relation can be solved as before: one
iterates until a closed equation is obtained because Pst(0) = Pst(M). Then �+ is obtained
by the normalization condition

∑
m Pst(m) = 1. One finds without surprise that the formula

for 〈j̃t 〉st is exactly the formula obtained in (4.18) for 1/〈T +〉, so that 〈j̃t 〉st = 1/〈T +〉 in
agreement with the more general result limt→+∞ W̃t/t = 1/〈T +〉 obtained above because
〈W̃t 〉 ∼ t〈j̃t 〉st for large t .

4.1.7 Illustration in the Degenerate Case M = 1

Though real cycles have M ≥ 3 vertices, there is nothing that prevents defining the winding
number process for M = 1, so that all indices can be suppressed. At each jump the winding
number grows by ±1 with probability p±. So the corresponding Markov chain is nothing
but the simple asymmetric random walk, and the renewal process is obtained by using a
sequence of independent identically distributed waiting times separating the jumps. Assume
for definiteness that p+ ≥ p− = 1 − p+ so that A = ln(p+/p−) ≥ 0. Trivially

F =
(

1/(xp+) −p−/p+
1 0

)
.

Applying the general formulæ obtained above, one recovers very classical results:

– The probability to reach winding number w is 1 for w = 0, 1, 2, · · · while it is ewA for
w = 0,−1,−2, · · · .

– The generating functions for the number of steps it takes to reach winding number
w = ±1 are F±(z) given by

F+(z) = 1 − √
1 − 4z2 p+ p−
2zp− , F−(z) = 1 − √

1 − 4z2 p+ p−
2zp+ ,
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where the square root is the standard branch (
√

1 = 1), and the small z expansion

1 − √
1 − 4z2 p+ p−
2zp− =

∑

k≥0

(p+)k+1(p−)k (2k)!
k!(k + 1)! z2k+1

allows to retrieve the familiar fact that the number of walks that start from 0 and reach 1
for the first time after 2k + 1 steps is given by the Catalan number (2k)!

k!(k+1)! , each of these

walks having weight (p+)k+1(p−)k .
– If x(λ) is the Laplace transform of the distribution of the waiting time between two jumps,

the Laplace transform of the distribution of the first passage time at ±1 is F±(λ), where

F+(λ) = 1 − √
1 − 4x(λ)2 p+ p−
2x(λ)p− , F−(λ) = 1 − √

1 − 4x(λ)2 p+ p−
2x(λ)p+ ,

– The average of the first passage time at −1 is infinite, but the average first passage time
at 1 is

〈T +〉 = l

p+ − p− ,

where l is the average time between two jumps, and W̃t ∼ p+−p−
l t at large t .

5 Conclusions

In this article, we have proved a new general fluctuation relation dual to the ones usually
exhibited in the literature.

The usual question is to ask whether there is a relation between the probabilities that an
observable W̃t (here, the winding number) takes a certain value w versus −w at a fixed time
t : time is fixed, W̃t is random and one compares in some way p(W̃t = w) and p(W̃t = −w).
In our approach, we have defined T (w) as the random time it takes for the observable to reach
a certain value w and we compared the laws of T (w) and T (−w) and derived a corresponding
non-equilibrium fluctuation relation. Technically, the main probabilistic tool is the strong
Markov property. It leads to recursion relations among the quantities of interest, typically
generating functions. Then periodicity along the cycle is used to solve the recursion relations.

Though this fluctuation relation is established for special systems with the geometry of a
cycle, we have argued that it can be observed in any Markovian system because the quantity
involved in the fluctuation relation is the (cycle) affinity, which we have shown to be invariant
under many probabilistic contructions, including conditioning but also “drag and drop”, a
new procedure we have introduced.

One obvious useful generalization would be the study of correlations of random times
between several cycles.

Appendix 1: A Short Reminder on Graph Theory

In this section, which is meant to be self-contained (see the first chapters of e.g. [15–18]
for much more material), we recall basic definitions, sometimes adapted to our needs, from
elementary graph theory.

A graph G is a couple (V, E) where V is an arbitrary non-empty set and E is an arbitrary
subset of V × V disjoint from the diagonal {(v, v), v ∈ V}. Elements of V are called vertices
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Fig. 1 Two examples of subgraphs within a graph. Left a general graph with a subgraph. Right a non-oriented
graph with a subgraph. The subgraph is marked with larger vertices and thicker edges. The oriented graph on
the left is not connected, but the subgraph is

and elements of E are called edges: if (v, v′) ∈ E (which implies that v and v′ are distinct)
we say that there is an edge from v to v′, or that v′ is adjacent to v. In pictures, the vertices
are represented as points, and the edges as arrows joining vertices. For our purposes, the set
of vertices will always be a finite set.

A non-oriented graph G is a couple (V, E) where V is an arbitrary non-empty set and
E is a subset of the set, sometimes denoted S2(V), of pairs of elements of V, i.e. the set{{v, v′}, v, v′ ∈ V, v �= v′}. In that case, edges are represented as line segments because in
{v, v′}, v and v′ play symmetric roles.

Graphs such that E is symmetric, i.e. such that (v, v′) is an edge if and only if (v′, v) is an
edge, are said to be micro-reversible. This is not standard terminology, but is motivated by
statistical mechanics considerations. Micro-reversible graphs are in one-to-one correspon-
dence with non-oriented graphs. In pictures, a line segment between to vertices representing
the edge {v, v′} corresponds to a pair of arrows, one from v to v′ for (v, v′) and one from v′
to v for (v′, v).

A graph H is a subgraph of a graph G if the set of vertices of H is a subset of the set of
vertices of G, and the set of edges of H is a subset of the set of edges of G joining vertices
of H.

A walk on a graph G is a sequence X0, · · · , X N of vertices of G such that (Xi−1, Xi ) is
an edge of G for i = 1, · · · , N . The number N is the length of the walk, and single vertices
count as walk of length 0.

We say that a graph is connected if there is a walk joining any two vertices. Caution: this
is not the standard terminology, one of the reasons being that micro-reversible graphs G can
be split in a unique way into disjoint connected components, but this is not true for general
graphs, see Fig. 1 for illustration.

Appendix 2: A Short Reminder on Finite State Markov Chains

A reference dedicated to (finite or countable state space) Markov chains and processes,
mostly self-contained and at an accessible level of sophistication, is [19]. Markov chains and
processes are also covered in a number of general textbooks. We have found, [20–24], (at
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increasing level of complexity and abstraction) well-adapted to our tastes. But this appendix
should be easily readable with a very modest background in finite probability spaces, and
the above references are needed only for those who want to learn more. The only deep
point, namely that the law for infinite trajectories can be constructed as a limit of laws for
finite trajectories (a special case of Kolmogorov’s theorem, see the references above), can be
admitted.

The starting point is a finite set C of configurations or states, and a stochastic matrix P on
C.

A stochastic matrix on C is a collection (C′|P|C)C′,C∈C such that (C′|P|C) ≥ 0 for C, C′ ∈
C, and

∑
C′(C′|P|C) = 1 for C ∈ C. So each column of P is a probability measure on C.

To these data, we associate a Markov chain on C as follows: we give an initial probability
distribution ν on C at time n = 0, and if at time n the system is in configuration C then (what-
ever happened before n) at time n + 1 the system will be in configuration C′ with probability
(C′|P|C). One can show (using Kolmogorov’s theorem for instance, see references above)
that this defines uniquely a probability measure on sequences (C, C′, C′′, · · · ) of elements of
C. The Markovian character is transparent in this description: to know the fate of the system
at time n + 1, only the knowledge of the system at time n is needed.

It is convenient to have a compact notation and we sometimes write “ Consider a Markov
chain (C, P) ” or if the initial probability distribution is important “Consider a Markov chain
(C, P, ν)”. We also sometimes write Cn (n = 0, 1, · · · ) for the configuration of the chain at
time n, i.e. after n steps.

Appendix 2.1: Description of Trajectories

There are (at least) two natural descriptions of a trajectory:
• A first one is: the system is at C at time 0, at C′ at time 1, at C′′ at time 2, and so on.

The corresponding probabilities are easy to compute. For instance the probability to be at C
at time 0, at C′ at time 1, and at C′′ at time 2 is

(C′′|P|C′)(C′|P|C)(C|μ)

where (C|μ) is the initial probability distribution.
• A second one is: the system is at C at time 0 and stays at C until time n, but jumps

between time n and time n + 1 to C′ �= C and stays at C′ up to time n + n′ + 1, but jumps
between time n + n′ + 1 and time n + n′ + 2 to C′′ �= C′ and so on. The corresponding
probabilities are again easy to compute. For instance the probability up to the second jump
is

(C′′|P|C′)(C′|P|C′)n′
(C′|P|C)(C|P|C)n(C|μ).

The second description is related to the following construction. Define a new stochastic
matrix P̌ by the formulæ:

– If (C|P|C) = 1 then (C′|P̌|C) = (C′|P|C) for every C′ (i.e. (C|P̌|C) = 1 and (C′|P̌|C) = 0
for C′ �= C).

– If (C|P|C) < 1 then (C|P̌|C) = 0 and (C′|P̌|C) = (C′|P|C)
1−(C|P|C)

for C′ �= C.

Also let K be the diagonal matrix whose entries are those of the diagonal of P, i.e.
(C′|K|C) ≡ δC,C′(C|P|C). Then

P̌(I − K) + K = P.
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Say that a random variable N obeys a geometric distribution of parameter k ∈ [0, 1] if
p(N ≥ n) = kn for n = 0, 1, · · · , i.e. p(N = n) = kn(1 − k). Then the probabilistic
interpretation of the second description is the following. Starting at C at time 0 if (C|K|C) = 1
stay there forever, otherwise stay at C during a geometric time N with parameter (C|K|C)

and between N and N + 1 jump to C′ with probability (C′|P̌|C); if (C′|K|C′) = 1 stay there
forever, otherwise stay at C′ during a geometric time N ′ with parameter (C′|K|C′) and between
N + N ′ + 1 and N + N ′ + 2 jump to C′′ with probability (C′′|P̌|C′); and so on.

Note that certain (infinite) trajectories for the Markov chain associated to P may lead to
a finite number of jumps. However, if (C|K|C) = 1 then also (C|P̌|C) = 1 so staying forever
at C is also what is predicted by P̌, and if this is done, any infinite trajectory for the Markov
chain associated to P leads to an infinite trajectory for the Markov chain associated to P̌.

Appendix 2.2: The Graph Associated to a Markov Chain

To any stochastic matrix P we can associate a graph. The vertices are the configurations in C,
and (oriented) edges are indexed by the possible transitions: there is an oriented edge from
C to C′ if and only if C �= C′ and (C′|P|C) �= 0. In that case, we talk of the edge (C, C′) and
we say that C′ is adjacent to C (not a symmetric relation in general). We shall denote the
corresponding graph by G: as recalled above, G is a couple of sets: the set of vertices, C,
and the set of edges, a subset of C × C disjoint from the diagonal.

Recall that a graph G is said to be connected if one can go from any vertex to any other
by a sequence of adjacent vertices. In that case, general theorems state that:

– All configurations are recurrent with probability 1, i.e. for almost every trajectory, every
configuration appears infinitely many times.

– There is a single probability measure Pst on C, called the stationary measure, such that
PPst = Pst i.e.

∑
C(C′|P|C)Pst(C) = Pst(C′) for each C′. Moreover, Pst(C) > 0 for each

C ∈ C.

However, due to some possible arithmetic symmetries, is is not always true that any initial
probability distribution on C converges at large times to Pst.

Motivated by the graphical interpretation, we shall repeatedly use the image that a tra-
jectory is a random walker on C jumping from time to time along edges from one vertex to
another. Note that P and the associated P̌ correspond to the same graph.

We shall often make the assumption of micro-reversibility, i.e. (C′|P|C) and (C|P|C′)
are simultaneously either = 0 or �= 0. Then, the above (oriented) graph carries the same
information as a non-oriented one, for which we keep the same name, and we shall say that
{C, C′} (unordered) is an edge of G.

Appendix 3: A Short Reminder on Finite State Markov Processes

This appendix should be easily readable by anyone with minimal familiarity with the master
equation approach. Our discussion closely parallels the description of Markov chains. The
references given at the beginning of Appendix 2 explain what is stated here and much more.

The starting point is a finite set C of configurations or states, and a transition matrix W with
vanishing diagonal matrix elements and whose non-diagonal matrix elements (C′|W|C) ≥ 0 ,
C, C′ ∈ C, C �= C′, describe transition rates from C to C′. To W is associated a Markov matrix
M defined by (C′|M|C) ≡ (C′|W|C) for C, C′ ∈ C, C �= C′, and (C|M|C) ≡ −∑

C′ �=C(C′|W|C)

for C ∈ C. We let D denote the (diagonal) matrix such that M = W − D.
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To these data, we associate a Markov process on C as follows: we give an initial probability
distribution ν on C at time t = 0, and if at time t the system is in configuration C then
(whatever happened before t) at time t + �t the system is still in C with probability 1 +
(C|M|C)�t+o(�t) i.e. 1−(C|D|C)�t+o(�t), and is in configuration C′ �= C with probability
(C′|M|C)�t + o(�t) i.e. (C′|W|C)�t + o(�t). Taking an infinitesimal dt instead of a finite
but small �t , we see that M appears as the infinitesimal generator of the Markov process. The
Markovian character is transparent in this description: to know the fate of the system at time
t + dt , only the knowledge of the system at time t is needed. The mathematical construction
of the law of a Markov process from these data is only slightly more complicated than for
Markov chains.

Appendix 3.1: Relation with the Master Equation

We write Ct (t ∈ [0,+∞[) for the configuration of the process at time t . Thus a trajectory
is a (random) function from [0,+∞[ to C. The mathematical construction of the Markov
process amounts to the construction of a probability measure, which we denote by P in this
article, consistent with the heuristic description of transitions given above, on an appropriate
set of functions from [0,+∞[ to C. One shows that it is possible to concentrate on functions
which are right-continuous with left limits: if there is a jump at time t , Ct is the position after
the jump so Ct �= Ct− if and only if there is a jump at time t . Moreover one can concentrate on
functions that have only a finite number of jumps during any bounded time interval. So if Q is
any matrix indexed by C and with vanishing diagonal elements, (W is a typical example), the
sum

∑
t∈]0,T ](Ct |Q|Ct−), to which only jump times contribute, is well-defined. This simple

construction plays an important role in the construction of cumulative processes in sect. 2.1.
It is convenient to have a compact notation and we sometimes write “Consider a Markov

process (C, W)” or if the initial probability distribution is important “Consider a Markov
process (C, W, ν)”.

The probability P(C; t) to be in configuration C at time t , a shorthand for P(Ct = C), is
obtained by solving the so-called master equation

d

dt
P(C; t) =

∑

C′
(C|M|C′)P(C′; t).

with initial condition P(C; 0). This can also be written as

d

dt
P(C; t) =

∑

C′ �=C
(C|W|C′)P(C′; t) −

∑

C′ �=C
(C′|W|C)P(C; t) ≡

∑

C′
ṖC;C′(t)

which has a simple interpretation: P(C; t) varies with time because of positive contribution
due to jumps to C and of negative contributions due to jumps from C, and for the infinitesimal
time balance this leads to the above formula. By construction ṖC;C′(t) ≡ (C|W|C′)P(C′; t)−
(C′|W|C)P(C; t), which contains the contributions of transition from C′ or to C′ to the variation
of P(C, t), is anti-symmetric.

Appendix 3.2: The Graph Associated to a Markov Process

To any Markov matrix M we can associate a graph. The vertices are the configurations in C,
and oriented edges are indexed by the possible transitions: there is an oriented edge from C
to C′ if and only if (C′|W|C) �= 0. In that case, we talk of the edge (C, C′) and we say that C′ is
adjacent to C (not a symmetric relation in general). We shall denote the corresponding graph
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by G. As usual G is a couple of sets: the set of vertices, C, and the set of edges, a subset of
C × C.

Remember the graph G is said to be connected if one can go from any vertex to any other
by a sequence of adjacent vertices. In that case, a general theorem guaranties that there is a
single probability measure Pst on C, called the stationary measure, such that MPst = 0 i.e.∑

C′(C|M|C′)Pst(C′) = 0 for each C. Moreover, Pst(C) > 0 for each C and whatever P(C; 0),
limt→∞ P(C; t) = Pst(C). Hence the stationary measure is unique, charges every vertex, and
is the infinite time limit of every initial probability distribution.

Motivated by the graphical interpretation, we shall repeatedly use the image that a trajec-
tory is a random walker on C jumping from time to time along edges from one vertex of G
to an adjacent vertex.

We shall often make the assumption of micro-reversibility, i.e. (C′|W|C) and (C|W|C′)
are simultaneously either = 0 or �= 0. Then, the above (oriented) graph carries the same
information as a non-oriented one, for which we keep the same name.

Appendix 3.3: Description of Trajectories

There is a more explicit description of trajectories which is useful for our purpose (and for
numerical simulations of trajectories as well). It is the continuous time analog of the second
description of trajectories for Markov chains, and it goes as follows. Recall that D is the
diagonal matrix whose entries are those of the diagonal of M.

– The configuration at t = 0 is sampled according to the initial probability distribution ν

on C. Say the configuration at t = 0 is C.
– If (C|D|C) = 0 stay in C forever, otherwise wait an exponential time T with parameter

(C|D|C) (i.e. p(T > t) = e−(C|D|C)t ) and at t = T jump to the configuration C′ �= C with
probability (C′|W|C)

(C|D|C)
.

– If (C′|D|C′) = 0 stay in C′ forever, otherwise wait an exponential time T ′ with parameter
(C′|D|C′) and at t = T + T ′ jump to configuration C′′ �= C′ with probability (C′′|W|C′)

(C′|D|C′) .
– ...

To the Markov matrix M we can associate a stochastic matrix P (i.e. the generator for a
discrete time Markov chain) as follows :

– If (C|M|C) = 0 then (C|P|C) = 1 and (C′|P|C) = 0 for C′ �= C.
– Else, (C′|P|C) = (C′|W|C)

(C|D|C)
; in particular (C|P|C) = 0.

Note that

M = (P − I)D

and that P and M define the same graph. One important consequence of the above description
is that the sequence (C, C′, C′′, · · · ) is a sample of the Markov chain associated to P (with
the same innocent trick as in Appendix 2 in force: if (C, C′, C′′, · · · ) is a finite sequence, then
one turns it into an infinite one by repeating its last term over and over).

Appendix 3.4: Perturbative Expansion

For the reader unfamiliar with the above trajectory description of the Markov process, we
can offer a poor man’s heuristic version, reminiscent of Feynman’s sum over histories, and
which is again a continuous time analog of the Markov chain case. Let U(t) = eMt be the
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evolution operator, i.e. the matrix solution of

d

dt
U = MU

with initial condition U(0) = I. Using the identity M = (P − I)D, it is easy to see that these
two equations can be rephrased as a single integral equation:

U(t) = e−Dt +
t∫

0

ds e−D(t−s)
PDU(s).

We can iterate this equation, i.e. inject U (s) = e−Ds + ∫ s
0 dr e−D(s−r)

PDU(r) in the right-
hand side, and go on. This gives a series expansion

U(t) =e−Dt +
t∫

0

ds e−D(t−s)
PDe−Ds +

t∫

0

ds

s∫

0

dr e−D(t−s)
PDe−D(s−r)

PDe−Dr + · · · .

(8.1)

The zeroth order term (where P does not appear) describes trajectories that make no jump in
[0, t], the first order term (a single integral where P appears once) ”sums” over trajectories
that make one jump in [0, t], the jump time being s, the second term (a double integral where
P appears twice) ”sums” over trajectories that make two jumps in [0, t], the jump times being
r and then s, and so on. This is exactly the prediction of the trajectory description in terms of
jumps governed by P and exponential waiting times described by D. Note that, in agreement
with dimensional analysis, there is one D for each time integration variable: this is because
if the random variable T is such that p(T > t) = e−λt then the density of T is dt λe−λt .

This representation gives an easy proof of an important property of P(C; t) when G
is connected: whatever P(C; 0), P(C; t) > 0 for every C and t > 0, and in particular
Pst(C) > 0 for every C. Indeed, each term on the right-hand side of (8.1) has non-negative
matrix elements, and if one can go from C to C′ via n jumps, the nth order term (the one with
n occurrences of P) has a strictly positive matrix element between C and C′. So when G is
connected, for every t > 0 every matrix element of U(t) is > 0.

To conclude this rapid overview, note that for any ε > 0 U(ε) is a stochastic matrix, and
that the sequence Cnε, n = 0, 1, · · · is a sample of the Markov chain (C, U(ε)). In this way,
many properties of Markov processes can be (at least heuristically) proven by proving an
analog for Markov chains and letting ε → 0.
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