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Abstract
We consider a model for thermal contact through a diathermal interface 
between two macroscopic bodies at different temperatures: an Ising spin 
chain with nearest neighbor interactions is endowed with a Glauber dynamics 
with different temperatures and kinetic parameters on alternating sites. The 
inhomogeneity of the kinetic parameter is a novelty with respect to the model 
of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence 
upon the stationary non equilibrium values of the two-spin correlations at 
any distance. By mapping to the dynamics of spin domain walls and using 
free fermion techniques, we determine the scaled generating function for the 
cumulants of the exchanged heat amounts per unit of time in the long time 
limit.

Keywords: exact analytical results, thermal contact, Glauber spin dynamics, 
current fluctuations

1. Introduction

Thermal contact between two macroscopic bodies initially at different temperatures corre-
sponds to a situation where the heat transfer between the two bodies is ensured by a thin 
diathermal interface. The latter may be an immaterial interface between two solids or a dia-
thermal wall between two fluids. Over a time window during which the two macroscopic 
bodies have negligible energy variations, they behave as thermostats with constant thermody-
namic temper atures, while the interface is a mesoscopic system with traceable configurations. 
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After a long enough time inside the considered time window the interface tends to a stationary 
non equilibrium state where the instantaneous heat current which it receives from a thermo-
stat has a non-vanishing mean value. Even if the interface is described by a model where its 
degrees of freedom obey a (deterministic or stochastic) microscopic dynamics, there is no gen-
eral framework, such as Gibbs equilibrium ensemble theory, which would allow to determine  
the probability distribution of the interface configurations and the corresponding mean instan-
taneous heat current. Therefore it is most valuable to exhibit solvable models which would 
shed some light on the dependence of the heat instantaneous current upon the model param-
eters and the temperatures of the two thermostats.

Such a solvable model has been introduced by Racz and Zia in 1994 [1]. They consider 
a chain of classical spins with periodic boundary conditions and interacting with a nearest-
neighbor ferromagnetic (Ising) interaction. They endow it with a Glauber stochastic dynamics 
with single-spin flips at a time and such that the spins on odd and even lattice sites are flipped 
by thermostats at two different temperatures. In our view, the model may be seen as a zig-
zag shaped chain inside a very thin strip between two half-planes occupied by two different 
thermostats, and where the odd (even) sites are located on the left (right) side of the strip. The 
stationary two-spin correlations at any distance as well as higher order spin correlations have 
been extensively studied in [1–4].

We point out that the latter model indeed satisfies two requirements needed for a correct 
description of a thermal contact between two macroscopic bodies during a transient time win-
dow where their temperature can be considered as constant. First the contact must be mediated 
by changes in the internal energy of the spin interface. Second, if the energies of the macroscopic 
bodies were kept tracked of, the transition rates for both the interface configurations and these 
two energies would obey the detailed balance with the microcanonical equilibrium probability 
distribution for these variables of the whole system. Then, in the infinite time limit the two bod-
ies and the interface would be at the same temperature; in a time window where the energy vari-
ations of the macroscopic bodies are negligible, the transition rates for the interface depend only 
on the temperatures of the macroscopic bodies and they obey the local detailed balance [5, 6]5. In 
the case of a spin interface the two corresponding requirements become: (1) a transition between 
two spin configurations involves only one thermostat; (2) the transition rate involving a given 
thermostat obey the detailed balance at the same temperature. For the present two-temperature 
Ising chain the first requirement is obviously fulfilled6, and the simplest transition rates which 
fulfill the second requirement are those chosen by Glauber in the case of an Ising chain in contact 
with a unique thermostat [8]. (We recall that Glauber looked for single-spin flip dynamics such 
that in the infinite time limit the spin chain indeed relaxes to the canonical equilibrium state at 
the thermostat temperature and then he chose the simplest transition rates.)

On the other hand, the quantities of interest for exchange processes which have been consid-
ered over the last three decades, both theoretically and experimentally, are amounts of micro-
scopically conserved entities (matter, energy, ...), which are exchanged over a very long time 
(in the case of thermal contact the corresponding quantities are the heat amounts received by 
the interface from each thermostat during a fixed long time interval). They have been focused 
on because the scaled generating function for their cumulants per unit of time in the long time 
limit as well as its Laplace transform, the large deviation function of the corresponding time-
integrated current, have been shown to obey generic symmetry relations, the so-called fluctua-
tion relations. The latter relations are derived from properties of the system dynamics and they 
are a milestone of the stochastic thermodynamics theory (for a review see [9].)

5 In [5] the terminology ‘generalized’ detailed balance is used.
6 We notice that the first requirement is not satisfied by the Ising chain model of [7], where two thermostats at dif-
ferent temperatures act on every spin: the latter model does not describe a situation of thermal contact.
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In this context it is also interesting to have at hand solvable models where the statistics of 
the time-integrated currents can be calculated. For instance, such a model has been exhibited 
in the case where the heat transfer between two thermostats is ensured by a wire. The energy 
quanta are represented as particles whose stochastic dynamics is a symmetric simple exclu-
sion process (SSEP) with adequate boundary conditions: particles with hard cores hop on 
the sites of a one-dimensional lattice with the same hopping rate in both directions, but have 
different in-coming and out-going rates at the two lattice ends in contact with two particle 
reservoirs with different chemical potentials. Then all cumulants of the heat coming out of one 
thermostat per unit of time can be calculated in the long time limit [10, 11].

In the present paper we consider a generalized version of the diathermal interface model of 
[1]: the two Glauber dynamics which flip the spins on sites with odd or even indices respec-
tively have not only different temperatures but also different kinetic parameters (see section 2). 
Our aim is to calculate the scaled generating function of the joint cumulants per unit of time 
for the heats flowing out of the two thermostats in the long time limit.

The difference between the kinetic constants is relevant for two macroscopic bodies made 
with different materials. Some of the corresponding kinetic effects have been previously 
investigated in our study of a very simple model for a one-dimensional interface between two 
half-planes occupied by bodies at two different temperatures: a model of independent two-
spin pairs where the left-side (right-side) spin in each pair is flipped only by the thermostat on 
the same side according to a Glauber dynamics. The whole statistics for the spin configura-
tions and the heat amounts exchanged by every pair with the thermostats have been calculated 
explicitly [12].

The method which we use to obtain the scaled generating function for the heat cumulants 
in the present model is the following. From its definition this function can be obtained as the 
largest eigenvalue of the modified Markov matrix which rules the evolution of the joint prob-
ability for the system configurations and the heat amounts Qo and Qe received on each (odd 
or even) sublattice.

In order to study energy exchanges more conveniently, instead of considering the spin 
configurations, we rather formulate the problem in terms of the position configurations for 
the domain walls, which sit on the dual lattice. In other words we consider the well-known 
lattice gas representation on the dual  lattice (‘antiparallel adjacent spin pair’ ↔ ‘particle’ and 
‘parallel adjacent spin pair’ ↔ ‘hole’) where a particle is in fact a domain wall. The mapping 
of Glauber spin dynamics to the particle dynamics then includes the possibility for the crea-
tion and annihilation of adjacent particle pairs, which correspond to the injection or the loss 
of energy in the chain respectively7. Our model with two temperatures and two kinetic param-
eters is mapped to a reaction-diffusion system with two different creation (annihilation) rates 
as well as two different hopping rates on spatially alternating sites8.

The crucial point is that, in a suitable basis for the representation of the configurations of 
domain wall positions, the Markov matrix for the evolution of the configuration probability 
involves only products of two operators: the Markov matrix is mapped to a free fermion 
Hamiltonian [14]. Moreover the mapping can be readily generalized for the modified Markov 
matrix which rules the evolution of the joint probability for a configuration of domain wall 
positions and the amounts of heat Qo and Qe. The latter matrix can be diagonalized by using 

7 The latter correspondance has been used for instance in [13] for the calculation of the scaled generating function 
of the energy injected in an Ising spin ring through the random flips of one spin while all other spins evolve accord-
ing to a Glauber dynamics at zero temperature which dissipates energy along the ring.
8 In [4] the mapping has been used in the reverse sense in order to study the relaxation towards the stationary state 
for the reaction-diffusion system from results obtained for the Ising spin chain dynamics with two temperatures but 
a unique kinetic parameter.
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free fermions techniques: Jordan–Wigner transformation and antiperiodic Fourier transform. 
Thus we obtain a block diagonal matrix, made of 4 × 4 blocks, which can be straighforwardly 
diagonalized by introducing four pseudo-fermion operators. (In the case of two pseudo-fer-
mion operators and the associated Bogoliubov-like transformation, see for instance [15, 16].) 
The largest eigenvalue of the modified Markov matrix is obtained by filling up all pseudo-
fermion states associated with an eigenvalue with a positive real part.

The paper is organized as follows. The model is defined in section 2 and the relaxation 
time for the mean global magnetization on each sublattice is calculated. Moreover by solv-
ing a hierarchy of equations  for the stationary global two-spin correlations at any distance 
(see appendix), we determine the mean instantaneous energy current which flows from each 
thermostat into the spin lattice in the stationary state. The mapping to the dynamics of domain 
walls on the dual lattice and the associated modified matrix is derived in section 3. The corre-
sponding eigenvalues are determined in section 4 by free fermion techniques. The cumulants 
are obtained in section 5 and various physical regimes are discussed. In conclusion we sum-
marize some finite-size effects and their possible cancellation in heat cumulants.

2. Model

2.1. Description of a thermalization process

We consider a one-dimensional lattice with a finite even number of sites L  =  2N, where each 
site j is occupied by a classical spin sj (sj = ±1, j = 1, . . . , 2N) with periodic boundary condi-
tion sj+2N = sj . Spins interact via the Ising ferromagnetic nearest-neighbor interaction with 
coupling K > 0: the energy of a spin configuration s = {s1, . . . , s2N} is

E(s) = −K
2N∑

j=1

sjsj+1. (2.1)

When the spin at site j is flipped, the energy variation of the Ising chain is equal to

∆E(sj → −sj) = sj
sj−1 + sj+1

2
∆E, (2.2)

with ∆E = 4K . This variation can take the values +∆E , 0, or −∆E ,
The model is endowed with a stochastic dynamics where the spin flips at odd (even) sites 

are due to energy exchanges with a macroscopic body at temperature To (Te) in the course of 
a thermalization process of the two macroscopic bodies. As recalled in the introduction the 
transition rates must obey local detailed balance [5, 6]: the transition rates w(sj → −sj) and 
w(−sj → sj) for two reversed flips of the spin at site j, while all other spins are kept fixed, 
must obey the ratio

w(sj → −sj)

w(−sj → sj)
= e−βj∆E(sj→−sj), (2.3)

where βj is the inverse temperature of the thermostat acting on site j: βj = 1/(kBTj) where kB 
is Boltzmann constant and Tj is equal either to To or Te, depending on the parity of j. As shown 
by Glauber [8] in the case of a unique temperature, the simplest transition rates which obey 
the constraint (2.3) read

w(sj → −sj) =
νj

2

[
1 − γj

sj (sj−1 + sj+1)

2

]
, (2.4)
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while w(−sj → sj) is given by the latter expression where sj is replaced by  −sj. In (2.4) γj  is 
the thermodynamic parameter at site j,

γj = tanh

(
βj∆E

2

)
 (2.5)

where γj = γo or γe, depending on the parity of the site index, and νj is the kinetic parameter νj 
at site j. The latter is not determined by the local detailed balance; it can be interpreted as the 
mean frequency at which the macroscopic body tries to flip the spin at site j. Therefore we set 
νj = νo or νe, depending on the parity of the site index (note that when the two kinetic param-
eters are equal the present model coincides with that of [1]). Since the time scale is arbitrary, it 
is convenient to introduce the dimensionless kinetic parameters νa, with a = o or e, defined as

νa =
νa

νo + νe
. (2.6)

They satisfy the relation νo + νe = 1 and, apart from the arbitrary time scale, the model has 
only three independent parameters, γo, γe and νo.

The probability P(s; t) for the system to be in spin configuration s at time t evolves accord-
ing to the master equation

dP(s; t)
dt

=
2N∑

j=1

w(−sj → sj)P(sj; t)−

⎛

⎝
2N∑

j=1

w(sj → −sj)

⎞

⎠P(s; t) (2.7)

where sj denotes the spin configuration obtained from s by changing sj into  −sj. The number 
of configurations is finite, and the transition rates allow the system to evolve from any configu-
ration to any other one after a suitable succession of transitions. Therefore there is a unique 
stationary solution of the master equation. In the following we focus on the mean values of 
global quantities and denote ⟨· · · ⟩ and ⟨· · · ⟩st the expectation values calculated with the time-
dependent probability P(s; t) and the stationary probability Pst(s) respectively.

2.2. Relaxation of the mean global sublattice magnetizations

The transition rates are invariant under a global flip of the spins, so that a configuration and the 
corresponding one where all spins are flipped have the same probability in the stationary state. 
As a result all stationary correlations for an odd number of spins vanish identically; in par-
ticular ⟨sj⟩st = 0. As a consequence the mean values of the global magnetizations on the two 
sublattices, Mo =

∑N
n=1 s2n−1 and Me =

∑N
n=1 s2n respectively, vanish in the stationary state,

⟨Mo⟩st = ⟨Me⟩st = 0. (2.8)

The relaxation of the mean values of global sublattice magnetizations is readily studied. 
As in the case of the homogeneous spin chain considered by Glauber [8], the evolution equa-
tion for the mean value of the spin at site j reads

d⟨sj⟩
dt

= −2⟨sjw(sj → −sj)⟩. (2.9)

According to the expression of the transition rates (2.4)

d⟨sj⟩
dt

= −νj

[
⟨sj⟩ − γj

⟨sj−1⟩+ ⟨sj+1⟩
2

]
. (2.10)

M Bauer and F Cornu J. Phys. A: Math. Theor. 51 (2018) 195002
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Then the coupled evolutions of the magnetizations on the two sublattices read

d⟨Mo⟩
dt

= −νo [⟨Mo⟩ − γo⟨Me⟩]

d⟨Me⟩
dt

= −νe [⟨Me⟩ − γe⟨Mo⟩] .
 (2.11)

From these equations we retrieve that both mean magnetizations vanish in the stationary state, 
as predicted by symmetry arguments. The matrix associated with this system of linear equa-
tions  has two strictly negative eigenvalues 1

2 (νo + νe)
[
−1 ±

√
(νo − νe)2 + 4νoνeγoγe

]
, 

each of which is associated with a couple of right and left eigenvectors (the eigenvalues are 
negative because (νo − νe)2 + 4νoνeγoγe = 1 − 4νoνe(1 − γoγe) < 1). For generic values of 
the initial magnetizations Mo and Me, the inverse relaxation time 1/trel to their stationary 
value is given by the opposite of the negative eigenvalue with the smallest modulus, and the 
relaxation time trel reads

trel =
2

νo + νe

[
1 −

√
(νo − νe)2 + 4νoνeγoγe

]−1

. (2.12)

2.3. Mean global heat current in the stationary state

The mean instantaneous heat current ⟨jk⟩ received by the spin chain at site k from the ther-
mostat at temperature Tk is equal to the expectation value of the variation of the chain energy 
when the spin sk is flipped times the transition rate for the flip. According to the expressions 
for the energy variation (2.2) and for the transition rates (2.4), the mean instantaneous current 
reads

⟨jk⟩ = Kνk [−γk − γk⟨sk−1sk+1⟩+ ⟨sk−1sk⟩+ ⟨sksk+1⟩] . (2.13)

Therefore the stationary mean value of the global heat current coming from the thermostat 
acting on spins at even sites, namely Je =

∑N
n=1 j2n, is determined as

⟨Je⟩st = NKνe [−γe − γeDoo
2 + Doe

1 + Deo
1 ] (2.14)

with the following definitions: Doo
2  is the average over the sublattice of odd sites of the station-

ary correlation between two spins separated by two sites,

Doo
2 =

1
N

N∑

n=1

⟨s2n−1s2n+1⟩st, (2.15)

Doe
1 = (1/N)

∑N
n=1⟨s2n−1s2n⟩st  and Deo

1  has an analogous definition. Similarly the stationary 
mean value of the global heat current coming from the thermostat acting on spins at odd sites, 
Jo =

∑N
n=1 j2n−1, reads

⟨Jo⟩st = NKνo [−γo − γoDee
2 + Doe

1 + Deo
1 ] (2.16)

with Dee
2 = (1/N)

∑N
n=1⟨s2ns2n+2⟩st.

The values of the stationary global two-spin correlations Doo
2 , Dee

2 , Doe
1  and Deo

1  can be 
determined from a hierarchy of equations for similar quantities with two spins at any distance 
on the lattice. Details are given in appendix with the results (A.11), (A.12), (A.19) and (A.20) 
for any distance between spins. From the latter results we get

M Bauer and F Cornu J. Phys. A: Math. Theor. 51 (2018) 195002
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Dee
2 =

γη−
γo

1 + ηN−2
−

1 + ηN
−

 (2.17)

with

γ = νoγo + νeγe, (2.18)

where the dimensionless kinetic parameters have been defined in (2.6), and η−, with 
0 < η− < 1, is defined by

√
η− =

1 −
√

1 − γoγe√
γoγe

. (2.19)

Moreover Doo
2 = (γo/γe)Dee

2 , while

Doe
1 = Deo

1 =
γ
√
η−√

γoγe

1 + ηN−1
−

1 + ηN
−

. (2.20)

We notice that the dependence upon the kinetic parameters νo and νe occurs only through the 
parameter γ defined in (2.18).

Eventually the stationary mean value of the global heat current received on even sites can 
be calculated from expression (2.14) and relation (A.18); we get

⟨Je⟩st = NK
νoνe

νo + νe
(γo − γe). (2.21)

Similarly the stationary mean value of the global heat current received on odd sites can 
be obtained from the expression (2.16); it proves to be opposite to that on even sites, 
⟨Jo⟩st = −⟨Je⟩st, as it should in the stationary state where the mean energy of the chain is 
constant.

The formulae for ⟨Je,o⟩st involve the simple difference γo − γe (whereas a more compli-
cated function of γo and γe could in principle appear). Note however that the currents saturate 
when the temperature difference is large, and are proportional to the temperature difference 
only to leading order when the temperature difference is small.

We point out the following remarkable property: though Dee
2 , Doo

2 , Doe
1  and Deo

1  involve 
finite size corrections (see (2.17) and (2.20)), these corrections cancel one another in the value 
of the mean global current ⟨Je⟩st: ⟨Je⟩st is exactly proportional to the size L  =  2N of the ring. 
Moreover it happens to be equal to L times the mean current received by a spin in the inde-
pendent pair model of [12].

3. Mapping to a reaction-diffusion system with pair creation-annihilation

To prepare the study of the heat amounts exchanged with the thermostats we consider a map-
ping to another model for which the evolution operator is quadratic.

3.1. Domain wall system

When two spins on neighboring sites are antiparallel, one may consider that there is a domain 
wall between them, whereas there is no domain wall when they are parallel. The domain walls 
sit on the edges of the initial lattice. Labeling each edge by its mid-point, one gets another lat-
tice which we call the dual lattice in what follows. The edge ( j − 1, j) and the corre sponding 
site on the dual lattice are labeled by j. If sj−1 and sj are antiparallel, sj−1sj = −1, then the 

M Bauer and F Cornu J. Phys. A: Math. Theor. 51 (2018) 195002
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occupation number by a domain wall at site j on the dual lattice is nj  =  1, whereas if sj−1 and 
sj are parallel nj  =  0. Thus the correspondance reads

nj =
1 − sj−1sj

2
. (3.1)

On a ring the number of domain walls is even and 
∑L

j=1 nj  is even.
As a result a spin configuration can be characterized either by the set s = {s1, · · · sL} of 

spin configurations or by the knowledge of the value of s1 and the set of the positions of the 
domains walls, namely the set of occupations numbers n = {n1, · · · , nL}. The energy of the 
system can be expressed solely in terms of domain walls as

E(n) = −2NK + 2K
2N∑

j=1

nj. (3.2)

3.2. Quantum mechanics notations

In the following we use the quantum mechanics notations, as commonly done in the literature. 
Then a column vector is denoted as a ‘ket’, | . . .

)
 and a row vector is denoted as a ‘bra’ 

(
. . . |. 

The configuration of occupation numbers by domain walls, n = {n1, · · · , nL}, is represented 
as a tensor product

|n
)
= ⊗L

j=1|nj
)
, (3.3)

where |nj
)
 is a two-component column vector. The convention used for kets associated to 

vacant and occupied states is
(

1
0

)

j
= |nj = 0

)
and

(
0
1

)

j
= |nj = 1

)
. (3.4)

This convention is the standard choice of basis in the condensed matter literature on quantum 
spin chains. With the representation (3.3) and (3.4) the row-column product 

(
n′|n

)
 takes the 

form 
(
n′|n

)
=
∏L

j=1 δn′j ,nj. Therefore the probability of the domain wall configuration n at 
time t, P(n; t), can be represented as a row-column (scalar) product P(n; t) =

(
n|Pt

)
, where 

|Pt
)
 is the column vector defined as

|Pt
)
=
∑

n
P(n; t)|n

)
. (3.5)

With the latter definitions the master equation for the stochastic evolution of the probability 
P(n; t), which takes the generic form written in (2.7) in the case of P(s; t), can be represented 
as the evolution of the column vector |Pt

)
 under the Markov matrix M

d|Pt
)

dt
= M|Pt

)
 (3.6)

with
(
n′|M|n

)
= w(n → n′) if n′ ̸= n

(
n|M|n

)
= −

∑

n′ ̸=n

w(n → n′), (3.7)

where w(n → n′) denotes the transition rate from configuration n to configuration n′.

M Bauer and F Cornu J. Phys. A: Math. Theor. 51 (2018) 195002
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3.3. Markov matrix for the model

The transition rates for the occupation numbers by domain walls, w(n → n′), can be derived 
from the transition rates for the spin configurations w(s → s′) by inspection as follows. When 
the spin at site j is flipped, the transition rate given by (2.4) can take three different values:

 (1) νj
2 , if the spins at sites j  −  1 and j  +  1 are antiparallel (sj+1 = −sj=1). Then, in the case 
sj−1 = −sj a domain wall initially located on the left side of sj hops to its right side, 
whereas in the case sj−1 = sj  a domain wall initially located on the right side of sj hops to 
its left side. According to correspondance (3.1), the couple (nj, nj+1) jumps from configu-
ration (1, 0) to configuration (0, 1) in the first case, whereas it makes the reverse jump in 
the second case.

 (2) νj
2 (1 + γj) when the spins at sites j  −  1 and j  +  1 are antiparallel to the spin at site j 
(sj−1 = sj+1 = −sj). Then in the initial state two domain walls surround the spin at site 
j and they have been annihilated in the final state. The couple (nj, nj+1) jumps from con-
figuration (1, 1) to configuration (0, 0).

 (3) νj
2 (1 − γj) when the spins at sites j  −  1 and j  +  1 are parallel to the spin at site j 
(sj−1 = sj+1 = sj). Then there is no domain wall around sj in the initial state and two 
domain walls have been created around it in the final state. The couple (nj, nj+1) jumps 
from configuration (0, 0) to configuration (1, 1).

As a consequence, the transition rates w(n → n′) can be expressed as matrix elements (
n′|W|n

)
, where W is expressed in terms of Pauli matrices. Indeed the operator for the occupa-

tion number at site j reads

n̂j =
1
2
(
1j − σz

j
)

 (3.8)

where 1j  denotes the 2 × 2 identity matrix at site j, and σz
j =

(
1 0
0 −1

)

j
. Meanwhile the 

operator which changes the occupation number at site j is σx
j =

(
0 1
1 0

)

j
. The transition 

rates w(n → n′) determined in the previous paragraph can be written as the matrix elements (
n′|W|n

)
, where

- for a hop of a domain wall from site j to site j  +  1

W =
νj

2
σx

j σ
x
j+1n̂j (1j − n̂j+1) (3.9)

- for a hop of a domain wall from site j  +  1 to site j

W =
νj

2
σx

j σ
x
j+1 (1j − n̂j) n̂j+1 (3.10)

- for the annihilation of two domain walls at sites j and j  +  1

W =
νj

2
(1 + γj)σ

x
j σ

x
j+1n̂jn̂j+1 (3.11)

- for the creation of two domain walls at sites j and j  +  1

W =
νj

2
(1 − γj)σ

x
j σ

x
j+1 (1j − n̂j) (1j − n̂j+1) . (3.12)
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The latter expressions can be written in a more compact form by using the spin-1
2 ladder opera-

tors σ+ =

(
0 1
0 0

)

j
 and σ− =

(
0 0
1 0

)

j
. They are such that σxn̂ = σ+ and σx(1− n̂) = σ−. 

With the convention (3.4) σ+
j  annihilates a domain wall at site j, while σ−

j  creates a domain 
wall at site j.

Eventually the Markov matrix M defined in (3.7) reads

M =
ν1 + ν2

2

×

⎡

⎣−(1 − γ)N1− γ
2N∑

j=1

n̂j +
2N∑

j=1

ν j

[
σ+

j σ−
j+1 + σ−

j σ+
j+1 + (1 + γj)σ

+
j σ+

j+1 + (1 − γj)σ
−
j σ−

j+1

]
⎤

⎦ ,

 
(3.13)

where 1 denotes the 2N × 2N  identity matrix and γ has been defined in (2.18). The advantage 
of the domain wall representation with respect to the spin representation is that the Markov 
matrix is quadratic in terms of operators acting on different sites instead of involving three 
operators acting on different sites (for the latter case see for instance [17, 18]).

4. Eigenvalues of the modified Markov matrix

4.1. Modified Markov matrix

We are interested in the joint cumulants per unit of time for the heat amounts Qo and Qe which 
are received by the chain from the thermostat acting on spins at odd and even sites during a 
time t in the long time limit. The corresponding scaled generating function is

g2N(λo,λe; t) = lim
t→∞

1
t
ln⟨eλoQo+λeQe⟩, (4.1)

where λo and λe are real parameters. In fact an evolution equation can be written for the proba-
bility P(n, Qo, Qe; t) for the system to be in configuration n at time t and to have received heat 
amounts Qo and Qe between times 0 and t. Therefore the expectation value in the definition 
(4.1) is conveniently rewritten in terms of the discrete Laplace transform of P(n, Qo, Qe; t), 
and then g2N(λo,λe; t) reads

g2N(λe,λo; t) = lim
t→∞

1
t
ln
∑

n
P̂(n,λo,λe; t) (4.2)

with

P̂(n,λo,λe; t) =
∑

{Qo,Qe}

eλoQo+λeQe P(n, Qo, Qe; t). (4.3)

By inspection of the transition rates (2.4) for spin configurations and according to the 
correspondence with transition rates for domain wall positions given at the beginning of sec-
tion 3.3, when the spin at site j is flipped under the action of the thermostat at temperature Tj, 
the variation of Qj  is equal to the following values: +∆E  if a pair of domain walls is created 
at sites j and j  +  1, −∆E  if a pair of domain walls is annihilated at these sites, 0 if a domain 
wall jumps either from j to j  +  1 or from j  +  1 to j (where ∆E is defined in (2.2). As a con-
sequence, with a definition for |P̂t(λo,λe)

)
 analogous to that for |Pt

)
 given in (3.5), namely (

n|P̂t(λo,λe)
)
= P̂(n,λo,λe; t), we get the evolution equation
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d|P̂t(λo,λe)
)

dt
= M̂(λo,λe)|P̂t(λo,λe)

)
, (4.4)

where the so-called modified Markov matrix M̂(λo,λe) reads

2
ν1 + ν2

M̂(λo,λe) = −(1 − γ)N1− γ
2N∑

j=1

n̂j +
2N∑

j=1

ν j

[
σ+

j σ−
j+1 + σ−

j σ+
j+1 + bjσ

+
j σ+

j+1 + cjσ
−
j σ−

j+1

]
.

 (4.5)
The coefficient bj (cj) is equal either to bo or be (co or ce) according to the parity of j; with the 
notation a = o or e

ba = (1 + γa) e−λa∆E (4.6)

and

ca = (1 − γa) eλa∆E. (4.7)

According to the evolution equation  (4.4) the Laplace transform P̂(n,λo,λe; t) is equal to (
n| exp[M̂(λo,λe)t]|P̂t=0(λo,λe)

)
. Thus the scaled generating function g2N(λo,λe; t) given by 

(4.2) is equal to the largest eigenvalue of the matrix M̂(λo,λe) which rules the evolution of 
|P̂t(λo,λe)

)
.

4.2. Jordan–Wigner transformation

In order to find the eigenvalues of the modified Markov matrix M̂(λo,λe) given by (4.5) we 
take advantage of its structure analogous to a free fermion Hamiltonian and we introduce the 
following Jordan–Wigner transformation [19]

f †j =

( j−1∏

k=1

σz
k

)
σ−

j and fj =

( j−1∏

k=1

σz
k

)
σ+

j . (4.8)

The operator f †j  is indeed the adjoint of fj, because (σz)† = σz  and (σ−)† = σ+. Operators 
σ acting on different sites commute, whereas σz

j  anticommutes with σ+
j  and σ−

j ; moreover 

(σ+
j )2 = 0, (σ−

j )2 = 0 while σ+
j σ−

j = 1
2

[
1j + σz

j

]
 and σ−

j σ+
j = 1

2

[
1j − σz

j

]
. Therefore the 

operators fj and f †j  obey the fermionic anticommutation relations

{fj, fj′} = 0 {f †j , f †j′} = 0 {fj, f †j′} = δj,j′ . (4.9)

The occupation number of site j by a domain wall, given by (3.8), also reads n̂j = σ−
j σ+

j = f †j fj. 
The expression (4.5) of the modified matrix M̂(λo,λe) is rewritten in terms of fermionic opera-
tors as

2
ν1 + ν2

M̂(λo,λe) = −(1 − γ)N1− γ
2N∑

j=1

f †j fj +
2N−1∑

j=1

ν j

[
f †j fj+1 − fjf

†
j+1 + cjf

†
j f †j+1 − bjfjfj+1

]

− νe(−1)Nf

[
f †2Nf1 − f2Nf †1 + cef †2Nf †1 − bef2Nf1

]

 

(4.10)

where Nf =
∑2N

j=1 f †j fj is the total number of fermions.
Since the spin system is on a ring, there can be only an even number of domain walls 

in the system. As noticed above, the operator for the occupation number by a domain wall 
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n̂j coincides with the number of fermions at site j, f †j fj . Therefore we have to consider the 
restriction M̂+(λo,λe) of M̂(λo,λe) to the sector with an even number of fermions. According 
to (4.10) the expression of this rectriction is invariant by translation along the ring if the fer-
mionic operators are chosen to satisfy the antiperiodic boundary conditions

f2N+1 = −f1 and f †2N+1 = −f †1 . (4.11)

Then the restriction reads

2
ν1 + ν2

M̂+(λo,λe) = −(1 − γ)N1− γ
2N∑

j=1

f †j fj +
2N∑

j=1

ν j

[
f †j fj+1 − fjf

†
j+1 + cjf

†
j f †j+1 − bjfjfj+1

]
.

 (4.12)

4.3. Antiperiodic Fourier transform

The next step to the diagonalization is to rewrite the fermionic operators as antiperiodic 
Fourier transforms which satisfy the antiperiodic boundary conditions (4.11) The wave num-
bers are of the form q = (2k + 1)π/(2N) and we work with a complete family of representa-
tives in the set

B(2N) = {q = (2k + 1)
π

2N
, k = −N,−N + 1, · · · ,−1, 0, 1, · · ·N − 1},

 (4.13)
namely

B(2N) = {−π +
π

2N
,−π +

3π
2N

, · · ·− π

2N
,
π

2N
, · · ·π − π

2N
}. (4.14)

The operator fj can be written as the antiperiodic Fourier transform

fj =
1√
2N

∑

q∈B(2N)

eıqjηq (4.15)

in terms of the wave fermions

ηq =
1√
2N

2N∑

j=1

e−ıqjfj. (4.16)

Going from (4.15) to (4.16) relies on the identity

2N∑

j=1

eı(q−q′) j = 2N 1q−q′≡0(2π), (4.17)

where 1q−q′≡0(2π) = 1 if q − q′ is equal to 0 modulo 2π and 1q−q′≡0(2π) = 0 otherwise. All  
q′s in B(2N) satisfy eıq2N = −1, and subsequently fj does obey the antiperiodic boundary 
conditions (4.11). The adjoint operator f †j  reads

f †j =
1√
2N

∑

q∈B(2N)

e−ıqjη†q . (4.18)

These representations are inserted in the expression (4.12). In the term 
∑2N

j=1 f †j fj there 
occurs a summation over all sites of the ring and one uses the identity (4.17). In the other 
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summations one has to distinguish the two sublattices; for instance one has to consider the 
sum 

∑N
n=1 f †2nf †2n+1 and then one uses the identity

N∑

n=1

eı(q+q′)2n = N 12(q+q′)≡0(2π) = N 1q+q′≡0(π). (4.19)

According to definition (4.13), the set B(2N) does not contain the value 0 and the solution of 
q + q′ = 0 corresponds to two distinct values q and  −q.

In order to simplify the following discussion, we assume from now on that N is even. Then 
B(2N) does not contain π/2 and all values q and π − q , are also distinct. After a symmetri-
zation over the values q and π − q  the matrix M̂+(λo,λe) appears as a sum of contributions 
each of which involves only the operators associated with the wave numbers q, π − q , −q and 
−(q − π). Let us introduce the first quadrant in the set B defined as

QB(2N) = {q = (2k + 1)
π

2N
, k = 0, 1, · · · (N/2)− 1} = { π

2N
,

3π
2N

· · · π
2
− π

2N
}.

 (4.20)

Then the expression (4.12) for M̂+(λo,λe) can be rewritten as

2
ν1 + ν2

M̂+(λo,λe) = −N1+
∑

q∈QB

[
V†

q
]T

Aq(λo,λe)Vq, (4.21)

where Vq is the column vector

Vq =

⎛

⎜⎜⎜⎝

ηq

ηq−π

η†−q

η†π−q

⎞

⎟⎟⎟⎠
, (4.22)

[
V†

q
]T

 denotes the transposed row vector corresponding to the column vector V†
q built with the 

adjoints of the components of Vq, and

Aq(λo,λe) =

⎛

⎜⎜⎝

−γ + cos q ıa sin q ıc′ sin q c cos q
−ıa sin q −γ − cos q −c cos q −ıc′ sin q
−ıb′ sin q −b cos q γ − cos q −ıa sin q
b cos q ıb′ sin q ıa sin q γ + cos q

⎞

⎟⎟⎠ , (4.23)

with

a = νo − νe

b = νobo − νebe

b′ = νobo + νebe

c = νoco − νece

c′ = νoco + νece,

 (4.24)

where the ba’s and the ca’s are defined in (4.6) and (4.7).

4.4. Diagonalization of Aq(λo,λe)

The characteristic polynomial of Aq, the definition of which involves the 4 × 4 identity matrix 
1q, has a simple structure:
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det (Aq − α1q) = α4 − 2Dα2 + F2, (4.25)

where D, F are functions of the parameters of the model. This was obtained by a tedious com-
putation, and then checked independently with an algebra computer package. But we have no 
a priori argument to explain two noticeable facts: det (Aq − α1q) is an even polynomial of α 
with a constant term which is a perfect square. Moreover, both coefficients D and F depend on 
the parameters λo and λe only through the difference

λ = (λe − λo)∆E. (4.26)

They read

D = 1 + (νo − νe)
2 + νoνe

[
4γoγe cos

2 q + (1 − 2 cos2 q)θ(λ)
]

 (4.27)

and

F = νoνe
[
4(1 − γoγe cos

2 q) + θ(λ)
]

, (4.28)

where the function θ(λ) vanishes when λ is set to zero:

θ(λ) = 2
[
(1 − γoγe)(coshλ− 1) + (γo − γe) sinhλ

]
. (4.29)

The coefficient F can be rewritten as

F = νoνe
[
2 + 2γoγe(1 − 2 cos2 q) + (1 − γoγe) coshλ+ (γo − γe) sinhλ

]
,

 
(4.30)

and the property (1 − γoγe) > |γo − γe| for γo < 1 and γe < 1 ensures that F  >  0. The squared 
roots of the characteristic polynomial are

α2 = D ±
√

D2 − F2 =

(√
D + F

2
±
√

D − F
2

)2

 (4.31)

where 
√
· · · denotes a possibly complex square root. Let us introduce the notations 

R±(q,λ) = 1
2 (D ± F), namely

R+(q,λ) = 1 + νoνeθ(λ) sin
2 q (4.32)

R−(q,λ) = (νo − νe)
2 + νoνe

[
4γoγe − θ(λ)

]
cos2 q. (4.33)

We notice that, since F is positive, R+ > R−.
Note that 1 + νoνeθ(λ) > 0 because of the definition (4.29) of θ(λ) and the identities 

1 − 2νoνe(1 − γoγe) > 0 and (1 − γoγe) > |γo − γe| for γo < 1 and γe < 1. According to 
(4.32), R+ can be rewritten as R+ = 1 − sin2 q +

(
1 + νoνeθ(λ)

)
sin2 q  and we conclude 

that R+   >  0.
On the other hand, by virtue of definitions (2.5) and (4.29),

4γoγe − θ(λ) = 2
cosh ((βe + βo)∆E/2)− cosh

(
λ− (βe − βo)∆E/2

)

cosh (βe∆E/2) cosh (βo∆E/2)
,

 (4.34)
so that 4γoγe − θ(λ) > 0 only if −βo∆E < λ < βe∆E , and we infer from (4.33) that R− can 
take both signs.

Eventually the four eigenvalues of Aq(λo,λe) are

α1 =
√

R+ +
√

R− α2 =
√

R+ −
√

R− α3 = −α2 α4 = −α1.
 (4.35)
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In these expressions 
√

R+  denotes the usual positive square root of the positive number R+ , 
whereas 

√
R−  is either real positive or purely imaginary depending on the sign of R−, i.e. on 

the values of λ and q. As noticed previously R+ > R−, and in the case where 
√

R−  is real, all 
αk’s, with k = 1, . . . , 4, are real and α1 > α2 > 0 > α3 > α4.

4.5. Largest eigenvalue of the modified matrix M̂+(λo,λe)

For the sake of conciseness we omit all dependences upon λo and λe in the present section. 
We denote by Dq the diagonal matrix built with the eigenvalues α1(q), . . . ,α4(q) of the matrix 
Aq(λo,λe). The matrix Aq reads

Aq = PqDqP−1
q , (4.36)

where the kth column of Pq is made with the components of a (column) right eigenvector of 
Aq associated with the eigenvalue αk(q), and P−1

q  is the inverse matrix of Pq. Let ξk(q) denote 
the kth component of the column vector P−1

q Vq , while ξ⋆k (q) denotes the kth component of 

the row vector 
[
V†

q
]T

Pq, where Vq and 
[
V†

q
]T

 are defined in (4.22). With these definitions, the 
relation (4.36) implies that

[
V†

q
]T

AqVq =
4∑

k=1

αk(q) ξ⋆k (q) ξk(q). (4.37)

The operators ξk and ξ⋆k  obey the anticommutation rules {ξk, ξk′} = 0, {ξ⋆k , ξ⋆k′} = 0 and 
{ξk, ξ⋆k′} = δk,k′. However, since Aq is not hermitian (for the usual scalar product), Pq is not 
unitary and the operator ξ⋆k  is not the adjoint of ξk.

Nevertheless the anticommutation rules are enough to ensure that the spectrum of the oper-
ator ξ⋆k ξk is the set {0, 1}. Then, according to the expressions (4.35) of the αk’s, the value of 
the right-hand side of (4.37) with the largest real part is equal to the sum of the two eigenval-
ues α1 and α2 and it proves to be real positive,

α1(q) + α2(q) = 2
√

R+(q) > 0. (4.38)

Eventually, according to (4.21), the largest eigenvalue of M̂+(λo,λe) is

νo + νe

2

⎡

⎣−N + 2
∑

q∈QB

√
R+(q)

⎤

⎦ , (4.39)

where R+ (q) is given by (4.32).
We notice that if λo = λe = 0, the modified Markov matrix ̂M(λo,λe) becomes the usual Markov 

matrix for the evolution of P(n; t); since θ(0) = 0, we retrieve that the largest eigenvalue of the 

Markov matrix is 0. Moreover α3(q) = 1
2 (νo + νe)

[
−1 +

√
(νo − νe)2 + 4νoνeγoγe cos2 q

]
 

and the eigenvalue closest to 0 is obtained by setting ξ⋆3 (q)ξ3(q) equal to 1 for q  =  0. We 
retrieve the value (2.12) for the inverse relaxation time of the magnetizations on the two 
sublattices.
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5. Cumulants of heat amounts per unit of time in the long time limit

5.1. Scaled generating function for joint cumulants

According to the remark at the end of section 4.1, the scaled generating function for the joint 
cumulants of Qo and Qe coincides with the largest eigenvalue of M̂+(λo,λe). By virtue of 
(4.39) it reads

g2N(λo,λe) =
νo + νe

2

⎡

⎣−N + 2
∑

q∈QB

√
1 + νoνeθ(λ) sin

2 q

⎤

⎦ , (5.1)

where QB(2N) is defined in (4.20) and θ(λ) is given in (4.29). The joint cumulants per unit of 
time in the long time limit are determined from the relation

lim
t→∞

1
t
⟨Q p

e Q p′
o ⟩c =

∂ p+p′g2N(λe,λo; t)
∂λ p

e ∂λ
p′
o

∣∣∣∣∣
λe=λo=0

, (5.2)

where the index c refers to the truncation of the mean value ⟨Q p
e Q p′

o ⟩ involved in the definition 
of the cumulant. The fact that g2N depends only on the difference λe − λo entails the properties

lim
t→∞

1
t
⟨Q p

e Q p′
o ⟩c = (−1) p′ lim

t→∞

1
t
⟨Q p+p′

e ⟩c (5.3)

and, in particular,

lim
t→∞

1
t
⟨Q p

o ⟩c = (−1) p lim
t→∞

1
t
⟨Q p

e ⟩c. (5.4)

These properties are linked to the fact that the interface energy can take only a finite number 
of values whereas the cumulants have no upper bounds in the infinite time limit.

For the sake of completeness we point out that, according to (4.34), θ(λ) depends on λ 
through the function cosh

(
λ− (βe − βo)∆E/2

)
; therefore the scaled generating function 

satisfies the symmetry g2N(λo,λe) = g2N(βo − λo,βe − λe), which is in fact a consequence 
of the local detailed balance (2.3) (for a derivation see for instance section 5.2.3 of [20]). 
Since g2N(λo,λe) depends only on the difference λe − λo, this entails a symmetry for the 
scaled generating function of the cumulants of Qe, ge

2N(λe) = g2N(0,λe), namely the sym-
metry ge

2N(λe) = ge
2N(βe − βo − λe). Then the corresponding large deviation function for the 

time-integrated current Je = Qe/t , which can be obtained as the Legendre–Fenchel transform 
of ge

2N(λe), obeys the fluctuation relation f (Je)− f (−Je) = (βo − βe)Je. The latter relation 
entails that the system obeys an Einstein–Green–Kubo relation when βo and βe are close to 
each other: then the system is weakly out of equilibrium and the ratio between the station-
ary heat current ⟨Je⟩st coming from thermostat at inverse temperature βe and the difference 
βo − βe between the thermostat inverse temperatures is proportional to the fluctuations of 
the heat amount received from one thermostat in the equilibrium state when the thermostat 
temperatures are equal,

lim
βe→βo

⟨Je⟩st

βo − βe
=

1
2
lim

t→∞

⟨Q2
e⟩eq − ⟨Qe⟩2

eq

t
 (5.5)

where ⟨. . .⟩eq denotes an average in the equilibrium state where βo = βe.
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5.2. Cumulants for heat amount Qe

We give the explicit expressions for the first four cumulants of Qe per unit of time. They are deter-
mined as ∂ng2N(0,λe)/∂λn

e |λe=0 = ∆En × ∂ng2N(0,λe)/∂λ
n|λ=0, where λ = (λe − λo)∆E 

and ∆E = 4K  is the energy gap in the chain energy. The function θ(λ) defined in (4.29) can 
be rewritten as

νoνeθ(λ) = 2A[coshλ− 1] + 2B sinhλ (5.6)

where the parameters A and B are those introduced in [12] for a model with only two spins, 
namely

A = νoνe(1 − γoγe) (5.7)

B = νoνe(γo − γe). (5.8)

Then, according to (5.1), the first four cumulants of Qe read

lim
t→∞

⟨Qe⟩
(νe + νo)t

=
N
2

BS2 ×∆E

lim
t→∞

⟨Q2
e⟩c

(νe + νo)t
=

N
2
[
AS2 − B2S4

]
×∆E2

lim
t→∞

⟨Q3
e⟩c

(νe + νo)t
=

N
2

B
[
S2 − 3AS4 + 3B2S6

]
×∆E3

lim
t→∞

⟨Q4
e⟩c

(νe + νo)t
=

N
2
[
AS2 − (3A2 + 4B2)S4 + 18AB2S6 − 15B4S8

]
×∆E4,

 (5.9)
where

S2n(N) =
2
N

(N/2)−1∑

k=0

sin2n
(
(2k + 1)π

2N

)
. (5.10)

The structure of the cumulants in terms of the coefficients A and B is similar to the structure 
found for the two-spin model of [12] as well as for the ring of [7]; indeed, in the three cases the 
scaled cumulant generating function depends on λe only through the same function θ(λe∆E).

The coefficients S2n(N) (with N even) can be calculated explicitly. In the special case N  =  2, 
a direct calculation leads to S2n(2) = (1/2)n. For any N ! 2, by extending the summation up 
to N, rewriting sin u = [eıu − e−ıu]/(2ı), using the binomial formula and an identity similar 
to (4.17), we get that

if n < N S2n(N) =

(
1
2

)2n [2n]!
(n!)2 = W2n, (5.11)

where W2n denotes the normalized Wallis integral, W2n = (2/π)
∫ π/2

0 (sin q)2ndq. The first 
four values of the latter integrals are

W2 =
1
2

, W4 =
3
8

, W6 =
5
16

, and W8 =
35
128

. (5.12)

For n larger than N, a finite-size correction arises. For instance,

if N ! n < 2N S2n(N) = W2n

[
1 − 2

[n!]2

(n − N)!(n + N)!

]
. (5.13)
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From the study of the S2n(N)’s we get that all cumulants of order n smaller than N, the 
number of sites connected to a given thermostat, are strictly proportional to the size L  =  2N of 
the chain. Finite-size corrections appear only in cumulants of order n ! N .

In particular, S2(N)  =  1/2 for all N, by virtue of (5.11) and (5.12) valid for all N ! 2 with 
N even. Therefore the first cumulant limt→+∞⟨Qe⟩/t given in (5.9) does coincide with the 
expression (2.21) of the mean global instantaneous current ⟨Je⟩st in the stationary state. We 
have already pointed out that the latter mean global current contains no finite-size corrections. 
If N  >  4 the first four cumulants are given by (5.9) where the S2n(N) are to be replaced by the 
corresponding W2n given in (5.12).

Eventually the dependences upon the thermodynamic parameters, γo and γe, and the kinetic 
parameters, νo and νe, arise only through the coefficients A and B. This is in contrast with what 
happens for another Ising chain model, where both thermostats act on every spin [7]: for the 
latter model the dependence upon the combination γ of the thermodynamic and kinetic param-
eters defined in (2.18) also arises in the coefficients Σn(N, γ) which replace the coefficients 
Sn(N) in the expressions (5.9) for the cumulants.

5.3. Various physical regimes

According to the last remark of the previous section, the discussion of the various physical 
regimes is the same as that performed in the case of the two-spin model of [12].

At equilibrium γo = γe and, according to (4.29), θ(λ) = 2(1 − γ2
e )(coshλ− 1). Therefore 

only cumulants of even order do not vanish. According to (5.9) the first two cumulants of even 
order read

lim
t→∞

⟨Q2
e⟩c

(νe + νo)t
=

1
4
νoνe

(
1 − γ2

e
)
× N∆E2

lim
t→∞

⟨Q4
e⟩c

(νe + νo)t
=

1
4
νoνe

(
1 − γ2

e
) [

1 − 9
4
νoνe

(
1 − γ2

e
)]

× N∆E4.
 

(5.14)

The probability distribution of Qe is not a Gaussian, since all cumulants of even order have 
non-vanishing values.

When a thermostat has a kinetic parameter far larger than the other one, the scaled generat-
ing function becomes proportional to θ(λ),

g2N(λ) =
1
8

Nνsθ(λ), (5.15)

where νs is the kinetic parameter of the slower thermostat. Then g2N(λ) coincides with the 
scaled generating function of a continuous-time random walk, because θ(λ) can be rewritten 
as

θ(λ) = 2
[

p+eλ + p−e−λ − ( p+ + p−)
]

 (5.16)

with the probabilities p+ = (1 + γo)(1 − γe)/2 and p− = (1 − γo)(1 + γe)/2. As a conse-
quence all cumulants of even (odd) order are equal to the same value when they are measured 
in unit of ∆E: for all p ! 1

lim
t→∞

⟨Q2p−1
e ⟩c

t∆E2p−1 =
1
4
νs(γo − γe)N

lim
t→∞

⟨Q2p
e ⟩c

t∆E2p =
1
4
νs(1 − γoγe)N.

 

(5.17)
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In the same kinetic regime, if one thermostat is at zero temperature, for instance γo = 1, 
then the scaled generating function coincides with that of a continuous-time Poisson process, 
because

θ(λ) = 2(1 − γe)
[
eλ − 1

]
. (5.18)

As a consequence all cumulants of Qe in unit of ∆E are equal to the same value: for all p ! 1

lim
t→∞

⟨Q p
e ⟩c

t∆E p =
1
4
νs(1 − γe)N. (5.19)

In the limit where the temperatures of both thermostats tend to zero, θ(λ) is small because 
both (1 − γoγe) and (γo − γe) are small and a continuous-time random walk regime emerges 
again.

6. Conclusion

In the present paper we have investigated the heat currents in an Ising spin ring where alter-
nating spins are coupled to two macroscopic bodies at different temperatures and with dif-
ferent kinetic parameters. The stationary mean values of the global two-spin correlations at 
any distance have been calculated. The dependence upon the kinetic parameters arises only 
through the linear combination γ defined in (2.18)9. The finite-size corrections in the global 
two-spin correlations disappear in the mean instantaneous global heat current coming out of 
one thermostat.

The scaled generating function of the joint cumulants per unit of time for the heat amounts 
exchanged with the two thermostats over a long time have been calculated exactly. At lead-
ing order in the ring size they prove to be proportional to the ring size, as it is the case for the 
model where both thermostats act on every site [7]. Moreover, if the order of the cumulant is 
lower than the number of spins connected to one thermostat, the finite-size corrections again 
disappear exactly, and the cumulant is strictly proportional to the ring size.

We notice that the proportionality to the ring size at leading order in the size has already 
been observed for the cumulants of two other kinds of cumulative quantities when the sys-
tem is homogeneous (only one temperature and one kinetic parameter) and seen as a simple 
exclusion process with pair creation and annihilation [21]: the two cumulative quantities are 
the difference between the numbers of domain wall jumps in the clockwise and anticlockwise 
directions respectively, and the number of pair annihilations. This is in contrast with the case 
of the purely diffusive simple exclusion process on a ring, where the cumulants for the dif-
ference between the numbers of jumps in the two directions and the cumulants for the total 
number of jumps are proportional to powers of the ring size which increase with the order of 
the cumulants [22].

An interesting open problem is the calculation of the heat cumulants in another solvable 
model for thermal contact: two joined semi-infinite Ising chains coupled to thermostats at two 
different temperatures [23, 24]. Then the mean global current which flows from one thermo-
stat to the other through the junction between the two half-chains is obtained by summing the 
mean currents received by all spins in a semi-infinite Ising chain. The intrinsic inhomogeneity 
of these currents would have to be dealt with by specific methods.

9 When the kinetic parameters are set equal, our result are compatible with those of [2].
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Appendix. Two-spin correlations

By analogy with the homogeneous case [8] the evolution equation for the two-spin correla-
tions reads

d⟨sjsk⟩
dt

= −2⟨sjsk [w(sj → −sj) + w(sk → −sk)]⟩.
 (A.1)

Inserting the expression (2.4) for the transition rates we get

d⟨sjsk⟩
dt

= −(νj + νk)⟨sjsk⟩+
1
2
νjγj [⟨sj−1sk⟩+ ⟨sj+1sk⟩] +

1
2
νkγk [⟨sjsk−1⟩+ ⟨sjsk+1⟩] .

 (A.2)
The latter equations imply that Dee

2 , Doo
2 , Doe

1  and Deo
1  involved in the expressions (2.14) 

and (2.16) for the mean global currents ⟨Je⟩st and ⟨Jo⟩st are to be determined from a hierarchy 
of equations for the two-spin quantities

Doo
2p =

1
N

N∑

n=1

⟨s2n−1s2n−1+2p⟩st, (A.3)

Doe
2p+1 =

1
N

N∑

n=1

⟨s2n−1s2n+2p⟩st (A.4)

with an analogous definition for Deo
2p+1, and

Dee
2p =

1
N

N∑

n=1

⟨s2ns2n+2p⟩st. (A.5)

We notice that if the initial probability distribution for the spin configurations is translationally 
invariant, this property is conserved by the evolution under the transition rates and the station-
ary two-spin correlation ⟨sksk+p⟩st  depends only on the difference p between the site indices; 
then it is equal to one of the D’s defined in (A.3)–(A.5). From the latter definitions we get the 
boundary conditions

Dee
0 = 1 and Doo

0 = 1. (A.6)

From the evolution equation for the spin correlations (A.2) we get that, in the stationary 
state where the D’s are defined, for 2 ! 2p ! 2(N − 1)

0 = −4νeDee
2p + νeγe

[
Doe

2p+1 + Doe
2p−1 + Deo

2p−1 + Deo
2p+1

]
 (A.7)

0 = −4νoDoo
2p + νoγo

[
Deo

2p+1 + Deo
2p−1 + Doe

2p−1 + Doe
2p+1

]
, (A.8)

while for 1 ! 2p + 1 ! 2N − 1

0 = −2Doe
2p+1 + νoγo

[
Dee

2p+2 + Dee
2p
]
+ νeγe

[
Doo

2p + Doo
2p+2

]
 (A.9)

0 = −2Deo
2p+1 + νoγo

[
Dee

2p+2 + Dee
2p
]
+ νeγe

[
Doo

2p + Doo
2p+2

]
. (A.10)

Comparison of equations (A.7) and (A.8) leads to the relation valid for 2 ! 2p ! 2(N − 1)

Doo
2p =

γo

γe
Dee

2p, (A.11)
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while comparison of equations  (A.9) and (A.10) leads to the relation valid for 
1 ! 2p + 1 ! 2N − 1

Deo
2p+1 = Doe

2p+1. (A.12)

By taking into account these relations in (A.7) and (A.9) we have to solve the coupled equa-
tions for the Dee’s and the Doe’s

−2Dee
2p + γe

[
Doe

2p−1 + Doe
2p+1

]
= 0 for 2 ! 2p ! 2(N − 1)

−2Doe
2p+1 + γo

[
Dee

2p + Dee
2p+2

]
= 0 for 2 ! 2p ! 2(N − 2),

 (A.13)

where the second equation is to be supplemented by the extra boundary conditions for p  =  0 
and p  =  N  −  1 respectively. The latter conditions are derived from (A.9) and (A.6),

−2Doe
1 + γoDee

2 + γ = 0
−2Doe

2N−1 + γoDee
2(N−1) + γ = 0, (A.14)

where γ is defined in (2.18). The equation  (A.13) allow to determine recursively 
Doe

3 , Dee
4 , . . . , Doe

2N−1 from a given set (Doe
1 , Dee

2 ), and then the boundary conditions (A.14) 
determine the values of Doe

1  and Dee
2 .

The recursive equation (A.13) are linear and their generic solution, which depends on the 
two parameters Doe

1  and Dee
2 , can be looked for as linear combinations of two linearly inde-

pendent solutions. Because of the invariance of these equations under the translation over two 
sites, one can look for independent solutions which are also eigenfunctions of the translation 
operator on each sublattice, namely solutions of the form f ee

2p+2 = ηf ee
2p  and f oe

2p+3 = ηf oe
2p+1. 

These solutions can be written as

f ee
2p = η p−1a

f oe
2p+1 = η pb.

 (A.15)

By inserting the latter expressions into the recursive equation (A.13) one gets two coupled 
linear equations for a and b. The latter do not vanish if η is equal to one of the two values

η± =
2 − γoγe ± 2

√
1 − γoγe

γoγe
=

[
1 ±

√
1 − γoγe√
γoγe

]2

. (A.16)

The model is defined for 0 < γo < 1 and 0 < γe < 1, so that η+ ̸= η−. Then in the two solu-
tions of (A.15) with η+ and η− respectively, b± = 1

2γo[1 + η−1
± ]a±. Then the generic solution 

of (A.13) reads

Dee
2p = a+η

p−1
+ + a−η

p−1
−

Doo
2p =

1
2
γo(1 + η−1

+ )a+η
p
+ +

1
2
γo(1 + η−1

− )a−η
p
−.

 (A.17)

In fact the solution can be written only in terms of η− (with 0 < η < 1) by using the relation 
η+η− = 1. Then the boundary conditions (A.14) determine the values of a+ and a−. After 
straightforward calculations and use of the relation

√
η− +

1
√
η−

=
2

√
γoγe

, (A.18)

we get that for 2 ! 2p ! 2(N − 1)
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Dee
2p =

γ

γo

1
1 + ηN

−

[
η p
− + ηN−p

−

]
, (A.19)

and for 1 ! 2p + 1 ! 2N − 1

Doe
2p+1 =

γ
√
γoγe

1
1 + ηN

−

[
η p+1/2
− + ηN−p−1/2

−

]
. (A.20)

The latter formulae are compatible with the expressions of the stationary two-spin correlations 
determined in [2] in the case where νo = νe .
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