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Exact low-density free energy and algebraic tails of static
correlations in quantum plasmas in a uniform magnetic field
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PACS. 05.70Ce – Thermodynamic functions and equations of state.
PACS. 71.45Gm– Exchange, correlation, dielectric and magnetic functions, plasmons.

Abstract. – In nonrelativistic Coulomb plasmas with quantum dynamics and statistics, the
effect of an external uniform magnetic field upon thermodynamics and the algebraic tails of
position correlations is discussed. The results are obtained in the framework of a path integral
formalism. The exact virial expansion of the free-energy density at finite temperature is calcu-
lated up to order ρ5/2 in the density ρ. It exhibits the interplay of Coulomb interactions and
quantum statistics with bare diamagnetism and paramagnetism. Moreover, the static particle
correlations are shown to decay as 1/r5 at large distances r, and the exact analytical coefficients
of these tails are given at first order in ρ.

From the point of view of statistical mechanics and fundamental interactions, matter in
many situations has to be considered as a quantum nonrelativistic plasma of point charges
with Coulomb interactions. Recently, the exact free-energy density [1] up to order ρ5/2 (where
ρ is a generic notation for the particle densities) was produced, and the limiting values of the
large-distance behaviours of static correlations [2] were also calculated at first order in ρ. These
exact analytical results, which contain all quantum effects at any order in h̄, have been obtained
at low density and finite temperature, which corresponds to a regime of low degeneracy and
weak Coulomb coupling. (For instance, they are valid for the nucleus-electron plasma in the
core of the sun or for the electron-hole gas in intrinsic semiconductors). In the present letter,
we study the changes that arise in the presence of a uniform external magnetic field B0, which
is coupled both to position and spin variables. The difficulty which was eventually overcome
in the above references is the exact treatment of Coulomb interaction at any distance (without
any regularization) in the quantum many-body problem. In the presence of B0, we generalize
the formalism of ref. [3], which takes exchange effects systematically into account and which
uses the path integral representation of the quantum Gibbs factor in order to exactly resum the
long-ranged Coulomb divergences directly in position space. Thus, the large-distance decay of
position correlations can be investigated at finite density most adequately. Moreover, we can
devise systematic low-density expansions. The whole formalism is valid for any strength of B0.
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A detailed account of this work will be published elsewhere.
The results are the following. The expression of the free-energy density up to order ρ5/2,

which is derived from the microscopic insight of quantum statistical mechanics, exhibits how
the orbital diamagnetism arising from quantum dynamics and the Pauli paramagnetism due
to the coupling between B0 and the spin quantum degree of freedom are renormalized and
coupled by interactions and quantum statistics. In agreement with Bohr-van Leeuwen theorem,
the purely classical terms in the expansion of the free energy are unchanged when B0 is
switched on. On the contrary, the contribution from bound and diffusion states as well as
a quantum “diffraction” term, specific to the long range of Coulomb potential, depend on B0.
Moreover, the root of ferromagnetism appears in the effective coupling between spins caused
by the combination of Coulomb interactions and quantum statistics (though the fundamental
magnetic dipolar interactions between spins are neglected). By a limiting process, we also
consider the One-Component Plasma (OCP), which is a fluid of one species of charges moving
in a rigid background that ensures global neutrality, and we compare our results with the
semiclassical expansion of ref. [4]. On the other hand, quantum Coulomb screening is such that
the monopole-monopole and monopole-multipole interactions between charges surrounded by
their polarization clouds are exponentially screened at large distances r, whereas the multipole-
multipole interactions are partially screened. When B0 = 0, rotational-invariance arguments
together with the harmonicity of the 1/r potential imply that the large-distance behaviours
of the static particle correlations are controlled by the quantum fluctuations of dipolar-like
interactions and decay algebraically as 1/r6 [3], [2]. When B0 6= 0, the invariance under
rotations is broken in one space direction, so that quadrupole-quadrupole interactions survive
partially after statistical averaging, and the particle correlations fall off only as 1/r5. Here,
we exhibit the exact analytical coefficients of the 1/r5 tails in the low-density limit mentioned
above.

More precisely, we consider a multicomponent plasma of several species α of point particles
which obey quantum nonrelativistic dynamics and quantum statistics. Each species is charac-
terized by its mass mα, its spin h̄Sα, its charge eα and its Landé factor gα. The dynamical
variables of a particle with index i are its position ri, with conjugate momentum pi, and its
spin h̄Si. In the gauge where the potential vector is (1/2)B0∧r, the Hamiltonian of the system
reads

H(B0) =
∑
i

1

2mαi

(
pi −

eαi
2c

B0 ∧ ri
)2

−
∑
i

gαiµBαiSi ·B0 +
1

2

∑
i6=j

eαieαj
|ri−rj|

, (1)

where c is the light velocity and µBα = eαh̄/2mαc is the Bohr magneton. The first two terms
are the Hamiltonian of the ideal gas in Pauli’s theory. At thermal equilibrium characterized
by the inverse temperature β and a set of densities {ρα}, the latter system is well-behaved
in the Maxwell-Boltzmann (MB) approximation. However, when Coulomb interactions are
involved in the description, quantum statistics must be taken into account in order to prevent
the macroscopic collapse of charges with opposite signs [5]. In a path integral formalism, the
grand partition function of a system of quantum particles with quantum statistics, and which
interact through a two-body potential, can be written as the grand partition function of a
system of classical loops with random shapes and MB statistics and which also interact via some
two-body potential [6], [7]. In the case of Coulomb interactions, it was shown in ref. [3] that the
long-ranged 1/r tail of the potential between loops can be exactly resummed in some Mayer-like
expansions. In fact, the latter formalism can be generalized to the fundamental Hamiltonian
(1) in the presence of B0, for the following reasons. First, the spin variables are coupled only
with the external field B0, and not with the position variables. Second, in the Feynman-Kac-Itô
formula [8] for the density-matrix element associated with a given permutation of positions, a
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loop is associated with each of the cycles in which the permutation of exchanged particles can
be decomposed, and the coupling of the position variables with B0 reduces to the appearance
of a product of one-loop phase factors. Moreover, every one-loop phase factor involves only
the shape of the loop. Subsequently, the presence of B0 just renormalizes the statistical weight
of loops in the above identity between grand partition functions, and it does not modify the
exact resummation process for large-distance Coulomb divergences.

Systematic low-density expansions at finite temperature are devised from the above general
loop formalism. The method is different from that of ref. [1], but it uses a similar scaling
analysis. (In the method of ref. [1], the exchange effects are not taken into account systematically
from the start and appear only as perturbative corrections, while the free energy is derived from
other basic formulae.) When B0 = 0, our method allows to retrieve the exact free-energy
density up to order ρ5/2 [1]. (We notice that a multiplicative factor 1/2 was omitted in
the expressions (4.2) and (4.3) in the third paper of ref. [1].) When B0 6= 0, analytical
results can still be obtained, because the covariance of independent Brownian paths can be
computed explicitly even in the presence of B0. Let λα be the thermal de Broglie wavelength,

λα ≡
√
βh̄2/mα. The dimensionless parameters uCα ≡ βµBαB0 and uSα ≡ (gα/2)uCα

(with B0 ≡ |B0|) are equal to β/2 times the energies associated with the cyclotronic orbital
motion and the spin precession, respectively: uCα = βh̄ωCα/2, where ωCα = eαB0/mαc
is the cyclotronic frequency. For sets of densities that satisfy the local neutrality relation∑
α eαρα = 0, the difference, up to order ρ5/2, between the exact volumic densities f of free

energies with or without B0 reads

βf(β, {ρα}, B0)− βf(β, {ρα}, B0 =0) =
∑
α

ρα ln

(
sinhuCα
uCα

)
+

+
∑
α

ρα ln

(
(2Sα + 1) sinhuSα
sinh[(2Sα + 1)uSα]

)
−

1

2

∑
α

(−1)2Sα

2Sα + 1
[1 + βκDe

2
α] ρ2

α (4πλ2
α)3/2 ×

×

∫
dr

[
(2Sα + 1) tanhuSα
tanh[(2Sα + 1)uSα]

sinhuCα
uCα

〈−r|e−βhrel,α(B0)|r〉−

−〈−r|e−βhrel,α(B0=0)|r〉
]
−

1

2

∑
α,γ

[1 + βκDeαeγ ] ραργ (2πλαλγ)
3 ×

×

∫
dr

[
sinhuCα
uCα

sinhuCγ
uCγ

〈0, r|e−βHαγ(B0)|0, r〉 − 〈0, r|e−βHαγ(B0=0)|0, r〉

]
+

+
1

6

βh̄c

B0
κ3
D

∑
α

ραeαL
[3](βµBαB0) + o(ρ5/2) . (2)

At order ρ, all effects are contained in the MB contribution from the gas of independent particles
described by Pauli’s Hamiltonian. This contribution is the sum of the standard diamagnetic
and paramagnetic terms. Two-body exchange effects, which are short-ranged whether there are
interactions or not, arise only at the order ρ2. The long-ranged Coulomb potential is partially
screened by collective effects over a length scale κ−1 which depends on the density and tends to
the Debye value κ−1

D = [4πβ
∑
α ραe

2
α]−1/2 when exchange effects vanish [3]. Thus, half-integer

powers of the density appear in the free-energy density from order ρ3/2 on. However, the
ρ3/2 “Debye” contribution is purely classical and does not involve B0, in agreement with
Bohr-van Leeuwen theorem. B0 appears only from order ρ2 on, in contributions from quantum
dynamics and statistics, through normalization factors involving uCα and uSα and through
Hamiltonian operators. Hαγ is the two-body Hamiltonian without the spin contribution and
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hrel,α(B0) ≡ (1/mα) (p− (eαB0/4c) ∧ r)2 + e2α/r is the Hamiltonian of a relative particle.
(Indeed, for two particles of the same species, the position of the center of mass, with mass
2mα and charge 2eα, and that of the relative particle, with mass mα/2 and charge eα/2, are
separable variables even when B0 6= 0.) The bound and diffusion states are contained in the
quantum density-matrix elements. The two-body exchange effects, which are short-ranged, are
not altered by any collective phenomenon at order ρ2, while, at order ρ5/2, the bare contribution
is only renormalized by a multiplicative factor arising from classical Debye screening. In the
direct terms, the difference between the quantities with B0 6= 0 and B0 = 0 automatically
performs the truncations needed for extended states, and the corresponding contribution at
order ρ2 is the same as in the case of a short-ranged interaction. However, the long range of
Coulomb potential is responsible for an extra quantum diffraction term, which arises from the
partial quantum screening at large distances. This term vanishes at order ρ2 because of the
local neutrality relation. It can be decomposed into a part independent of B0 plus a correction
which involves a generalization L[3](uCα) of the Langevin function that appears in the orbital
magnetization of a gas of independent charges: L[3](uCα) ≡ cothuCα− 1/uCα− uCα/3. Thus,
the diffraction contribution at order ρ5/2 is proportional to B2

0 when B0 is weak.

The free energy of the OCP is derived from the formulae valid for a two-component plasma
(TCP) by sending the mass of one species to infinity, then its charge to zero while keeping
charge neutrality. Up to order ρ5/2, the result is similar to (2), apart from the diffraction
term, which does not vanish at order ρ2 and reads (4π/3)(βh̄ec/B0)ρ

2L[3](βµBB0). Besides,
in regimes of low degeneracy and weak quantum dynamical effects at uC ≡ βµBB0 fixed, the
expression of the OCP free energy can be expanded with respect to h̄, because the exchange
density-matrix element in position space vanishes exponentially fast when h̄ goes to zero [4]
and because the OCP has a well-defined thermodynamic limit even with MB statistics. In this
semiclassical limit, valid for any strength of Coulomb and magnetic couplings, the quantum
term of lowest order in h̄ in the free-energy density is the contribution from the MB gas of
independent charges, which is of order ρ. The interactions are involved only in the term of
next order in h̄, which is exactly proportional to ρ2 [4]. We have checked that the semiclassical
and low-density expansions are coherent. (In particular, the ρ5/2 terms in the low-density
expression cancel up to second order in h̄, as they should.)

All thermodynamic quantities can be obtained from the free-energy density. For instance,
the pressure P = −f +

∑
α ρα∂f/∂ρα has an expression similar to f up to order ρ5/2. On

the contrary, the expression of the volumic magnetization M = −∂f/∂B0 requires a detailed
spectral analysis, which is far beyond the scope of the present paper. The diamagnetic and
paramagnetic magnetizations of the MB quantum ideal gas are renormalized and coupled by
interactions and quantum statistics. In (2) the term ρ2

α tanhuSα/ tanh[(2Sα + 1)uSα] is the
sum of the squared densities of particles α in the 2Sα+1 spin states in the absence of Coulomb
interactions, and the combination of the exchange and direct density-matrix elements in position
space is linked to the origin of ferromagnetism.

The analysis of the large-distance behaviours of static position correlations in quantum
plasmas in a uniform magnetic field is performed along the same lines as in ref. [3]. From the
study of the nonanalyticities at small wave numbers in Fourier space, it can be shown that
the truncated two-body distribution function ρT

αγ(r) (called particle-particle correlation in the
following) decays more slowly than when B0 = 0, namely as 1/r5 instead of 1/r6, at any
density and finite temperature. After integration over the orientation of the relative position of
the particles, the 1/r5 tail disappears, while the subleading 1/r6 term survives. These algebraic
tails are compatible with the screening rule for an external infinitesimal charge [9]. Moreover,
the particle-charge and charge-charge correlations,

∑
γ eγρ

T
αγ(r) and

∑
α,γ eαeγρ

T
αγ(r), also

behave as 1/r5, whereas, when B0 = 0, they fall off as 1/r8 and 1/r10, respectively, because
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of some interplay with the partially exponential screening created by other quantum charges
combined with rotational invariance and harmonicity arguments [2], [3]. As expected, the
induced charge density given by the linear response theory decays with the same inverse power
law as the particle-charge correlation.

In the low-density limit, we have calculated the exact coefficient of the 1/r5 tail of the
particle-particle correlation at first order in ρ. Its value turns out to coincide with the limit
of weak Coulomb coupling for the coefficient found in a simple solvable model. For the sake
of pedagogy, instead of giving technical details about the derivation for the fully quantum
many-body problem, we present this model. It was first introduced by Alastuey and Martin
in ref. [10] in order to exemplify the origin of the algebraic decays generated by quantum
fluctuations when B0 = 0. The system is made of two quantum particles immersed in a
classical plasma and whose relative position is r. By using the Feynman-Kac representation of
the diagonal matrix-element of the quantum Gibbs factor in position space, it can be shown that
this problem is equivalent to that of two loops with random shapes λ1ξ1 and λ2ξ2, with typical
extent λj and a Gaussian measure D(ξj) [8]. (The ξj(s)’s are dimensionless Brownian bridges
which vanish at s=0 and s=1.) As shown in sect. VII of ref. [10], the fundamental interaction
energy between the loops can be written as the electrostatic potential between charged wires
with the same shapes, plus a purely quantum term W ,

W (r, ξ1, ξ2) = e1e2

∫ 1

0

ds

∫ 1

0

ds′[δ(s−s′)− 1]
1

|r + λ1ξ1(s)−λ2ξ2(s
′)|
. (3)

W can be written as a series of terms Wn, each of which decays as 1/rn, with n ≥ 3. After
averaging over microscopic configurations of the classical plasma, the correlation between the
two quantum particles contains algebraic tails at large distances. These tails are given by the
integration of exp[−βW ] − 1 over the shapes ξj ’s of the loops with a measure D(ξj) which
involves the excess free energy F (ξj) associated with the immersion of a single loop in the

classical bath. When B0 6= 0, the only difference is that D(ξj) contains an extra phase factor
exp[i(ejλ

2
j/2h̄c)B0 ·

∫
ξj ∧ dξj ], where

∫
dξj is Itô’s integral [8]. When B0 = 0, the measure

D(ξj) is invariant under rotations, so that
∫
D(ξ1)

∫
D(ξ2)[−βW ] contains only powers of the

Laplacian of 1/r, which is short-ranged: ∆(1/r) = −4πδ(r). Thus, the slowest algebraic tail
is given by

∫
D(ξ1)

∫
D(ξ2)[βW3]

2/2 and behaves as 1/r6. On the contrary, when B0 6= 0, the
measure D(ξj) is invariant only under rotations in the plane perpendicular to B0 and under
the inversion ξj → −ξj . Then, if B0 is parallel to the z-axis, the slowest algebraic tail is

given by a ∂zzzz(1/r) term which survives in
∫
D(ξ1)

∫
D(ξ2)[−βW5] apart from short-ranged

terms. Its value involves the differences between the covariances along the z- and x-axes when
B0 6= 0 for both Brownian bridges ξj ’s. In the limit of weak Coulomb coupling, F (ξj) becomes

independent of the shape ξj , the normalized measure D(ξj) reduces to its bare value D(ξj) and
the 1/r5 tail of the correlation in the model happens to be identical to the low-density limit of
the exact 1/r5 tail in the quantum plasma. (This coincidence does not hold when B0 = 0 [2].)
The result is

ρT
αγ(r) ∼

r→∞
−ραργ β

3h̄4 eα

mα

eγ

mγ
A(uCα, uCγ)

P4(cos θ)

r5
, (4)

where P4(x) is a Legendre polynomial, θ is the angle between B0 and r, and A(uCα, uCγ) is
determined by the dynamics of independent charges in a magnetic field,
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A(uCα, uCγ) =
3

2

{
−

1

u2
Cα−u

2
Cγ

[
u2
Cγ

u3
Cα

cothuCα −
u2
Cα

u3
Cγ

cothuCγ

]
+

+
1

45
−

1

3u2
Cα

−
1

3u2
Cγ

−
1

u4
Cα

−
1

u4
Cγ

−
1

u2
Cαu

2
Cγ

}
. (5)

The Cαγ/r
5 tail in (4) does disappear after integration over cos θ, as at any finite density. When

B0 is weak, Cαγ is proportional to h̄8B4
0 . In the strong-field limit, Cαγ becomes independent

of B0 and is only of order h̄4 —as well as the coefficient of the 1/r6 tail when B0 = 0 [2]—
because the localization enforced by B0 makes the system less quantum. The low-density
algebraic decays of the particle-charge and charge-charge correlations are given by (4) with
adequate summation over charges. The tail of the induced charge density, derived from the
linear response theory in the loop formalism [3], vanishes at order ρ and appears only at higher
orders in density. Indeed, this infinitesimal induced charge is generically given by the linear
term in eα in the particle-charge correlation

∑
γ eγρ

T
αγ(r) [2], and A(uCα, uCγ) is nonlinear in

eα when eα tends to zero. Eventually, we mention that, in situations where the conditions of
weak Coulomb coupling and low degeneracy are met, the algebraic tails dominate the Debye
exponential decay only at distances of about ten Debye lengths, as in the absence of B0 [2].

We notice that all results about correlations also hold for the OCP. We have checked that the
result for the OCP that is deduced from eqs. (4) and (5) for a TCP when one mass becomes
infinite coincides with the low-density limit of the exact coefficient that is derived from the
nonanalytic term in the ρ-expansion of the exact sum rule (5.63) in ref. [9].
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